
VisFuzz: Understanding and Intervening Fuzzing
with Interactive Visualization

Chijin Zhou∗, Mingzhe Wang∗, Jie Liang∗, Zhe Liu†, Chengnian Sun‡ and Yu Jiang∗�
BNRist, School of Software, Tsinghua University, Beijing, China∗

Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China †

Cheriton School of Computer Science,University of Waterloo, Canada‡

Abstract—Fuzzing is widely used for vulnerability detection.
One of the challenges for an efficient fuzzing is covering code
guarded by constraints such as the magic number and nested
conditions. Recently, academia has partially addressed the chal-
lenge via whitebox methods. However, high-level constraints such
as array sorts, virtual function invocations and tree set queries
are yet to be handled.

To meet this end, we present VisFuzz1, an interactive tool
for better understanding and intervening fuzzing process via
real-time visualization. It extracts call graph and control flow
graph from source code, maps each function and basic block to
the line of source code and tracks real-time execution statistics
with detail constraint contexts. With VisFuzz, test engineers
first locate blocking constraints, and then learn its semantic
context, which helps to craft targeted inputs or update test
drivers. Preliminary evaluations are conducted on four real-world
programs in Google fuzzer-test-suite. Given additional 15 minutes
to understand and intervene the state of fuzzing, the intervened
fuzzing outperforms the original pure AFL fuzzing, and the path
coverage improvements range from 10.84% to 150.58%, equally
fuzzed for 12 hours.

Video link: https://youtu.be/opjRKcqOvNs.

I. INTRODUCTION

Many fuzzers such as American Fuzzy Lop (AFL) [1],
libFuzzer [2] have discovered hundreds of high-impact vul-
nerabilities in widely-used software systems. However, their
performance is limited by complex constraints in large pro-
grams. One of the reasons is limited coverage — code guarded
by constraints such as magic number and nested conditions
prevent a fuzzer to explore paths behind.

To tackle the problem, a greybox approach is optimizing the
mutation and selection algorithms. For example, AFLFast [3]
gives more mutation times to valuable seeds which exercise
low-frequency paths. FairFuzz [4] optimizes AFL’s mutation
algorithm to target rare branches. Those techniques still suffer
from insufficient exploration of a program, because they
cannot traverse paths beyond complex constraints, e.g., magic
value. Another approach leverages whitebox techniques to
automatically solving constraints. For example, Driller [5]
switches to symbolic execution when AFL reaches a plateau,
and switches back to AFL as soon as the complex constraint
is bypassed. However, symbolic execution cannot effectively
solve high-level constraints (e.g. indirect memory addressing).
HaCRS [6] tries to divide hard-to-solve problem into some
well-defined sub-tasks and displays them for human assistance.
But it only provides symbolic tokens for human, and high level
information is lost during the conversion.

High-level constraints are ubiquitous in real-world program,
but the automatic techniques above are in lack of support for

1The tool can be download at: https://github.com/ChijinZ/VisFuzz

them (e.g. array sorts, virtual function invocations and tree set
queries). On the contrary, manual intervention by human has
the potential to solve high-level constraints.

Table I shows that both AFL and KLEE [7] take more than
12 hours to trigger the assertion violation when checking the
18-length array median problem. The straightforward exam-
ple demonstrates that whitebox techniques suffer from path
explosion and greaybox techniques fails to cover the branch
efficiently, while human can easily construct an input to satisfy
the condition given the semantic context.

TABLE I: When automated test techniques meet checking
array median problem.

(a) Code of checking array median

void test(int *buf, size_t size)
{

if (size != SORT_SIZE)
return;

qsort(buf, SORT_SIZE, sizeof(buf[0]), cmp);
assert(buf[SORT_SIZE / 2] != MAGIC_NUMBER);

}

(b) Time to assertion failure

sort size AFL KLEE

6 13min 10s
10 >12h 3min
14 >12h 16min
18 >12h >12h

However, real-world programs are much more complex,
and analyzing the semantic of the whole program is be-
yond human’s ability. Thus, to enable human-assisted fuzzing
practically, we need to solve three challenges: 1) locate the
boundary of unexplored regions (where the bottleneck resides);
2) understand the semantic context around the bottleneck; 3)
intervene the fuzzing process (e.g. construct targeted input,
update test driver) to achieve higher coverage.

In this paper, we present VisFuzz. VisFuzz helps the test
engineer to: 1) drill down into the bottleneck from function
level, basic block level to statement level; 2) learn semantic
context from basic blocks and source code; 3) construct
targeted inputs or update the test driver to increase coverage.
VisFuzz is implemented as a LLVM plugin for obtaining call
graphs, control-flow graph and coverage, a modified AFL for
runtime statistics, and a Python script for visualization web
server. To the best of our knowledge, VisFuzz is the first tool
for visualizing fuzzing process.

Preliminary evaluations are conducted on four real-world
programs in Google fuzzer-test-suite. Given additional 15
minutes to understand and intervene the state of fuzzing, the
intervened versions outperform the original AFL versions,
and the path coverage improvements range from 10.84% to
150.58%, equally fuzzed for 12 hours.

II. DEMONSTRATION SCENARIO

Figure 1 summarizes the procedure for understanding and
intervening fuzzing with VisFuzz. 1) The test engineer moni-
tors the charts and statistics provided by VisFuzz, and checks



for the evidence of plateau. 2) If the situation needs interven-
tion, then the test engineer navigates to the potential inter-
vention points by the call graph and control flow graph. The
graphs are enhanced with real-time coverage, and the search
of intervention points is greatly accelerated. After locating
the intervention points, VisFuzz loads the corresponding code
snippet, and helps understanding the bottleneck by providing
the semantic context for the test engineer. 3) Next, the test
engineer performs intervention, such as constructing a targeted
seed, or updating the test driver and target program.

Fig. 1: Interaction between VisFuzz and test engineer: 1)
monitor; 2) locate; 3) intervene.

The procedure above is generic, and can be applied to all
projects for fuzzing visualization. Here we demonstrate the
usage of VisFuzz on re2, a well-tested program in Google
fuzzer-test-suite. The first step is compilation. As Table II
presents, VisFuzz follows the normal clang-like build proce-
dure for cost-effective adaption. The next step is fuzzing re2,
and the details are presented below.

TABLE II: VisFuzz and normal build procedure

VisFuzz Normal build

Configure ./configure ./configure
Build lib make -j make -j

Build driver clang++ target.cc -c clang++ target.cc -c

Link vis-clang++ target.o \ clang++ target.o \
lib.a -o app lib.a -o app

Run vis-fuzz -i in -o out ./app ./app

Step 1: monitor charts and statistics. The starting point is
judging whether fuzzing has reached a plateau via analyzing
the charts and statistic. As Fig. 2(a) shows, after 12 hours,
path coverage in the chart has reached a plateau. The statistics
also show that it has been 50 minutes since finding the last
new path. The phenomenon implies that a bottleneck has
been encountered, and users should follow Step 2 to find the
bottleneck function.

Step 2: analyze call graphs and control flow graphs. To
find the bottleneck, users should investigate which function
is seldom hit. As Fig. 2(b) shows, each node represents a
function, and each edge represents the call relation between
two functions. The color of a node denotes the hit frequency
of the function. The size of a node denotes the number of
basic blocks the function contains. When the mouse hovers
on a specific node, the corresponding function information

(a) Step 1: monitor chart and statistics

(b) Step 2: analyze call graph

(c) Step 2: analyze control flow graph

Fig. 2: Main workflow and interfaces of VisFuzz

will be displayed. Users leverage those information to find
a caller of seldom-hit functions. In this case, function Match
in re2.cc is a potential bottleneck. Next, users should drill
down into the function and figure out the seldom-hit basic
block, and further than that, the corresponding lines in the
source code. When double clicking the node in call graph,
the control flow graph and the corresponding source code of
this function pops up as Fig. 2(c) shows. Similar to the call
graph, the nodes and edge in control flow graph represents
basic block and relation between two basic blocks. When
the mouse hovers on a specific node, the corresponding basic
block information will be displayed. In this case, users find
re_anchor is never a UNANCHORED state in re2.cc:618.
The semantic context guides the users to find a misconfigured
regular expression engine: the default test driver only accepts
fully-matched pattern, and the automaton is prevented from
entering the UNANCHORED state.

Step 3: intervene fuzzing. After pinpointing the bottleneck
statement and figuring out why the statement is blocked, users
should intervene fuzzing process. In this case, users update the
test driver to enable partially matched regular expressions and
continue fuzzing. Experiments shows it gains 20.85% higher
path coverage. See section IV for details.



III. VISFUZZ DESIGN

VisFuzz includes three folds. First, VisFuzz extracts call
graph and control flow graph from source code and maps
each function and basic block to the line of source code.
Second, VisFuzz tracks real-time execution statistics. Third,
VisFuzz provides a level-of-detail visualization to help test
engineer pinpoint the bottleneck constraints. The three folds
are accomplished in three stages, as presented in Figure 3.

Source
Code

libVisFuzz.so

Compiler Program
Bitcode

Instrumented
Bitcode

LLVM
Linker

Call Graph

Control
Flow Graph

Source
Mapping

FuzzerExecuble File

Web UI

Basic
Information

Compile Stage

Runtime Stage

Visualize Stage

Block Hit
Counter

Fig. 3: The design of VisFuzz

A. Compile Stage
Modern compilation systems separates compilation units

and utilizes parallelism to accelerate compilation. However, a
global view of the program is the prerequisite of obtaining the
calling relations. In this stage, VisFuzz leverages the LLVM
platform to combine all compilation modules into a whole-
program bitcode. Graph extraction and instrumentation are
integrated in the compiled library file libVisFuzz.so.

Function summary extraction. VisFuzz first uniquely
labels each function, and generates a summary for it. The
summary contains the file name and line range of the given
function. This is obtained by scanning the debug metadata of
the basic blocks inside the function.

Graph construction. With the unique labels for functions
available, VisFuzz constructs the call graph. This is done
by scanning the basic blocks of each function and checking
for function invocation instructions inside the basic block.
Moreover, use of function pointers are also recorded for further
use. Control flow graph is constructed in a similar method.

Basic block instrumentation. After constructing the graphs
above, VisFuzz instruments basic blocks. Similar to AFL,
VisFuzz updates the coverage statistics indexed by hashing the
random identifiers of the previous block and current block.
More than AFL, VisFuzz introduces an array for storing
the hit counts for each basic block, which is used by the
visualization part. For accurate counting, the instrumentation
not only increases the counter, but also saturates to prevent
wrapping on overflow.

B. Runtime Stage
Shared memory initialization. The runtime part of VisFuzz

is a static library linked into the target program. It registers
in the initialization section of the compiled executable file to
perform early initialization. When the target program runs, the
initialization code attaches to the XSI shared memory owned
by the fuzzer. Two shared memories regions are attached —
one is the bitmap for fuzzing, and another is the block hit
counts.

Statistics collection. The fuzzer part of VisFuzz is an
extension of AFL. When an input is generated, it sends the
input to the target program. After the completion, it reads the
bitmap to guide fuzzing just as what AFL does. Additionally,
it reads the block counters to update the global counters, then
resets the original counters. The operation avoids saturation
of the counters: to lower the overhead, the counters should be
kept in cache, and the word size of each counter is limited to
16 bits. All fuzzing statistics, including block hit counters and
basic fuzzer information (e.g. paths coverage, crash number,
etc.), are sent to visualization component.

C. Visualize Stage
Context visualization. We visualize static analysis results

(collected in compile stage) along with statistics (collected
in runtime stage) in a web application. It uses HTML5 for
presentation, Bootstrap for responsive web design, and D3 [8]
for data-driven visualization. Specially, we present call graph
as a force-directed graph [9] for intuitive presentation. Another
optimization is hiding the descents of unexplored functions,
which is unrelated to the locating procedure. Besides, we
present control flow graph based on Reingold-Tilford tree
layout [10] in order to emphasize the hierarchy of basic blocks.

IV. EVALUATION

We evaluate VisFuzz on typical real projects — re2, json,
pcre2 and libpng — all selected from Google fuzzer-test-suite.
The evaluation is conducted in three stages. In the first trial,
AFL is run on the target programs to collect the baseline.
Next, a test engineer who is familiar with AFL but without
any prior knowledge about the target program is given 15
minutes to understand the performance by VisFuzz. Then the
engineer forms a improved version by constructing targeted
seeds or updating the driver. In the final trial, AFL is rerun
on the improved version. For fair comparison, the final trial
is prohibited to reuse seeds and other data from the previous
trial, and both trials are given 12 hours to run on a single core
(Intel Core i7-8700K @ 3.70GHz).

Table III shows the number of paths, blocks and unique
crashes two tool detected. From the second column and the
third column, we observe that VisFuzz increases the covered
paths by 10.84% on json, 150.58% on libpng, 20.86% on re2,
89.36% on pcre2 compared to AFL. From the forth column
and the fifth column, we observe that VisFuzz increases the
covered blocks by 1.23% on json, 35.35% on libpng, 14.49%
on re2, 65.99% on pcre2 compared to AFL. From the sixth
column and the seventh column, we observe that VisFuzz finds
57 more unique crashes than AFL. From these comparisons
and statistics, we conclude that VisFuzz helps test engineers
spend little time (15 minutes) to gain more coverage, trigger
more crashes.

TABLE III: Performance on fuzzer-test-suite

Project Paths Blocks Unique Crashes

VisFuzz AFL VisFuzz AFL VisFuzz AFL

json 644 581 1566 1547 1 1
libpng 651 259 1206 891 0 0

re2 3419 2829 6888 6016 0 0
pcre2 16804 8874 11259 6783 106 49



The reason of performance improvement is that VisFuzz
guides the test engineer to locate the bottleneck constraints,
also helps him understand semantic context of the bottleneck.
Bottleneck constraints found by the test engineer are presented
in Table IV. In the follows, we illustrate interventions the test
engineer takes in details.

• json. The test engineer finds AFL never satisfies the
condition in json.hpp:11044, which checks whether
a string is a unicode with high surrogate followed by a
low surrogate. Thus the test engineer constructs a json
file containing such a pair of surrogates as initial seeds
for a new fuzzing session.

• linpng. The test engineer finds AFL always generates
invalid seeds which not meet the png specifications be-
cause of the CRC check in pngrutil.c:2069. Thus
the test engineer disables checksum check by setting
PNG_FLAG_CRC_CRITICAL_MASK for new a fuzzing
session.

• re2. The test engineer finds re_anchor is never a
UNANCHORED state in deterministic finite automaton
in re2.cc:618 because the default test driver only
accepts the fully-matched pattern. Thus the test engineer
updates the test driver to enable partially matched regular
expressions and continue fuzzing.

• pcre2. The test engineer finds the invariable compila-
tion option prevents fuzzer from satisfying condition
in pcre_compile.c:2792. Thus the test engineer
updates the test driver so that the option is altered by
inputs.

TABLE IV: Bottlenecks on fuzzer-test-suite

Project Bottleneck Constraints Bottleneck Details

json json.hpp:11044 UTF-16 checker
libpng pngrutil.c:2069 CRC checker

re2 re2.cc:618 Unexplored state in automaton
pcre2 pcre compile.c:2792 Unexplored mode of compilation

V. RELATED WORKS

Several approaches have been proposed to versatilely im-
prove fuzzing performance based on AFL. For example,
PAFL [11] utilizes guiding information synchronization and
task division to extend existing optimizations of single mode to
parallel mode. SAFL[12] integrates symbolic execution to help
fuzzer with high-quality initial seeds. Besides, several recent
techniques[13], [14] integrate multiple fuzzers and obtain
significant improvements.

Fuzzing techniques mentioned above focus on automatically
increasing testing coverage. A common paradigm of them is
that a test engineer writes test driver, the computer performs
fuzzing and the test engineer analyzes the results. HaCRS [6]
tries to inject human assistants into fuzzing stage through
dividing hard-to-solve problems into some game-like tasks.
It shifts human-driven fuzzing paradigm to human-assisted
fuzzing paradigm.

Main difference. VisFuzz follows human-assisted fuzzing
paradigm. Comparing all automatic fuzzing techniques, Vis-
Fuzz leverages human knowledge to improve performance.
VisFuzz is easily integrated with those automatic fuzzing tools

because it is orthogonal to them. Comparing HaCRS, VisFuzz
provides a more applicable approach for real-world programs.
HaCRS is custom designed for CGC binaries, which makes
it barely enable to gain enough information to display. In
contrast, VisFuzz focuses on binaries built from source code
of real-world programs, which contributes to gaining multi-
dimension information. Besides, VisFuzz is more applicable
because of the cost-effective build procedure. It can be applied
to many existing fuzzers such as AFLFast, FairFuzz, PAFL for
better performance without extra efforts.

VI. CONCLUSION

In this paper, we present VisFuzz to help test engineers
to locate the boundary of unexplored regions, understand
the semantic context around the bottleneck and intervene the
fuzzing process (e.g. construct target input, update test driver)
to achieve higher coverage. It is cost-effective to adapt to real-
word programs. Experimental results show that VisFuzz helps
test engineers spend little time to achieve higher coverage and
hunt more vulnerabilities. Our future work would focus on
providing some automatic guidelines and templates for the
driver generation to pass the bottleneck.

REFERENCES

[1] “American fuzzy lop (afl).” [Online]. Available: http://lcamtuf.coredump.
cx/afl/

[2] “libfuzzer a library for coverage-guided fuzz testing.” [Online].
Available: https://llvm.org/docs/LibFuzzer.html

[3] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 2016 CCS, Vienna,
Austria, October 24-28, 2016, 2016, pp. 1032–1043.

[4] C. Lemieux and K. Sen, “Fairfuzz: a targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ASE 2018, Montpellier, France, September 3-7, 2018, 2018, pp. 475–
485.

[5] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in 23rd NDSS 2016, San
Diego, California, USA, February 21-24, 2016, 2016.

[6] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance,” in Proceedings of the
2017 CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
2017, pp. 347–362.

[7] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings, 2008, pp. 209–224.

[8] “D3.js - data-driven documents.” [Online]. Available: https://d3js.org/
[9] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-

directed placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[10] E. M. Reingold and J. S. Tilford, “Tidier drawings of trees,” IEEE Trans.
Software Eng., vol. 7, no. 2, pp. 223–228, 1981.

[11] J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou, and J. Sun, “PAFL:
extend fuzzing optimizations of single mode to industrial parallel mode,”
in Proceedings of the 2018 FSE, Lake Buena Vista, FL, USA, November
04-09, 2018, 2018, pp. 809–814.

[12] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao,
and J. Sun, “SAFL: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing,” in Proceedings of the 40th
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp.
61–64.

[13] J. Liang, Y. Chen, M. Wang, Y. Jiang, Z. Yang, C. Sun, X. Jiao,
and J. Sun, “Engineering a better fuzzer with synergically integrated
optimizations,” in 30th ISSRE 2019, Berlin, Germany, Oct 28-31, 2019,
2019.

[14] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su,
“Enfuzz: Ensemble fuzzing with seed synchronization among diverse
fuzzers,” in 28th USENIX Security Symposium 2019: Santa Clara, CA,
USA, 2019.


