
Design of Mixed Synchronous/Asynchronous
Systems with Multiple Clocks

Yu Jiang, Hehua Zhang, Huafeng Zhang, Han Liu, Xiaoyu Song, Ming Gu, and Jiaguang Sun

Abstract—Today’s distributed systems are commonly equipped with both synchronous and asynchronous components controlled with

multiple clocks. The key challenges in designing such systems are (1) how to model multi-clocked local synchronous component, local

asynchronous component, and asynchronous communication among components in a single framework. (2) how to ensure the

correctness of model, and keep consistency between the model and the implementation of real system. In this paper, we propose a

novel computation model named GalsBlock for the design of multi-clocked embedded system with both synchronous and

asynchronous components. The computation model consists of several hierarchical compound and atom blocks communicating with

data port connections. Each atom block can be refined as parallel mealy automata. The synchronous component can be captured in an

atom block with the corresponding local control clock while the asynchronous component in an atom block without clock, and the

asynchronous communications can be captured in the data port connections among blocks. The unified operational semantics and

formal semantics are defined, which can be used for simulation and verification, respectively. Then, we can generate efficient VHDL

code from the validated model, which can be synthesized into the FPGA processor for execution directly. We have developed the

graphical modeling, simulation, verification, and code generation toolkit to support the computation model, and applied it in the design

of a sub-system used in the real train communication control.

Index Terms—Synchronous and asynchronous fusion system, computation model, model validation and implementation

Ç

1 INTRODUCTION

EMBEDDED systems are being widely used and are vital
to many critical complex applications. They usually

involve concurrent behaviors with different local control
clocks, which leads to several challenges for the traditional
computation model. The first challenge that the computa-
tion model faces is the modeling capability that how to eval-
uate the behavior of the local synchronous component,
asynchronous component and their communications in a
single model. For synchronous components, operations are
coordinated under the centralized control of several local
clocks. For asynchronous components, instead, they operate
under distributed control, producing outputs in response to
input changes. The asynchronous communication among
these components should be synchronized with all corre-
sponding clocks. The second challenge focuses on the ana-
lytical capability of the computation model, including how
to ensure the correctness of the model to satisfy the function
descriptions, and how to keep the consistency between the
computation model and the executable implementation.

A lot of researchers have made many efforts to the com-
putation models [4], [21], but there is no practical solution

for synchronous and asynchronous fusion systems with
multiple local control clocks. In this paper, we present an
automaton [32] and block diagram [35] based computation
model, named GalsBlock, to address the challenges in
modeling, validation and implementation. In the proposed
computation model, a system is modeled as a combination
network of compound and atom blocks communicating
through data port connections. The compound block can be
refined by some sub-compound and sub-atom blocks hier-
archically, and the atom block is refined by some parallel
mealy automata with optional clocks. Despite the regular
state transitions, we allow users to append complex actions
and priorities on transitions to enhance the modeling abil-
ity. The atom block with clock is used to capture the behav-
ior of synchronous component, and the atom block without
clock is used to capture the behavior of asynchronous com-
ponent. The connections among data ports attached on
different blocks are used to capture the asynchronous com-
munications, and the expressions appended on the connec-
tion are used to facilitate the modeling of data-oriented
behaviors. In order to solve the indeterminacy caused by
parallel execution, we use the local clocks and signal depen-
dencies to give a topological sort for all atom blocks’ com-
putation. Then, the design and implementation of complex
embedded systems can be simplified to three steps. First,
we can build the graphic model of GalsBlock based on the
system requirement and function descriptions. Then, the
model can be simulated and verified for all kinds of proper-
ties derived from the requirements. If properties are not sat-
isfied, we should return back to the modeling stage to find
bugs in the model. This helps us find problems in the early
stage of system design. Finally, after all properties are satis-
fied, we can generate the executable implementation from
the validated model automatically. We apply GalsBlock and

� Y. Jiang is with the Department of Computer Science and Technology,
TNLIST, KLiss, Tsinghua University, China.
E-mail: jiangyu10@mails.tsinghua.edu.cn.

� H.H. Zhang, H.F. Zhang, H. Liu, J. Sun, and M. Gu are with the School of
Software, TNLIST, KLiss, Tsinghua University, China.
E-mail: {lhtsinghua, sunjiaguang}@126.com.

� X. Song is with the Department of ECE, Portland State University,
Portland, OR.

Manuscript received 19 Mar. 2014; revised 13 June 2014; accepted 14 June
2014. Date of publication 7 Aug. 2014; date of current version 6 July 2015.
Recommended for acceptance by J. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2346171

2220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the developed toolkit to the design of a multifunction vehi-
cle bus (MVB) control system used in the real train commu-
nication network according to the standard IEC 61375.

The main contributions are: (1)First, a novel computation
model named GalsBlock is proposed to support hierarchical
decomposition, fusion of synchronous and asynchronous
concurrent process execution, and data-oriented asynchro-
nous signal communication. (2) Second, the operational
semantics of GalsBlock is described in detail, based on
which, we can do some graphical simulations. (3) Third, the
formal semantics of GalsBlock is determined by its equiva-
lent labeled transition system, based on which, we can do
some verifications. The labeled transition system is con-
structed bottom-up, by starting from the lowest level
automaton style chart to the top level block. (4) Fourth, code
generation algorithms for automatic implementation of
GalsBlock model are presented. This helps to keep the con-
sistency between the validated model and the possible
implementations. We implement the supporting toolkit and
apply it to the real design of a multifunction vehicle bus
control system of real train communication network.

The paper is organized as follows: related work is pre-
sented in Section 2. The proposed system level design lan-
guage GalsBlock is presented in Section 3, including the
graphical elements for modeling, operational semantics for
simulation, and formal model of computation for verifica-
tion. Section 4 presents the implementation of GalsBlock,
including the automatic code generation algorithms. Experi-
ment results on a real system design and implementation is
given in Section 4, and we conclude in Section 6.

2 RELATED WORK

A large body of work has been dedicated to facilitate the
design of embedded systems. In the literature, the formal
computation model based approach is appealing, because it
provides a unified basis for formal analysis to achieve
expected correctness. Traditionally, embedded systems are
supposed to be controlled by a single synchronous clock,
and the formal computation modeling languages con-
structed on this hypothesis mainly contain Esterel [9],
Lustre [17], Statecharts [19] and Signal [25]. These languages
are the basis for traditional synchronous system design, but
are not fit for the multi-clocked systems with both synchro-
nous and asynchronous components.

Embedded systems on the current market are more and
more complex that the synchronous hypothesis is not valid.
Most systems consist of hundreds of components, which can
be controlled by many local clocks. The formal computation
modeling languages for multi-clocked systems with both
synchronous and asynchronous components mainly contain
CRP [6], MC-Esterel [7], and SHIM [16]. CRP combines the
synchronous reactive model of Esterel [24] with the asyn-
chronous coupling of CSP [22] to offer a mathematically ele-
gant framework. Locally synchronous Esterel modules
communicate through rendezvous channels. The problem is
that it is hard to support data-driven operations and rendez-
vous protocol through asynchronous coordinators. Its
variants such as CRSM, ECRSM [28] have similar limitations.
MC-Esterel is specifically developed for the design of multi-
clocked digital systems. The designer is responsible for

creating communication mechanisms among different clock
domains. Esterelmodules need explicit clocks and a designer
has to construct underlying synchronizers to guarantee the
synchronization among these modules. While MC-Esterel
provides a powerful mechanism for modeling asynchronous
and multi-rate systems, the problem is that a designer has
to work at a relatively underlying level and the productivity
is limited. In addition, its support for data-driven operations
is quite limited due to its reliance on Esterel. The main
idea of SHIM is that both hardware and software functions
are written as C-like functions and the communication
between these asynchronous objects is mapped to a
restricted Kahn Process Network. The major limitation of
SHIM is the lack of support for modeling reactivity and syn-
chrony behaviors of system components.

Based on those formal computation modeling lan-
guages, there are many corresponding toolkits. For multi-
clocked systems with both synchronous and asynchro-
nous components, Esterel studio v7 [5] supports the
design of digital systems based on MC-esterel. But the
code generation capacity is limited, many basic modeling
constructs are not supported, and the simulation is not
visual. The verification tool Xeve only supports pure sig-
nal, and cannot deal with valued signals and variables.
Furthermore, we cannot find an alive version for use any-
more. Ptolemy [10] supports modeling, and simulation of
mixed synchronous and asynchronous systems. A major
problem area being addressed is the use of heterogeneous
mixtures of computation models (e.g., asynchronous dis-
crete event and synchronous dataflow) in hierarchical
way. The inner model will lose some original properties
when adjusting to the outer model of computation. Fur-
thermore, it is primarily used as a simulation environ-
ment and can not be verified and synthesized. Simulink
[12] also has the same disadvantage of no formal seman-
tics. Furthermore, the operational semantics of the paral-
lel execution of stateflow [18] is too complex and
dependent on the relative position of the module. They
are simulated in a sequential manner, from left to right,
up to down, and can be interrupted by each other. The
VHDL code generation algorithm is not efficient, neither.
Besides these environment, some translation based frame-
works are also proposed to solve the analysis of multi-
clocked systems. For example, Doucet et al. [15] use a
mixture of synchronous descriptions in Signal and asyn-
chronous descriptions in Promela, and provide a transla-
tion from Signal modules to Promela processes. Each
clock domain is described by a Signal module, and com-
munication between two clock domains is described by
Promela channel. The underlying deficiencies of these
modeling languages are actually prevalent in those tradi-
tionally modeling and validation frameworks as pre-
sented in Fig. 1, which motivates our work. The proposed
GalsBlock has clear operational and formal semantics, as
well as complete toolkit for hierarchical graphical model-
ing, validation and implementation.

3 GALSBLOCK

In this section, we introduce the formal computation model
GalsBlock, including the graphical elements, operational

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2221

semantics for simulation, and the formal semantics for
verification.

3.1 GalsBlock Computation Model

The example in Fig. 2 illustrates the features of GalsBlock.
At the top level, the compound block CompoundTop
consists of two sub-blocks (compound block Compound1
and atom block Atom1). The compound block does not
do computation, just presents the hierarchical decomposi-
tion of system structure, and the data flow path among
the structured blocks. The clock attached on the com-
pound block does not play a part, and just provides a vir-
tual interface for the control clocks of its inner atom
blocks. For example, the frequency of real clock CLK2 is
derived from the virtual clock CLK1, where the derived
rules such as double and triple frequency can be config-
ured according to different requirements. The dot
attached on the right side of each block is used to denote

the output data port, while the dot on the left side is
used for the input data port. The input data ports of
CompoundTop can be connected to the input ports of the
two sub-blocks (b ! g, a ! c), and the output ports of
the sub-blocks can be connected to the both input and
output data ports of other blocks (e ! f, h ! i). The
expression on the connection from port b to port g facili-
tates the data-oriented behavior modeling.

The asynchronous communication between two data
ports is realized through asynchronous channel. Once the
synchronous atom block finishes the computation at the
beginning of the local control clock, the data from the out-
put data port will flow through connections to the sink port,
until the arrival of the input port of another atom block or
the output port of the top block. The atom block on which
the sink port is attached will read the value for computation
at the beginning of its local clock. In case of conflicts of
read-write operations during the parallel execution, the old

Fig. 1. The modeling capabilities of the system level modeling languages based on formal computation model and the corresponding available tools
supporting the analytical capabilities.

Fig. 2. The left side is the system design flow based on the computation model GalsBlock. The right side is an example of GalsBlock, includ-
ing the graphical elements of compound and atom blocks. The top model consists of compound block Compound1 and atom block Aotm1.
The compound1 is refined as atom blocks Atom2(synchronous) and Atom3(asynchronous). The Atom2 is refined as two automata running in
parallel.

2222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

value will be read according to the propagation delay. For
example, block Atom2 will update the output port m when
the computation finishes at the periodical beginning of
clock CLK3, and the updated value will flow through
connection (m ! o) until the connected input ports of
another atom block. Because block Atom3 is asynchro-
nous, it will do computation and update the output data
port q immediately. Then, the updated values will flow
through connections (q ! e, e ! f) until the connected
input ports of another atom block Atom1. At the next
periodical beginning of clock CLK2, block Atom1 will
read the updated value for computation. If the periodical
beginning of clock CLK3 happens to be the same as clock
CLK2, the parallel executions will lead to conflicts of
read-write operations. In real world, those conflicts can
be solved by the delay of computation and signal flow.
Based on this fact, we embed the delay that read opera-
tion is prior to write operation when the conflicts caused
by the same frequency of local clocks happen.

Besides the solution for the read-write operation conflict,
we release certain types of cycle restriction in the model.
The cycle, in which there is a synchronous atom block, is
broken by the inner data communication principle. For
example, the compound block Compound1which is refined
as two atom blocks (Atom2 and Atom3) contains a direct
cycle. The connection from port r to port l results a cycle
between the two atom blocks. If the output port m of block
Atom2 is updated when the computation finishes at a peri-
odical beginning of the clock CLK3, the value will flow
through the connection (m ! o). Because block Atom3 is
asynchronous, it will perform computation and update the
output data port q and r immediately on the changes of its
input ports. The updated value of port r will be passed to
port l of block Atom2 instantaneously. But this will not lead
to infinite computation cycle, because block Atom3 will not
read the updated value for computation until the next peri-
odical beginning of clock CLK2. Remind that the cycle, in
which all elements are the asynchronous atom blocks, will
lead to the zero timing paradox.

With the hierarchical structure and dataflow presented
in the compound block, system behaviors are described by
parallel automata in the atom block. For example, the
atom block Atom2 is refined as two automata controlled
by clock CLK3, with a local shared variable and a transi-
tion priority expression. For synchronous atom block, the
inner automata are controlled by the same local clock. At
each periodical beginning of the clock, each automaton is
allowed to take a step of transition or stay in the current
state. Each transition consists of three parts: name, guard,
and action. The priority expression is defined on the name
of two transitions in a single automaton in case that both
transitions meet their guards. The action supports some
basic control structures such as IF ELSE statement. All
statements and guards are defined on the ports and local
variables. For parallel execution of multiple automata,
there will also be conflicts on read-write operations. Each
local variable and output data port can be written by one
automaton for only one time, and the write operation is
prior to the read operation. When all automata finish the
computation, values of output ports and local variables
will be updated, and passed through connections to the

endpoints, which are the input data ports of an atom block
or the output data ports of the top block. For asynchronous
block, the inner automata are triggered by the changes of
the input data ports, and may take several transitions from
the current state until no guard is satisfied.

3.2 Operational Semantic of GalsBlock

The operational semantics of GalsBlock model is defined on
the configuration. A configuration is a maximal set of states
that the system could be simultaneously in. Any subset of
states is not a legal configuration. Let B be the top block
associated with a GalsBlock model, consisting of several
synchronous and asynchronous atom blocks bi. A legal con-
figuration C satisfies: for each atom block bi contained in B
and each automaton ci directly contained in bi, C must con-
tain exactly one state directly contained in ci. Then, the
operational semantics can be transferred to the configura-
tion computation of GalsBlock.

Because the compound block just presents the decom-
position of the system structure and does not do compu-
tation, hence, the computation of GalsBlock relies on the
computation of atom blocks. The computation can be
divided into three macro steps: (1) Import values from
the environment to input data ports of the top model
continuously, and pass those updated values to the input
data ports of atom blocks through connections; (2) Atom
blocks read updated values of the input data ports for
configuration computation on the periodical beginning of
each local control clock with the priority rules; (3) When
an atom block finishes the computation, export all output
data ports to the connected compound and atom blocks.
The algorithm implementation of the three macro steps is
described below. Notice that the second step for configu-
ration computation is decomposed hierarchically, and the
computation mechanism is different for synchronous and
asynchronous atom blocks.

For the first step presented in the Fig. 3, the top model of
Galsblock imports the inputs from environment continu-
ously. It should get the value and pass the value through con-
nections until the endpoints arrive, which are the input data
ports of atom blocks. Note that the value may flow through
some compound blocks before arriving at the endpoints.

For the second step, the computation of GalsBlock is
divided into the computation of atom block and automata
hierarchically. The automata computation contained in syn-
chronous atom block is triggered by the local clock, and all

Fig. 3. Import values from the environment to the atom blocks for
computation.

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2223

automata are allowed to take at most one transition only.
While for the asynchronous atom block, the automata com-
putation is triggered by the changes of input data ports, and
all automata can take different numbers of transitions until
no guard is satisfied. The asynchronous atom block reads
the updated values immediately, while the synchronous
atom block reads the updated values according to the local
clock. Then, the parallel automata in each block will com-
pute the next state and the values of the output ports and
shared variables with priority in consideration. If there are
more than one transitions starting from the current active
state that can be triggered, the transition with the highest
priority is chosen to be taken. After the recursive executions,
the state configuration as well as values of the output data
ports and shared variables will be returned. The details of
the computation steps are described in the Figs. 4, 5 and 6.
In the Fig. 4, all atom blocks are said to compute in parallel,
but there is a topological sort of all local clock signals. Based
on the topological sort, computation is in sequential. If sev-
eral local clocks happen to be triggered in the same time, it
will lead to conflicts of read operations and write opera-
tions. The atom block that reads the signal executes before
the atom block that writes the signal to solve the conflict,
according to the introduction in the previous section. The
parallel executions of automata contained in synchronous
atome block and asynchronous atom block are presented in
the Figs. 5 and 6, respectively. The parallel executions of
automata contained in a single atom block may also lead to
conflicts of read and writ operations. No shared variables
and output data ports can be written by two automata at

the same time, and the write operation to a shared variable
is prior to read operation to the shared variable. In this way,
the conflicts can be avoided. The jump statement in the
Fig. 6 shows the asynchronous executions of multiple transi-
tions until no guard is true.

For the third step presented in the Fig. 7, each atom block
updates the values of the shared variables and exports the
output data ports. The value of the updated output data
ports should be passed through connections until the end-
points arrive, which are the input data ports of an atom
block, or the output data ports of the top block B.

Based on the operational semantics, we have developed
the simulation tool for GalsBlock. As described in the exper-
iment section, the model can be simulated step by step. The
user can capture the state of each atom block, and the value
of each output data port and local variable for each configu-
ration. This facilitates the designer to ensure the correctness
that the behaviors of the model map the system require-
ments to be implemented. Through the simulation tool,
most of the functional requirements can be checked on the
model. While coding with the underlying programming
language such as VHDL and C according to the require-
ments directly is more difficult than building the graphical
GalsBlock model.

3.3 Formal Semantics of GalsBlock

For the formal semantics definition of the GalsBlock compu-
tation model, there are two methods for choice. The first
method is to translate the GalsBlock model to an existing
model that has formal semantics. Then, the translation of

Fig. 4. Computation of the atom block. All atom blocks and automata are
computed in parallel.

Fig. 5. Computation of the automata contained in synchronous atom
block are in parallel.

Fig. 6. Computation of the automata contained in asynchronous atom
block are in parallel.

Fig. 7. Export values of the output data ports of atom blocks to other
blocks.

2224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

GalsBlock model can be interpreted and verified directly
based on the supporting tools of the target model. The sec-
ond method is to define the basic formal semantics by its
equivalent labeled transition system [11], which is the basis
for verification. The labeled transition system of the Galsl-
bock model is constructed bottom-up, starting from the low-
est level parallel automaton ci of each atom block bi,
upwards to the top level block B through combination. The
construction is defined as follows.

Definition 1S. An automaton ci contained in a synchronous atom
block is defined as a tuple ðL; l0; V;A;E;P; clkÞ, where L is a set
of locations fli j i 2 ½0; n�g, l0 2 L is the initial location, V is a
set of parameters fvi j i 2 ½0; n�g inherited from the local varia-
bles, input data ports, and output data ports of the atom block,A
is a set of actions fai j i 2 ½0; n�g, E is a set of edges
fei � L�GðV Þ �A� L j i 2 ½0; n�g between locations with
the action and guard, GðV Þ is the set of guard fgiðV Þ j i 2
½0; n�g on parameters, P is the set of priority valuation function
fpi � ei ! N j i 2 ½0; n�g defined on the transitions that may
take simultaneously, and clk is the synchronous local clock signal
inherited from the atom block.

Let ðL; l0; V; A; E; P; clkÞ be an automaton contained in
the synchronous atom block. UðV Þ is a set of parameter
valuation functions fui � V ! B [N j i 2 ½0; n�g from the
parameters to the boolean or integer values. Then, the
semantics of the automaton can be defined in the prop-
erty 1. For the clk signal, there are two kinds of methods
for embedding the signal into the labeled transition sys-
tem. The first method is to use all local clocks to give a
topological sort of all atom blocks when doing combina-
tion. The second method is to map the local clock to a
basic physical clock and transfer the clk into the guard of
each transition through the local clock re-mapping mech-
anism proposed in [23], and the transition with the high-
est priority will be chosen to be triggered. We choose the
second method for easier implementation.

Property 1S. The semantics of the automaton ci ðL; l0; V; A;E;
P; clkÞ contained in a synchronous atom block bi can be defined
as a labeled transition system hS; s0; !i, where S is the set of
configuration fsi � L� UðV Þ j i 2 ½0; n�g, s0 ¼ ðl0; u0Þ is the
initial configuration, and !� S �A� S is the transition
relation such that:

� ðl; uÞ �!a ðl0 ; u0 Þ, if there is a transition e ¼ ðl; g; a; l0 Þ
s.t. pðeÞ¼ maxfpðeiÞ j gðuðvÞÞ&gðuðclkÞÞ ¼¼ trueg.

� ðl; uÞ �!; ðl; uÞ, if there is no transition e ¼ ðl; g; a; l0 Þ
s.t. gðuðvÞÞ&&gðuðclkÞÞ ¼¼ true.

Definition 2S. A synchronous atom block bi is defined as a
tuple ðI; O; V; C; clkÞ, where I is a set of input data ports
fIi j i 2 ½0; n�g, O is a set of output data ports fOi j i 2 ½0; n�g,
V is a set of local variables fvi j i 2 ½0; n�g, C is a set of autom-
ata fci j i 2 ½1; n�g, and clk is the local clock used to trigger the
computation.

Let ðI;O; V; C; clkÞ be a synchronous atom block, consist-
ing of n automata

S n
i¼1ci. The automaton ci equals

ðLi; li0; V
i; Ai; Ei; P i; clkÞ, where V i � I [O [V . Then, the

location set L for the atom block is defined as fli �
ðl1; l2; . . . ; lj; . . . ; lnÞ j i 2 ½0; n�; 8j; lj 2 Ljg, where l0 equals

ðl10; l20; . . . ; ln0 Þ. The action set A is defined as fai � ða1; a2;
. . . ; aj; . . . ; anÞ j i 2 ½0; n�; 8j; aj 2 Ajg. For the automaton ci,

Ui is a set of parameter valuation function fui � V j ! B [
N j j 2 ½0; n�g from the parameters to the boolean or integer

value. Then, for the atom block, U is defined as fui �
ðu1; u2; . . . ; uj; . . . ; unÞ j i 2 ½0; n�; 8j; uj 2 Ujg, where u0 equals

ðu1
0; u

2
0; . . . ; u

n
0 Þ. Then, the semantics of the synchronous atom

block can be defined as below.

Property 2S. The semantics of the synchronous atom block bi
ðI; O; V; C; clkÞ can be defined as a labeled transition system
hS; s0;!i based on the semantics of automata, where S is the

set of configuration fsi � L� UðI [O [V Þ j i 2 ½0; n�g,
s0 ¼ ðl0; u0Þ is the initial configuration, where l0 equals

ðl10; l20; . . . ; ln0 Þ and u0 equals ðu1
0; u

2
0; . . . ; u

n
0 Þ. Then, ! � S�

A� S is the transition relation such that

� ðl; uÞ �!a ðl0; u0Þ, when gðuðclkÞÞ ¼¼ true:

l0 � lj ¼
lj 0 if

�ðlj; gj; aj; lj 0 Þ jmax
�
p
�
eji
��
�

gjðujðvÞ� ¼¼ true
�� 6¼ ;

lj if fðlj; gj; aj; lj 0 Þ jmaxfpðejiÞj
gjðujðvÞÞ ¼¼ truegg ¼ ;

8
>>><

>>>:

u0 � uj ¼
uj 0 if

�ðlj; gj; aj; lj 0 Þ jmax
�
p
�
eji
��
�

gjðujðvÞ� ¼¼ true
�� 6¼ ;

uj if
�ðlj; gj; aj; lj 0 Þ jmax

�
p
�
eji
�j

gjðujðvÞÞ ¼¼ true
�� ¼ ;;

8
>>><

>>>:

where 8j 2 ½1; n�, each automaton can take one transition at

most on each clock appearance, staying in the current state or

jumping into the sink state with the highest priority. This is the

key difference between parallel automata computation of syn-

chronous atom block and that of asynchronous atom block.

In asynchronous atom block, the parallel automata do
not need to be synchronized, and each automaton can take
any step of transitions until on guard is true. Another dif-
ference is that the computation is not triggered by the
clock but by changes of input ports. The label transition
system for asynchronous atom block can be defined in the
same way as below.

Property 1As. The semantics of the automaton ci ðL; l0; V;
A;E; P Þ contained in an asynchronous atom block bi can be
defined as a labeled transition system hS; s0;!i, where S is the
set of configuration fsi � L� UðV Þ j i 2 ½0; n�g, s0 ¼ ðl0; u0Þ
is the initial configuration, and !� S �A� S is the transi-
tion relation such that:

� ðl; uÞ �!a ðl0 ; u0 Þ, if there is a transition e ¼ ðl; g; a; l0 Þ
s.t. pðeÞ ¼ maxfpðeiÞ j gðuðvÞÞ ¼¼ trueg.

� ðl; uÞ �!; ðl; uÞ, if there is no transition e ¼ ðl; g; a; l0 Þ
s.t. gðuðvÞÞ ¼¼ true.

Property 2As. The semantics of the asynchronous atom block bi
ðI; O; V; CÞ can be defined as a labeled transition system
hS; s0;!i based on the semantics of automata, where S is the

set of configuration fsi � L� UðI [O [V Þ j i 2 ½0; n�g,
s0 ¼ ðl0; u0Þ is the initial configuration, where l0 equals ðl10; l20;
. . . ; ln0 Þ and u0 equals ðu1

0; u
2
0; . . . ; u

n
0 Þ. Then, !� S �A� S

is the transition relation such that

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2225

� ðl; uÞ �!a ðl0; u0Þ:

l0:lj ¼
lj0 if

�ðlj; gj; aj; lj 0 Þ jmax
�
p
�
eji
��
�

gjðujðvÞ� ¼¼ true
�� 6¼ ;

lj if
�ðlj; gj; aj; lj 0 Þjmax

�
p
�
eji
��
�

gjðujðvÞÞ ¼¼ true
�� ¼ ;

8
>>><

>>>:

u0:uj ¼
uj0 if

�ðlj; gj; aj; lj 0 Þjmax
�
p
�
eji
��
�

gjðujðvÞÞ ¼¼ true
�� 6¼ ;

uj if fðlj; gj; aj; lj 0 Þjmax
�
p
�
eji
��
�

gjðujðvÞ� ¼¼ true
�� ¼ ;:

8
>>><

>>>:

The compound block may consist of several synchro-
nous atom blocks and asynchronous atom blocks. It does
not do any computation, just presents the hierarchical
decomposition of the system structure and some connec-
tions of data ports. Hence, it has nothing to do with the
computation semantics. Then, the semantics of GalsBlock
can be reduced to the combine the parallel execution of
all atom blocks.

Definition 3. The top block of a Galsblock modelM is defined as a
tuple ðI; O;B;W;CLKÞ, where I is a set of input ports
fIi j i 2 ½0; n�g, O is a set of output ports fOi j i 2 ½0; n�g, B is
a set of atom blocks fbi j i 2 ½0; n�g, W is a set of connections
fwi � port� port j port 2 fM:I [M:O [B:I [B:Ogg, and
CLK is the set of distributed clocks used to control those syn-
chronous atom blocks fclki j i 2 ½0; n�g.
Let ðI; O;B;W;CLKÞ be the top block M, consisting of n

atom blocks
S n

i¼1bi. bi is defined as ðIi; Oi; V i; Ci; clkiÞ for

synchronous block and ðIi; Oi; V i; CiÞ for asynchronous

block. Then, the location set ML is defined as fmli �
ðl1; . . . ; lj; . . . ; lnÞ j i 2 ½0; n�; 8j; lj 2 L

jg, and ml0 equals

ðl10; . . . ; l
n

0 Þ. The action set MA is defined as fmai � ða1; . . . ;
aj; . . . ; anÞ j i 2 ½0; n�; 8j; aj 2 A

jg. For the atom block bi, U
i
is

a set of parameter valuation function vectors fui � V
j !

B [N j j 2 ½0; n�g from the parameters to the bool or integer

values. Then, for the top block, MU is defined as fmui �
ðu1; . . . ; uj; . . . ; unÞ j i 2 ½0; n�; 8j; uj 2 U

jg, wheremu0 equals

ðu1
0; u

2
0; . . . ; u

n
0 Þ. Based on the above definitions and proper-

ties, the labeled transition system for the model is defined as

Theorem 1. The semantics of a GalsBlock computation model M
ðI; O;B;W;CLKÞ is defined as a labeled transition system

hS; s0;!i, where S is the configuration fsi � ML�
MUðV Þ j i 2 ½0; n�; V � B:I [B:O [B:V g, s0 ¼ ðml0;mu0Þ
is the initial configuration. Transition !� S �MA� S is
the transition relation such that

� ðml;muÞ �!ma ðml0;mu0Þ, where 8j 2 ½1; n�, ml0:l
j ¼ l

j
0
,

mu0:uj¼ uj
0
. 8ðport1� port2Þ 2 W , uðport2Þ ! u

0 ðport1Þ.
l
j
0
and uj

0
are the combinational status of atom block bj.

Then, we can formalize decision problems in GalsBlock
in the same way as timed automata [1], [2]. Based on the
semantics of the labeled transition system, the verification
team in our lab has developed a verification tool [20].
Then, several safety critical properties can be verified

directly, and the incompleteness of simulation can be
overcome through this way.

4 IMPLEMENTATION OF GALSBLOCK

In this section, we concentrate on the automatic implemen-
tation, where another strength of GalsBlock is demonstrated
compared to some system level modeling languages and
tools. Generally speaking, GalsBlock does not need special
programming language for implementation. However, it is
desirable to map the hierarchical structure, parallel process-
ing, synchronous and asynchronous behavior descriptions
to a corresponding programming language. Then, the con-
sistency between GalsBlock and the implementation of real
system can be acquired better.

Following the above principles, we choose VHDL code
[3], [30] for the implementation of GalsBlock computation
model. Because VHDL provides good ways to describe both
synchronous behavior and asynchronous behaviors. System
implementation by programming VHDL code directly is
complex and intuitionistic. We will overcome this gap by
defining somemappingmechanism to derive the underlying
VHDL code from the abstract GalsBlock model. The code is
generated in the manner of three stages, which is cumber-
some to write but is the best organization of VHDL code
description. Compared to the one-stage and two-stage man-
ner, it is cumbersome to write but can eliminate the instabil-
ity and glitches, and can be better synthesized. It is
conductive to the timing path grouping into the programma-
ble logic devices such as FPGA. Each atom block can be
mapped to an entity description of VHDL code. The parallel
automata can be mapped to the process description con-
tained in VHDL entity. The local clock used to control the
synchronous block can be mapped to the process trigger sig-
nal of VHDL code. The compound block and connections
can be mapped to component map of VHDL code. When the
user chooses the top block, the kernel should generate a set
of VHDL codes for the computations of all atom blocks, and
the hierarchical relations contained in the compound block.

First, let us see the code generation of the synchronous
atom block presented in the Fig. 8. The atom block contains
priorities, input ports, output ports, shared variables, and
some parallel automata to describe the behaviors. We
should process these elements into an equivalent VHDL
entity. The first step is to generate the ENTITY definition of
a VHDL module for the input ports and output data ports.
Because we support boolean and integer values in Gals-
Block computation model, we need to change the boolean to
std_logic in VHDL for more efficient synthesis. Besides, we
also need to add the clock signal CLK and system reset sig-
nal RST into the interface definition of the ENTITY. The sec-
ond step is to generate a signal for each shared variable,
which is used for behavior descriptions. For each automa-
ton, we need to add a type definition for the state and gener-
ate the three-stage code. The first stage is the update of state,
the second is the state transition, and the third is the output
computation. The second and third stage can be captured
by the CASE statement of VHDL, and the priority of differ-
ent transitions can be captured by the IF ELSE statements
inside a branch of WHEN. If the action on the transition has
some assignment action, the port or the variable to be

2226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

updated should be replaced with the temporary signal
Next_name. The code generation algorithm for the asyn-
chronous atom block is the same, except that the sensitive
signals of process are changed to the input data ports with-
out the clock signal.

Then, let us see the code generation algorithm of the
compound block presented in the Fig. 9. The compound

block contains sub-atom block instance declarations, sub-
compound block instance declarations, connections
among these blocks, input data ports, and output data
ports. We should process these elements to an equivalent
VHDL module. The first step is to generate the ENTITY
definition, in the same way as the atom block described
above. The second step is to generate the COMPONENT

Fig. 8. VHDL code generation algorithm for the synchronous atom block
contained in the Galsblock model.

Fig. 9. VHDL code generation algorithm for the compound block con-
tained in the Galsblock model.

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2227

instance for each contained block, and some temporary
signals for connection. We need to declare an instance for
each block contained in the selected compound block.
There are two kinds of connections. The first is the con-
nection between two inner blocks, and the second is the
connection between the compound block and the inner
block. For the first, we need to generate some temporary
signals for component port map. We extend the name of
the right port of the connection to the temporary signal.
The third step is to initiate the signal connection for each
COMPONENT instance according to the connection. If
the port of the component is connected to a inner port, it
is mapped to the generated temporary signal. Otherwise,
it is mapped to the original port signal. The data-oriented
behaviors appended on the port connections are trans-
ferred to the signal update of VHDL statements.

Based on the code generation algorithms, the constructed
Galsblock computation model can be chosen to be imple-
mented, and get the VHDL code automatically. We have
implemented the code generation tool. With the help of
Xilinx ISE toolkit [33], we can also simulate the generated
VHDL code, and compare the result of the code simulation
with the result of the GalsBlock model simulation. We have
done large amounts of simulation comparisons to prove the
consistency between the model and the generated code.
Furthermore, the generated code can be synthesized and
loaded into the FPGA processor to run directly. This facili-
tates the designer to ensure the consistency of the model
and the implemented system.

5 EXPERIMENT RESULTS

We have implemented the graphical modeling, simulation,
verification and code generation toolkit to support the Gals-
Block computation model. Then, we apply it to the design
of a real sub-system contained in the train communication
network control [13], [14], [29], which is a safety critical
embedded system.

The system consists of many multifunction vehicle bus
controllers interconnecting devices within a vehicle. The
MVB controller mainly provides time-critical process data
communication and delay-tolerant information data com-
munication. The communication is controlled by one mas-
ter, which controls the sending of all data frames on the link
layer bus. The master broadcasts a master frame, which car-
ries the identifier for a process data frame. The device which
sources this process data responds by broadcasting a slave
frame. In order to accomplish this function, MVB controller
needs a master frame sender control module and a process
data response control module. In each basic period, the
sender control module reads eight master frames from the
memory and send them onto the link layer, and the corre-
sponding controller module will read process data from the
memory and broadcast them onto the link layer for each
master frame. The main modules are designed, validated,
and generated automatically in GalsBlock, according to the
descriptions of the standard [13].

We use the compound block mf generator contained in
the master frame sender control module to demonstrate the
tool support of GalsBlock computation model for system
design. It consists of three synchronous atom blocks

(mf generator ctrl, mf pool ram, mf pool ram), and is
used to generate the master frame to be sent. It will ask for
the use of memory, and read the master frame data accord-
ing to the output data port mf addr. The data read proce-
dure is controlled by the block mf pool ram ctrl. The
master frame data read from the memory is stored in the
block mf pool ram, and can be sent through the block
mf generator ctrl. We build these atom blocks first, and
drag them into the interface and connect those correspond-
ing data ports. As presented in the Fig. 10, the atom block
mf generator ctrl contains three parallel automata. The first
automaton is used for the main control logic that reads the
master from the pool ram and sends it to the link layer. The
other two automata are used for the aided counters. For
each computation, we can input the values of input ports.
The resulted values of the output ports and shared varia-
bles, and the current state of the automata are highlighted
in the graphical interface. For verification, the constructed
can be interpreted by labeled transition system automati-
cally, and can be input to Beagle [20] for counter-example
analysis. If the model simulation and verification work as
expected, we can generate VHDL code for this compound
block directly. Four documents end with the suffix ‘.vhd’
are generated, one document for the architectural descrip-
tion of the compound block, and three for the behavioral
descriptions of atom blocks. For example, the size of VHDL
code for the atom block mf generator ctrl is 359 lines about
7 KB. The generated code size for the other blocks are pre-
sented in the Table 1. As presented in the Fig. 11, the gener-
ated VHDL codes can be simulated and synthesized in the
ISE development suit of xilinx, with some handwrite test
bench case. The waveform of simulation in the Fig. 10
shows that the generated codes work well and can generate
eight master frames in correct timing sequence. We com-
pare the output result of the generated code simulation in
ISE with the output result of the GalsBlock model simula-
tion in the developed toolkit, and the results are consistent.
Then, the generated codes can be synthesized to register
transfer level circuit description, and the generated bit file
can be loaded into the FPGA processor directly.

For the whole process data communication service of
MVB controller, we need six blocks to send the master
frame to the data link layer: the kernel compound block
mf generator, the synchronous atom block macro timer,
tm access ctrl, mf send control and mux in. The macro
timer is used to start the periodical phase with the output
data port out bp start per 1 ms. The output data port
bp num is used to determine the address of the master frame
in this period. The memory data access is controlled by the
tm access ctrl block. The mf send control block is used to
control the sending of the generated master frame from the
atom block mf generator ctrl. The atom block mux in
transmits the master frame data to the sender of the system.
Also, we need another four blocks to response the feedback
process data to data link layer: the synchronous atom block
receiver controller out used to distinguish whether the
received data frame is a master data frame or a process data
frame. If the received data frame is a master data frame, the
synchronous block cmf ssc combine block is used to distin-
guish whether the process data frame should be responded
by this device or not. If the device should response, the

2228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

block sf send timer is used to decide when to read the pro-
cess data from tm access ctrl. After that, the process data
frame will be sent onto the link layer. First, we build all
blocks strictly according to the algorithm and pseudo code
descriptions in the standard IEC 61,375. Due to limited
space, all Galsblock computation models can be found on
the website [34]. Then, we do some simulations and
verifications through the developed toolkit. Unfortunately,
the first version of the constructed model can not

accomplish the process data communication service.
Through artificial analysis, we locate the problem in the
atom block mf pool ram ctrl. The bugs have been certified
through theoretical analysis and our engineering practice,
and proposed to the standard organization. The revised
GalsBlock model passes the simulation and verification.

Then, we generate the VHDL code from the revised
GalsBlock model automatically, and load the generated
codes presented in the Table 1 into the FPGA processor of
MVB controller. As presented in the Fig. 12, the world
most widely used MVB controller D113 from Duagon
Company are connected to test the reliability of the gener-
ated system through the system bus. The implemented
system is embedded into the industrial computer to get
some instructions from the keyboard, such as communica-
tion start. We use the application running on the industrial
computer to monitor the communication. Furthermore, we
also use oscilloscope to sample the data from the serial
port that connected to the MVB system bus. Both methods
show that the master data frame and the feedback process
data frame are sent correctly.

From the experiment results, it is reasonable to draw the
conclusion that the Galsblock computation model supports
the analysis and design of complex train control system
better, compared to existing techniques. Right now, most
companies such as Dugon and CNR develop the system by
writing codes directly according to the descriptions of

TABLE 1
The Generated VHDL Code for Each Block

Contained in the GalsBlock Model

The block name Lines of the generated
VHDL code

macro timer 115
sf sender timer 62
cmf ssc combine 312
mf send control 323

mux in 49
receiver controller out 270

tm access ctrl 362
mf generator 146

mf generator ctrl 359
mf pool ram 191

mf pool ram ctrl 223
main controller 409

Fig. 10. The GalsBlock model for the master frame generator module of the process data service: modeling, simulation, verification, code generation
in the developed toolkit and the generated code simulation in ISE. The mf generator block can be refined by three synchronous atom blocks. The
parallel automata and the generated VHDL code ofmf generator ctrl is also presented and simulated.

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2229

the IEC 61,375 directly. Then, computer-aided simulation
methods are used to validate the developed train control
system [8], [26], [27], [31]. Simulation methods give
accurate results when system failures occur. However,
simulations are inefficient when applications are complex
and the number of vehicles is large. Another drawback is
that simulations are based on simulation patterns. The
effectiveness of simulation depends on the number and
quality of patterns. Hence, the exhaustiveness cannot be
guaranteed. The traditional development process is hard
working and the system reliability cannot be guaranteed.
For example, we have found some deadlocks in the VHDL
codes of CNR. But the GalsBlock computation model based
development process overcomes those problems, with the
simulation, verification, and generation toolkit.

6 CONCLUSION

In this paper, we present a synchronous and asynchronous
cooperation computation model for embedded system
design. The hierarchical blocks and the data port connec-
tions among these blocks present the decomposition struc-
ture and the signal flow of the system clearly. The parallel
automata in the atom block controlled by different clocks
describes the control logic and computation of each func-
tion. The implementation of GalsBlock is accomplished
automatically, the generated VHDL code can be synthesized
and loaded into FPGA processor directly. We have devel-
oped the modeling, simulation, verification and code gener-
ation toolkit to support the GalsBlock computation model.
The operational semantics based on the execution logic of
real systems and the formal semantics based on the labelled

Fig. 11. All generated files are composed and synthesized in ISE development environment of xilinx company. Then, the generated bit file can be
loaded into the FPGA processor.

Fig. 12. We implement the MVB controller through loading the generated VHDL code with the original assistant code in to the FPGA processor, and
connect it with the world most widely used MVB controller D113 from Duagon company throung MVB system bus. The waveform from the link layer
sampled by the oscilloscope shows that the system implemented based on the GalsBlock computation model works well with the D113.

2230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

transition system facilitate the designer to do some simula-
tion and verification in the early stage of system engineer-
ing. This is efficient because coding with underlying
programming languages such as VHDL and C according to
the requirements directly is more difficult than building the
abstract level GalsBlock model. Furthermore, simulation of
VHDL and C programs needs more efforts to write test
benches, and the verification is even harder. To the best of
our knowledge, none of the existing methods supports the
formal verification and implementation of embedded sys-
tems with both synchronous components and asynchronous
components. The GalsBlock and the supporting toolkit will
give a good guidance to reduce the complexity of the design
of the complex embedded systems.

ACKNOWLEDGMENTS

This research is supported in part by NSFC Programs
(No. 61202010, No. 91218302), National Key Technologies
R&D Program (No. SQ2012BAJY4052) and 973 Program
(No. 2010CB328003), and Tsinghua University Initiative
Scientific Research Program (20131089331).

REFERENCES

[1] R. Alur, “Timed automata,” in Computer Aided Verification. New
York, NY, USA: Springer, 1999, pp. 8–22.

[2] R. Alur and D. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[3] P. J. Ashenden, The Designer’s Guide to VHDL, vol. 3. San Mateo,
CA, USA: Morgan Kaufmann, 2010.

[4] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic
system design environment,” IEEE Trans. Comput., vol. 36, no. 4,
pp. 45–52, Apr. 2003.

[5] G. Berry, “Circuit design and verication with esterel v7 and esterel
studio,” in Proc. IEEE Int. High Level Design Validation Test Work-
shop, 2007, pp. 133–136.

[6] G. Berry, S. Ramesh, and R. Shyamasundar, “Communicating
reactive processes,” in Proc. ACM SIGPLAN-SIGACT Symp. Princi-
ples Programm. Lang., 1993, vol. 2., pp. 85–98.

[7] G. Berry and E. Sentovich, “Multiclock esterel,” in Proc. Correct
Hardware Des. Verification Meth., 2001, pp. 110–125.

[8] J. Bolot, “End-to-end packet delay and loss behavior in the inter-
net,” ACM SIGCOMM Comput. Commun. Rev., vol. 23, no. 4,
pp. 289–298, 1993.

[9] F. Boussinot and R. De Simone, “The Esterel language,” Proc.
IEEE, vol. 79, no. 9, pp. 1293–1304, Sep. 1991.

[10] C. Brooks, E. A. Lee, and S. Tripakis, “Exploring models of com-
putation with ptolemy II,” in Proc. IEEE/ACM/IFIP Int. Conf.
Hardware/Softw. Codesign Syst. Synthesis, 2010, pp. 331–332.

[11] M. Bundgaard, “Labelled transition system,” in Proc. 8th ACM
SIGPLAN Int. Conf. Principles Practice Declarative Programming
(PPDP’06), ACM Press, pp. 1–12.

[12] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P.
Niebert, “From simulink to scade/lustre to TTA: A layered
approach for distributed embedded applications,” in Proc. ACM
Sigplan Notices, vol. 38, pp. 153–162, 2003.

[13] C. Schifers, et al., “PartI : Train Communication Network,” IEC
61375-1, Int. Electro Tech. Comm., pp. 1–604, 2011.

[14] H. Dong, B. Ning, B. Cai, and Z. Hou, “Automatic train control
system development and simulation for high-speed railways,”
IEEE Circuits Syst. Mag., vol. 10, no. 2, pp. 6–18, Second Quarter
2010.

[15] F. Doucet, M. Menarini, I. H. Kr€uger, R. Gupta, and J.-P. Talpin,
“A verification approach for gals integration of synchronous
components,” Theor. Comput. Sci., vol. 146, no. 2, pp. 105–131,
2006.

[16] S. Edwards and O. Tardieu, “Shim: A deterministic model for het-
erogeneous embedded systems,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 14, no. 8, pp. 854–867, Aug. 2006.

[17] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and veri-
fying real-time systems by means of the synchronous data-flow
language lustre,” IEEE Trans. Softw. Eng., vol. 18, no. 9, pp. 785–
793, Sep. 1992.

[18] G. Hamon and J. Rushby, “An operational semantics for state-
flow,” in Fundamental Approaches to Software Engineering. New
York, NY, USA: Springer, 2004, pp. 229–243.

[19] D. Harel, “Statecharts: A visual formalism for complex systems,”
IEEE Trans. Softw. Eng., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[20] F. He, L. Yin, and B.-Y. Wang, “VCS: A verifier for component-
based systems,” in Proc. 11th Int. Symp. Autom. Technol. Verification
Anal., 2013, pp. 478–481.

[21] T. A. Henzinger and J. Sifakis, “The embedded systems design
challenge,” in FM 2006: Formal Methods. New York, NY, USA:
Springer, 2006, pp. 1–15.

[22] C. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[23] Y. Jiang, Z. Li, H. Zhang, Y. Deng, X. Song, M. Gu, and J. Sun,
“Design and optimization of multi-clocked embedded systems
using formal technique,” in Proc. 9th Joint Meeting Found. Softw.
Eng., 2013, pp. 703–706.

[24] L. Ju, B. Huynh, S. Chakraborty, and A. Roychoudhury, “Context-
sensitive timing analysis of Esterel programs,” in Proc. 46th ACM/
IEEE Des. Autom. Conf., 2009, pp. 870–873.

[25] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire,
“Programming real-time applications with signal,” Proc. IEEE,
vol. 79, no. 9, pp. 1321–1336, Sep. 1991.

[26] G. Palshikar, “Safety checking in an automatic train operation sys-
tem,” Inf. Softw. Technol., vol. 43, no. 5, pp. 325–338, 2001.

[27] K. Radecka and Z. Zilic, “Design verification by test vectors and
arithmetic transform universal test set,” IEEE Trans. Comput.,
vol. 53, no. 5, pp. 628–640, May 2012.

[28] S. Ramesh, S. Sonalkar, V. Dsilva, N. Chandra R, and B.
Vijayalakshmi, “A toolset for modelling and verification of Gals
systems,” in Proc. Int. Conf. Comput. Aided Verification, 2004,
pp. 385–387.

[29] C. Schifers and G. Hans, “IEC 61375-1 and UIC 556-international
standards for train communication,” in Proc. IEEE 51st Veh. Tech-
nol. Conf., 2000, vol. 2, pp. 1581–1585.

[30] M. Shahdad, “An overview of VHDL language and technology,”
in Proc. 23rd ACM/IEEE Design Autom. Conf., 1986, pp. 320–326.

[31] R. Whitfield, W. Matheson, F. Ford, W. Basta, E. Peek, A. Guarino,
B. Furtney, and C. Gipson, “System and method for automatic
train operation,” US Patent 6,135,396, Oct. 2000.

[32] S. Wolfram, Theory and Applications of Cellular Automata.
Singapore: World Scientific, 1986.

[33] Xilinx Design Team members, “ISE Design Suite 14: Release
Notes, Installation, and Licensing” Xilinx, pp. 1–74, 2013, http://
www.xilinx.com/support/documentation/sw_manuals/
xilinx14_7/irn.pdf

[34] J. Yu, Z. Hehua, and J. Gu, “Galsblock model for the MVB con-
troller,” School of Software, Tsinghua University, Beijing, China,
Tech. Rep. 19, 2014.

[35] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, vol. 19. New York, NY, USA: Wiley, 1976.

Yu Jiang received the BS degree in software
engineering from the Beijing University of Post
and Telecommunication, Beijing, China, in 2010.
He is currently working toward the PhD degree in
computer science from Tsinghua University,
Beijing, China. His current research interests
include domain specific modeling, formal verifica-
tion and their applications in embedded systems.

Hehua Zhang received the BS and MS degree
in computer science from Jilin University,
Changchun, China, in 2001 and 2004, respec-
tively. She received the PhD degree in computer
science from Tsinghua University, Beijing, China,
in 2010. She is currently a lecturer in the School
of Software at Tsinghua University. Her current
research interests include domain specific model-
ing, formal verification and their applications in
embedded systems.

JIANG ET AL.: DESIGN OF MIXED SYNCHRONOUS/ASYNCHRONOUS SYSTEMS WITH MULTIPLE CLOCKS 2231

Huafeng Zhang received the BS degree in soft-
ware engineering from Xi’an Jiaotong University,
China, in 2011. He is currently working toward
the PhD degree in computer science from
Tsinghua University, Beijing, China. His current
research interests include domain specific model-
ing, formal verification and their applications in
embedded systems.

Han Liu received the BS degree in computer sci-
ence from Beijing University of Post and Tele-
communication, Beijing, China, in 2012. He is
currently working toward the PhD degree in soft-
ware engineering from Tsinghua University,
Beijing, China. His current research interests
include domain specific modeling, formal verifica-
tion and their applications in embedded systems.

Xiaoyu Song received the PhD degree from the
University of Pisa, Italy, 1991. In 1999, he joined
the faculty at Portland State University. He is cur-
rently a professor in the Department of Electrical &
Computer Engineering at Portland State Univer-
sity, Oregon. His current research interests include
formal methods, design automation, embedded
system design, and emerging technologies.

Ming Gu received the BS degree in computer
science from the National University of Defence
Technology, Changsha, China, in 1984, and the
MS degree in computer science from the Chinese
Academy of Science at Shengyang in 1986.
Since 1993, she has been working as a professor
in Tsinghua University. Her research interests
include formal methods, middleware technology,
and distributed applications.

Jiaguang Sun received the BS degree in auto-
mation science from Tsinghua University in 1970.
He is currently a professor in Tsinghua University.
He is dedicated in teaching and R&D activities in
computer graphics, computer-aided design, for-
mal verification of software, and system architec-
ture. He is currently the director of the School of
Information Science & Technology and the School
of Software in Tsinghua University.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

