
1712 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

From Offline Towards Real-Time Verification for
Robot Systems

Rui Wang , Yingxia Wei, Houbing Song , Yu Jiang , Yong Guan, Xiaoyu Song, and Xiaojuan Li

Abstract—Robot systems have been widely used in in-
dustry and also play an important role in human social
life. Safety critical applications usually demand rigorously
formal verification to ensure correctness. But for the in-
creasing complexity of dynamic environments and applica-
tions, it is not easy to build a comprehensive model for
the traditional offline verification. In this paper, we pro-
pose RobotRV, the first data-centered real-time verifica-
tion approach for the robot system. Within this approach, a
domain-specific language named RoboticSpec is designed
to specify the complex application scenario of the robot
system, the data packets transmitted in the robot system,
and the safety critical temporal properties. Then, we de-
velop an engine to automatically translate the RoboticSpec
model into a real-time verifier. The generated verifier serves
as an independent plug-in component for the runtime ver-
ification of concerned temporal properties. We applied the
proposed approach to a real robot system. As presented in
experiment results, our method detected potential failures,
and improved the safety of robot system.

Index Terms—Collision avoidance, real-time data, robot
system, runtime verification.

I. INTRODUCTION

ROBOT systems are playing an increasingly important role
in our daily lives, and providing support in industry man-

ufacturing [1], medical health care practices [2], and aviation
control [3]. Those applications are life critical and have ex-
tremely high accuracy and safety requirements. Once safety
requirements are violated, the consequences are serious or even

Manuscript received May 31, 2017; revised September 8, 2017,
November 21, 2017, and December 20, 2017; accepted December
22, 2017. Date of publication January 3, 2018; date of current ver-
sion April 3, 2018. This work was supported in part by the National
Natural Science Foundation of China (61303014, 61572331, 61472468,
61373034), in part by the National Key Technology Research and Devel-
opment Program (2015BAF13B01), in part by National Key R & D Plan
(2017YFC0806700, 2017YFB1301100), and in part by the the Project of
Beijing Municipal Science and Technology Commission (LJ201607). Pa-
per no. TII-17-1176. (Corresponding authors: Yong Guan and Yu Jiang.)

R. Wang, Y. Wei, Y. Guan, and X. Li are with the Beijing Advanced
Innovation Center for Imaging Technology, Capital Normal University,
Beijing 100048, China (e-mail: rwang04@cnu.edu.cn; 13521563226@
163.com; guanyong@cnu.edu.cn; lixj66@gmail.com).

H. Song is with the Department of Electrical, Computer, Software, and
Systems Engineering, Embry-Riddle Aeronautical University, Daytona
Beach, FL 32114 USA (e-mail: h.song@ieee.org).

Y. Jing is with the School of Software, Tsinghua University, Beijing
100084, China (e-mail: jiangyu198964@126.com).

X. Song is with the Portland State University, Portland, OR 97201
USA (e-mail: songx@pdx.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2017.2788901

fatal. It is highly desirable to validate those robot systems before
deployment to ensure the safety as much as possible.

Traditionally, engineers apply testing techniques to the robot
system for bug detection. Many testing softwares [4] and meth-
ods [5] are developed for the robot systems. But the simulation
based testing techniques highly depend on the input patterns,
and the coverage for some extra conditions. To solve the prob-
lem, traditional offline verification techniques, such as model
checking [6] and theorem proving [7], widely used in verifica-
tion of hardware and software, are brought into the validation
of robot systems [8], [9]. Those offline techniques mainly focus
on the verification of the control logic, and are not as concern as
with runtime properties. Additionally, the increasing complex-
ity of the dynamic environment and applications brings more
challenges to current offline verification methods. More specif-
ically, today’s robot systems involve dynamic running environ-
ments and complex communication among system components
such as industry bus and wireless network. It is not easy to build
a comprehensive and faithful system model for offline verifi-
cation. Semiautomatical theorem proving is also hard for most
engineers. Furthermore, building a comprehensive model may
easily lead to state explosion because of the complex message
sequences and advanced control logics.

In this paper, we propose RobotRV, a data-centered, real-time
verification framework for the robot system, and aim to reduce
the verification complexity through changing the verification
from offline to runtime. First, we design a domain-specific lan-
guage named RoboticSpec, to specify the application scenarios
of the robot system, the packet format of the data transmitted
within the robot system, and the data interacted with the dynamic
environment, as well as the safety critical properties with respect
to the application scenario. RoboticSpec is powerful in specify-
ing realtime data related properties with the incorporation of past
time linear temporal logic (ptLTL) [10]. Then, we implement an
engine to automatically translate the RoboticSpec model into a
real-time verifier with the help of monitoring oriented program-
ming (MOP) [11]. The generated real-time verifier can grab the
desired data from the transmitted packets, verify those temporal
properties, and provide warnings in case of violation. Addi-
tionally, the verifier serves as an independent and transparent
lightweight plug-in without any change to the implementation
of the original application, including the execution time.

Main contribution: The overall contributions of our work are
summarised as follows.

1) To the best of our knowledge, RobotRV is the first
lightweight real-time verification framework for robot

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9848-7042
https://orcid.org/0000-0003-2631-9223
https://orcid.org/0000-0003-0955-503X

WANG et al.: FROM OFFLINE TOWARDS REAL-TIME VERIFICATION FOR ROBOT SYSTEMS 1713

system, which is independent of the underlying imple-
mentation and relies on the real-time data.

2) A domain specific language RoboticSpec is proposed to
specify the application scenarios of robot systems, and
corresponding tools are implemented for model specifi-
cation and verifier generation.

3) The proposed framework has been applied to a real robot
system and the results show the effects of the proposed
method.

The rest of paper is organized as follows. First, we present
related work in Section II and introduce some backgrounds of
robot systems and ptLTL in Section III. Then, RobotRV design
methodology is illustrated in Section IV, including the domain
specification language and the design of the engine. Finally, the
experiments’ evaluation on a real robot system is described in
Section V and we conclude in Section VI.

II. RELATED WORK

In the past decades, robots have been applied in many kinds
of fields. Recently there is lots of validation work for the robot
systems.

Traditionally, most of them are related to testing and simula-
tion. In [4], the authors apply multilevel testing strategies with
the developed frameworks RoboFrame and MuRoSimF to iden-
tify potential errors. In [5], an embodied simulator combined
with a reinforcement learning algorithm is applied to improve
the real world odor location. In [12], the dynamic simulation of
a cockroach-like hexapod robot is developed. Those techniques
are efficient for debugging and exposing the basic function re-
quirement inconsistencies depending on the quality of input test
cases.

In order to overcome the incompleteness of testing, formal
verification techniques [13], [14] are also applied to ensure the
correctness of the robot system. Temporal logics are applied to
specify motion planning tasks for mobile robots. The discrete
plan that satisfies the temporal logic formula is synthesized by
a model checking algorithm [8], [15]. Additionally, in [9], three
obstacle-avoidance strategies are modeled by Markov Decision
Process. Probabilistic model checking analyzes these strategies
and finds the best solution in an uncertain dynamic environ-
ment. The model checking technique is automatic, but theorem
proving can deal with more complex robot systems. Theorem
Proving is used to verify a collision-free algorithm of dual-arm
robot in [16]. Higher-Order Logic is applied to specify and ver-
ify robotic manipulation algorithms [17]. But this offline formal
verification easily comes to the state space explosion problem.
The model is always hard to comprehensively construct.

Recently, runtime verification [18], which is effective to ver-
ify real time temporal properties through obtaining real-time
information from a running system, is used to detect the ob-
served behaviors satisfying or violating certain properties in
many fields, such as Medical systems [19], [20], and Vehicle
Bus Systems [21].

Paper [22] uses a Domain-Specific Language (DSL) to
declaratively specify a set of safety-related rules that the soft-
ware must obey, as well as corresponding corrective actions that

trigger when rules are violated. But the proposed DSL does not
have formal semantics and cannot describe temporal properties.
Some researchers have also tried to apply runtime verification
in the security analysis of the robot operating system (ROS)
[23] by providing a transparent monitoring infrastructure to
monitor the commands and transmitted messages. This work
is efficient with the ROS, and is dependent on the additional
middle-ware inserted into the original communication entities
and protocol. The generalization of this technique to other robot
system architectures and applications is still under research.
Our work focuses on the real-time data running on robot
systems and safety properties related with these data.

III. BACKGROUND

In this section, we introduce some background of the robot
systems and the property specification language ptLTL.

A. Communications in Robot Systems

Communications among the components of robot systems
can be accomplished through a wireless or wired network. In
this work, we take the wired CAN bus as an example [24], which
efficiently supports real-time control with a very high level of
security, and has been widely adopted in robots such as pipeline
Crawl Robot [25], MarXbot [26], and the iCub humanoid robot
[27].

We describe the standard message format of CAN bus as
below. A message transmitted on the CAN bus is defined as a
packet with a fixed format and limited length. There are two
kinds of packet formats within the communication, standard
packet, and extended packet, which differ in the length. The
standard packet has 11 bits in the identifier field and the extended
packet has 29 bits. For each kind of packet, it can be further
divided into remote packet and data packet. When a node needs
some information of another node, a remote packet would be
sent to request a corresponding data packet which has the same
identifier of the remote node.

The 13th bit of packet indicates the packet type. High level
means data packet while low level means remote packet. For
a successful communication, remote packet should go before
the data packet and the length of data in data packet should
be consistent with the remote packet. In actual applications, the
packet may lose. If the data packet and the remote packet cannot
match each other, errors may happen.

B. Syntax and Semantics of ptLTL

Runtime verification is a light-weight verification approach
to assist traditional formal techniques. For verification, we use
ptLTL to describe the properties with the past time modalities.
We follow the syntax and semantics definition in [10].

ptLTL Syntax: Let P = {p1, p2 . . . pi , . . . pn} be a set of
atomic propositions, then ptLTL formulae are

φ, ϕ ::= pi |¬φ|(∗)φ|()φ|φ ∧ ϕ|φSϕ|φUϕ|T |F
where ¬, (∗), (), S, U stand for “negative,” “previous,” “next,”
“since,” “until” temporal operators, respectively. T means

1714 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

always true while F means never true at all. What is more, there
are other temporal operators which are useful for complex tem-
poral properties with the past modalities. These operators can
be defined by these basic operators. We define <> φ = T Uφ
which means φ will eventually be true, []φ = ¬ <> ¬φ which
means φ is always true in the future, <∗> φ = T Sφ which
means φ must either currently hold or have held somewhere
in the previous trace, [∗]φ = ¬ <∗> ¬φ standing for always
true in the past time. The classic LTL is a fragment of ptLTL.
So, ptLTL can express all the specification that LTL describes.
Some safety properties are more easily expressed in terms of
past than the future. The ptLTL is expressive, modular, and
easy-to-use. One can express properties in a modular way.

ptLTL Semantics: Let υ be an infinite sequence υ =
υ1υ2 . . . υi . . ., with a mapping ζ : ∀i, υi −→ 2P labeling
atomic propositions that hold in each position υi . With the struc-
ture path (υ, ζ), a nonnegative integer i, and ptLTL formulae φ
and ϕ, the relation that “φ holds at position i in υ ” denoted as
υ, i |= φ. It can be inductively defined as below:

υ, i |= p iff p ∈ ζ(υi)
υ, i |= ¬φ iff υ, i � φ
υ, i |= φ ∧ ϕ iff υ, i |= φ and υ, i |= ϕ
υ, i |= ()φ iff υ, i + 1 |= φ
υ, i |= (∗)φ iff i > 0 and υ, i− 1 |= φ
υ, i |= φSϕ iff υ,m |= ϕ for some 0 ≤ m ≤ i

s.t. υ, n |= φ for all m < n ≤ i
υ, i |= φUϕ iff υ,m |= ϕ for some m ≥ i

s.t. υ, n |= φ for all i ≤ n < m.

Where two ptLTL formula φ and ϕ are said to be equivalent,
when condition “υ, i |= φ iff υ, i |= ϕ” is satisfied for all struc-
ture path υ and i. The equivalence relation between them can
be denoted as φ ≡ ϕ.

IV. VERIFICATION APPROACH

In this section, we describe how the work-flow of real-time
data centered runtime verification cooperates with Robot sys-
tems. A domain specific language RoboticSpec is proposed to
specify data, events, and properties of robot working scenarios.
The semantics formalize the RoboticSpec models describing
scenarios into the input sequence and automata for runtime ver-
ifier.

A. Verification Work-Flow

Runtime verification is a light-weight verification approach
to assist formal techniques. The work-flow of the runtime ver-
ification framework of the robot system is depicted in Fig. 1.
A domain specification language RoboticSpec is designed and
specifies the packet formats. The data running in the robot sys-
tem are formalized by RoboticSpec model. Temporal properties
specify the safety requirements. Then we transform the Robotic-
Spec model to a runtime verifier with an engine based on MOP
[11]. The generated automaton can monitor the real-time data.
If a temporal property is violated, real-time warnings will be
produced and shown on the monitor computer.

Fig. 1. Runtime verification framework in the robot system.

Fig. 2. Work-flow of runtime verifier.

The runtime verifier presented in Fig. 2 is composed of three
parts: data parser, event checker, and property checker. With
these three parts, the runtime verifier can process the real-time
data to get the runtime verification results as follows.

1) First, the Parser processes real-time data packet trans-
mitted on the CAN bus of the robot system and gets the
values. The packet formats, variables, and ways to ex-
tract values are defined by RoboticSpec. The parser is
automatically generated by the developed engine based
on the data part of RoboticSpec model.

2) Then, the Event Checker deals with the values of vari-
ables extracted in the first step. Based on the event defi-
nition of the boolean formula specified in the event part
of RoboticSpec model, the events related to the desired
properties are recognized.

3) Finally, in Property Checker, the events recognized in the
previous step are applied to determine the transition of
the automaton which is derived from the ptLTL formula
specified in RoboticSpec. Once the upcoming event leads
the automaton to a property-violation state, warnings are
given to the robot system or alarm rings.

B. Domain Specific Language RoboticSpec

We propose a domain specific language RoboticSpec to model
the scenarios of the robot system, including the real-time data,
events, and temporal properties. Considering the limited expe-
rience of a robot system developer in runtime verification, the
specific language should be easy to use and be able to sufficiently
describe runtime data and a variety of temporal properties based
on the ptLTL. While designing this language we considered the
following characteristics: expressiveness and usability. The syn-
tax of RoboticSpec is presented in BNF format. The constructor
is enclosed in “<” and “>”. The operator “|” separates multiple
choices in the expression. The constructors are surrounded by
“{” and “}”. Optional items are enclosed in square bracket.

Scenario Specification: Each RoboticSpec model stands for
one scenario. The model starts with the reserved word Model
followed by constructors model_id and model_body. model_id
represents the name of a scenario model. In body of scenario

WANG et al.: FROM OFFLINE TOWARDS REAL-TIME VERIFICATION FOR ROBOT SYSTEMS 1715

model model_body, packet_source, vars, history_vars, events,
and properties are listed as constructors. The packet_source con-
structor is used to find the source to grab packets transmitted
in the robot system. The vars constructor describes the cur-
rent value of variables. The history_vars constructor defines the
variables related to previous time. The events constructor spec-
ifies the significant event with a boolean value. The properties
constructor formalizes the safety requirement.

Spec model ::= ′Model :′< model id >

{< model body >}
model body ::= ′Source :′< packet source >

< vars >

< history vars >

< events >

< properties >

packet source ::= < packet name >< packet length >

model id ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′
|′0′..′9′|′ ′) ∗

packet name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′
|′0′..′9′|′ ′) ∗

packet length ::= integer.

Variables: Variables are specified in the vars constructor fol-
lowing a reserved words Vars. Variables include the identifier,
type, and rule. If the variable both appears in data packet and
remote packet, we attach keyword shared before its name of
var_id. The var_id is the name of a variable. The type is simi-
lar to programming languages, mainly including integer, string,
and boolean. The rule refers to the way to extract the value of
a variable from a transmitted packet. In RoboticSpec, there are
two ways to extract the value of variables from a packet. A di-
rect way is to specify the start position and the bit length of the
value in the packet. Another way is presented in the var_update
constructor expressed as some Java codes.

vars ::= ′V ars :′ {< variable >} ∗
variable ::= [shared] < var type >

< var id >< var extract rule >

var type ::= ′integer′|′string′|′boolean′

|′integer[]′|′string[]′|′boolean[]′

var extract rule ::= < var pos >< var length >

| < var update >

var pos ::= ′Position :′ integer

var length ::= ′Length :′ integer

var update ::= ′Extract′

{<!−−Java Statements−− >}
var id ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′) ∗ .

Sometimes we need the variable value in the last packet. We
cannot use the variable since it has been rewritten in the cur-
rent packet. So we use the history_vars to define the previous
value of variables. The constructor history_vars is defined with
a reserved word HistoryVars and a set construct of his_variable.
The his_var_update is similar to the rule of vars constructor to
extract the value of history variable.

history vars ::= ′HistoryV ars :′ {< his variable >} ∗
his variable ::= [shared] < his var type >

< his var id >< his var update >

his var type ::= ′integer′|′string′|′boolean′

|′integer[]′|′string[]′|′boolean[]′

his var update ::= ′Update′{< code >}
his var id ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′) ∗
code ::= <!− Java Statements− > .

Events: The Events constructor specifies the boolean expres-
sion. Events is the reserved word for this constructor. The value
of boolean expression denotes if the event has happened or not.
T says the event happens. Otherwise, the event does not happen.

events ::= ′Events :′ {< event id >′=′

< boolean exp >} ∗
boolean exp ::= < var id >

| < his vars id >

|T |F
| < comput exp >< compare op >

< comput exp >

| < boolean exp >′ &′ | ′||′

< boolean exp >

|′!′ < boolean exp >

|′{′< boolean exp >′}′

comput exp ::= < var id >

| < his vars id >

|integer

| < comput exp >< arithe op >

< comput exp >

|′{′< comput exp >′}′

compare op ::= ′ ==′ | ′! =′ | ′ <′ | ′ ≥′ | ′ ≤′ | ′ >′

arithe op ::= ′/′ | ′%′ | ′ +′ | ′ −′ | ′ ∗′

event id ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′) ∗ .

1716 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

Properties: The Properties constructor beginning with a re-
served word Properties specifies the ptLTL formula and handler.
The ptLTL formula is described based on the syntax and seman-
tics of ptLTL in part B of Section III. The handler starts with a
delimiter “@”. A handler type value is in the set {validation, vi-
olation, unknown}. When the corresponding event is triggered,
the code of handler is executed. The related events are listed by
focused_events.

properties ::= ′Properties :′ {< property name >′=′

< ptLTL exp >< handler >} ∗
ptLTL exp ::= event id

| ¬ptLTL exp

| ptLTL exp ∧ ptLTL exp

| ptLTL exp S ptLTL exp

| ptLTL exp U ptLTL exp

| [∗] ptLTL exp | [] ptLTL exp

| < ∗ > ptLTL exp | <> ptLTL exp

| (∗) ptLTL exp | () ptLTL exp

handler ::= ′@′ < handler type >

′(′< focused events >′)′

′′ <!− Java Statements− >′′

property name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′|′

0′..′9′|′ ′) ∗
handler type ::= ′validation′|′violation′|′unknown′

focused events ::= < event id > ∗.

C. Formalization

The syntax of RoboticSpec has been defined above. We will
give the semantics of RoboticSpec which indicates how to for-
malize data, event, and property. In other words, the semantics
supply the mapping method from RoboticSpec model to a run-
time verifier.

Data Formalization: The current data are the key to deciding
the next step for the robot system. If the data exception is not
detected, it may bring a fatal disaster. The data is formalized as
a variable set V derived from vars constructor. The type of each
data v derived from var_type constructor is denoted as T (v) ∈
{integer, string, boolean, integer[], string[], boolean[]}.

Similar to the current data, history data is formalized as a
variable set V h derived from the constructor history_vars. The
type of the history data is the same as its current data. For each
current data v ∈ V , there may be lots of history data derived in
the past time nodes. In sampled packets, the data is formalized
as below.

Formalization 1: ξ(v, p) is a full assignment on V and pack-
ets P , where ξ(v, p) is the value of data v contained in packet
p, which is derived from the constructor var extract rule.

Fig. 3. Monitor automaton of direct current.

ξh is a full assignment to V h , where ξh(vh , ph) is the value
of data vh contained in packet ph , which is derived from
the constructor his var update.

where p is a new sampled packet, and ph is a previously sampled
packet before p.

Event formalization: Event formalization formalizes the
boolean expressions in the constructor boolean_exp. The value
of boolean expression denotes if the event has happened or not.
Let E be a set of events derived from the constructor event, and
the data set related to the event set is denoted as VE, where
VE ⊆ V ∪ V h . The event is formalized as below.

Formalization 2: ∀e ∈ E, e is assigned by a boolean ex-
pression on VE. Event e is said to be happened when the
assignment is evaluated to be true, which is denoted as
e(ξ(VE, p)) = T .

Based on event formalization, event path should be defined
as a sequence of sets, where each set ηi is the combination of
events evaluated to be true and ej is one of the event in ηi . It
is a subset of all events contained in E. Then, the event path is
formalized as follows:

Formalization 3: η∗ is the group of all finite set sequence
η (η = η1η2η3 . . . ηn), and ητ is the group of all infinite
set sequence η

′
(η
′
= η

′
1η
′
2η
′
3 · · ·). Each ηi contained in the

set sequence is the event combination evaluated to be true,
denoted as ηi = {ej |ej (ξ(VE, pi)) = T}, where ηi ∈ 2E

and pi is a packet in P . Furthermore, if ∀i ∈ [1, n], ηi = η
′
i ,

then η
′

is an extension of η. All possible extensions of the
finite path η are denoted as Σ(η).

In a direct current checking example, if the current is
larger than 1120 mA, dangerous things may happen. Event
High_DCurrent is defined to express this danger.

High DCurrent = DCurrent > 1120.

Those events will be evaluated when there comes a data
packet. A trace would be generated for continually sampled
data packets.

Property Formalization: The property is described in the
properties constructor. Property formalization is to map the
property to an automaton which can judge if the property is
satisfied or not. For original model checking, the evaluation is
performed on infinite paths. In this context, runtime verification
is different. It works on existing running systems and verifies
the formula on the captured finite traces. As described in the
paper [28], they introduce a three-valued semantics (validation,
violation, and unknown) for each property and prove that these
properties are monitorable. The corresponding handler types
in the constructor handler_type are validation, violation, and
unknown. The handler types are formalized as below.

WANG et al.: FROM OFFLINE TOWARDS REAL-TIME VERIFICATION FOR ROBOT SYSTEMS 1717

Formalization 4: A handler derived from the ptLTL formula
φ is a full assignment to η∗ on the domain {validation,
violation, unknown}, where ∀η ∈ η∗, the assignment rule
is as follows:
1) If ∀ η

′ ∈ Σ(η), η
′ |= φ, then φ(η) = validation

2) If ∀ η
′ ∈ Σ(η), η

′
� φ, then φ(η) = violation

3) Else φ(η) = unknown.
The equivalent monitor automaton of the ptLTL formula can

compute the condition of the state transition. The translation
from ptLTL to automaton can be customized and automatically
generated by MOP. The automaton formalized as below is used
to monitor the event sequences defined on the real-time robot
system, and the condition η

′ |= φ is satisfied when the corre-
sponding path is accepted by the automaton. In general, after
translating the ptLTL property into a monitor automaton, the au-
tomata verification problem is a reachability analysis process,
starting from the initial state, accepting the events, and decide
the final state which is labeled with validation, violation, and
unknown.

Formalization 5: A monitor automaton is defined as a tuple
M = 〈S, s0,

∑
M , δ,O〉, where

1) S = {s0, . . . , sn} is the set of states,
2) s0 is the initial state,
3)

∑
M is the alphabet of M,

4) δ = {δ0, . . . , δn} is the transition function,
5) O = {o0, . . . , on} is the output mapping the state to
{validation, violation, and unknown}.

The monitor automaton are generated by the following steps.
First, we can get the nondeterministic Büchi automata Aφ and
A¬φ accepting the infinite words which satisfy φ and ¬φ [29].
Then, using the evaluation rule, we obtain the corresponding
nondeterministic finite automata Âφ and Â¬φ . Let Ãφ and Ã¬φ

be the deterministic version of Âφ and Â¬φ , which can be com-
puted in a standard manner using the power-set construction.
We construct the production automaton Ā = Ãφ × Ã¬φ . The
monitor M of φ is the unique FSM obtained by minimizing the
product automaton Ā. The correctness was proved in [28].

Here is an example. For the direct-current scenario there
is a safety requirement that DCurrent value in the robot
is not allowed to exceed its safe threshold. The event
High_DCurrent describes the direct current exceeding the
threshold. The requirement can be formalized as a ptLTL for-
mula [](¬High DCurrent).

The generated monitor automaton for the above formula is
described in Fig. 3. The automaton will start in the initial state
S0. If there is no event, the automaton will stay in the initial state
S0. When the event High_DCurrent labeled on the transition
happens, the automaton will transit to violation state S1. It will
stay in S1 if no event happens or High_DCurrent happens.

D. Implementation

After we model the application scenario of the robot system
with RoboticSpec, an engine is needed to synthesize the Robotic-
Spec model into a real-time verifier. As described in subsection
A, the engine should generate a data parser, event checker, and
property checker. We develop an engine shown in Fig. 4 based

Fig. 4. Structure of parsers implemented by Java code in RobotRV.

Fig. 5. Real scenario of OUR-1 robot.

on the semantics and formalization principle. The engine reads
the variable part of RoboticSpec model written in the file and
generate a data parser which can grab the desired variable from
data packet on CAN bus. Event part of RoboticSpec model is
used to generate the event checker. The event checker computes
the value of events. The engine generates property checker from
the property part of RoboticSpec model with the help of MOP.
The property checker will verify the ptLTL property and display
warnings. The runtime verifier runs separately from the robot
system. All the work is done in the accompanying monitor com-
puter. The operation added to the original robot system is just
reading data. Usually, this time will have very little effect on the
real time property of the original system.

V. CASE STUDY

A. Experiment Setup

We apply the proposed technique to a real OUR-1 robot for
real-time verification. The OUR-1 is a lightweight industrial
manufacturing robot and uses the CAN bus for communication.
It is a six degrees of freedom manipulator. Fig. 5 illustrates a
scenario that OUR-1 robot grabs objects from the table and puts
them into different boxes. The triangles are put in one box and
the rectangles are in the other one.

For this application scenario, we focus on the verifica-
tion of properties which are safety critical for manufacturing
applications. According to the discussion with the robot system

1718 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

developer and domain experts, potential but very likely viola-
tions may happen in the following aspects:

1) The remote packet is not followed by a data packet. The
connection will be established.

2) The ID value in the data packet is not equal to its value
in the corresponding remote packet.

3) The direct current value of the data packet is out of the
threshold of OUR-1 robot. It may lead to damage of the
robot, products, or even the platform.

When the manipulator moves, each joint will rotate in a cer-
tain angle. Each joint has its limit of rotational degree of free-
dom. Even so, a collision between each joint could occur in
the process of moving to the target position. For detecting the
collision, we consider each joint an entity with a cylinder and
both ends with hemisphere. By the method of orthogonal projec-
tion, the algorithm determines whether interference happened
between joints. The algorithm shows as follows.

1: function COLLISION-DETECTION(data)
2: ANGLERIGHT (data)
3: TWOCIRCLE (data)
4: CIRCLECY LINDER (data)
5: TWOCY LINDER (data)
6: end function
7:
8: function ANGLERIGHT(data)
9: result← false

10: for i = 0→ 5 do
11: if data >= −π and data <= π then
12: result← true
13: end if
14: end for
15: end function
16:
17: function TWOCIRCLE(data)
18: result← false
19: for i = 0→ 5 do
20: codewhether orthogonal projection of two circles

and one polygon is interference
21: result← true
22: end for
23: end function
24:
25: function CIRCLECYLINDER(data)
26: result← false
27: for i = 0→ 5 do
28: codewhether orthogonal projection of one circle
29: and one pologon is interference
30: result← true
31: end for
32: end function
33:
34: function TWOCYLINDER(data)
35: result← false

36: for i = 0→ 5 do
37: code for Homogeneous transformation
38: data← data1
39: twoCircle (data)1 circleCylinder (data)1
40: result← true
41: end for
42: if result! = true then
43: code for Homogeneous transformation
44: data ← data2
45: twoCircle (data)2 circleCylinder(data)2
46: result← true
47: end if
48: end function

In the algorithm, data are a series of information on every
joint at a moment. They are angle value, position value on
x-axis, y-axis and z-axis, radius value, and angle with the co-
ordinate plane. The algorithm is implemented in the controller.
Some important function results are required to transfer on the
CAN bus from position 24 to 27 in data packet. The function
ANGLERIGHT is for checking the angle value. The functions
TWOCIRCLE checks collision if the projections of two arms are
two cycles. If an arm’s projection is a cycle the other is a polygon,
CIRCLECYLINDER is used to check. If the projections are both
polygon, we use TWOCYLINDER. In the RoboticSpec, some
boolean variables are defined to record these function values.
These variable names are used to define the events AngleRight,
TwoCircle, CircleCylinder, and TwoCylinder. The values of
these variables are used to evaluate these events to be true or
false.If the collision is about to happen, the property will violate.

B. Specification

With the proposed language RoboticSpec, the above scenario
can be described in the model as below.

Model: OUR_Robot{
Source: Canbus 118
Vars:{

bool RTR Position 12 Length 1;
integer RID Position 8 Length 4;
integer DID Position 8 Length 4;
integer DCurrent Position 16
Length 8;
integer Time Extract{initial 0;
if (LastDCurrent>1120
&Dcurrent>1120) Time=Time+1;

}
bool angleRight Position 24
Length 1;
bool twoCircle Position 25
Length 1;
bool circleCylinder Position 26
Length 1;

WANG et al.: FROM OFFLINE TOWARDS REAL-TIME VERIFICATION FOR ROBOT SYSTEMS 1719

bool twoCylinder Position 27
Length 1;
}

HistoryVars:{
integer LastDCurrent Update{

LastDCurrent=DCurrent;}
}

Events:{
RemotePacket={RTR==F }
DataPacket={RTR==T}
PacketMatch={RID==DID}
High_DCurrent={DCurrent>1120}
Time_Out={Time>=300}
AngleRight={angleRight==T}
TwoCircle={twoCircle==T}
CircleCylinder={circleCylinder==T}
TwoCylinder={twoCylinder==T}
Stop={DCurrent==0}

}
Properties:{

p1=[](DataPacket=>(*)RemotePacket)
@violation{System.out.println
(‘‘Remote packet is missing !’’);}
p2=[](DataPacket / PacketMatch)
@violation{System.out.println(‘‘data
invalid’’);}
p3=[](Time_Out=><*>High_DCurrent)
@violation(DCurrent){System.out.
println(‘‘DCurrent value exceed time
constraint’’);}
p4=[](Stop=><*>(TwoCircle Circle
Cylinder TwoCylinder AngleRight))
@violation{System.out.println
(‘‘Collision may occur’’);}
}

}

OUR-Robot is the name of the scenario specification. Source
includes the packet name and length. The boolean variable RTR
stands for the type of packet. If the 12th bit in packet equals “0”,
it is a remote packet and RemotePacket event is true. Otherwise
it is a data packet and DataPacket event is true. The integer
variables RID and DID in the 8th position record the name
of packet. The integer variable Time counts the number that
LastDCurrent exceed 1120 and Dcurrent exceed 1120. Time
can help estimate the event lasting time. Four boolean variables
are defined later. They stand for four collision checking function
results. A history variable is defined. The lastDCurrent records
the DCurrent value of the last data packet.

In the events constructor, the PacketMatch event is true if
RID in the remote packet equals the DID in the data packet.
The High_DCurrent event is also true if the DCurrent value
is beyond the defined constraint. The Time_Out event means
the time variable is larger than a certain value. The event Stop
represents the robot stopped moving. If the DCurrent equals 0,
we know the robot stops.

TABLE I
EXPERIMENTAL RESULTS

Property Packet Number Violation Number

p1 2000 2
p2 2000 1
p3 2000 1
p4 2000 0

In the property constructor, four requirements are formulated.
Property P1 describes that the remote packet always arrived
before data packet. Property P2 means the ID of data packet
should always match with the remote packet. Property P3 says
the direct current value cannot exceed the range for more than 3
s. This is hard to express in real time in ptLTL logic. But we can
turn this problem to an approximate one. We know the cycle time
and the number that High_DCurrent happened continuously. We
can compute the total by multiplying. Property P4 means if the
two arms collide each other, the arm should stop moving. The
arm collision depends on the four events. If one of the events
happened, the collision will happen.

C. Verification Result

Based on RobotRV, we can get the verifier for the properties
and plug it into the robot system for runtime monitoring. We test
the generated monitor by continuously obtaining two thousand
packets of OUR-1. The experiment results are shown in Table I.
The Property column lists the properties used to verify in our
experiments. The Packet Number is the count of packets, includ-
ing remote packet and data packet. The last Violation Number
column is the number of violations on the related properties.

From the experimental results, we can see that occasional
violations happen, which is not easy for detection by human
semiautomatic monitoring. The first property p1 is just violated
when the first two packets are the data packet. In our code, we
label the type of every packet. Based on trace-back analysis of
the stored packet, we find that the first two packets are proved
to be data packet. The remote packet is missing.

Property p2 checks the data consistency in remote packet and
data packet. We find one violation. There are two reasons for
this violation. Packet missing is one reason. The other reason is
the disturbance from the environment. We checked the packet
where violation happened, and found that RID in remote packet
is not equal to DID in data packet. One bit in RID is changed
because of unpredictable reason.

The third property p3 violates one time. It shows that the
Direct Current value is out of the range for more than 3 s. At
the same time, warning is given to facilitate the operator. While
doing this experiment, we stopped the robot from moving by
holding the arms. When the movement stops, the current will rise
and exceed the threshold for a few seconds. Our runtime verifier
discovered this unusual condition and give warning successfully.
This is important while the robot is working with a human. It
can avoid the potential danger.

1720 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

The fourth property p4 violates zero times. It shows that no
double arms collisions happen in the process. That’s the fact.

The failure diagnosis for robot system is a complex work. Our
method can monitor the packet sending and receiving on CAN
bus and find abnormal behaviors. According to the results, it is
reasonable to draw the conclusion that our framework helps to
ensure the safety of the robot system.

VI. CONCLUSION

In this paper, we proposed a verification framework RobotRV
for the robot system to implement the verification from offline
to real-time. The domain specific language RoboticSpec was
designed to specify the application scenario of the robot sys-
tem. We designed an engine which can automatically generate
runtime verifier from the model specified by RoboticSpec. The
proposed technique was applied to a real robot system and suc-
cessfully diagnosed the property violation. Domain specifica-
tions are powerful enough to specify these complex properties.

In the future, we will continue our work in the following ways.
Having verified the real-time data transmitted on the CAN bus of
the robot system, we will generalize it to other communication
bus based robot systems. More kinds of logics are planned to
support the runtime verification framework.

REFERENCES

[1] D. Gu and H. Hu, “Neural predictive control for a car-like mobile robot,”
Robot. Auton. Syst., vol. 39, no. 2, pp. 73–86, 2002.

[2] R. H. Taylor and D. Stoianovici, “Medical robotics in computer-integrated
surgery,” IEEE Trans. Robot. Autom., vol. 19, no. 5, pp. 765–781, Oct.
2003.

[3] M. Summers, “Robot capability test and development of industrial robot
positioning system for the aerospace industry,” SAE Trans., vol. 114, no.
1, pp. 1108–1118, 2005.

[4] S. Petters, D. Thomas, M. Friedmann, and O. Von Stryk, “Multilevel
testing of control software for teams of autonomous mobile robots,” In
Simulation, Modeling, and Programming for Autonomous Robots. Berlin,
Germany: Springer, 2008, pp. 183–194.

[5] A. T. Hayes, A. Martinoli, and R. M. Goodman, “Swarm robotic odor
localization: Off-line optimization and validation with real robots,” Robot-
ica, vol. 21, no. 4, pp. 427–441, 2003.

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT press, 1999.

[7] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving,” Artif. Intell., vol. 2, no. 3, pp.
189–208, 1972.

[8] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion
planning for mobile robots,” in Proc. IEEE Robot. Autom., Int. Conf.,
2005, pp. 2020–2025.

[9] R. Wang, M. Wang, Y. Guan, and X. Li, “Modeling and analysis of the
obstacle-avoidance strategies for a mobile robot in a dynamic environ-
ment,” Math. Problems Eng., vol. 2015, 2015, Art. no. 837259.

[10] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen, “Tem-
poral logic with forgettable past,” in Proc. Logic Comput. Sci., 17th Annu.
Symp., 2002, pp. 383–392.

[11] P. O’Neil Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview
of the mop runtime verification framework,” Int. J. Softw. Tools Technol.
Transfer, vol. 14, no. 3, pp. 249–289, 2012.

[12] G. M. Nelson, R. D. Quinn, R. J. Bachmann, W. C. Flannigan, R. E.
Ritzmann, and J. T. Watson, “Design and simulation of a cockroach-like
hexapod robot,” in Proc. IEEE Robot. Autom., Int. Conf., 1997, vol. 2, pp.
1106–1111.

[13] Y. Jiang, H. Zhang, Z. Li, and Y. Deng, “Design and optimization of
multiclocked embedded systems using formal techniques,” IEEE Trans.
Ind. Electron., vol. 62, no. 2, pp. 1270–1278, Feb. 2015.

[14] Y. Jiang et al., “Bayesian-network-based reliability analysis of PLC sys-
tems,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5325–5336, Nov.
2013.

[15] R. Wang et al., “Timed automata based motion planning for a self-
assembly robot system,” in Proc. IEEE Robot. Autom. Int. Conf., 2014,
pp. 5624–5629.

[16] L. Li, Z. Shi, Y. Guan, C. Zhao, J. Zhang, and H. Wei, “Formal verification
of a collision-free algorithm of dual-arm robot in hol4,” in Proc. IEEE
Robot. Autom, Int. Conf., 2014, pp. 1380–1385.

[17] S. Ma, Z. Shi, Z. Shao, Y. Guan, L. Li, and Y. Li, “Higher-order logic for-
malization of conformal geometric algebra and its application in verifying
a robotic manipulation algorithm,” Adv. Appl. Clifford Algebras, vol. 26,
no. 4, pp. 1305–1330, 2016.

[18] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
J. Logic Algebraic Program., vol. 78, no. 5, pp. 293–303, 2009.

[19] Y. Jiang et al., “Use runtime verification to improve the quality of medical
care practice,” in Proc. IEEE Softw. Eng. Companion, ACM Int. Conf.,
2016, pp. 112–121.

[20] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha, “Data-centered
runtime verification of wireless medical cyber-physical system,” IEEE
Trans. Ind. Informat., vol. 13, no. 4, pp. 1900–1909, Aug. 2017.

[21] S. Zhang, F. He, and M. Gu, “Verv: A temporal and data-concerned verifi-
cation framework for the vehicle bus systems,” in Proc. Comput. Commun.,
Conf., 2015, pp. 1167–1175.

[22] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based dynamic
safety monitoring for mobile robots,” J. Softw. Eng. Robot., vol. 7, no. 1,
pp. 120–141, 2016.

[23] J. Huang et al., “Rosrv: Runtime verification for robots,” in Runtime
Verification, Berlin, Germany: Springer, 2014, pp. 247–254.

[24] C. A. N. Bosch, Specification version 2.0. Wrttemberg, Germany: Bosch
GmbH, 1991.

[25] H. J. Chen, B. T. Gao, X. H. Zhang, and Z. Q. Deng, “Drive control
system for pipeline crawl robot based on can bus,” in Journal of Physics:
Conference Series, vol. 48, page 1233. Bristol, U.K.: IOP Publishing,
2006.

[26] M. Bonani et al., “The marxbot, a miniature mobile robot opening new
perspectives for the collective-robotic research,” in Proc. Intell. Robots
Syst., 2010 IEEE/RSJ Int. Conf., 2010, pp. 4187–4193.

[27] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub hu-
manoid robot: an open platform for research in embodied cognition,” in
Proc. 8th WorkshopPerform. Metrics Intell. Syst., ACM, 2008, pp. 50–56.

[28] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, 2011, Art.
no. 14.

[29] C. Fritz, “Constructing bchi automata from linear temporal logic using
simulation relations for alternating bchi automata,” Lecture Notes in Com-
puter Science, vol. 2759, pp. 35–48, 2003.

Rui Wang received the B.S. degree in computer
science from Xi’an Jiaotong University, Xi’an,
China, in 2004. She received the Ph.D. degrees
in computer science from Tsinghua University,
Beijing, China, in 2012.

She is currently an Associate Professor in
the College of Information Engineering, Capital
Normal University, Beijing, China. Her current re-
search interests include formal verification and
their applications in embedded systems.

Yingxia Wei received the M.S. degree in com-
puter technology from the College of information
engineering of Capital Normal University, Bei-
jing, China, in 2017.

Her research interests include security of
CPS and formal verification.

WANG et al.: FROM OFFLINE TOWARDS REAL-TIME VERIFICATION FOR ROBOT SYSTEMS 1721

Houbing Song (M’12–SM’14) received the M.S.
degree in civil engineering from the University of
Texas, El Paso, TX, USA, in 2006 and the Ph.D.
degree in electrical engineering from the Uni-
versity of Virginia, Charlottesville, VA, USA, in
2012.

He is currently an Assistant Professor with the
Department of Electrical, Computer, Software,
and Systems Engineering, Embry-Riddle Aero-
nautical University, Daytona Beach, FL, USA,
and the Director of the SONG Lab. His current

research interests include cyber-physical systems, intelligent transporta-
tion systems, wireless communications and networking, and optical com-
munications and networking.

Yu Jiang received the B.S. degree in software
engineering from Beijing University of Posts
and Telecommunication, Beijing, China, in 2010,
and the Ph.D. degree in computer science from
Tsinghua University, Beijing, China, in 2015.

He is currently an Assistant Professor with
Tsinghua University. His current research inter-
ests include domain specific modeling, formal
computation model, formal verification and their
applications in embedded systems.

Yong Guan received the Ph.D. degree in com-
munication and information systems from the
College of Mechanical Electronic and Informa-
tion Engineering, China University of Mining and
Technology, Xuzhou, China, in 2004.

He is currently a Professor with Capital Uni-
versity, Bexley, OH, USA. His research interests
include formal verification of embedded system
design. He is a member of the Chinese Institute
of Electronics Embedded Expert Committee.

Xiaoyu Song received the Ph.D. degree in com-
puter science from the University of Pisa, Pisa,
Italy, in 1991.

From 1992 to 1998, he was on the fac-
ulty of the University of Montreal, Montreal, QC,
Canada. He joined the Department of Electri-
cal and Computer Engineering, Portland State
University, Portland, OR, USA, in 1998, where
he is currently a Professor. He was an editor
of IEEE TRANSACTIONS ON VLSI SYSTEMS and
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS.

He was awarded an Intel Faculty Fellowship from 2000 to 2005. His
research interests include formal methods, design automation, and em-
bedded systems.

Xiaojuan Li received the Ph.D. degree in me-
chanical and electronic engineering from China
Agricultural University, Beijing, China, in 1999.

She is currently a Professor in the Col-
lege of Information Engineering, Capital Normal
University, Beijing, China. Her current research
interests include formal verification and their ap-
plications in embedded systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

