
1900 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Data-Centered Runtime Verification of Wireless
Medical Cyber-Physical System

Yu Jiang, Houbing Song, Rui Wang, Ming Gu, Jiaguang Sun, and Lui Sha

Abstract—Wireless medical cyber-physical systems are
widely adopted in the daily practices of medicine, where
huge amounts of data are sampled by the wireless medical
devices and sensors, and is passed to the decision support
systems (DSSs). Many text-based guidelines have been en-
coded for work-flow simulation of DSS to automate health
care based on those collected data. But for some complex
and life-critical diseases, it is highly desirable to automat-
ically rigorously verify some complex temporal properties
encoded in those data, which brings new challenges to
current simulation-based DSS with limited support of
automatical formal verification and real-time data analysis.
In this paper, we conduct the first study on applying runtime
verification to cooperate with current DSS based on real-
time data. Within the proposed technique, a user-friendly
domain specific language, named DRTV, is designed to
specify vital real-time data sampled by medical devices
and temporal properties originated from clinical guidelines.
Some interfaces are developed for data acquisition and
communication. Then, for medical practice scenarios de-
scribed in DRTV model, we will automatically generate event
sequences and runtime property verifier automata. If a tem-
poral property violates, real-time warnings will be produced
by the formal verifier and passed to medical DSS. We have
used DRTV to specify different kinds of medical care sce-
narios and have applied the proposed technique to assist
existing wireless medical cyber-physical system. As pre-
sented in experiment results, in terms of warning detection,
it outperforms the only use of DSS or human inspection,
and improves the quality of clinical health care of hospital.

Manuscript received March 3, 2016; revised May 8, 2016; accepted
May 17, 2016. Date of publication May 27, 2016; date of current version
August 1, 2017. This work was supported in part by the National Science
Foundation (NSF) under Grant CNS 13-30077, Grant CNS 13-29886,
and Grant CNS 15-45002, and in part by the National Science Foun-
dation China (NSFC) under Grant 61303014. Paper no. TII-16-0255.
(Corresponding author: R. Wang.)

Y. Jiang is with the School of Software, Tsinghua University, Bei-
jing 100084, China, also with the Beijing Advanced Innovation Cen-
ter for Imaging Technology, Capital Normal University, Beijing 100048,
China, and also with the Department of Computer Science, University
of Illinois at Urbana–Champaign, Champaign, IL 61820 USA (e-mail:
jiangyu198964@126.com).

L. Sha is with the Department of Computer Science, University of
Illinois at Urbana-Champaign, Champaign, IL 61820 USA.

H. Song is with the Department of Electrical and Computer Engineer-
ing, West Virginia University, Morgantown, WV 26506 USA.

M. Gu and J. Sun are with the School of Software, Tsinghua University,
Beijing 100084, China.

R. Wang is with the College of Information Engineering, Beijing Ad-
vanced Innovation Center for Imaging Technology, Capital Normal Uni-
versity, Beijing 100048, China (e-mail: wangruicnu@126.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2016.2573762

Index Terms—Decision support system (DSS), real-time
data, runtime verification, wireless medical cyber-physical
system.

I. INTRODUCTION

W ITHIN the scope of cyber-physical-human medical sys-
tem, clinical guidelines and decision support subsys-

tems play a very important role in coordinating medical staffs
to improve patient care. With interpreting text-based guidelines
into some computer executable format, decision support sys-
tems (DSSs) are designed to monitor actions and observations
during practice workflow, and generate reminders and advice
when corresponding guideline is not satisfied. Lots of evidence
have showed that, using clinical guideline-based DSS, quality of
medical care sometimes even the survival rate of patients, would
be improved, and the medical care practice variability would be
reduced [22]. However, with rapid developments of medicine
science and computer technology, pathological model of some
disease are becoming more and more precise and complex, and
more real-time vital signs about patient need to be sampled and
analyzed to prevent some complex nondeterministic temporal
potential complications, which brings new challenges to current
simulation-based DSS.

For example, during the best practice guideline of ischemic
stroke therapy [12], patient’s neurological symptoms like speech
difficulty and vital signs such as blood coagulation index should
be monitored in real time, after the administration of recom-
mended tissue plasminogen activator (rt-PA). If any of vital
signs are out of range, stroke team will issue corresponding
treatment orders to head nurse in ambulance or intensive care
unit to prevent patient from life-threatening complications such
as hemorrhagic bleeding. Timely response based on real-time
data monitoring and runtime rigorous verification is highly de-
sirable, because a huge number of brain cells die every second.
Another example is about the best practice guideline of infants
respiratory distress syndrome, vital signs about blood-gas val-
ues should be monitored. If it is continuously above the normal
range for at least 3 h, the treatment is fine. But if it is too steep
for at least 30 s, further emergency actions should be taken [5].
In both cases, specifying complex temporal properties for au-
tomatically rigorous verification would be more reliable than
semiautomated manual vision inspection of current simulation-
based DSS.

More specifically, through the discussion with physicians, we
learned that those phenomenons bring new challenges to med-
ical DSS in two aspects. First, although some guideline-based

1551-3203 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

JIANG et al.: DATA-CENTERED RUNTIME VERIfiCATION OF WIRELESS MEDICAL CYBER-PHYSICAL SYSTEM 1901

DSS support static properties, runtime verification of complex
temporal properties is not supported. Besides, not all vital signs
will be stored in current patient record systems. Second, it not
easy for medical staffs to monitor a huge number of vital signs
for a long time, and input those conditions and violations into
DSS in time. Statistics shows that medical staffs are under
tremendous pressure and overloaded by a great amount of
unorganized information. It is not easy to relate the information
contained in the complex medical systems with temporal
properties of complex complications with semiautomated
manual vision inspection.

In practice, we propose a real-time data-based runtime ver-
ification technique to cooperate with current DSS, to release
medical staffs from safety critical complex temporal properties
and huge amounts of vital signs. It combines formal methods in
software engineering and practice guidelines in medicine to rig-
orously verify runtime temporal properties automatically, and
can be implemented and plugged in existing DSS to strength
health care. A domain specific language DRTV is proposed to
specify the medical care scenario, as well as data and proper-
ties contained in this scenario. The proposed language inherits
some features from existing computer interpretable formations
of guideline for compatibility, while focuses more on data part
and enhances property specification ability with past time linear
temporal logic [2]. Based on DRTV model, we develop a tool to
automatically generate runtime monitors, which will continu-
ally extract scenario related data, parse their values to get event
sequences, and input the event sequences to a runtime verifica-
tion engine to rigorously check the temporal properties, accom-
panied with some interfaces for data communication. Overall,
main contributions are as follows.

1) A verification technique based on real-time data of pa-
tient and runtime verification is adapted to cooperate with
wireless medical cyber-physical system.

2) A domain specific language for specifying real-time data
and complex temporal properties within a clinical sce-
nario of best practice guideline are designed, and corre-
sponding tools are implemented.

3) A real-device-based testing and evaluation are conducted
to test the efficiency. To the best of our knowledge, this is
the first study on applying runtime verification to improve
the clinical health care.

II. RELATED WORK

Last decades, health care organizations and providers pay
many efforts to guideline application, that is, implementing
well-validated and verified practice guidelines into computer-
based DSSs to provide better health care [8]. Actually, according
to the Institute of Medicine, these systems improve the accep-
tance of guideline with automation of medicine practice. Text-
based guidelines are represented and encoded into a computer-
interpretable format, such as Arden [7] and Asbru [5]. With the
syntax and semantics of them, inference and decision making
methodologies used in artificial intelligence such as rule-based
reasoning, and probabilistic network can be designed and im-
plemented. Then, DSSs such as Spock [24] and CREDO [6] are
developed to monitor actions and observations of medicine staff

and provide corresponding suggestions, through task execution,
condition examination, and procedure visualization. However,
many clinical problems are complicated and involving many
timely decision-making according to a huge number of real-time
vital signs. Then, task-based simulation and staff observation-
based semiautomated collaboration of DSSs encounter major
difficulties. Rather than semiautomated informal methods such
as artificial intelligence algorithms, our work will use runtime
verification engine to deal with real-time data automatically. In
this way, real-time rigorously verified results will be produced
to assist current DSSs.

For runtime verification, that is, verifying properties with run-
time information of systems. It is effective to verify real-time
temporal properties, and has been applied in many applications.
Within last ten years, considerable amount of work has been
invested in program runtime verification systems [4]. These
pieces of work are often extensions of AspectJ [10] for java pro-
grams. For hardware runtime verification, property specification
is usually translated into a hardware description such as Vhsic
Hardware Description Language (VHDL) and Verilog, which
is then synthesized into a netlist and loaded into dynamically
reconfigurable blocks of field programmable gate array (FPGA)
[16], [21]. Some work about the runtime verification of medical
systems is presented in [9], [11], [13], and [14]. They focus on
mitigating safety hazards of closed-loop or open-loop medical
systems [1], [3]. They work on runtime safety and reliability
status of the system devices, hardware and communications,
and nothing is related to DSSs and clinical guidelines. For ex-
ample, King et al. proposed a formal specification language to
express and reason safety properties of on-demand medical sys-
tems [11]. Pajic et al. combined simulation-based analysis and
model checking to guarantee the safety of closed-loop medi-
cal systems [20]. In [19], a model-driven approach allows us
to prove safety properties of devices on the modeling level and
ensures that the abstract models used in the verification pro-
cess are sound with respect to actual dynamics of system. We
conduct our work without considering the status of hardware
systems, mainly focus on the real-time data of patient sampled
in devices and their verification on temporal properties derived
from clinical practice guidelines.

III. VERIFICATION APPROACH

In this section, we introduce how the workflow of real-time-
data-based runtime verification technique cooperates with exist-
ing wireless medical cyber-physical systems, including domain
specific language DRTV used to specify data and properties of
medical care scenario, and semantics formalization to formal-
ize the scenarios described in a DRTV model into the input
sequence and automata for runtime verification.

A. Verification Workflow Overview

The proposed real-time-data-based runtime verification
technique is presented in Fig. 1. First, we build a DRTV model
to specify vital real-time data sampled by medical devices
or from Electronic Patient Record, and temporal properties
originated from clinical guidelines. For data part specification,

1902 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Fig. 1. Real-time-based runtime verification technique, and interfaces
with main components in current medical care systems.

Fig. 2. Runtime monitor generated according to the DRTV model.

information such as data format, location, and type should
be captured. For specification of property, ptLTL formulae
should be written correctly according to description of clinical
guidelines. Also, event mapping expressions would be defined
on current data, or historical data. Then, for medical practice
scenario described in DRTV model, we will formalized it
for automatical generation of corresponding runtime property
monitor with a developed engine based on an Monitoring
Oriented Programming (MOP) technique [17]. The automati-
cally generated monitor will continually read real-time data or
historical data, verify temporal properties on them, and produce
output to assist DSSs to produce better health care.

1) Verifier: Then, let us see the structure of runtime moni-
tor. As presented in Fig. 2, workflow of the generated runtime
monitor by our developed engine is based on three components:
data parser, event path generator, and property verifier. These
three components are automatically derived from the DRTV
model with some formalization rules implemented in the en-
gine. They will cooperate together to accomplish the task that
real-time patient data are processed to get runtime verification
result, with main steps listed as follows.

1) Data parser: This component is formalized and automat-
ically generated according to the data description part of
DRTV model. With data parser, all relevant vital signs
within model description will be abstracted from data
packet sampled by medical devices, or from electronic
patient records.

2) Event path generator: This component is formalized and
automatically generated according to the event descrip-
tion part of DRTV model. With event parser generator,
values of vital signs abstracted in previous step will be
used to evaluate boolean formula to get corresponding
events.

3) Property verifier: This component is formalized and auto-
matically generated according to the property description

Fig. 3. Runtime verification example to monitor blood pressure.

part of the DRTV model. With property verifier, events
generated in previous step will be read to decide the tran-
sition of monitor automata. If the automata transit to a
violation state, timely response should be produced to the
DSS to remind further actions of medical staffs. Other-
wise, the monitor will continually read the event.

An example of monitor workflow is presented in Fig. 3. Ker-
nel of the real-time-data-based runtime verification technique
is the DRTV model, which is independent of the format of ex-
isting computer interpretable guidelines. Besides, the automat-
ically generated runtime monitor through a developed engine
based on MOP is running independently from current DSSs.
So, the proposed technique is platform independent, and could
be customized and plugged into many existing medical care
systems.

B. Domain Specific Language DRTV

The proposed domain specific language DRTV should pro-
vide the ability to describe data, event, and temporal properties
in different medical scenarios, based on which, we will formal-
ize those elements to generate runtime monitor. The language
should also be clear to use. We survey many formats of ex-
isting computer interpretable guidelines, and build our syntax
on them, with more focus on data and ptLTL formula property
specification. For example, the data specification part in DRTV
makes use of some features from syntax of Arden, a widely
used clinical guideline modeling language. In this way, medical
staffs and engineers of medical systems will be more familiar
to understand and construct a DRTV model, even when they
have little experience in runtime modeling or verification. Ker-
nel syntax of the domain specific language DRTV is presented
as folllows.

1) Scenario Module: Each DRTV model contains one
module for a medical scenario. Each module starts with a re-
served word Scenario, followed by scenario name and entity.
The main entity consists of five constructs data_resource, cur-
rent_data, history_data, event, and property. The first construct
data resource specifies resource of real time data. If the re-
source is medical device sensors, name and data packet length
of the device need to be captured by construct device name
and packet length. If the resource is electronic patient record,
name and record length of the patient record need to be captured
by construct record name and record length. The length will
be used to help to locate and abstract data from data packet
or patient record. Note that different medical device sensors

JIANG et al.: DATA-CENTERED RUNTIME VERIfiCATION OF WIRELESS MEDICAL CYBER-PHYSICAL SYSTEM 1903

and electronic patient record systems will use different kinds of
information format for transmission.

DRTV model ::= ′Scenario′ < module name >

< module entity >

module entity ::= < data resource >

< current data >

< history data >

< event >

< property >

data resource ::= ′Medical Device Sensors :′

< device name >< packet length >;

|′Electronic Patient Record :′

< record name >< record length >

record length ::= integer

packet length ::= integer

device name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′) ∗
record name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′) ∗
module name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′

|′0′..′9′|′ ′)∗
2) Vital Sign: Current data and history data are captured in

construct current data and history data contained in main
entity, respectively. Because each packet or record may contain
many vital signs corresponding to a set of indexes, the con-
struct current data is refined with a reserved word current,
and a set of construct index. Each index specifies the type of
value, position, and length of vital sign contained in packet or
record. Three basic data types (Integer, String, and Boolean),
and their corresponding array version (Integer[], String[], and
Boolean[]), are supported. With the position and length of vital
signs, and the length of data packet and record, value of vital
signs will be located and abstracted exactly.

current data ::= ′current′ : (< index >) ∗
index ::= < data type >< data name >

< data location >

data type ::= ′int′ | ′bool′ | ′string′ |
′int[]′ | ′bool[]′ | ′string[]′

data location ::= < data position >< data length >

data position ::= ′data start position :′ integer

data length ::= ′data length :′ integer

The construct history data is refined with a reserved word his-

tory, and a set of construct history_index. Each history_index
specifies the type of value, initial value, and update rule of
this history index. Supported data types for history data are the
same with current data. The update rule is some general java
statements that abstract the value, according to the previous
packets and records. Also, the update rule can be constructed
based on the position and length of current_data, with an ad-
ditional integer to denote the number of packets needs to be
searched ahead.

history data ::=′ history′ : (< history index >)∗
history index ::=< data type >< data name >

< abstract rule >

data type ::=′ int′ | ′bool′ | ′string′ |
′int[]′ | ′bool[]′ | ′string[]′

abstract rule ::=< ahead num >< data position >

< data length >

| java − assignment − statement

ahead num ::=′ previousnumber :′ integer

data position ::=′ data start position :′ integer

data length ::=′ data length :′ integer

3) Real-Time Event: Event is defined in the fourth con-
struct event contained in the main entity. Because vital signs
contained in each packet or record may indicate several events,
a set of identifiers is used to differentiate them. Tradition-
ally, each event is defined as some boolean expressions on
current data. But in case of some temporal properties, event
may also use history data. Computations on these data are sup-
ported for events related to complex decision logic. We can use
just one event with a boolean expression on these data, to re-
lease medical staffs from keeping monitoring device screen of
Multiple traces.

event ::= ′event :′ (< event name >

′ =′< bool exp >) ∗
bool exp ::= < current data name >

| < history data name >

| < bool value >

| < comput exp >< compar op >

< comput exp >

| < bool exp > ′&′ | ′||′ < bool exp >

| ′!′ < bool exp >

| ′(′ < bool exp > ′)′ ;

comput exp ::= < current data name >

| < history data name >

1904 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

| < history data name >

| < int value >

| < comput exp >< arithe op >

< comput exp >

| ′(′ < comput exp > ′)′ ;

arithe op ::= ′/′ | ′%′ | ′ +′ | ′ −′ | ′∗′ ;
compar op ::= ′ ==′ | ′! =′ | ′ <′ | ′ ≥′ | ′ ≤′ | ′ >′ ;

4) Temporal Property: Temporal property corresponding
to events is defined in the fifth construct property of main entity.
It consists of two parts, a set of ptLTL formulae and handlers.
Both parts can be derived from clinical best practice guidelines,
such as the logic description part of Arden. Some newly de-
veloped medicine knowledge that are not presented in current
clinical guidelines can also be encoded into these two parts.
The ptLTL formulae provide ability to describe most static and
temporal conditions, and the handlers will take the result of ver-
ification to produce timely response to medical staffs. Besides
the standard temporal operators, extra temporal operators such
as “eventually,” “always,” “always in the past,” and “eventually
in the past” denoted as F, F−1, G, and G−1, are also explicitly
encoded in the construct. If the property is violated, suggested
actions and statements within the handler will be executed, and
the runtime monitor would be reset to the initial state automat-
ically. The warnings as well as some status information can be
encoded in the handler construct through some print statements
of standard Java language.

property ::= ′property :′

(< propoety name >′=′

< ptLTL exp >< handler >)∗ ;

ptLTL exp ::= event name

|N ptLTL

| ¬ptLTL exp

|X ptLTL exp |X−1 ptLTL exp

|F ptLTL exp |F−1 ptLTL exp

|GptLTL exp |G−1 ptLTL exp

| ptLTL exp ∧ ptLTL exp |
ptLTL expS ptLTL exp

| ptLTL expU ptLTL exp

handler ::= java − statement

model name ::= (′a′..′z′|′A′..′Z ′|′ ′)(′a′..′z′|′A′..′Z ′|
′0′..′9′|′ ′)∗ ;

Based on those syntax definitions presented previously, we can
build a scenario module within a DRTV model. Real-time vital
signs and complex temporal restrictions on these signs of patient

could be described in a structured manner. Then, the runtime
monitor, consisting of the data parser, event path generator, and
property verifier will be formalized and generated automati-
cally from a developed engine, as described in the following
subsection.

C. Semantics and Monitor Formalization

With scenarios described in the DRTV model, we need to
define the semantics to formalize the data, event, event paths,
and property verifier automata for computer interpretable formal
verification as follows.

1) Vital Data Formalization: For the current data, which
are corresponding to the vital signs of patient, they are formal-
ized as a variable set D derived from the construct current_data.
The type of each data d derived from the construct data_type
is denoted as T (d), where T (d) ∈ {Integer, String, Boolean,
Integer[], String[], Boolean[]}.

In the same way, we can formalize the history data. They
are formalized as a variable set Dh derived from the construct
history_data, and the type of each data dh is the same with their
corresponding current data d. For each variable d ∈ D, there
may be several dh

i ∈ Dh used to capture different time nodes of
history. For the history variable, extending its assignment with
some general computations on history values is optional for
complex restrictions. Assignment of the data set is dependent
on the information contained in sampled packets and records,
formalized as below.

Formalization 1: θ is a full assignment to D on the domain
of type, where θ(d) is the value of data d contained in θ, which is
derived from the data_location construct. θh is a full assignment
to Dh , where θ(dh) is the value of data dh contained in θh , which
is derived from the abstract_rule construct

where θ is a new sampled data packet or a new electronic
patient record item, and θh is a previously sampled packet or
history record.

2) Real-Time Event Formalization: After the data value
assignment is abstracted from data packets or records, boolean
expressions described in the construct bool_exp should be evalu-
ated to get the event set initialized. All events indicated in a data
packet or record need to be addressed correctly. Let E be a set of
events derived from the construct event_name, and the dataset
related to the event set is denoted as DE, where DE ∈ D ∪ Dh .
Then, the event set is formalized as follows.

Formalization 2: ∀e ∈ E, e is a full assignment to the
boolean expressions on DE. Event e is said to be happened
when the assignment is evaluated to be true, which is denoted
as e(θ(DE)) == true.

For event path, it is more complex, because each packet or
record may indicate more than just one event corresponding to
different indexes. The path should be defined as a sequence of
set, where each set ai is the combination of events evaluated
to be true. It is a subset of all events contained in E. Then, the
event path is formalized as follows.

Formalization 3: π∗ is the group of all finite set sequence
π (π = π1π2π3 · · ·πn), and πω is the group of all infinite set

JIANG et al.: DATA-CENTERED RUNTIME VERIfiCATION OF WIRELESS MEDICAL CYBER-PHYSICAL SYSTEM 1905

Fig. 4. Formalized monitor automaton.

sequence π
′
(π

′
= π

′
1π

′
2π

′
3 · · ·). Each πi contained in the set

sequence is the event combination evaluated to be true in the
data packet or record θi , denoted as πi = {ej |ej (θi(DE)) =
true} and obviously πi ∈ 2E. Furthermore, if ∀i ∈ [1, n], πi =
π

′
i , then π

′
i is an extension of π. All possible extensions of the

finite path π are denoted as Σ(π).
3) Temporal Property Formalization: The property de-

rived from the construct property is the verifier that partitions
path into three types, violation, validation, and unknown. Then,
the property verifier is formalized as follows.

Formalization 4: A property verifier derived from the ptLTL
formula φ is a full assignment to π∗ on the domain {violation,
unknown, validation}, where ∀π ∈ π∗, the assignment rule is as
follows.

1) If ∀π
′ ∈ Σ(π), π

′ |= φ, then φ(π) = validation.
2) If ∀π

′ ∈ Σ(π), π
′
� φ, then φ(π) = violation.

3) Else φ(π) = unknown.
Condition of the assignment rule can be realized by the

equivalent monitor automata of the ptLTL formula, which can
be customized and automatically generated within MOP. The
automaton formalized as follows is used to monitor the event
sequences defined on the real-time vital signs of patient, and
the condition π

′ |= φ is satisfied when the corresponding path
is accepted by the following.

Formalization 4: The customized monitor automaton cor-
responding to the plLTL formula φ is defined as a tuple
〈S, s0, α, L,O〉.

1) S = {s0, · · · , sn} is the set of states.
2) s0 is the initial state.
3) α = {α0, · · · , αn} is the set of events contained in the

formula φ, and αi ∈ 2E.
4) L = {l0, · · · , ln} is the transition, and li ∈ S · E · S.
5) O = {o0, · · · , on} is the output that maps the state to

{violation, validation, and unknown}.
Take the scenario presented in Fig. 3 as an example. If there

is a requirement that patient is not allowed to exceed the safe
threshold of blood pressure, which can be defined on events
Event HBP and Event LBP . This requirement can be for-
malized as a ptLTL formula presented as follows:

[](notEvent HBP ∧ notEvent LBP).

Then, the customized and generated monitor automaton corre-
sponding to this formula is depicted in Fig. 4. The automaton
will start in the initial state s0. When any of the event sets
labeled on the transition happens, such as {Event_HBP} or
{Event_LBP}, or both of them {Event_HBP, Event_LBP}, the
automaton will transit to violation state s1. If there is no event,

Fig. 5. Tool implementation and interaction. The green modules are
implemented components, the yellow modules are generated automat-
ically, the blue files are input by the domain model engineers, and the
blue modules are existing DSSs or medical device sensors.

the automaton will stay in the initial state s0. The automaton
only focuses on the event that is related to the property, while
others will not be considered for efficient path classification.

4) Tool Implementation: Based on aforementioned syn-
tax and formalization semantics, we implement an interface
for DRTV model construction and an engine to automatically
translate the DRTV model into the executable runtime monitor,
which consists of data abstractor, event sequence generator, and
property verifier. The interface also contains a backend to help
validate the syntax correctness and store the model in XML for-
mat. Then, the translator contained in the engine will parse the
XML file to executable java files. In order to get real-time data
from the medical devices or electronic patient recode systems,
we also develop a communication interface Sink for data trans-
fer [18]. The overall structure of the tool implementation and
interface cooperation is presented in Fig. 5.

IV. EXPERIMENT RESULTS

In order to evaluate the efficiency and scalability of the pro-
posed real-time-data-based runtime verification technique, we
apply it to the best practice guidelines of real medical care sce-
narios, then accomplish some real medical-device-based simula-
tion with the closed collaboration of Carle Foundation Hospital.
We conduct experiments and generate different runtime verifiers
with consistency to a previous developed DSS,1 which contains
integrated workflow, data to decision pipeline, and Medical De-
vice Plug and Play (MDPnP).

1The system and related video is presented in http://publish.illinois.edu/
mdpnp-architecture/advanced-situation-awareness/

1906 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Fig. 6. DRTV model for the blood pressure and heart rate runtime verifi-
cation, where EVENT_UNBP and EVENT_UNHR denotes the unnormal
events leading to property violation.

The first scenario for test is a best practice guideline recom-
mendation for stroke care [15]. According to the guideline, for
the ischemic stroke patient who meets proper criteria [12], ad-
ministration of IV rt-pa is recommended in a dose of 0.9 mg/kg
(maximum of 90 mg), with 10% of the total dose given as an
initial bolus and the remainder infused over 60 min. Since a ma-
jor risk for patient using IV rt-PA is the complication of brain
hemorrhage, patient’s neurological symptoms such as speech
difficulty, facial droop, weakness in hands, and vital signs such
as the blood pressure, heart rate, SpO2, and blood glucose level
index will be monitored in real time. If any of the vital signs
are out of range, stroke team will issue corresponding treatment
orders.

For example, when the patient’s blood pressure exceeds the
safe threshold 180, the stroke team may suggest injecting nitro-
prusside to control the blood pressure. If the nitroprusside infu-
sion causes the neural deterioration, the physician may change
the drug accordingly. If blood pressure and blood glucose level
cannot be controlled under acceptable ranges, or signs of brain
hemorrhage appear, the stroke team may stop the rt-PA and ad-
just its schedule to treat complications. Timely response based
on the real-time data monitoring and runtime rigorous verifica-
tion is highly desirable, because every second the huge number
of brain cells die, for example, 32 000 brain cells will die within
every second a clot blocks blood flow to brain. It is not easy for
staff to keep the neurological testing and vital sign monitoring
for a long time, but a simple DRTV model segment for blood
pressure and heart rate runtime verification can be modeled, as
presented in Fig. 6.

Other data parameters such as SpO2 and temperature, and
some corresponding events corresponds to this scenario can also
be declared in the model. Those kind of static properties can also
be supported by existing DSSs such as Spock and CREDO. But
for some temporal properties such as when an event indicates
the high blood pressure, the following event must indicate the
nitroprusside injection, it can also be defined as

[](Event HBP X Event Nitroprusside)

which is not supported in Spock and CREDO. Then, the gen-
erated runtime verifier will be used to verify the real-time data,

Fig. 7. Real data-based runtime simulation and verification.

and produce the timely response automatically, as presented in
Fig. 7. The real-time data monitor device Phillips IntelliVue
MP70 with the sensors attached on it are used to sensor the
real-time data, and the derived runtime verifier of the DRTV
model and the data interface are running on the computer. With
the developed data interface and MDPnP driver, we continually
get the data from Phillips IntelliVue Mp70 and pass them to
the generated runtime verifier or our implemented DSS directly.
Initially, the real-time data sampled from myself will not vi-
olate the property described in Fig. 6. It is not easy to adjust
my blood pressure 118 to trigger the violation of property, so
inverting the property for testing is adopted in lab simulation.
When the property verified is []Event UNP , timely warnings
is produced immediately.

We also do tests on some more complex guidelines, such
as the guideline of infants respiratory distress syndrome. If the
blood-gas values are too steep for at least 30 s, warnings and
further actions should be taken. It is not easy to decide the
condition continuously steep of 30 s with semiautomated manual
vision inspection. But with the proposed lightweight runtime
verification technique, it can be automatically monitored by the
following ptLTL formula encoded in DRTV model.

[](Event Steep BG X · · ·X Event Steep BG
︸ ︷︷ ︸

)

where Event Steep BG is defined as a boolean expression on
two consecutive data packets (BloodGlas − BloodGlash

1 ≥
Steep Threshold), one for current data packet and one for the
history data packet. When there are 30 number of consecutive
steep blood-gas incensement, the property would be violated,
and timely warning will be responded immediately.

After those aforementioned tests in the lab, we do some real
simulations and verification on virtual patient in hospital, as
described in Fig. 8. We use SimMan patient simulator to set
the vital signs of virtual patient and the value of real-time data
monitor device Phillips IntelliVue MP70, which can be furthered
passed to the cooperating DSS and generated runtime verifier. In
this way, more guideline properties for potential complications
can be verified with different kinds of values set by the SimMan
patient simulator, and the results come as expected the same as
our previous test.

Furthermore, we choose three typical properties to help us test
the efficiency, with results presented in Table I. The first column
of Table I is the property name that is defined in the lab test
previously, the second column is the number of violations we

JIANG et al.: DATA-CENTERED RUNTIME VERIfiCATION OF WIRELESS MEDICAL CYBER-PHYSICAL SYSTEM 1907

Fig. 8. Experiments with the cooperation of SimMan patient simulator
in Carle Foundation Hospital.

TABLE I
DETECTED WARNING COMPARISONS FOR DIFFERENT SCENARIOS, AND THE

SYMBOL ∅ MEANS NOT SUPPORT. THE LAST TIME IS THE RESPONSE
TIME OF MILLISECOND

Property Number Manually DRTV Spock Time

UN_HBP 10 10 10 10 1.2
Steep_BG_20 10 10 10 ∅ 1.4
Steep_BG_30 10 9 10 ∅ 1.9
UN_HBP 100 94 99 100 1.2
Steep_BG_20 100 81 98 ∅ 1.5
Steep_BG_30 100 76 98 ∅ 2.0
UN_HBP 1000 931 992 991 1.3
Steep_BG_20 1000 773 993 ∅ 1.5
Steep_BG_30 1000 645 992 ∅ 1.9

insert into the virtual patient through SimMan patient simulator,
the third column is the violations manually detected by staring at
real-time data monitor device, the fourth column is the violations
detected with the accompanied runtime verifier, and the fifth
column is the violations detected with the accompanied Spock
DSS. From the trend of the third column, we can find that the
accuracy of nurse decreases along with the complexity of the
property and the work time. For the runtime verifier, it performs
steadily as in fourth column. Noting that the DRTV and Spock
will produce 10, 100, or 1000 number of warnings, but one or
two percent may also be ignored because of noise or other effects
that disturb. According to the simulation, it is reasonable to draw
the conclusion that the lightweight runtime verifier cooperating
with the existing DSS running on the computer helps produce
an easier health care practice.

V. DISCUSSION

A. Physicians Need More Flexible and Automatic
Support Techniques to Release Them From the Huge
Number of Data and Human Tasks During the Clinical
Health Care

Nowadays, along with the development of medicine science,
more and more medical devices are placed in the ward to provide

the information to assist in making decision. However, these de-
vices provide an extra dimension of information for physicians
to process. Physician can misread, miss interpret, mixed use
the provided information or recall incorrect knowledge to make
a decision, during the increasingly common case of continues
long-time stressing work.

For example, the work [23] shows that, although medical
staffs practice the best practice for cardiac arrest resuscitation,
due to its urgent and infrequency on a daily basis, medical staffs
may be panic at the situation and miss several warnings. Our
experiments also support the conclusion of the aforementioned
work, and further show that current DSS does not perform that
much good when coming to complex properties, and recently
developed computer technology needs to be incorporated. We
make use of runtime verification technique, to release physicians
from tremendous pressure to relate the information contained
in complex medical care systems with temporal properties by
semiautomated manual vision inspection of current DSS.

B. Easy to Use Interfaces are Needed to Facilitate
Physicians to Use Formal Verification

Through the verification, if we specify the requirements cor-
rectly and the data can be intercepted correctly, the false negative
and positive rate is almost zero. The specification as well as the
violation action definition require the cooperation of doctors,
and are highly dependent on medical care practice scenario.
Inappropriate property specification and the violation action
would reduce the efficiency Computer technologies such as run-
time verification and domain specification language are totally
new to physicians, we need user-friendly interfaces to convince
and facilitate physicians to believe and use those techniques.
Currently, it is not possible for physicians to pay extra efforts to
learn those techniques due to a huge amount of clinical works,
we need to reduce their work by hiding details of implementa-
tion techniques and provide the least complex interface.

For example, during the design of DRTV, we plan to use syn-
tax similar to java, which can be more easily connected to the
backend MOP. but the physicians from Carle Foundation Hos-
pital thought that it is not easy for them to understand and build
the model. Hence, we reduce their efforts by searching many
description languages used in current medical DSS, and inherit
some syntax from them with assigning MOP-related semantics.
Also, the physicians suggest that it would be better for us to pro-
vide some templates to translate the property described in the
medical best practice guideline to the property described for in
DRTV in our future work, which will facilitate their practice of
our approach in their health care practices. If the scenario mod-
eling process can be accomplished by automatical generation
based on the configuration of medical best practice guideline
and devices, it will be more fascistic for them.

VI. CONCLUSION

We propose a lightweight real-time-data-based runtime veri-
fication technique for wireless medical cyber-physical system.
First, a user-friendly domain specific language DRTV for speci-
fying the real-time data and complex temporal properties of the

1908 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

medical care practice is designed. Based on the DRTV model,
a runtime verification technique is proposed and formalized to
strengthen the medical DSS. It combines formal methods in
software engineering and practice guidelines in medicine to
rigorous verify runtime temporal properties automatically, and
can be implemented and plugged in existing wireless medical
cyber-physical system to strength the health care.

REFERENCES

[1] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokol-
sky, “Toward patient safety in closed-loop medical device systems,” in
Proc. ACM/IEEE 1st Int. Conf. Cyber-Phys. Syst., 2010, pp. 139–148.

[2] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM Trans. Software Eng. Methodol., vol. 20, no. 4, pp.
619–635, Sep. 2011.

[3] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li, “Toward
online hybrid systems model checking of cyber-physical systems’ time-
bounded short-run behavior,” ACM SIGBED Rev., vol. 8, no. 2, pp. 7–10,
2011.

[4] F. Chen and G. Roşu, “Java-mop: A monitoring oriented programming
environment for java,” in Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Germany: Springer-Verlag, 2005, pp. 546–
550.

[5] P. A. De Clercq, J. A. Blom, H. H. Korsten, and A. Hasman, “Approaches
for creating computer-interpretable guidelines that facilitate decision sup-
port,” Artif. Intell. Med., vol. 31, no. 1, pp. 1–27, 2004.

[6] J. Fox, V. Patkar, and R. Thomson. “Decision support for health
care: The proforma evidence base,” Inf. Primary Care, vol. 14, no. 1,
pp. 49–54, 2006.

[7] G. Hripcsak, P. D. Clayton, T. A. Pryor, P. Haug, O. Wigertz, and J. Van
der Lei, “The arden syntax for medical logic modules,” in Proc. Annu
Symp. Comput. Appl. Med. Care, 1990, pp. 200–204.

[8] D. Isern and A. Moreno, “Computer-based execution of clinical guide-
lines: A review,” Int. J. Med. Informat., vol. 77, no. 12, pp. 787–808,
2008.

[9] Y. Jiang, H. Liu, H. Kong, R. Wang, M. Hosseini, J. Sun, and L. Sha, “Use
runtime verification to improve the quality of medical care practice,” in
Proc. 38th ACM Int. Conf. Software Eng, 2016, pp. 112–121.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold, “An overview of aspectJ,” in Proc. Eur. Object-Oriented Program.,
2001, pp. 327–354.

[11] A. L. King, L. Feng, O. Sokolsky, and I. Lee, “A modal specification
approach for on-demand medical systems,” in Foundations of Health In-
formation Engineering and Systems. Berlin, Germany: Springer-Verlag,
2014, pp. 199–216.

[12] M. G. e. Lansberg, “Antithrombotic and thrombolytic therapy for ischemic
stroke: Antithrombotic therapy and prevention of thrombosis: American
college of chest physicians evidence-based clinical practice guidelines,”
CHEST J., vol. 141, pp. e601S–e636S, 2012.

[13] T. Li, F. Tan, Q. Wang, L. Bu, J.-n. Cao, and X. Liu, “From offline toward
real-time: A hybrid systems model checking and cps co-design approach
for medical device plug-and-play (MDPnP),” in Proc. IEEE/ACM 3rd Int.
Conf. Cyber-Phys. Syst., 2012, pp. 13–22.

[14] T. Li, F. Tan, Q. Wang, L. Bu, J.-N. Cao, and X. Liu, “From offline toward
real time: A hybrid systems model checking and CPS codesign approach
for medical device plug-and-play collaborations,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 642–652, Mar. 2014.

[15] P. Lindsay et al., “Canadian best practice recommendations for stroke
care (updated 2008),” Can. Med. Assoc. J., vol. 179, no. 12, pp. S1–S25,
2008.

[16] H. Lu and A. Forin, “The design and implementation of p2v, an archi-
tecture for zero-overhead online verification of software programs,” Mi-
crosoft Research Tech. Rep. MSR-TR-2007-99, 2007.

[17] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview of
the mop runtime verification framework,” Int. J. Software Tools Technol.
Transfer, vol. 14, no. 3, pp. 249–289, 2012.

[18] H. Mohammad, Y. Jiang, W. Poliang, B. Richard, and S. Lui, “Sink: A
middleware for synchronization of heterogeneous software interfaces,” in
Proc. 14th Workshop Adaptive Reflective Middleware, 2015, pp. 1–6.

[19] M. Pajic, I. Lee, R. Mangharam, and O. Sokolsky. “Upp2sf: Translating
uppaal models to simulink,” Univ. Penn., Tech. Rep. 2011072, 2011.

[20] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee,
“Model-driven safety analysis of closed-loop medical systems,” IEEE
Trans. Ind. Informat., vol. 10, no. 1, pp. 3–16, Feb. 2014.

[21] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hardware runtime
monitoring for dependable cots-based real-time embedded systems,” in
Proc. Real-Time Syst. Symp., 2008, pp. 481–491.

[22] S. Quaglini, P. Ciccarese, G. Micieli, and A. Cavallini, “Non-compliance
with guidelines: Motivations and consequences in a case study,” Stud.
Health Technol. Inf., vol. 101, pp. 75–87, 2003.

[23] N. Strzyzewski, “Common errors made in resuscitation of respiratory and
cardiac arrest,” Plastic Surg. Nurs., vol. 26, no. 1, pp. 10–14, 2006.

[24] O. Young, Y. Shahar, Y. Liel, E. Lunenfeld, G. Bar, E. Shalom, S. B. Mar-
tins, L. T. Vaszar, T. Marom, and M. K. Goldstein, “Runtime application
of hybrid-Asbru clinical guidelines,” J. Biomed. Inf., vol. 40, no. 5, pp.
507–526, 2007.

Yu Jiang received the B.S. degree in software
engineering from the Beijing University of Post
and Telecommunication, Beijing, China, in 2010,
and the Ph.D. degree in computer science from
Tsinghua University, Beijing, in 2015.

He is currently a Post-Doctoral Researcher
with the Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA. His current research interests
include domain specific modeling, formal com-
putation model, formal verification and their ap-

plications in embedded systems, and safety analysis and assurance of
cyber-physical system.

Houbing Song received the M.S. degree in
civil engineering from the University of Texas,
El Paso, TX, USA, in 2006, and the Ph.D. de-
gree in electrical engineering from the University
of Virginia, Charlottesville, VA, USA, in 2012.

In 2012, he joined the Department of Elec-
trical and Computer Engineering, West Virginia
University, Morgantown, WV, USA, where he
is currently an Assistant Professor. His current
research interests include cyber-physical sys-
tems, intelligent transportation systems, wire-

less communications and networking, and optical communications and
networking.

Rui Wang received the B.S. degree in computer
science from Xi’an Jiaotong University, Xi’an,
China, in 2004, and the Ph.D. degree in com-
puter science from Tsinghua University, Beijing,
China, in 2011.

She is currently an Associate Professor with
the College of Information Engineering, Capital
Normal University, Beijing. Her current research
interests include formal verification and their ap-
plications in embedded systems.

Ming Gu received the B.S. degree in computer
science from the National University of Defense
Technology, Changsha, China, in 1984, and the
M.S. degree in computer science from the Chi-
nese Academy of Science, Shengyang, China,
in 1986.

Since 1993, she has been working as a Pro-
fessor with Tsinghua University, Beijing, China.
Her research interests include formal meth-
ods, middleware technology, and distributed
applications.

JIANG et al.: DATA-CENTERED RUNTIME VERIfiCATION OF WIRELESS MEDICAL CYBER-PHYSICAL SYSTEM 1909

Jiaguang Sun received the B.S. degree in au-
tomation science from Tsinghua University, Bei-
jing, China, in 1970.

He is currently a Professor with Tsinghua
University, where he is also the Director of the
School of Information Science and Technology
and the School of Software. He is dedicated in
teaching and research and development activ-
ities in computer graphics, computer-aided de-
sign, formal verification of software, and system
architecture.

Lui Sha received the Ph.D. degree in computer
science from Carnegie Mellon University, Pitts-
burgh, PA, USA, in 1985.

He is currently a Donald B. Gillies Chair Pro-
fessor of Computer Science with the University
of Illinois at Urbana Champaign, Champaign, IL,
USA. His work on real-time computing is sup-
ported by most of the open standards in real-
time computing and has been cited as a key
element in the success of many national high-
technology projects including GPS upgrade, the

Mars Pathfinder, and the International Space Station.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

