
1270 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015

Design and Optimization of Multiclocked
Embedded Systems Using Formal Techniques

Yu Jiang, Hehua Zhang, Zonghui Li, Yangdong Deng, Xiaoyu Song, Ming Gu, and Jiaguang Sun

Abstract—Today’s system-on-chip and distributed sys-
tems are commonly equipped with multiple clocks. The
key challenge in designing such systems is that two sit-
uations have to be captured and evaluated in a single
framework. The first is the heterogeneous control-oriented
and data-oriented behaviors within one clock domain, and
the second is the asynchronous communications between
two clock domains. In this paper, we propose to use timed
automata and synchronous dataflow to model the dynamic
behaviors of the multiclock train-control system, and a
multiprocessor architecture for the implementation from
our model to the real system. Data-oriented behaviors are
captured by synchronous dataflow, control-oriented behav-
iors are captured by timed automata, and asynchronous
communications of the interclock domain can be modeled
as an interface timed automaton or a synchronous dataflow
module. The behaviors of synchronous dataflow are inter-
preted by some equivalent timed automata to maintain the
semantic consistency of the mixed model. Then, various
functional properties that are important to guarantee the
correctness of the system can be simulated and verified
within the framework. We apply the framework to the design
of a control system described in the standard IEC 61 375
and several bugs are detected. The bugs in the standard
have been fixed, and the new version has been imple-
mented and used in the real-world subway communication
control system.

Index Terms—Control-oriented behavior, data-oriented
behavior, multiclock, synchronous dataflow, timed au-
tomata, train-control embedded system.

Manuscript received July 19, 2013; revised November 17, 2013 and
January 19, 2014; accepted March 8, 2014. Date of publication April 9,
2014; date of current version January 7, 2015. This work was supported
in part by National Natural Science Foundation of China Programs
(61202010, 91218302), in part by the National Key Technologies R&D
Program (SQ2012BAJY4052) and 973 Program (2010CB328003) of
China, and in part by the Tsinghua University Initiative Scientific Re-
search Program (20131089331).

Y. Jiang is with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing 100084, China; and also with the
Tsinghua National Laboratory for Information Science and Technology,
Key Laboratory for Information System Security, Ministry of Education,
School of Software, Tsinghua University, Beijing 100084, China (e-mail:
jiangyu198964@gmail.com).

H. Zhang, Y. Deng, M. Gu, and J. Sun are with the Tsinghua National
Laboratory for Information Science and Technology, Key Laboratory for
Information System Security, Ministry of Education, School of Software,
Tsinghua University, Beijing 100081, China (e-mail: zhanghehua@
gmail.com).

Z. Li is with Institute of Microelectronics, Tsinghua University, Beijing
100081, China.

X. Song is with the Department of Electrical and Computer Engineer-
ing, Portland State University, Portland, OR 97207-0751 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2014.2316234

I. INTRODUCTION

EMBEDDED systems are being widely used in all kinds
of applications and are traditionally designed and opti-

mized using a synchronous language with a single clock. Such
an assumption of global synchronization greatly helps
reduce the complexity of the design. The class of syn-
chronous languages contains mainly Esterel [1], Lustre [2],
Signal [3], and Statecharts [4]. Those languages and the cor-
responding tools such as SCADE [5] are good for compact
single-clock hardware and software design, including model-
ing, simulation, verification, and synthesis. The Esterel and
Statecharts are suitable for specifying control-oriented sys-
tems. The Lustre and Signal are good for specifying data-
dominated systems. The control-oriented systems control large
amounts of decision logic that has to quickly produce out-
put in response to input events, while in data-dominated
systems, intensive computations have to be performed on
samples that usually arrive in regular intervals. Very often,
an embedded system contains both data-oriented and control-
oriented parts. For example, the cell phone contains not
only the control-oriented network communication protocols run-
ning on the processor but also the data-dominated algorithms
for dealing with the voice signal. Furthermore, embedded sys-
tems are increasingly adopting multiclock solutions due to the
low-power requirement and the pervasive usage of IPs from
different vendors. This is particularly true for the train-control
system described in the standard international electrotechnical
commission (IEC) 61 375. Hence, there has been a recent
surge for methods to guarantee the functional and sequential
correctness when designing multiclock train-control systems.

In this paper, we present a timed automata [6] and syn-
chronous dataflow [7] based framework to address the problem
in modeling and validating the heterogeneous behaviors of the
multiclock embedded system. In our framework, the system
is modeled as a network of timed automata and synchronous
dataflow, which is a collection of local synchronous domains
and asynchronous communications. The main novelties of the
framework are as follows.

1) With the guard defined on different clock remapping
mechanisms of each automata transition, the local system
component can be modeled as a purely synchronous node.

2) With the shared variables and special synchronize input/
output actions, the asynchronous communication through
the handshake protocol of the interclock domain can be
modeled in an interface timed automaton without a clock
or a synchronous dataflow module.

3) The control-oriented components are modeled by timed
automata, the data-oriented components are modeled by

0278-0046 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

JIANG et al.: DESIGN AND OPTIMIZATION OF EMBEDDED SYSTEMS USING FORMAL TECHNIQUES 1271

synchronous dataflow, and the behaviors of each syn-
chronous dataflow module are interpreted as equivalent
timed automata to maintain the semantic consistency for
simulation and verification.

4) A platform for the implementation from our model to
the real system is proposed, including two kinds of pro-
cessing units: the Advanced RISC Machines (ARM) pro-
cessor for control-oriented parts and field-programmable
gate array (FPGA) processor for data-oriented parts. The
communications are realized by connections between the
pin of FPGA to the general-purpose input/output (GPIO)
of ARM. The framework is applied to the design of the
train system described in the standard IEC 61 375, and
some safety-critical bugs in the standard are detected. The
system implemented according to the fixed version is now
used in real life.

II. RELATED WORK

Some engineers propose computer-aided simulation meth-
ods to validate the embedded system [8]. Simulation methods
give accurate results when system failures occur. However,
simulations are inefficient when applications are complex and
the number of vehicles is large. Another drawback is that
simulations are based on simulation patterns. The effectiveness
of simulation depends on the number and quality of patterns.
Hence, the exhaustiveness cannot be guaranteed. In order to
overcome the limitation, formal verification methods for safety-
critical systems [9] have been recognized. Formal methods
support the automatic verification of the control system to a
large extent [10]. Given the formal specification of the system
and desired properties, model checkers such as SMV [11] can
automatically decide whether the system satisfies those proper-
ties or not. Recent work [12] describes a method to verify the
safety properties of the embedded system for railway signaling
in Korea. However, they cannot deal with the inconsistency
caused by multiclock-controlled behaviors.

A large body of work has been dedicated to the modeling
and validation of multiclock systems. In the literature, the
formal language-based approach (e.g., CRP [13] and MC-
Esterel [14]) is appealing because it provides a unified basis
for formal analysis to achieve the expected correctness. CRP
combines the synchronous reactive model of Esterel [15] with
the asynchronous coupling of CSP [16] to offer a mathemat-
ically elegant framework. Local synchronous Esterel modules
communicate through rendezvous channels. The problem is that
it is hard to support the data-driven operations and rendezvous
protocol through asynchronous coordinators. Its variants such
as CRSM and ECRSM [17] have similar properties and limi-
tations. MC-Esterel was specifically developed for the design
of multiclock digital systems. The designer is responsible for
creating communication mechanisms among different clock
domains. Every Esterel module needs an explicit clock, and the
designer has to construct low-level synchronizers to guarantee
the synchronization. While MC-Esterel provides a powerful
mechanism for modeling asynchronous and multirate systems,
the main problem is that the designer has to work at a relatively
low abstraction level and the productivity is limited. In addition,
its support for data-driven operations is quite limited due to

its reliance on Esterel. Some translation-based frameworks are
also proposed for the analysis of multiclock systems. For ex-
ample, Ramesh et al. [17] take advantage of the asynchronous
model checking, using a direct translation of CRP to Promela
[19]. Doucet et al. [20] use a mixture of synchronous de-
scriptions in Signal and asynchronous descriptions in Promela
and provide a translation from Signal modules to Promela
processes. Each clock domain is described by a Signal module,
and communication between two clock domains is described
by the Promela channel. These translation-based frameworks
inherit the original limitation and cannot deal with complex
data-oriented behaviors neither.

In general, compared to those methods that support multi-
clock domains, the key differences are as follows.

1) The proposed framework incorporates synchronous
dataflow to model the complex data-oriented behavior
while the Esterel-based frameworks such as CRP are just
suitable for control-oriented behaviors.

2) The proposed framework interprets the mixed data-
oriented model and control-oriented model with the
labeled transition system to maintain the semantic con-
sistency for both simulation and verification while
Statechart-based frameworks such as Ptolemy and
Simulink do not support formal verification.

III. PROPOSED MODELING AND

VALIDATION FRAMEWORK

To model the multiclock train-control system with both
data-oriented behaviors and control-oriented behaviors, a set of
timed automata and synchronous dataflow modules are com-
posed into a network over a set of clocks and actions with paral-
lel composition operators. The data-oriented, control-oriented,
and multiclock domain compositions make the proposed model
more close to the real implementation. In the design process, we
can validate different design models derived from requirements
with simulation and formal verification techniques, avoid po-
tential errors that may lead to rework, and choose the best one.
In the implementation process, we can also abstract the model
from the implemented system and apply simulation and formal
verification techniques to validate whether the system meets
the requirements or not. The overall framework is depicted
in Fig. 1.

It is clear in the proposed framework that all control-oriented
parts are modeled as timed automata, which are connected in
parallel. Each automaton is equipped with an extra synchronous
clock to control local behaviors. When a clock-based guard
becomes true, the automaton will take a transition. Although
the increasing speeds of all clocks are synchronous, we pro-
vide mechanisms for different clock-based guards to support
multiple clock domains. Each state in the timed automaton
can be refined. This adds hierarchy and does not change the
original semantic of timed automata. The hierarchy model can
be translated into a flat timed automaton. The asynchronous
communications between two timed automata are realized
by rendezvous CSP. All data-oriented parts are modeled as
synchronous dataflow. The actors represent the data-related
computations, the firing rules specify the number of tokens

1272 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015

Fig. 1. Modeling framework for multiclock embedded system with heterogeneous behaviors. Each local synchronous component is modeled as
a timed automaton with clock remapping and refinement of states. Each data-oriented component is modeled as a synchronous dataflow module.
The asynchronous communication is modeled as a synchronous dataflow module or a timed automaton with input/output channels.

Fig. 2. The real clock value is mapped to the local clock in timed
automata to ensure synchronous reaction behaviors. The real clock is
redefined as some intervals. Those intervals are defined on the basic
clock of timed automata.

that the actor consumes and produces, and the schedule defines
the firing sequences of actors in a single iteration. Similar
to the parallel connection of timed automata, we need to define
the parallel composition operator to connect a timed automa-
ton with a synchronous dataflow module. The synchronous
dataflow module has to communicate with timed automata to
accomplish two functions: The first is reading tokens from the
connected automata through the input channels to prepare for
the firing of actors, and the second is sending tokens produced
by the previous firing of actors to the connected automata
through the output channels. The local synchronize modeling
and communications between automata and synchronous
dataflow are described hereinafter.

Local Synchronization Modeling: Each component of the
local synchronization system has two kinds of reactions: the
inner reaction within a component and the communication
reaction across two components. Both are controlled by its
clock. If the component is modeled as a timed automaton, the
inner reaction is described as a regular transition edge with
update action (A,Einner), and the communication reaction is
described as a transition edge with special synchronize action
(A,Ecommu) on channel n. The input action “n?” represents
receiving an event from the channel n, while the output action
n! represents sending an event on the channel n. The control
clock of the real system component is modeled by a clock
variable (C). Then, we add an extra guard and update action on

each transition (A,Einner

⋃
Ecommu, G). The guard is defined

on the period and interval of the real control clock. The update
action is to reset the clock variable. The mapping mechanism
from the real control clock value to the behavior in the local
timed automata clock is described in Fig. 2. Because a transition
can be triggered when the clock value satisfies this guard, the
mechanism that each reaction will be triggered at the upper
edge of the clock is captured. If the component is modeled as a
synchronous dataflow, the inner reaction is described as regular
firings of the actors with the consumed and produced tokens
(N,Linner). The communication reaction is described as a
regular link (Lcommu) with special synchronization actions on
channel n. Because the model is executed in a periodic fashion,
we add a period for iteration. This period will be interpreted by
the clock variable of the equivalent timed automata.

Asynchronous Communication Modeling: The hand-
shake asynchronous communication between two local system
components M1 and M2 can be abstracted as an interface
timed automaton or a synchronous dataflow module M3. The
two system components will transfer the control message and
data through a bus to each other. When M1 wants to send
some data to M2, it will send the data onto the bus and
produce the special synchronization signal “send_D!”. The
interface automata will be synchronized by receiving the signal
“send_D?” and will produce the special signal “rec_D!” with a
transmission delay. Then, M2 can be synchronized by receiving
the signal “rec_D?”. If the data packet is lost, M3 will switch
back to the initial state without sending the signal “rec_D!”.
The control message transfer is similar to the data message.
With the interface automata M3 consisting of transitions that
do not depend on clock 1 and clock 2, the asynchronous
communication mechanism is captured directly. If M3 is a
synchronous dataflow module, it will also read data from M1

through the read action “send_D?” and send the produced token
during the firing of actors through the write action “rec_D!”.
If M1 attempts to write when M3 is not ready, M1 will be

JIANG et al.: DESIGN AND OPTIMIZATION OF EMBEDDED SYSTEMS USING FORMAL TECHNIQUES 1273

Fig. 3. Translation from synchronous dataflow to timed automata. The
first is for the link between two actors and the link communicating with
another module. The second is for actors which consume one token.
The third is for actors that consume two tokens from two channels.

blocked. If M3 attempts to read when M1 is not ready, M3 will
be blocked. They can communicate with each other when both
sides are in the corresponding states. If not, the communication
is blocked.

Semantic of the Proposed Model: In the original timed
automata, all parallel connected automata are combined to-
gether to get a single flat finite-state machine, whose behavior
is equivalent to that of the original modules. A set of timed
automata Ai = {Li, l

0
i , A, C,Ei, Ii} are composed into a net-

work over a common set of clocks and actions with a parallel
composition operator, and all automata are executed concur-
rently. Synchronous communication is realized by input and
output actions, and asynchronous communication is realized
by shared variables. To model the handshake synchronization,
the action alphabets are defined on channel n. The input action
“n?” represents receiving an event from channel n, while the
output action “n!” stands for sending an event on channel n.
The location vector for the automata network is defined as
follows: l = (l1, · · · ln), and l[l′i/li] denotes the vector l with
li being substituted with l′i. The invariant function is defined
on the composed location vectors as I(l) = ∧iIi(li). Then, the
semantic of the composed network is given in terms of the
labeled transition system based on a pair (l, u), where l denotes
a vector of current locations of the network and u is, as usual, a
clock assignment recording the current values of clocks in the
system. The transition rules are defined as follows:

1) (l, u) → (l, u+ d) if ∀d′ ∈ [0, d], (u+ d′) ∈ I(l).
2) (l, u) → (l[l′i/li], u

′) if (li−−−→g, τ, rl′i), u ∈ g, u, = [r �→
0]u, u, ∈ I(l[l′i/li]).

3) (l, u) → (l[l′i/li, l
′
j/lj], u

′) if there exists i �= j such that

(li
−−−−→
g, a?, rl′i), (lj

−−−−→
g, a!, rl′j), u ∈ gi ∧ gj , u, = [ri ∪ rj �→

0]u, u, ∈ I(l[l′i/li], l[l
′
i/li]).

The first is for the delay transition, which is similar to the
case of the single timed automaton where the invariant of a
location vector is the conjunction of the location invariants.
The second is for the first kind of inner reaction. It defines the
local actions where one of the processes makes a move, and
the internal actions are denoted by the symbol τ . The third is
for the second kind of interreaction. It defines synchronizing
actions where two processes synchronize on a channel and take
a transition simultaneously. Our model is defined on this se-
mantic. The main challenge is how to demonstrate synchronous
dataflow by timed automata.

In order to keep the semantic consistency of the mixed
model, we translate the synchronous dataflow into equivalent

Fig. 4. Abstraction model of the function that initializes the controller
with the device configure information, and the message transformation
between two controllers with the sender and receiver.

timed automata. The translation procedure is modular. Each
atomic element is represented by a timed automaton with
channels reading tokens and output tokens. Additionally, a
timed automaton may contain internal variables and functions,
depending on the computation carried by the corresponding ac-
tor. The three timed automata presented in Fig. 3 show three ba-
sic elements in the synchronous dataflow. The first is for the link
between two actors and the link at the margin communicating
with another module. It will read tokens from the producer and
pass them to the consumer without any computation. The sec-
ond is for the actors which consume one token (x) and produce
a token (y), with the function (func()) to finish the computa-
tion of the actor. The third is for actors that consume two tokens
(x, y) from two channels (c1, c2) and produce a single token
(z). We use two local variables (a, b) to denote the status of c1
and c2. When both of them have tokens, the transition will take
place, and the output token will be produced after the computa-
tion function. Other atomic elements connecting with arbitrarily
multiple channels can be translated in the similar way of the
third example. After all elements are translated, those timed
automata will be connected in parallel. A synchronous dataflow
module will be translated into a network of timed automata,
whose behavior is the same as that of the original module.

IV. REAL SYSTEM DESIGN

We conduct experiments on the design of the train commu-
nication control system described in the standard IEC 61 375 to
present how our framework enables the design of the multiclock
embedded system, including the system modeling, verification,
and implementation.

A. Modeling of the System

The train-control system described in the standard IEC
61 375 is a safety-critical embedded system. The system consists

1274 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015

Fig. 5. Eighteen function modules of MVB controller. The modules contained in the red line are data-oriented behaviors modeled as timed
automata. The modules contained in the green line are control-oriented behaviors modeled as dataflow which is embedded into ARM processor.
The message service module realizes the real-time communication protocol verified earlier.

of two controllers: the multifunction vehicle bus (MVB)
controller which interconnects devices within a vehicle and the
wire-train-bus controller which interconnects the vehicles of
a train. The MVB controller may contain multiple processors,
which work under different clock frequencies. For example,
data-oriented behaviors such as sampling may be implemented
by an FPGA processor, and control-oriented behaviors such as
communication rules may be implemented by an ARM proces-
sor. The FPGA may send interrupts to ARM through GPIO, and
conflicts of multiple interrupts are scheduled by the embedded
operating system eCos or embedded Linux [24] running on
an ARM processor. This architecture is adopted by the most
widely used MVB controller D113 [25] of Duagon company.

Communications between two different MVB controllers
will be directed by different clocks. The communications pro-
vide two services. The first is the segmentation of the long
message to fixed-size packets, and the second is the flow control
and error recovery from end to end. The transfer of message
shall be divided into three phases: 1) connection establishment;
2) acknowledged data transfer; and 3) disconnection. Before
the model abstraction, some facts about the parameters in the
standard need to be clarified as follows. The whole process
of modeling strictly conforms to the finite-state machine and
the transition rules presented in tables 32–35 of the standard
61 375. Following the rule, we construct the model of the
communication system between two MVB controllers.

The top level model is presented in Fig. 4. The system bus
is modeled as channels embedded into the sender and receiver
modules. Each MVB controller is modeled as a node which
can be partitioned into 18 modules furthermore as presented
in Fig. 5. When embedding a controller into a vehicle, the
system needs to initialize the device configuration information.
As described in the standard, the data transfer is controlled by
the GPIO of the main processor. It is supposed to send a pulse
at the frequency of 10 MHz and then put 16-b data on the bus.

The cooperated FPGA processor samples the data from the pin
connected to the GPIO of the ARM processor and reads them
into the static random access memory (SRAM). The asyn-
chronous communication of GPIO is modeled as a synchronous
dataflow. Due to the limited space, all these models can be
found in [26].

B. Verification of the System

The pseudocode descriptions of the system in the standard
have been abstracted as a network of timed automata and
synchronous dataflow. The kernels of message services are
the data acknowledgment and retransmission procedures. We
abstract four properties from the two procedures. All abstracted
properties are verified, and the bugs in the standard correspond-
ing to the violated properties are further analyzed, depicted, and
modified. The kernels of device configuration are that all device
information can be read into SRAM.

First, let us see two properties about the data retrans-
mission procedure between the automaton FSM_SENDER
and FSM_RECEIVER. When FSM_SENDER receives an
“rcv_NKi?” signal, it will decide whether the sequence i lies in
the legal interval or not. The decision is implemented according
to the pseudocode descriptions of table 33 in the standard as
follows: (expected < NK_number ≤ send_not_yet). The
value of this decision expression is assigned to a variable
NK. When FSM_RECEIVER sends a “send_NKi!” signal and
switches to the SEND_NK state, FSM_SENDER should be
able to deliver the retransmission request. The decision expres-
sion should be evaluated as true. The property is described as

A[](FSM_RECEIV ER.SEND_NK→(NK== true)).

The property is not satisfied when it is verified by Uppaal. A
counterexample is detected. When FSM_SENDER sends data
packets for the first time, it will send “DT0!-DT6!” signals.

JIANG et al.: DESIGN AND OPTIMIZATION OF EMBEDDED SYSTEMS USING FORMAL TECHNIQUES 1275

If the “DT0!” signal is lost in FSM_CHANNEL, FSM_
RECEIVER will reply with a “send_NK0!” signal asking for
the retransmission of DT0. When “rcv_NK0?” is triggered,
FSM_SENDER will evaluate the expression (expected<NK_
number ≤ send_not_yet), where the values of NK_number,
expected, and send_not_yet are equal 0, 0, and 7, respectively.
The value of the decision expression is evaluated to be false,
and the system cannot deliver this legal case. We modify
the pseudocode description in the standard, and the origi-
nal decision expression presented earlier should be changed
to (expected ≤ NK_number ≤ send_not_yet). When
the guard is implemented according to the modified expression,
the property verification is satisfied.

Another property is about rolling back the sending window
of the automation FSM_SENDER in the retransmission proce-
dure. When the modified guard (expected ≤ NK_number ≤
send_not_yet) is evaluated to be true, FSM_SENDER will roll
back the sending window and retransmit the data packets num-
bered from the sequence number i. The next_send data packet
of FSM_SENDER must be equal to the value of NK_number.
The property is described as

A[] ((NK == true) → (NK_number == next_send)) .

The property is not satisfied when it is verified by Uppaal. A
counterexample is detected. When FSM_SENDER receives an
“rcv_NK0?” signal, it is supposed to retransmit data packets
numbered from the sequence number 0. However, it sends data
packets numbered from the sequence number 7, which means
that the value of next_send equals 7 while the value of NK_
number equals 0. Hence, FSM_SENDER fails to accomplish
the retransmission service. We look up the pseudocode descrip-
tion in the standard and find that the system rolls back the
sending window with the following expressions: {expected :=
NK_seq_nr; send_not_yet := (expected+ credit) % 8; }.
The system does not update the value of next_send. It keeps the
value before receiving the rcv_NKi? signal. We modify the pseu-
docode description in the standard, and the original update ex-
pression presented earlier should be changed to ({expected :=
NK_seq_nr; sendnot_yet := (expected+credit)% 8;
next_send := expected; }). When the update function
{rollback(i)} in FSM_SENDER is implemented according
to the modified expressions, the property is satisfied, and the
system finishes the retransmission procedure successfully.

Corresponding to the retransmission procedure, the data ac-
knowledgment procedure has two similar properties: 1) When
FSM_RECEIVER sends a “send_AKi!” signal, FSM_SENDER
should be able to deliver the data acknowledgment requirement,
and that means that the guard (expected ≤ AK_number ≤
send_not_yet) should be evaluated to be true; the value of the
expression is assigned to the variable AK; and 2) when the
guard (expected ≤ AK_number ≤ send_not_yet) is evalu-
ated to be true, FSM_SENDER should forward the sending
window and send data packets numbered from the sequence
AK_number. The next_send data packet of FSM_SENDER
must be equal to the value of AK_number. The two properties
described hereinafter pass the verification

A[] (FSM_RECEIV ER.SEND_AK→(AK == true))
A[] ((AK == true) → (AK_number == next_send)) .

Then, let us see the property about the device configuration.
According to static calculation, the system needs 58 pulses to
store all device configuration data. Because the clock frequency
of GPIO on the main processor is 10 MHz, the clock frequency
of SRAM should be higher than 10 MHz to sample all pulses.
According to the power constraint, lower frequency is better,
and we set the guard on FSM_SRAM with 12 MHz. Then,
formal verification is performed, and the property described
hereinafter is violated. The prototype implemented by SystemC
is simulated correctly, but the proposed model based on this
clock frequency fails to finish the initialization procedure at
times during the simulation in Uppaal

A[] (FSM_SRAM.FINISHE→(COUNTER== 58)).

We find a counterexample after 200 initialization times. Only
33 pulses are sampled. When the clock of FSM_SRAM starts
later than the main processor for half of the period, it will
lose some pulses. We increase the frequency of FSM_SRAM
to sample more pulses. The property is satisfied when the
frequency of FSM_SRAM is set as 24 MHz. This is a very
interesting phenomenon that motivates our work. In the imple-
mentation section hereinafter, we will give more descriptions.

C. Implementation

The model does not need special architecture for implemen-
tation. The behavioral heterogeneity of the model needs to be
mapped to a compatible architecture. Timed automata contain
complex decision logic and minor computations. Synchronous
dataflow is on the contrary. Control-oriented behaviors modeled
as timed automata can be executed by some processing units
for logic execution, and data-oriented behaviors modeled as
synchronous dataflow can be executed by other processing
units for data computation. Hence, the processor for timed
automata does not need powerful computation ability while
the processor for synchronous dataflow should have powerful
computation ability and some features such as registers and
DSP components for digital signal processing. Based on these
rules, we propose a platform including two kinds of processing
units: ARM processor and FPGA processor. The former is
for control-oriented behaviors modeled as timed automata and
implemented by C. The latter is for data-oriented behaviors
modeled as synchronous dataflow and implemented by VHDL.
Their communications are realized by interrupts through the
direct connection between the pin of FPGA and the GPIO of
ARM. The conflicts of multiple interrupts can be captured by
the embedded operating system running on the ARM processor.
We choose eCos because it is an open source and can be easily
configured for our application. We can write some interrupt
handle program with the ISR and DSR of eCos to schedule the
communication. Other embedding operating systems such as
VxWorks and embedded Linux and the corresponding schedul-
ing mechanism [24] can also be used for implementation.

Then, the train-control system can be mapped onto this archi-
tecture. As described in Fig. 5, there are mainly 18 compound
function modules cooperating to accomplish communication
services. Some of them are modeled as synchronous dataflow,
implemented by VHDL, and can be synthesized into FPGA

1276 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015

Fig. 6. All data-oriented functions are implemented by VHDL, including the interfaces that are used to communicate with the industrial computer
and ARM processor. The memory access control corresponds to the traffic memory controller function in Fig. 5. The sender/receiver module
corresponds to the receiver and sender functions in Fig. 5. The frame control modules correspond to all other functions contained in the red line of
Fig. 5, such as send process data (sendfifocontroller) and send message data (sendtrafficstorecontroller). The memory allocation for all message
queues operates on the SRAM contained in the blue line of Fig. 5. The interface of functions running on ARM processor sends interrupt triggers to
the functions contained in the green line. All modules are synthesized in ISE development environment of Xilinx company. Then, the generated bit
file can be loaded into the FPGA processor.

Fig. 7. Left side of the figure is our implemented experiment platform of the control system. The right side is the result run-time comparison for
different designs, with 58 and 33 pulses sampled for 24 and 12 MHz, respectively.

for execution. Other modules are modeled as timed automata,
implemented by C, and can be embedded into ARM for ex-
ecution. The two processors and SRAM are composed as a
network card as shown in the left side of Fig. 7. The two
processors are controlled by two different clocks respectively
and communicate with each other through the data bus in an
asynchronous manner. The SRAM is controlled by the clock
frequency of the FPGA processor. Our team implements the
system according to the description of IEC 61 375 and the
function partitioning of Fig. 5. Data-oriented behaviors such
as sender and receiver functions are implemented by 11000
lines of VHDL codes. The framework is presented in Fig. 6.
Moreover, the functions are presented in Fig. 5, and some
interfaces for communications with the industrial computer and
ARM processor are added. The interface parts receive data
from the host industrial computer and decide when to send
an interrupt trigger such as a master transfer to the ARM pro-
cessor. Control-oriented behaviors such as the message service
function are implemented with 65 000 lines of C codes. Due
to the page limit, interested readers are referred to the standard
IEC 61 375 for more details on the framework. For example,
the 54 807 lines of C codes for the message service function
are derived from the interface of functions and pseudocode

descriptions in the standard. The detail functions and function
call sequence descriptions for the transportation layer of the
message service model verified earlier are located in pages
115–133, and the link layer is in pages 82–87. The event arbitra-
tion function is in page 555. The master transfer function is in
page 263, etc.

Based on the implemented MVB controller, we simulate
the verified properties presented in Section IV-B and set the
running environment according to the counterexamples. The
implemented system is embedded into the industrial computer
to get some instructions from the keyboard, such as system
initialization starts and communication starts. First, let us see
the system initialization starts for a single controller. When the
clock frequency of FPGA is set as 12 MHz, the waveforms
sampled by ChipScope demonstrates that the FPGA pin only
samples 33 pulses from 58 pulses of ARM GPIO because of the
out of sync. This bug is not easy to trigger because the occur-
rence rate is low. According to the description in Section IV-B,
we need to reduce the corresponding clock period, and the
property is satisfied when the clock frequency of FPGA is set
as 24 MHz. The waveforms sampled by ChipScope for the
new design are also demonstrated, and the FPGA pin samples
58 pulses. The results are presented in Fig. 7.

JIANG et al.: DESIGN AND OPTIMIZATION OF EMBEDDED SYSTEMS USING FORMAL TECHNIQUES 1277

Fig. 8. First card is for the model that is not verified. The second card is for the D113 system implemented by the Duagon company. The third card
is for the model that is verified and fixed.

Fig. 9. Use the verified implemented system and the D113, and connect the two controllers with MVB bus. The system works well, and during
each basic period, it can send seven master frames and receive slave frames correctly.

For message services between two MVB controllers, we test
our implemented system with the world’s most widely used
MVB controller D113 from Duagon company. As shown in
Fig. 8, the first platform is the MVB controller implemented
based on the original standard IEC 61 375, the second platform
is the MVB controller D113 of Duagon company whose codes
are private, and the third platform is the MVB controller
implemented based on the verified standard. The main dif-
ference between the first and the third platform is that the
C codes of bold type as labeled in the property verification (see
Section IV-B) are changed to the corrected ones. The difference
is minor, but the effect is major.

We connect the first platform and the third platform to
D113 with a vehicle bus in the manner of the right side of
Fig. 9, respectively. When inserting some noise into the bus,
the communication for the first platform crashes, but the com-
munication for the third platform is correct, and the controller
can retransmit the loss data caused by the frame loss on the
vehicle bus. Furthermore, we use an oscilloscope to sample
the data from the serial port that connected to the MVB bus.
The sampled data are presented in the left side of Fig. 9. The
master frame is sent correctly, and the system works well with
a response slave frame. The implemented third platform is
now used in a real-world subway, and the bugs found by our
framework have been submitted to IEC. With the help of formal
modeling, we make a contribution to avoid potential error of the
train-control system and find the problem in the design stage.

V. CONCLUSION

In this paper, we have presented a timed automata and
synchronous dataflow based design framework for modeling
and validating the dynamic behaviors of the multiclock train-
control system. Each local component of the system is modeled
as a timed automaton with a local synchronous control clock or

a synchronous dataflow module. The handshake asynchronous
communication between two local components is realized by
shared variables or CSP channels with input and output actions.
After that, we present a mechanism to integrate the semantic
of synchronous dataflow into the semantic of timed automata.
Then, all timed automata can be executed concurrently, and
various properties can be simulated and verified with Uppaal.
A possible architecture consisting of two different behavior-
oriented processors for the implementation of the train-control
system from our model is proposed. Initial experiment results
applied to the system design encourage us. Some safety-critical
bugs in the original IEC standard 61 375 that cannot be detected
by traditional techniques are detected within the proposed
framework. The verified and implemented system has been
used in real-world subway control in Beijing. We are carrying
out more experiments to check the scalability of our framework
and implementing a tool to generate VHDL and C codes from
the model automatically.

REFERENCES

[1] F. Boussinot and R. De Simone, “The Esterel language,” Proc. IEEE,
vol. 79, no. 9, pp. 1293–1304, Sep. 1991.

[2] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying real-
time systems by means of the synchronous data-flow language Lustre,”
IEEE Trans. Softw. Eng., vol. 18, no. 9, pp. 785–793, Sep. 1992.

[3] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. C-36, no. 1, pp. 24–35, Jan. 1987.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programm., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[5] P. Caspi et al., “From Simulink to SCADE/Lustre TTA: A layered ap-
proach for distributed embedded applications,” ACM Sigplan Notices,
vol. 38, no. 7, pp. 153–162, Jul. 2003.

[6] R. Alur and D. Dill, “A theory of timed automata,” Theor. Comput. Sci.,
vol. 126, no. 2, pp. 183–235, Apr. 1994.

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

1278 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015

[8] K. Radecka and Z. Zilic, “Design verification by test vectors and arith-
metic transform universal test set,” IEEE Trans. Comput., vol. 53, no. 5,
pp. 628–640, May 2004.

[9] J. Bowen and V. Stavridou, “Safety-critical systems, formal methods and
standards,” Softw. Eng. J., vol. 8, no. 4, pp. 189–209, Jul. 1993.

[10] A. Dahbura, K. Sabnani, and M. Uyar, “Formal methods for generat-
ing protocol conformance test sequences,” Proc. IEEE, vol. 78, no. 8,
pp. 1317–1326, Aug. 1990.

[11] A. Cimatti et al., “NuSMV 2: An opensource tool for symbolic model
checking,” in Computer Aided Verification. Berlin, Germany: Springer-
Verlag, 2002, pp. 359–364.

[12] J. Lee, J. Hwang, D. Shin, K. Lee, and S. Kim, “Development of veri-
fication and conformance testing tools for a railway signaling communi-
cation protocol,” Comput. Stand. Interfaces, vol. 31, no. 2, pp. 362–371,
Feb. 2009.

[13] G. Berry, S. Ramesh, and R. Shyamasundar, “Communicating reactive
processes,” in Proc. ACM SIGPLAN-SIGACT Symp. POPL, 1993, vol. 20,
pp. 85–98.

[14] G. Berry and E. Sentovich, “Multiclock Esterel,” in Proc. Correct
Hardware Des. Verification Methods, 2001, pp. 110–125.

[15] L. Ju, B. Huynh, S. Chakraborty, and A. Roychoudhury, “Context-
sensitive timing analysis of Esterel programs,” in Proc. 46th ACM/IEEE
Des. Autom. Conf., 2009, pp. 870–873.

[16] C. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, Aug. 1978.

[17] S. Ramesh, S. Sonalkar, V. Dsilva, R. Naveen Chandra, and B. Vijay-
alakshmi, “A toolset for modelling and verification of GALS systems,” in
Proc. Intl. Conf. Comput. Aided Verification, 2004, pp. 506–509.

[18] I. Viskic, L. Yu, and D. Gajski, “Design exploration and automatic gen-
eration of MPSoC platform TLMs from Kahn Process Network applica-
tions,” ACM Sigplan Notices, vol. 45, no. 4, pp. 77–84, Apr. 2010.

[19] G. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, Mar. 1997.

[20] F. Doucet, M. Menarini, I. H. Krüger, R. Gupta, and J.-P. Talpin, “A
verification approach for GALS integration of synchronous components,”
Theor. Comput. Sci., vol. 146, no. 2, pp. 105–131, Jan. 2006.

[21] G. Berry, “Circuit design and verification with Esterel v7 and Esterel
Studio,” in Proc. IEEE Intl. HLVDT , 2007, pp. 133–136.

[22] S. A. Edwards, CEC: The Colombia Esterel Compiler, 2003. [Online].
Available: http://www1.cs.columbia.edu/sedwards/cec

[23] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed
real-time software for cyber-physical systems,” Proc. IEEE, vol. 100,
no. 1, pp. 45–59, Jan. 2012.

[24] R. B. Yehuda and Y. Wiseman., “The offline scheduler for em-
bedded vehicular systems,” Int. J. Veh. Inf. Commun. Syst., vol. 3, no. 1,
pp. 44–57, Jan. 2013.

[25] Duagon, Mvb Controller: D113. [Online]. Available: http://www.duagon.
com/en/products/

[26] J. Yu, Detail Model for the Train Communication System, 2013. [Online].
Available: https://sites.google.com/site/jiangyu198964/home

Yu Jiang received the B.S. degree in software
engineering from the Beijing University of Posts
and Telecommunication, Beijing, China, in 2010.
He is currently working toward the Ph.D. degree
in computer science at Tsinghua University,
Beijing.

His research interests include domain specific
modeling, formal verification, and their applica-
tions in embedded systems.

Hehua Zhang received the B.S. and M.S. de-
grees in computer science from Jilin University,
Changchun, China, in 2001 and 2004, respec-
tively, and the Ph.D. degree in computer sci-
ence from Tsinghua University, Beijing, China,
in 2010.

She is currently a Lecturer with the School of
Software, Tsinghua University. Her research in-
terests include domain specific modeling, formal
verification, and their applications in embedded
systems.

Zonghui Li received the B.S. degree in com-
puter science from Beijing Information Science
and Technology University, Beijing, China, in
2010. He is currently working toward the M.S.
degree in microelectronics at the Institute of
Microelectronics, Tsinghua University, Beijing.

His research interests include high-
performance graphics algorithms and embed-
ded computing.

Yangdong Deng received the B.S. and M.S.
degrees from the Electronics Department,
Tsinghua University, Beijing, China, in 1998 and
1995, respectively, and the Ph.D. degree in elec-
trical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, USA, in 2006.

His research interests include parallel
electronic-design-automation algorithms,
electronic-system-level design, and parallel
program optimization.

Xiaoyu Song received the Ph.D. degree in elec-
tronics from the University of Pisa, Pisa, Italy,
in 1991.

In 1999, he joined the faculty at Portland
State University, Portland, OR, USA, where he
is currently a Professor in the Department of
Electrical and Computer Engineering. His re-
search interests include formal methods, de-
sign automation, embedded system design, and
emerging technologies.

Ming Gu received the B.S. degree in computer
science from the National University of Defense
Technology, Changsha, China, in 1984, and
the M.S. degree in computer science from the
Chinese Academy of Science, Shengyang,
China, in 1986.

Since 1993, she has been working as a Pro-
fessor at Tsinghua University, Beijing, China.
Her research interests include formal meth-
ods, middleware technology, and distributed
applications.

Jiaguang Sun received the B.S. degree in
automation science from Tsinghua University,
Beijing, China, in 1970.

He is currently a Professor with Tsinghua Uni-
versity. He is currently the Director of the School
of Information Science and Technology and the
School of Software, Tsinghua University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

