
1

Code Synthesis for Dataflow Based Embedded
Software Design
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Abstract—Model-driven methodology has been widely adopted
in embedded software design, and Dataflow is a widely used
computation model, with strong modeling and simulation ability
supported in tools such as Ptolemy. However, its code synthesis
support is quite limited, which restricts its applications in real
industrial practice. In this paper, we focus on the automatic code
synthesis of Dataflow, and implement DFSynth, a code generator
that could support most of the widely used modeling features such
as expression type and boolean switch, more efficiently. First, we
disassemble the Dataflow model into actors embedded in if-else or
switch-case statements based on schedule analysis, which bridges
the semantic gap between the code and the original Dataflow
model. Then, we design well-designed templates for each actor,
and synthesize well-structured executable C and Java codes with
sequential code assembly. Compared to the existing C and Java
code generators of Dataflow model in Ptolemy-II, and the C code
generator in Simulink, the lines of code synthesized by DFSynth
are decreased by an average of 99.7%, 81.4% and 61.9%, and
the execution time of the synthesized code by DFSynth is also
decreased by an average of 76.2%, 56.8% and 22.7% respectively.

Index Terms—Dataflow, code synthesis, model-driven design,
Ptolemy, Simulink

I. INTRODUCTION

Model-driven design has been widely adopted in the embed-
ded system domain, and Dataflow is a widely used model of
computation with strong modeling and simulation ability [1],
[2], [3], [4]. In Dataflow, various basic functions are packed
into actors with input and output ports, such as the Addsub-
tract actor to perform the addition and subtraction. Advanced
features also support composite actors and hierarchical finite
state machines to model the system structure and control logic.
Those actors are usually combined in a Dataflow model to
describe the whole system.

Dataflow model and its support platforms such as Ptolemy-
II are attracting increasing attention in both academia and
industry [5], [6], [7], [8]. However, stronger modeling and
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simulation capability would bring more difficulties for model
verification and synthesis. The limited synthesis ability of the
code generator would strictly restrict the application scenar-
ios, as most developers want to support not only modeling
and simulation based analysis but also code synthesis based
implementation to reduce the coding efforts.

To improve the model synthesis ability, Edward A Lee
developed a C language code generator and a Java language
code generator for Dataflow [9], which have been successfully
integrated into the famous Ptolemy-II and works well in certain
cases. But for more practical embedded system models, there
are three main weaknesses in the existing code generators.
(1) Many commonly used modeling actors and features are
not supported. For example, the Expression actor, which is
used to model customized input ports and execute customized
expressions and operations, is not allowed in the original code
generator. The model with the Counter actor, Record actor and
Limiter actor can not be handled either. (2) The synthesized
code contains lots of redundant files. For example, each actor
would be wrapped into two .c and .h files, most of which are
redundant. Furthermore, the original code generator synthesize
code exactly as the execution of the time series and a lot of
code only aims to deal with the data transmission and data
type conversion, which makes the files more overlap. It would
synthesize tens of thousands lines of C code for a model with
two simple actors, and the huge size of the code makes it
even harder to maintain. (3) The synthesized code omits the
structure information. For example, the composite actors are
ignored and each actor has its corresponding .c and .h files,
and the flattened code cannot reflect the hierarchical structures.
Both the synthesized C and Java codes pass their values in
the form of event queues and data flow of separate actors.
The synthesized code needs to separately retrieve all events
accumulated on its input port during the execution, perform
addition and subtraction operations, and heap the result to the
input port of the next actor. Furthermore, the information of
logical branch actors such as BooleanSwitch actor is omitted
in the synthesized code.

To satisfy the increasing requirements of more advanced
embedded system design and improve the usability of
Dataflow as well as its supporting platforms, we need to
support more modeling actors and features with a more
efficient code generator. It is not possible to use those limited
number of actors supported in the current generator during the
system modeling process. Furthermore, for many embedded
systems with limited memory and computing resource, it is
not reasonable to load and maintain tens of thousands lines
of unstructured codes. For an efficient code synthesis of the
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Dataflow model, there are mainly three challenges.
Challenge 1: How to synthesize code for the logical and

scheduling relationship of actors. Dataflow is implemented
by passing data as Tokens to the input ports of each actor for
calculation, and the actor can be executed when it has input
data. For the actors that control the direction of Dataflow, it
is not able to be handled by the original execution semantics.
Taking an example of the BooleanSwitch actor, the data of
the input port would be diverted to the TrueOutput port or the
FalseOutput port according to the value of the control port.
To generate code with clear logic, the BooleanSwitch actor
needs to be converted to a control statement such as if-else,
otherwise, only complex redundant code with token passing
would be synthesized.

Challenge 2: How to define templates to facilitate code
synthesis for actors with dynamic data types. Considering
that most actors contain both input ports and output ports
and perform some calculations on some parameters, so it
seems that each actor can be coded to an expression with
inputs, outputs and parameters. However, there are many more
complex situations. For example, many actors can define new
port and many ports can be connected to more than one port,
and many actors are designed to deal with structured data and
data type conversion. An important actor named Expression
actor can execute given expressions, and we also need to
handle the data type conversion and data type of execution
result. How to support those situations in a unified template
for each actor is a complicated problem.

Challenge 3: How to preserve the structure information
of the hierarchical model. In Dataflow, composite actors wrap
a part of the computational model into an actor and only the
input ports and output ports are publicized. The actor and state
allow refinement to model the hierarchical structure of actors.
Hence, the synthesized code should also present the structure
information for better illustration, e.g., a composite actor or
a state machine needs to be synthesized as a function, which
could be executed with function call.

In this paper, we propose a strengthened code generator
DFSynth1 to address the above challenges and synthesize more
efficient and structured code for embedded system design. It
mainly consists of three steps. First, data flow branch sensitive
actors are translated into the if-else statement or switch-case
statement. To determine the merge location, branch informa-
tion on actors is marked and will be backtracked based on the
schedule analysis algorithm. Then, well-designed templates
are implemented to generate the header files, utility functions,
variables and execution functions for each actor, with the data
types in consideration. Finally, the whole model is analyzed
layer-by-layer to generate the structured function-call state-
ments. Composite actors and state machine are encapsulated as
functions, where the input ports serve as the input parameters
while the output ports serve as the output parameters.

For evaluation, we first construct a complex model to verify
the effectiveness of the implemented code generator, i.e.,
whether we can support more advanced modeling features

1The code of DFSynth is open-source and can be downloaded at:
https://github.com/CodeGen123/DataflowCodeGeneration.

correctly. Then, we use the benchmark examples of the
original code generators and a real industrial example from
Huawei for further comparison. Compared to the existing C
and Java code generators of Dataflow [9], the lines of code
synthesized by DFSynth are decreased by an average of 99.7%
and 81.4%, and the execution time of the code synthesized by
DFSynth is decreased by an average of 76.2% and 56.8%. We
also build the corresponding Stateflow model of the Dataflow
model benchmark, synthesize the C code with Simulink[10]
for further comparison, and DFSynth reduce the lines of code
and the execution time with an average of 61.9% and 22.7%,
respectively.

II. BACKGROUND

A. Model-driven development

Model-driven development is widely used for system design
and mainly consists of model construction, model validation
and code synthesis. There have been many studies related to
model-driven development [11], [12], [13], [14], [15], [16],
and there are many related tools, such as Tsmart, Simulink,
SCADE and Polychrony [17], [18], [19], [10], [20], [21], [22],
[23]. Among them, Simulink is a widely used commercial
design environment and supports code synthesis of Stateflow
model with many advanced features such as structure and ex-
pression calculation. SCADE is also a widely used commercial
design environment with automatic code synthesis for Safe
state machine model. Ptolemy-II is an open-source environ-
ment that support Dataflow, and widely used for modeling and
simulation of modern embedded systems. For example, Kim
combined the gem5 simulator with Ptolemy-II to create power
and thermal model for a DRAM [24]. Bagheri established
an adaptive rail-based control system, with the hierarchical
modeling capability of Ptolemy-II [25], [26].

B. Models of Computation

The Dataflow model consists of actors and data connections
between the ports of the actor. Actors are used to receive data,
process data, and send data. And connections between ports
are used to transfer data. The execution order of the actors in
the model depends on the topological ordering of the model.
The essence of model simulation is to execute the actor from
the beginning of model topology sorting. The actor sends data
to the output ports according to the input data and then passes
the data to the subsequent actor for calculation. The port of
the branch actor sometimes does not output data, even if it
has a data connection to the subsequent actor, it will not
trigger the subsequent actor. There can be a composite actor
in the Dataflow model. The inside of the composite actor can
be another Dataflow model or a state machine model. The
external and internal parts of the composite actor transmit
data through ports. When the outer model is executed to this
composite actor, the internal model of the composite actor will
be executed. After the internal model is executed, it will return
to the outer model to continue execution.

Stateflow is a computation model used in Simulink. It
mainly consists of two models: data flow and finite state
machine. The semantics of the data flow model in Stateflow is
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consistent with the aforementioned Dataflow model. The state
machine model in Stateflow has a more powerful expressive
ability than ordinary state machine models. The state of the
state machine allows the definition of sub-states, and various
events can be defined on the state, such as entry, during,
and exit events. In addition, more complex operations in the
transition process, such as conditional judgments, loops, etc.,
can be implemented through junction nodes and transition
connections between junction nodes.

The simulation process of the Dataflow model and the
Stateflow model is iterative. The simulator will execute the
entire model once on each timestamp, which is the same as
the step function of our embedded program. The process of
each iteration is considered to be completed instantaneously in
the simulator and the real embedded system, and the actors in
the model are also considered to be executed instantaneously,
but their execution order is restricted by the topological sort.

C. Code synthesis of Dataflow

Two code generators were implemented for Ptolemy
Dataflow models, one is the C code generator and another
one is the Java code generator [9]. Both synthesize the
executable code with flattened event queue, and have been
integrated as the standard code generator in Ptolemy-II. The
C code generator generates the code with complete discrete
event calculations, and the code mainly consists of three
parts: fundamental data structure, model scheduling and actor
execution. The fundamental data structure mainly contains all
the basis for simulating event transmissions such as actor
elements, events, queues and so on. The model scheduling
is primarily responsible for scheduling actors in topological
sort order. Based on the data in the input queue, the actor
execution file is synthesized for each actor to calculate the
result and then output it to the input queue of the next actor.
The Java code generator consists of two parts: one is the
basic data type conversion and code comparison, and another
is the model scheduling and code computation. It also uses
the method of the event queue for data transmission, but it
uses the queue implemented by the fixed-length array. The
data load of the fixed-length array is limited, and a lot of
extra space will be occupied. Furthermore, it only supports
the sequential computation of actors, and does not support
dynamic operations such as branch selection or state machine.

Simulink Coder can generate code for discrete Simulink
models. This code generator is relatively robust, it can generate
code for almost any valid Simulink model. However, there is
no data branch actor in the Simulink model. If you want to im-
plement data branching, you must model in a very complicated
way, which greatly limits the expressive ability of the model.
Of course, this does reduce the difficulty of code generation
for Simulink Coder. There are many works to generate code
for Dataflow models, but they tend to generate code for a
specific feature, rather than considering the entire model. For
example, Stavros generates code for the composite actors in
the synchronous Dataflow model [27]. Takashi proposed a
code generation method for the Integer-Controlled Dataflow
(IDF) model [28].

Although the above code generators work well in some
cases, it cannot catch up with the real system design require-
ments. Firstly, the code synthesized by these code generators
not only contains a large size of redundant code but also
does not retain the original hierarchical model structure. They
expand the composite actors of all levels, which will lead to
the code review quite troublesome. Secondly, both of these
code generators only support few actors and it is difficult to
extend them for actors with dynamic types.

III. DFSYNTH DESIGN

We propose DFSynth, an efficient code synthesis approach
for Dataflow model. Rather than synthesizing the Dataflow
oriented code with the flattened event queue, our goal is to
generate short, structured, and control flow oriented sequential
code for better efficiency. DFSynth follows three steps: analyze
schedule order, define template for each actor, and combine
code of entire model, and the overview is presented in Fig. 1.

Dataflow
Model

Schedule
Analysis

Actor
Template
Definition

Execution
Code

Extra
Code

Code
Combination

C/Java
Code

Fig. 1. DFSynth workflow, the code synthesis of Dataflow

First, we need to analyze the schedule order, which includes
the execution order of actors and the logical relationships
caused by branch sensitive actors. And we just mark the
branch information on each actor of the Dataflow model.
The conditions for execution of each actor will be calculated
by this step, and it can indicate where the code of each
actor should lie, within an if statement or an else statement.
Second, code synthesis template should be defined and applied
to each actor. All possible actors in the model need to be
defined actor templates. The actor template will generate the
corresponding code for each actor according to the type of
actor and the data connection relationship in the model. On the
one hand, the execution code contains the main logic of each
actor, and on the other hand, extra code must be synthesized
to ensure integrity, such as the header files, and variables
used to store the state, etc. Finally, after we use the actor
template to generate code for each actor in the model, we can
assemble them according to the calculated model scheduling
relationship. Besides, we need to wrap the composite actors
and state machines as functions and integrate header files and
global variables to generate complete executable code.

A. Schedule Analysis

The schedule analysis mainly infers the execution order of
actors and the logic relationships caused by branch sensitive
actors. The execution order is determined by the topological
order of the actors, which is consistent with the semantics
of the Dataflow. There may be many scheduling orders in
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the execution process of the model. Here, we only sort the
possible execution relationship of the actors in the model and
mark the calling order of the actors with branch information,
just as we use an if-else statement to control the scheduling
order when we write C programs. In the subsequent code
generation process, that is, algorithm 4, the actors in the model
will be generated into the corresponding program statement
block according to their branch mark information to achieve
the scheduling logic consistent with the model. The overview
is presented in Algorithm 1.

Algorithm 1 Overview of schedule analysis
Input: model: the hierarchical dataflow model
Output: execution order and branch labels

1: Function executionOrderAnalysis(model)
2: // sm means sorted model
3: var sm = topologicalSort(model);
4: // lom means layers of model
5: var lom = markLayers(sm);
6: // lomwta means layers of model with TempActor
7: var lomwta = addTemporaryActor(lom);
8: return lomwta
9: Function logicRelationshipAnalysis(lomwta)

10: // lwbf means layers with branch flags
11: var lwbf = markBranchFlag(lomwta);
12: // lwfbf means layers with final branch flags
13: var lwfbf = mergeResultOfMark(lwbf );
14: return lwfbf

The method of topologicalSort() in algorithm 1 works in a
recursive manner. It will find the actors without input data,
delete their corresponding connected successor actors, then
continue to find the actors without input data. For the loop
situation, it could be broken by two corresponding actors that
can pass variables.

The method of markLayers() is used for the actors in
the same topological sort order, which should be classified
into a layer. The first layer is labeled with layer 1, then
increased by 1 for each subsequent layer accordingly. All
actors of the first layer are connected to the Root node, and
all actors of the last layer are connected to the LastRoot node.
Both Root node and LastRoot node are empty without any
information. Some temporary actors should be added by the
method of addTemporaryActor() between two adjacent actors
with different layer numbers. In this way, we could ensure
that the actors in each layer represent all the Dataflow in the
model. A simple example is shown in Fig. 2, which consists
of five calculation layers and contains three temporary actors.

Then, we deal with the logic relationships caused by the
branch sensitive actors, such as BooleanSwitch actor and
Switch actor. These actors will be synthesized to if-else or
switch-case statement. We need to mark all actors with branch
information flags and identify where these branches should
merge.

The method of markBranchFlag() is refined in Algorithm 2.
It marks the sorted actors with branch flags layer by layer. If
a branch sensitive actor is encountered, one more flag set will
be added to the subsequent actors, as presented in lines 14-

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Fig. 2. Example of execution order with five layer.

Algorithm 2 Mark the branch flag for actors
Input: Layers: Layers of actors
Output: Preliminary branch information label

1: var predecessors
2: var successors
3: var root = Layers[0]
4: for all successor of the the root do
5: if isBranchActor(root) then
6: addFlagByBranch(successor);
7: else
8: addFlagZero(successor);
9: successors.insert(successor);

10: while true do
11: predecessors = successors
12: successors.clear();
13: for all actor in the predecessors do
14: if isBranchActor(actor) then
15: markBranchFlag(actor); //Call recursively
16: for all successor of actor do
17: inheritFlag(successor, act);
18: successors.insert(successor);
19: if isAllSatisfyC(successors) then
20: // X means the layer of successors
21: layerLabel(X);
22: break
23: return Layers

15. For the Root node, it is marked with flag 0 (representing
the first branch), and then all subsequent actors will inherit
flag 0, as presented in line 8. If a BooleanSwitch actor is
encountered, a new flag set will be added. The actor after the
TrueOutput port should be marked with 0 while the actor after
the FalseOutput port should be marked with 1, as presented in
line 6. Eventually, all actors will be marked and there will be
some actors that are simultaneously marked with 0 and 1 in the
current flag set. Then, we define a composite condition C that
the actor is marked with 0 and 1, and all its precursor actors
are also marked with 0 and 1. If all actors of a layer X satisfy
the composite condition C, they must not be controlled by the
branch sensitive actor, and the marking algorithm will finish
as presented in lines 19-22. When the code is synthesized,
layer X can be synthesized outside of the if-else statement,
because the data source of these actors is the same, regardless
of which branch they belong to. In the worst case of this
algorithm, LastRoot will become the layer X.

Fig. 3 shows the flags on each actor, and we can see that all
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actors after the BooleanSwitch actor have a new flag set that
contains the branch information caused by the BooleanSwitch
actor. The branch information indicates whether the actor’s
code should be on which branch or both of the if-else
statement. In this example, the actor B, C, D, E, F, G and
H can be synthesized on both branches of if-else statement,
and actor A can be synthesized on the TRUE branch.

{0}

{0},{0} {0},{0}

{0},{0,1}

{0},{0,1}

{0},{0,1}

{0},{0,1} {0},{0,1}

{0},{0,1} {0},{0,1}

{0},{0,1} {0},{0,1}

Layer X

Fig. 3. Example of branch mark and merge

The method of mergeResultOfMark() is refined in Algo-
rithm 3, and is responsible for the final branch merge. As
presented in Fig. 3, the actor F, D and G should be merged
outside of the synthesized if-else statement. The actor C cannot
be merged because the actor E which is behind actor C
cannot be merged. This means that when the actor cannot
be merged, all its predecessors cannot be merged. The branch
merge algorithm accomplishes the task with the following four
recursive steps. (1) In lines 1-3, it traverses all the actors of
layer X. If there is a predecessor of an actor that does not
satisfy the composite condition C, then all predecessor actors
of this actor are marked with flag Break. (2) In line 4, it
initializes the current layer with the predecessors of layer X.
(3) In lines 6-8, it traverses the actors of the current layer, if
an actor has a flag of Break, then mark all its predecessor
actors with the flag of Break. (4) In lines 9-15, if all actors of
the current layer are marked with Break, the algorithm ends.
If not, it deletes their branch flags. If there is a predecessor
of an actor that does not satisfy condition C, all predecessor
actors of this actor will be marked with Break. In line 16,
it will initialize the current layer with the previous layer and
jump to the third step for iteration.

Finally, we can get the actor sets for different branches.
Similar to the BooleanSwitch actor, the Select actor is also
branch sensitive and could be translated to the switch-case
statement. We can mark the branch of Select actor using the
above method. Moreover, the branch flag of the Select actor is
from 0 to n-1, where n is the number of input ports connected
to the Select actor. Based on the scheduled branches, we could
generate control-flow oriented sequential code.

B. Actor template

To synthesize code for different actors, especially for those
with dynamic types, we design a general template, which could
be instanced by actors dynamically, and contains four blocks,
including header, function, variable and fire.

The header block includes the declarations of the library
files that the actors will use. Different actors may need to use
different function libraries. For example, the AbsoluteValue
actor needs to use the fabs function in the “math.h” header

Algorithm 3 Merge the final branches for actors
Input: Layers: Layers of actors with branch flags

X: Index of layer X calculated in algorithm 2
Output: Branch set of actors

1: for all actor of the Layers[X] do
2: if not isAllPredecessorSatisfyC(actor) then
3: setAllPredecessorBreak(actor)
4: currentLayer = Layers[X– –]
5: while true do
6: for all actor of the currentLayer do
7: if isMarkWithBreak(actor) then
8: setAllPredecessorBreak(actor)
9: if isAllMarkedWithBreak(currentLayer) then

10: break
11: for all act of the currentLayer do
12: if not isMarkWithBreak(actor) then
13: removeBreakFlags(actor)
14: if not isAllPredecessorSatisfyC(actor) then
15: setAllPredecessorBreak(actor)
16: currentLayer = Layers[X– –]

file, and the StringConst actor may need to use the string
function defined in the “string.h” header file. The function
block includes the declarations of the utility functions that the
actors will call. For example, the StringToInt actor requires
a stringToInt function support. The variable block includes
the declarations of variables that the actors will use. For
example, all output ports of a composite actor must correspond
to an output variable, and the data of the input port that
would be used in the Expression actor needs to be saved with
intermediate variables. The fire block includes the declarations
of fire functions that the actors will use. Each actor needs
a piece of corresponding calculation code. For example, the
AddSubtract actor which adds the data of the addition port and
subtracts the data of the subtraction port needs the expression
statement.

Within the template, there may be some contents in the
variable declaration and fire function that need to be replaced
with symbols. The description of the five replacement marks in
the variable declaration and fire function is shown in Table I. In
Table I, combining the first and second columns together is the
complete mark that needs to be replaced and the third column
shows what the mark will be replaced with. For example,
type output for a StringToInt actor will be replaced with int.
The description of the two replacement symbols in the fire
function is shown in Table II and these two symbols identify
the marks to be replaced.

For some more complex actors, complex expressions should
be supported in the template. For example, the temporary
variable contained in the parameter of the Expression actor
needs to be declared in advance and replaced in the expres-
sion. Expression actor also supports complex operations and
structures. Therefore, we implement a parser which could
parse the expression into a computation tree. The following
symbols are parsed in Table III, where the bracket, comma,
unary operators, binary operators and ternary operators are
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TABLE I
DESCRIPTION OF FIVE REPLACEMENT MARKS

Mark Content Value
type Input/output port

name
Type of the port

out Output port name Actor name + Name of
the port

in Input port name Actor name + Name of
the port

para Parameter name of
actor

Value of the parameter

defaultV alue Input/output port
name

Default value of the
port type

TABLE II
DESCRIPTION OF TWO REPLACEMENT SYMBOLS

symbol function description
${ }$ To specify the replace-

ment identifier
It can only contain one re-
placement content, such as
in input.

$\\ //$ Repeat the internal text
content n times (n rep-
resents the number of
the data sources for the
inport)

There can be other text in-
side. It can support user-
defined ports.

supported. Then, we will infer the type of the expression result
and convert the type of operations in case of inconsistency.
For example, the type of string + int should be converted
to stringAdd(string,intToString(int)) so that the output data is
with the type of string. For the structure operations, it is
necessary to make the structure support the addition operation.
Thus, we recursively solve the computation tree from the
bottom to up. For a subtree, the type of the subtree should be
got in the light of its operator, and the type conversion function
should be added if necessary. If encounter an operation of
a structure, an operator overload function should be added
to the code. Moreover, considering that the structure may
be nested, we also need to declare the operator overloaded
function for the internal structure. Finally, the expression could
be regenerated based on the computation tree.

TABLE III
PARSED SYMBOL LIST

type symbol
bracket ( )
comma ,
unary operators + - ˜ !
binary operators . + - * / % � � >

≥ < ≤ == 6= & — ˆ
&& ‖

ternary operators ?:

Then, we can initialize the template for each actor. For
example, Table IV shows the synthesized code blocks of
AddSubtract actor and StringToInt actor. We can see that the
AddSubtract actor needs variable block to save the result of
calculation and fire block to perform calculation. The String-
ToInt actor needs the header block and utility function block
to support the conversion from string to int. It is precisely
because our template supports custom utility functions, so the

TABLE IV
SAMPLE OF TEMPLATE CODE

template of AddSubtract
header Null
function Null
variable ${type output}$ ${out output}$ = 0;
fire ${out output}$ = ${out output}$ $\\ +

${in plus}$//$ $\\ − ${in minus}$//$;
template of StringToInt

header #include <stdlib.h>
function int stringToInt(char* str){

return atoi(str);
}

variable ${type output}$ ${out output}$ = 0;
fire ${out output}$ =

stringToInt(${in input}$);

ability of the template is relatively strong. Users only need to
understand the functions of the newly added actors, they can
easily create new templates.

C. Sequential code assembly

In order to synthesize executable and well-structured code,
we need to organize the code of each actor based on the
result of schedule analysis. Algorithm 4 shows the workflow
of code assembly. The input of Algorithm 4 is a complete
model of all composite actor model processed by Algorithm
3. The output is the entire code generated from the complete
model. And the final synthesized code is mainly composed
of four parts, head files, utility functions, global variables and
function. These four parts are all obtained when traversing the
model recursively, and would be deduplated.

Because the Dataflow model supports hierarchical model-
ing, we encapsulate each composite actor into a function. The
input ports are used as input parameters while the output
ports are used as output parameters. For example, an actor
named Com1 with an input port (int type) and an output
port (double type) will be encapsulated with the following
function header: void FuncCom1(int input, double* output).
The getComActFunCode function takes a hierarchical model
as input (a composite actor is also regarded as a hierarchical
model), and generate the entire function of the hierarchical
model and the required global variables as output. If this
hierarchical model is not a finite state machine, we use
the previously calculated scheduling sequence to generate
the header files, function functions, global variables and fire
function of each actor through the template, as presented in
lines 9-20. If a composite actor is traversed in this process,
we have to recursively generate the function corresponding to
the composite actor, as presented in lines 12-15. In addition,
we also add the support of the refined finite state machine.
The composite actor of a state machine is also wrapped as a
function, as presented in lines 22-24. In the function, we use a
static variable to save the current state, switch-case statements
to determine the current state, and if-else statements to express
condition judgments on the transition between states.

After traversing the entire model, we need to deduplicate
the collected header files and utility functions in lines 30-1,
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Algorithm 4 Sequential code assembly
Input: model: the hierarchical Dataflow model
Output: Sequential code of entire model

1: var headFiles = {}
2: var utilityFunctions = {}
3: var globalV ariables = {}
4: var functionCodes = {}
5: Function getComActFunCode(subModel)
6: var globalV ar= “”
7: var function= “”
8: if isNotFSMModel(subModel) then
9: order = executionOrderAnalysis(subModel)

10: schedule = logicRelationshipAnalysis(order)
11: for all actor in schedule do
12: if isCompositeActor(actor) then
13: g,f = getComActFunCode(actor)
14: globalV ariables += g
15: functionCodes += f

16: h,u,g,f = genCodeByTemplate(actor)
17: headFiles += h
18: utilityFunctions += u
19: globalV ar += g
20: function += f

21: else
22: g,f = genFSMModel(subModel)
23: globalV ariables += g
24: functionCodes += f

25: return globalV ar, function
26: g,f = getComActFunCode(model)
27: globalV ariables += g
28: functionCodes += f
29: var code = “”
30: code += headFileDeduplicate(headFiles)
31: code += utilityFuncDeduplicate(utilityFunctions)
32: for all globalV ariable in the globalV ariables do
33: code += globalV ariable

34: for all functionCode in the functionCodes do
35: code += functionCode

36: code += genMainLoopFunc()
37: return code

because the same header file or utility function only needs to
be declared once in the code.

Then, we translate the global parameters and structures of
the model into variables and structure types respectively, in
lines 32-35. Finally, we declare a main function and call the
mainLoop function to trigger the executable code in line 36.

IV. IMPLEMENTATION

The DFSynth is implemented in the C++ language, with
14218 lines of code. It reads model files as input and generates
the executable C and Java code. It is implemented as an
external plugin.

Before the schedule analysis, we need to parse the model
file. As the model of the Ptolemy-II project is saved as
an XML file, and we use the TinyXML library to parse

the model file and load the global parameters, actors, and
connection relationships among ports. A class named Actor
is implemented to store the information of each actor, which
defines the port information of the actor. This information is
used in code synthesis to name variables. In order to analyze
the scheduling order, we implement the topological sorting
algorithm to calculate the scheduling order of the actors and
store the results in a “map” data structure. Then we implement
the Algorithm 2 to mark flags to the actors and merge the
positions of the branch actors by Algorithm 3.

For the template definition, different template files are
initialized for different actors. Moreover, different actors can
be implemented into different C++ classes based on the Actor
class. The head files set and the utility functions set are
collected, and the result variable and fire code are synthesized
according to the scheduling order. If there is no variable and
fire code in the template, we need to call the corresponding
script to generate a template code dynamically.

Finally, we generate functions for each composite actor and
combine the header files set, utility functions set, variables,
and functions corresponding to each composite actor into a
complete executable code as described in Algorithm 4. It is
worth mentioning that because Java does not support function
parameter passing by reference, in Java code synthesis, the
return value of a composite actor is passed through an array. At
the end of the code is the main function, which determines the
number of times the model is executed based on the duration
of the model and the sampling time of the trigger clock.

Furthermore, if we want to add code synthesis support for
a new actor, we just need to implement the template file
corresponding to the actor. If the template cannot support the
features, then implement a targeted script file to generate the
template dynamically.

V. EVALUATIONS

For evaluation, we compare DFSynth with the existing C
code generator and Java code generator of Ptolemy-II [9]. So
far, we haven’t seen the latest work about Ptolemy-II code
generator after its C and Java code generator, so we have done
a comparative experiment with Simulink’s code generator.
We construct the experiments to answer the following three
research questions.
• RQ1. Capability of DFSynth. Can it support more actors

than existing code generators of Dataflow model?
• RQ2. Effectiveness of DFSynth. Can it generate more

efficient code compared to the code generators of existing
design platforms such as Ptolemy and Simulink?

• RQ3. Expressiveness of DFSynth. Can it generate more
structural code than existing code generators of Dataflow
model?

A. Can DFSynth support more actors?

We selected several frequently and commonly used model-
ing features. They are important in system modeling, and the
support for each code generator is shown in Table V. From
the last column of Table V, we can see that DFSynth supports
the code synthesis of more modeling actors and features.
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Fig. 4. A Dataflow model of thermostat control, which includes many advanced features such as composite actor, state machine, and BooleanSwitch.

TABLE V
COMPARISON OF FUNCTION AND SUPPORT ABILITY

Modeling
Feature

Ptolemy-II C
Generator

Ptolemy-II
Java Generator

DFSynth

Basic actors 4 (23) 4 (19) © (40)

Logic control
actor

4 (1) × (0) © (3)

Structure × × ©

Type conver-
sion

× × ©

Global
variable

× × ©

© represents fully supports, 4 represents does not fully support, ×
represents does not support.

From the second and third column of Table V, we can
see that the existing code generators in Ptolemy-II cannot
completely support those basic actors such as SinWave actor
and StringToInt actor. According to our statistics, Ptolemy-II’s
C and Java code generators support 23 and 19 basic actors,
respectively, and we can currently support 40. Realizing the
code generation of new actors in Ptolemy-II is a complicated
matter, and it requires adding a lot of code to the Ptolemy-
II project. And DFSynth can quickly implement actor code
generation support by simply making actor templates. And the
logic control actors such as BooleanSwitch actor and Switch
actor are the basis for the modeling of software systems, it is
impossible to model a real system without those logic control
actors. The code generator of Ptolemy-II does not have the
ability of model scheduling analysis, so its C code generator
only supports the two-branch actor BooleanSwitch. Its Java
code generator does not support any branch actors, while
DFSynth can support multi-branch actors, Switch and data
selection actor Select.

Some advanced features such as structure, which is used
to describe structural data. Code synthesis for structure is
also very complex. Firstly, structures can be nested, and all
types of elements in the entire structure must be inferred.
Secondly, when it comes to the operation of the structure,
such as addition, comparison, etc., it is necessary to generate
operator overload function for the structure.

Type conversion is used to facilitate the calculation. For
example, Dataflow model supports the addition of a string
and a number, and the number will be converted to a string
type automatically. The data type would be calculated bottom-
up according to the computation tree of the expression. Once
the operation of different data types is found, we must add a
conversion function, such as intToString function.

Global variable is used to facilitate the modeling, which can
be used directly in expressions. From Table V, we could see
that DFSynth could support those modeling actors and features
well.

We read the source code of the Ptolemy-II code generator
and analyzed the reason why they currently do not support
structure, type conversion, and global variables. That is, their
main method is actor-based code generation. There is a lack
of collation of model context information in the generation
process. So it is difficult to generate code outside of the actor
but closely related to the actor, like global variable and struct.

For more detail, we use a thermostat model [29] for further
illustration, as presented in Fig. 4. This model determines heat-
ing or cooling based on the input temperature, and it contains
many advanced modeling features that can not be dealt with
the existing code generators, such as state machine, structures
(“Thr:{High=5,Low=0}”), global variables (“heatingRate:10”
“coolingRate:-1” ...), expressions (“in>Thr.Low” “str+val”),
and branch actor (“BooleanSwitch”).

The code synthesized by DFSynth is presented in Listing
1. The lines 7-12 implement the conversion of data types
and string processing in Expression2 actor, and the structure
is implemented in lines 13-16. The lines 17-21 show the
declaration of global variables, and the lines 22-39 implement
the code synthesis of the refined state machine. The lines 41-
46 show the declaration of the actors’ result variables and
intermediate variables, where the data type of the Expression
actor’s result is resolved. Line 48 indicates the call of the state
machine. The lines 51-57 implement the branch sensitive actor
BooleanSwitch with the if-else statement block.

B. Can DFSynth generate more efficient code?

Because the existing code generators of Ptolemy-II do not
support the synthesis of advanced features, we can not use the
above complex example in Fig. 4. We adopt the benchmark
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1 # i n c l u d e <s t d l i b . h>
2 # i n c l u d e <s t d i o . h>
3 # i n c l u d e <s t r i n g . h>
4 # d e f i n e boo l i n t
5 # d e f i n e f a l s e 0
6 # d e f i n e t r u e 1
7 char * i n t T o S t r i n g ( i n t n ){
8 char * r e t = ( char *) ma l lo c ( 1 2 ) ;
9 s p r i n t f ( r e t , ”%d ” , n ) ;

10 re turn r e t ;
11 }
12 . . .
13 s t r u c t S t r u c t T h r{
14 i n t High ;
15 i n t Low ;
16 } ;
17 s t r u c t S t r u c t T h r Thr = {5 ,0} ;
18 i n t c o o l i n g R a t e = −1;
19 f l o a t h e a t O f f T h r e s h o l d = 2 2 . 0 ;
20 f l o a t h e a t O n T h r e s h o l d = 1 8 . 0 ;
21 i n t h e a t i n g R a t e = 1 0 ;
22 void FuncFSMActor ( i n t t e m p e r a t u r e , i n t * h e a t ){
23 s t a t i c i n t F S M A c t o r n e x t s t a t e ;
24 enum FSMActor s t a t e{h e a t i n g , c o o l i n g } ;
25 sw i t ch ( F S M A c t o r n e x t s t a t e ){
26 case h e a t i n g :
27 i f ( t e m p e r a t u r e < h e a t O f f T h r e s h o l d ){
28 * h e a t = h e a t i n g R a t e ;
29 F S M A c t o r n e x t s t a t e = h e a t i n g ;
30 } e l s e i f ( t e m p e r a t u r e >= h e a t O f f T h r e s h o l d ){
31 * h e a t = c o o l i n g R a t e ;
32 F S M A c t o r n e x t s t a t e = c o o l i n g ;
33 }
34 break ;
35 case c o o l i n g :
36 . . .
37 break ;
38 }
39 }
40 void mainLoop ( ) {
41 s t a t i c i n t Ramp output = 15 − 1 ;
42 i n t FSMActor heat = 0 ;
43 boo l E x p r e s s i o n o u t p u t = f a l s e ;
44 char * S t r i n g C o n s t o u t p u t = ” h e a t i n g : ” ;
45 char * S t r i n g C o n s t 2 o u t p u t = ” c o o l i n g : ” ;
46 char * E x p r e s s i o n 2 o u t p u t ;
47 Ramp output += 1 ;
48 FuncFSMActor ( Ramp output ,& FSMActor heat ) ;
49 i n t E x p r e s s i o n i n = FSMActor heat ;
50 E x p r e s s i o n o u t p u t = E x p r e s s i o n i n > Thr . Low ;
51 i f ( E x p r e s s i o n o u t p u t ){
52 char * E x p r e s s i o n 2 s t r = s t r i n g C o p y (

S t r i n g C o n s t o u t p u t ) ;
53 i n t E x p r e s s i o n 2 v a l = FSMActor heat ;
54 E x p r e s s i o n 2 o u t p u t = s t r i n g A d d ( E x p r e s s i o n 2 s t r ,

i n t T o S t r i n g ( E x p r e s s i o n 2 v a l ) ) ;
55 } e l s e {
56 . . .
57 }
58 p r i n t f ( ”%s\n ” , E x p r e s s i o n 2 o u t p u t ) ;
59 }
60 # d e f i n e LOOP COUNT 10
61 i n t main ( ) {
62 i n t i ;
63 f o r ( i = 0 ; i<LOOP COUNT; i ++){mainLoop ( ) ;}
64 re turn 0 ;
65 }

Listing 1. The code synthesized by DFSynth

models provided by the existing C code generator of Ptolemy-
II and three more complex Dataflow models built by ourselves
for comparison. These models include state machine, complex
mathematical calculation, complex branch expression, etc., and
are sufficiently representative. Furthermore, because Simulink
can’t directly read Ptolemy II’s model, we need to manually
build the Stateflow model of the corresponding Dataflow
model. The benchmark Dataflow models and the manually
transferred Stateflow models can be downloaded from the

footnoted website and a brief introduction is as below:

a) ClockRamp is a model that uses a Clock actor to trigger
an arithmetic progression actor named Ramp, which
outputs the last output value plus a step value each time
when triggered.

b) HelloWorld is a model that just output a “HelloWorld”.
c) HeteroMK is a state machine model, which determines

what value the output will be used, the original value of
the input or the opposite value of the input.

d) Math is a model that computes the sum of the first n
natural numbers using the formula: Sum(1..n) = n ∗
(n+ 1)/2.

e) PiSquare is a model that calculates the square of π by
the Riemann’s Zeta function.

f) ScaleCFlat is a model that scales the output of a Ramp
actor using the Scale actor.

g) LeakyRelu is a model that can show the LeakyRelu
function, an activation function commonly used in the
field of deep learning.

h) Piecewise function is a model that can show a piecewise
function with three function segments controlled by two
BooleanSwitch actors.

i) Complex branches is a more complex model with
branches nested and crossed.

For the comparison of the code generators of Ptolemy-II,
Simulink and DFSynth, and use four metrics: the lines of
code, the number of files, the execution time of the synthesized
code, the consistency between the code execution and model
simulation and the time (ms) of the code generation process.
We compiled and ran the code in the same environment (win-
dow10 x64, Cygwin64 Terminal, gcc and javac compiler). To
avoid the randomness, we executed the code for 10000 times,
and got the average execution time. The unit was milliseconds.
The Ptoelemy-II Java code generator cannot synthesize the
code for the model whit state machine and branch actor such
as HeteroMK, LeakyRelu, Piecewise function and Complex
branches. The detail results are presented in Table VI.

As for the lines of the synthesized code, DFSynth
outperforms Ptolemy and Simulink, with an average size
reduction of 61.9%, 99.7% and 81.4%for Simulink-C,
Ptolemy-C and Ptolemy-Java, respectively. This is because
we use the compact variable passing approach to generate the
code. While the original Ptolemy C code generator uses the
event passing method to generate code. It generates a .h file
and a .c file for each actor and generates a lot of custom classes
such as HashMap, PriorityQueue, etc., so the code size is huge
(around 10000 LoCs) for a small model. Although the code
synthesized by the original Ptolemy Java code generator is
relatively short, it synthesizes all the type conversion functions
which results in plenty of redundancy. Furthermore, we only
count the main control logic code synthesized by Simulink
Coder and do not include the synthesized libraries or utilities,
which are more complex with an extra ∼ 2000 LoCs. And we
found that it had a lot of redundant runtime related code.

In terms of the execution time, the code synthesized
by DFSynth is the shortest, and the running time is
decreased by 22.7%, 76.2% and 56.8% for for Simulink-C,
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TABLE VI
COMPARISON OF PTOLEMY, SIMULINK AND DFSynth.

Model Generator Lines Files Run
Time

Consi-
stency

Gen
Time

Simulink-C 67 2 46 yes 692
Ptolemy-C 11063 46 781 yes 112

ClockRamp Ptolemy-Java 116 2 453 yes 46
DFSynth-C 21 1 30 yes 3
DFSynth-Java 16 1 390 yes 3
Simulink-C 45 2 9 yes 709
Ptolemy-C 11000 46 172 yes 104

HelloWorld Ptolemy-Java 109 2 62 yes 39
DFSynth-C 20 1 5 yes 4
DFSynth-Java 15 1 60 yes 3
Simulink-C 135 2 52 yes 1364
Ptolemy- C 12423 69 1923 no 359

HeteroMK Ptolemy-Java - - - - -
DFSynth-C 55 1 32 yes 7
DFSynth-Java 58 1 405 yes 7
Simulink-C 72 2 58 yes 697
Ptolemy- C 11797 56 1890 yes 151

Math Ptolemy-Java 180 2 468 yes 91
DFSynth-C 30 1 46 yes 4
DFSynth-Java 25 1 405 yes 4
Simulink-C 70 2 60422 yes 808
Ptolemy-C 11520 52 168921 yes 141

PiSquare Ptolemy-Java 153 2 60814 yes 76
DFSynth-C 27 1 46703 yes 5
DFSynth-Java 22 1 51151 yes 4
Simulink-C 68 2 16 yes 698
Ptolemy-C 9873 43 328 yes 124

ScaleCFlat Ptolemy-Java 119 2 218 yes 61
DFSynth-C 23 1 12 yes 4
DFSynth-Java 18 1 188 yes 5
Simulink-C 46 2 24 yes 1163
Ptolemy-C 11556 52 343 yes 196

LeakyRelu Ptolemy-Java - - - - -
DFSynth-C 18 1 20 yes 3
DFSynth-Java 13 1 244 yes 3
Simulink-C 53 2 26 yes 1046
Ptolemy-C 12175 60 362 yes 290

Piecewise Ptolemy-Java - - - - -
function DFSynth-C 20 1 21 yes 4

DFSynth-Java 15 1 296 yes 5
Simulink-C 136 2 32 yes 1786
Ptolemy-C 13940 87 Error - 340

Complex Ptolemy-Java - - - - -
branches DFSynth-C 49 1 26 yes 6

DFSynth-Java 44 1 379 yes 7
Simulink-C 76 2 7578 yes 995
Ptolemy-C 11705 56 24690 no 201

Average Ptolemy-Java 135 2 15386 yes 62
DFSynth-C 29 1 5856 yes 4
DFSynth-Java 25 1 6639 yes 4

Ptolemy-C and Ptolemy-Java, respectively. This is because
the synthesized code is the most compact and we do not need
to execute some redundant code. As we can see in Table VI,
the number of lines of C code and Java code we generated are
almost the same, but the running time of Java code is relatively
long, which is caused by the extra overhead of the javavm.
Although the code generated by DFSynth has advantages in the
number of lines of code and structure, because the hierarchical
composite actor is expressed as a function with input and

output parameters, frequent function calls during the code
execution process will bring some additional expenses.

Furthermore, for the correctness of the results, we also com-
pare the results of the Dataflow model and Stateflow model
simulation with the results of the synthesized code execution,
with 10000 random runs. We found that the results of the
code synthesized by DFSynth are always the same with the
original model simulation result, but there is an inconsistency
between the result of the simulation and the result of the code
synthesized by the existing code generator. Even there is a
runtime error in the code of Complex branches generated by
Ptolemy-C. The results of DFSynth are also optimal in terms
of the time cost of the code generation process. Base on these
various models, and combine with the statistics above, it is
reasonable to conclude that we can accomplish the same tasks
with less code size and less execution time, thus generating
more efficient code.

C. Can DFSynth include more structure information?

We apply DFSynth on a real case from Huawei to demon-
strate the effectiveness in information preservation. The model
is built for the CPU resource allocation scheduling. Due to
space limitations and confidentiality agreements, only part of
the model about CPU priority adjustment is shown in Fig. 5.
The complete synthesized code for Fig. 5 can be downloaded
from the website of DFSynth presented in footnote 1. Because
the Java code and C code synthesized by DFSynth are similar,
only the C code is shown in Listing 4. We select the same
number of lines of code snippets synthesized by the three code
generators for display, as shown in Listing 2-4. In addition,
for the original C code generator of Ptolemy-II and Simulink,
we removed the useless symbols, comments and libraries.

Fig. 5. A Dataflow model for CPU priority adjustment in Huawei. With
the same lines of the synthesized code in Listing 2-4, the code synthesized
by Ptolemy-II-C only covers one actor partially labelled with green, the
code synthesized by Simulink Coder covers two actors(originated from the
corresponding manually transferred Stateflow model) partially labelled with
yellow, and the code synthesized by DFSynth covers five complex actors
labelled with blue.

The C code shown in Listing 2 is part of the execution
code of the MultiplyDivide actor synthesized by the Ptolemy-
II-C, as highlighted in green in Fig. 5. When a result is
calculated, it sends the result to the input port of the sub-
sequent actor through the output port of the MultiplyDivide
actor. The synthesized code contains Token handlers, event
handlers, data dispatch functions, and many other functions
that handle event dispatching. The C code shown in Listing
3 is the execution code for the two actors(mapped from the
corresponding stateflow model) synthesized by the Simulink
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1 i f ( ( * ( m u l t i p l y −>hasToken ) ) ( ( s t r u c t I O P o r t * ) m u l t i p l y , 0 ) ){
2 S a m p l e M u l t i p l y D i v i d e r e s u l t = c o n v e r t I n t I n t ( ( * ( m u l t i p l y −>g e t ) ) ( ( s t r u c t I O P o r t * ) m u l t i p l y , 0 )−>p a y l o a d . I n t ) ;}
3 i f ( ( * ( m u l t i p l y −>hasToken ) ) ( ( s t r u c t I O P o r t * ) m u l t i p l y , 1 ) ){
4 S a m p l e M u l t i p l y D i v i d e r e s u l t = m u l t i p l y I n t I n t ( S a m p l e M u l t i p l y D i v i d e r e s u l t , ( * ( m u l t i p l y −>g e t ) ) ( ( s t r u c t I O P o r t * )

m u l t i p l y , 1 )−>p a y l o a d . I n t ) ;
5 }
6 i f ( ( * ( d i v i d e −>hasToken ) ) ( ( s t r u c t I O P o r t * ) d i v i d e , 0 ) ){
7 S a m p l e M u l t i p l y D i v i d e r e s u l t = d i v i d e I n t I n t ( S a m p l e M u l t i p l y D i v i d e r e s u l t , ( * ( d i v i d e −>g e t ) ) ( ( s t r u c t I O P o r t * ) d i v i d e , 0 )−>

p a y l o a d . I n t ) ;
8 }
9 ( * ( o u t p u t −>send ) ) ( ( s t r u c t I O P o r t * ) o u t p u t , 0 , In t new ( S a m p l e M u l t i p l y D i v i d e r e s u l t ) ) ;

Listing 2. Code synthesized by Ptolemy-II-C and covers on actor partially

1 i f ( j s f s im u l i nk M −>Timing . t [ 0 ] < j s f s i m u l i n k P . R a m p s t a r t )
2 j s f s i m u l i n k B . S t ep = j s f s i m u l i n k P . Step Y0 ;
3 e l s e
4 j s f s i m u l i n k B . S t ep = j s f s i m u l i n k P . Ramp slope ;
5 j s f s i m u l i n k B . Clock = j s f s im u l i nk M −>Timing . t [ 0 ] ;
6 j s f s i m u l i n k B . Sum = j s f s i m u l i n k B . Clock − j s f s i m u l i n k P . R a m p s t a r t ;
7 j s f s i m u l i n k B . P r o d u c t = j s f s i m u l i n k B . S t ep * j s f s i m u l i n k B . Sum ;
8 j s f s i m u l i n k B . Outpu t = j s f s i m u l i n k B . P r o d u c t + j s f s i m u l i n k P . R a m p I n i t i a l O u t p u t ;
9 j s f s i m u l i n k B . D iv id e = j s f s i m u l i n k B . Outpu t * j s f s i m u l i n k B . Outpu t / j s f s i m u l i n k P . C o n s t a n t V a l u e ;

Listing 3. Code synthesized by the Simulink Coder for the corresponding Stateflow model and covers two actors partially

1 i n t C o n s t o u t p u t = 2 ;
2 s t a t i c i n t Ramp output = 0 − 5 ;
3 i n t M u l t i p l y D i v i d e o u t p u t = 1 ;
4 i n t P r i o r i t y S C o u t = 0 ;
5 i n t B o o l e a n M u l t i p l e x o r 2 o u t p u t = 0 ;
6 Ramp output += 5 ;
7 M u l t i p l y D i v i d e o u t p u t = M u l t i p l y D i v i d e o u t p u t * Ramp output * Ramp output / C o n s t o u t p u t ;
8 F u n c P r i o r i t y S C ( M u l t i p l y D i v i d e o u t p u t , C o n s t o u t p u t ,& P r i o r i t y S C o u t ) ;
9 B o o l e a n M u l t i p l e x o r 2 o u t p u t = P r i o r i t y S C o u t ;

Listing 4. Code synthesized by DFSynth for the Dataflow model and covers five actors

Coder, as highlighted in yellow in Fig. 5. In contrast, the C
code shown in Listing 4 synthesized by DFSynth contains
five actors of this model, as highlighted in blue in Fig. 5. It
abstracts the composite actor completely into a function and
execute the composite actor through parameter passing and
function call.

Table VII shows the evaluation of the whole synthesized
code. Because the two code generators in Ptolemy-II do not
support many features, such as global variables, structures,
etc., they cannot synthesize complete code, and their code lines
and file numbers are only partial results that can be counted,
and these incomplete code cannot be compiled and run at all.
Because Simulink Coder only supports Stateflow model, we
build it based on the above Dataflow model, and collect LoCs
of the main logic.

TABLE VII
EVALUATION ON INDUSTRIAL MODEL

Generator Lines Files Runtime Consistency GenTime
Simulink-C 524 2 564 yes 3482
Ptolemy-C 14422+ 100+ - - -
Ptolemy-Java 714+ 2 - - -
DFSynth-C 223 1 436 yes 23
DFSynth-Java 246 1 930 yes 22

When the Dataflow model is synthesized to the control-flow
code, the synthesized code could express more actors with
limited lines, while more logical and structure information
would be preserved. If a branch control actor exists in a

Dataflow-based model, the execution logic of other actors will
be affected. For a branch control actor with two branches, there
could only be two types of execution logic, that is, some actors
should be executed either after the first branch of or after the
second branch. Although the complex schedule analysis from
Dataflow to control-flow can be avoided while generating the
code for event transfer execution, plenty of code related to
event handling will be synthesized and the logic of the code
will not be clear. Furthermore, we could get the synthesized
code with clearer structure when the composite actors and
refined state machine are wrapped as functions. If we generate
code by event passing, as for every composite actor, we should
also generate code for processing event queue. In contrast, only
one line of code is needed to call the function based on the
control-flow approach of DFSynth.

VI. LESSON LEARNED

In the practice of code generation of Dataflow model, we
learned some valuable experiences as follows:

In real model design practice, in addition to modeling
and simulation, engineers have a great need for code
generation. Modeling and simulation are important functions
of many modeling tools. They can find performance problems
and functional problems in some pre-designs. Furthermore,
code generation is also important. On the one hand, it is hard
to read the code written by others due to the different styles
of code, and the gap between the model and the implemented
code brings a challenge to the development life-cycle such as
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software maintenance and model-based testing. On the other
hand, based on the comparison between the code written by
engineers and the code generated by us, we find that engineers
like to use a complex expression to directly calculate the
results that can be processed by combining multiple actors.
The optimization of data flow based on the model may be our
further research content.

We can get the generated code with more logical
information when the model is converted from Dataflow to
Control-flow. If a branch control actor exists in a Dataflow-
based model, the execution logic of the actor will be affected
in the model. Obviously, as for an actor with two branches,
there could only be two types of execution logic, that is, some
actors should be executed either after the first branch of the
branch actor or after the second branch. In this case, it is a
more reasonable choice to generate blocks of if-else statements
from these actors. Although the complex conversion from
Dataflow to control-flow can be avoided while generating the
code for event transfer execution, plenty of code related to
event handling will be generated and the logic of the code
will not be clear. From our experiments, the code generated
in this way is clearly structured, and the number of lines is
relatively short. However, the model with logic control actors
may have some branches that will not be executed at all,
and these branches will also generate code that will not be
executed. Therefore, it is our further research work to remove
such codes through data flow analysis.

VII. CONCLUSION

Although Dataflow model and its corresponding platforms
are widely used for system modeling and simulation, the code
synthesis ability is quite limited. In this paper, we tried to
bridge the gap between simulation and synthesis of Dataflow
model via a strengthened code generator DFSynth. We adopted
the schedule analysis to accomplish the transformation of
Dataflow actors execution order to control flow code branches,
encapsulated hieratical composite actors and state machines
into functions, and defined code templates for basic actors,
which makes the synthesized code short and structured. Com-
pared to the existing code generators of Ptolemy and Simulink,
DFSynth could include more logic and structure information
with less size of code and execution time. Our future work
includes bridging the code synthesis gap between the Dataflow
model and Stateflow model.
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