
3320 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

Safety-Assured Model-Driven Design of the
Multifunction Vehicle Bus Controller

Yu Jiang , Han Liu, Houbing Song , Hui Kong, Rui Wang, Yong Guan, and Lui Sha

Abstract— In this paper, we present a formal model-driven
design approach to establish a safety-assured implementation
of multifunction vehicle bus controller (MVBC), which con-
trols the data transmission among the devices of the vehicle.
First, the generic models and safety requirements described in
International Electrotechnical Commission Standard 61375 are
formalized as time automata and timed computation tree logic
formulas, respectively. With model checking tool Uppaal, we
verify whether or not the constructed timed automata satisfy
the formulas and several logic inconsistencies in the original
standard are detected and corrected. Then, we apply the code
generation tool Times to generate C code from the verified model,
which is later synthesized into a real MVBC chip, with some
handwriting glue code. Furthermore, the runtime verification tool
RMOR is applied on the integrated code, to verify some safety
requirements that cannot be formalized on the timed automata.
For evaluation, we compare the proposed approach with existing
MVBC design methods, such as BeagleBone, Galsblock, and
Simulink. Experiments show that more ambiguousness or bugs
in the standard are detected during Uppaal verification, and the
generated code of Times outperforms the C code generated by
others in terms of the synthesized binary code size. The errors
in the standard have been confirmed and the resulting MVBC
has been deployed in the real train communication network.

Index Terms— Multifunction vehicle bus, train communication
network, model-driven development, IEC-61375.

I. INTRODUCTION

THE train communication network (TCN) enabling secure
and fast data transmission in the entire rail vehicle [28],

[32], [36], has been standardized by the International Railroad
Union and the International Electrical Commission, in the
international standard IEC-61375 [10]. The standard describes
the main roles and communication rules of the network, where
the multifunction vehicle bus controller (MVBC) is defined
as a typical embedded software used for the control of data

Manuscript received June 23, 2016; revised December 28, 2016 and
May 24, 2017; accepted November 11, 2017. Date of publication January 17,
2018; date of current version October 3, 2018. The Associate Editor for this
paper was D. Cao. (Corresponding author: Rui Wang.)

Y. Jiang and H. Liu are with the School of Software, Tsinghua University,
Beijing 100084, China.

H. Song is with the Department of Electrical and Computer Engineering,
West Virginia University, Morgantown, WV 26506 USA.

H. Kong is with the Institute of Science and Technology Austria,
3400 Klosterneuburg, Austria. (e-mail: konghuitsinghua@126.com).

R. Wang and Y. Guan are with the College of Information Engineering, Cap-
ital Normal University, Beijing 100000, China (e-mail: rwang04@163.com).

L. Sha is with the Department of Computer Science and Technology,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2017.2778077

transmission among the equipment (the traction control unit,
air brake electronic control unit and door control unit etc.)
of each individual vehicle, and the real-time protocol (RTP)
is defined as the rules (master-slave communication principle,
data frame format, and timing requirements, etc.) for process
data and message data transmission of MVBC.

Traditionally, from the perspective of industrial practice,
most companies such as Siemens and Duagon develop their
MVBCs by directly writing underlying C and VHDL code
manually according to the description of IEC-61375, accom-
panied with the complex system and physical testing to avoid
defects. Increasingly modern railroad vehicles increased the
functional complexity, which has been divided into class 1 to
class 5 of MVBC in the standard. The higher class number of
the controller means higher function complexity and difficulty
to ensure the correctness through testing. For example, even
the most widely used D113 MVBC of Duagon company
contains some dead logic in the VHDL code for process data
communication and C code for message data communica-
tion [31]. From the perspective of academia, there are many
existing works for the design of MVBC, but mainly focusing
on the novel implementation hardware architecture [13], [21],
[25], [26]. Little research has been conducted to address
the safety issue, and some failures of the communication
function have been reported, resulting in the death of involved
human [33], [35].

A. Proposed Approach

In this paper, we collaborate with the researchers from
China Railway Rolling Stock Corporation (CRRC), and use
formal model-driven development (MDD) approach to estab-
lish a safety-assured implementation of an MVBC prototype
based on the generic reference models and requirements
described in the standard IEC-61375. MDD approach is
a widely used software development method starting from
abstract model construction, to model validation, and end in
automatically code synthesis. We make the following cus-
tomizations 1) the generic models and requirements in the
standard are formalized as timed automata [2] and TCTL
expressions,1 respectively, 2) formally verify 92 requirements
and debug the model with Uppaal [6] until the timed automata
satisfies those TCTL expressions, and 3) automatically gener-
ate C code from the validated model with Times [4], which

1TCTL (Timed computation tree logic) expression is used to specify
properties to be checked with respect to a timed graph. It is interpretation
over continuous computation trees, trees in which paths are maps from the
set of nonnegative reals to system states of the graph [1].

1524-9050 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-2631-9223

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3321

can be compiled and synthesized into a real MVBC chip with
some auxiliary code developed to interface with hardware.
4) use runtime verification to formally verify 26 implementa-
tion level safety requirements and test the consistency between
the execution of the integrated system and the simulation of
the verified model with RMOR [12]. Then, we set up a real
platform, connecting the synthesized MVBC prototype with
the worldwide mostly used MVBC D113 for comparison with
existing MVBC design methods.

B. Main Contribution

Overall contributions of our work are:
1) We propose a safety-assured model driven approach

for the design of MVBC, where safety requirements in
IEC-61375-2 are categorized as the requirements that
can be verified on the abstract formal model, and the
requirements that can only be verified on the synthe-
sized underlying implementation with runtime verifica-
tion technique.

2) We present a detailed case study on formalizing the
generic informal model (ordinary automata, SDL dia-
gram) of IEC-61375-1 into timed automata, validate and
debug the timed automata for correctness, and synthesis
and integrate code. We believe that the approach and
the case study provide a guidance for the future design
of MVBC complying to the standard, or the design of
systems complying with similar standards.

C. Paper Organization

The paper is organized as follows: the MVBC software
and the corresponding safety requirements are introduced in
Section II. Related works about model-driven design and
MVBC design are presented in Section III. Our proposed
safety-assured MDD approach is presented in Section IV,
including formalization of generic model and requirements,
model verification and debug, and code synthesis and integra-
tion with runtime verifier. Experiment results performed on
the communication between the safety-assured prototype and
the widely used MVBC D113 are given in Section V, and we
conclude in Section VI.

II. THE MVBC SYSTEM

A. TCN Topological Overview

The TCN encompasses two buses to interconnect program-
mable equipment onboard rail vehicles for the support of
traction and vehicle control, remote diagnostics and main-
tenance, and passenger information and comfort. The whole
structure of TCN is presented in Figure 1. The first bus is the
multifunction vehicle bus (MVB) which interconnects devices
within a vehicle, a bus optimized for fast response, operating
at 1.5 Mbits on twisted wires or optical fibers. The second
is the wire train bus (WTB) which interconnects the vehicles
of a train, a bus capable of self-configuration, operating over
twisted wires at a speed of 1.0 Mbits. These two buses offer the
same services: 1) cyclic, source-addressed broadcast Process
Data, and 2) on-demand, destination-addressed Message Data.

Fig. 1. Topological view of the MVBC and WTBC in the train communi-
cation network.

Process Data and Message Data is on the same bus in the
devices, but they are transmitted alternately and never together.
With this, the transmission time of the bus is divided into basic
periods, in which it is specified which data is sent.

The multifunction vehicle bus controller (MVBC) imple-
ments the real-time protocol (RTP) to provide the information
exchange of variables (distributed Process Data) and messages
(call/reply and multicast Message Data) based on master-slave
principle. Variables are broadcast in cycles to all devices on
the bus, while the messages are transmitted without real-time
demand. The wire train bus controller (WTBC) implements
the same communication function but with external routing
ability. The MVBC is categorized into five classes according
to their capabilities. The MVBC of class 1 supports the
transmission of Process Data, the MVBC of class 2-4 supports
the transmission of both Process Data and Message Data, and
the MVBC of class 5 extends them with the master ability
to poll and access at least another MVB bus. In this work,
we focus our research on MVBC class 5, which is more urgent
in modern complex applications. Basically, the master MVBC
sends a master frame with a specific address of the variable.
Each participant slave MVBC checks whether the address is
subscribed or not. They will compare their MVBC device
address with the address contained in the master frame. If yes,
the value of the requested variable is encoded into a slave
frame and responded by the subscribed slave MVBC producer.
Then, all other slave MVBC consumers will accept the slave
frame and update the variable.

B. MVBC Communication Function Model

Detailed functions of the MVBC are mainly based on the
real-time protocol (RTP), which defines the rules (master-
slave communication principle, data frame format, and tim-
ing requirements, etc.) for Process Data and Message Data
transmission. The MVBC communication function model is
an abstract representation of these typical behavior rules
of MVBCs, which are well defined in IEC-61375-1.

As presented in Figure 2, the abstract system architecture
model contains the User Application, MVBC State
Controller, and Physical Link Bus. The MVBC
State Controller mainly contains three components:
Master Transfer, Message Sender and Message
Receiver. The components Message Sender and
Message Receiver are responsible for transmitting the
message from a producer to a consumer, and provide the flow
control and error recovery from end to end through a sliding
window. The transmission of message is divided into three
phases with related communication primitives: connection

3322 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

Fig. 2. System architecture model of the MVBC, where communication
primitives are on the arrow.

establishment (Connect Req, Connect Conf, etc.), acknowl-
edged data transmission (Data, Ack, Rcv Data, etc.), and
disconnection (DisConnect Req, DisConnect Conf, etc.). The
component Master Transfer selects a master MVBC
from one of the several MVBCs with bus administrator ability
at the end of a macro period. These three components embody
the core function of an MVBC. The information of the MVBC,
i.e. device address and master frame sequence, is initialized
during deployment. Detailed description about the abstracted
model can be referred to IEC-61375-1.

III. RELATED WORK

A. MVBC Design

During the past decades, many scientists have paid many
efforts to the design and implementation of the MVBC [13],
[21], [26]. In [13], they propose to use materialization of slave
nodes for MVBC on a single chip by using reconfigurable
logic. In [17] and [25], they propose to use some existing
tools such as Simulink to help implement the MVBC, which
is starting from model construction and ending in program-
ming according to the validated model. Most of them focus
on the functional implementation and do not pay attention
to safety assurance under dynamic physical environment.
Besides, there are also some works about verifying the real-
time communication protocol of TCN [15], [16], [19], [27],
they describe some formal methods to verify safety properties
of the communication protocol used in train control system.
But they do not cope with the implementation issue, they
focus on the logic correctness of train communication protocol
only. The engineers from the industrial sources (the Duagon
company, the China CR corporation) report that their MVBC
is developed by directly writing underlying C and VHDL code
manually, accompanied with some testing.

B. Model-Driven Design

Except for the work for MVBC, there are large amounts
of work and various toolkits in the literature supporting
the model driven design of general systems. For example,
SCADE [7] uses SSM as the formal basis, and has been
successfully applied in a variety of applications. While mainly

focusing on embedded software, SCADE currently has little
support for the synthesis of hardware. Simulink [11], [23]
is now widely used with Stateflow as its basis. It presents
strong modeling, simulation and synthesis capability, but
has no formal semantics for comprehensive verification on
safety-critical applications even with the support of Design
Verifier [23]. Except for the two famous industrial frameworks,
Academic tools such as Ptolemy [9] and POLIS [5] do
well in modeling and simulation of heterogeneous systems.
A UML-based approach was proposed to the design of hard
real-time systems, which maps the general UML notations
to a platform-dependent model for code synthesis. However,
those works alone are not suitable for our safety-assured
MVBC design. For example, although SCADE has well-
certified code generator, its verification ability can not support
all safety requirements verified on the model.

C. Safety-Assured Analysis and Design

There are lots of work for safety analysis techniques and
address the safety issue in design [14], [20], [27]. For example,
in [34], they describe an approach to software architecture
design for safety-related systems, mainly focusing on defin-
ing an analytic model to analyze software safety at the
architectural level and presenting the development of safety
tactics. For research on mitigating detail safety requirements,
works [29], [30] propose a novel lease based design pat-
tern, to guarantee proper temporal embedding safety rules
under arbitrary wireless communication faults. They transform
the design pattern hybrid automata into specific wireless
CPS designs. These works perform well at the early stage
of system design, but do not cover the real implementation.

IV. SAFETY-ASSURED APPROACH

A. Design Approach Overview

The overall procedure about the proposed safety-assured
model-driven development of MVBC is presented in Figure 3,
which mainly relies on the formal modeling and analysis
tool Uppaal,2 code generation tool Times,3 and runtime ver-
ification tool RMOR.4 We integrate these tools together to
validate some model verifiable safety requirements on the
Uppaal model of MVBC, automatically generate code from
the verified model, and verify the implementation verifiable
requirement on the integrated system. Details of each step are
presented as follows.

First, the timed automata model is constructed in Uppaal,
according to the architecture and functional description of
MVBC, such as the generic automata model and table pre-
sented in Figure 30 and Table 32 of IEC-611375-1. At the
same time, the model verifiable safety requirements described
in IEC-61375-2 are formalized into the timed computation
tree logic formulas in the format of Uppaal. Then, the safety

2Uppaal is an integrated tool environment for modeling, validation and
verification of real-time systems modeled as networks of timed automata.

3Times is a tool set for modeling, schedulability analysis, synthesis of
schedules and executable code with task extended timed automata.

4RMOR supports monitoring C programs against state machines, using an
aspect-oriented pointcut language to perform program instrumentation and
connect the events occurring in state machines with code fragments.

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3323

Fig. 3. Safety-Assured Design for the MVBC.

requirements can be verified on the constructed model.
We need to revise the Uppaal model until the properties are
satisfied.

Then, we can apply code generators for timed automata
model to generate the underlying code directly. There are lots
of code generators for timed automata, and we choose Times
here [3], [4]. Times is co-developed by the group member of
Uppaal and can generate platform-independent C code, which
keeps the semantics consistency of the original Uppaal model
and can be easily customized to a dedicated hardware platform
with the integration of handwriting glue code. The glue code is
used for the communication with the interface of the hardware,
and the timing mapping and implementation of the generated
code.

Finally, based on the integrated system, we can use run-
time verifier to verify those implementation verifiable safety
requirements related to dynamic runtime situation and uncer-
tain environment. The requirements are formalized as event
definition and state machine property definition based on
the integrated code, in the input format of RMOR. Then,
the original integrated code will be instructed with the gen-
erated verifier for runtime verification, after which, the final
executable system can be deployed.

B. Timed Automata Model Construction

We build a network of timed automata for the MVBC
according to the architecture and functional description, such
as the generic automata model in Figure 30, the function table
presented in Table 32, and the flowchart in Figure 105 of
IEC-611375-1. All the heterogeneous information is unified
translated and encoded into the network of timed automata
manually, which can be formally verified and automatically
synthesized later. Currently, it is not easy to automatically
abstract the timed automata model from the text-based stan-
dard, and the whole construction procedure is manually
accomplished and validated with the help of engineers
from CRRC.

Fig. 4. Generic automata for the sender and receiver module of MVBC.

As presented in Figure 2, there are mainly three modules
contained in the MVBC. We can build a single automaton for
the three modules, but in this way, it is not easy for model
validation. Hence, we build an automaton for each module,
and those automata communicate with each other through
synchronous channels and shared variables. This facilitates
not only the model validation, but also the structured code
generation. Besides, we also need to model some potential
fault factors such as time delay and packet loss of the physical
link bus. Details about the constructed automata are presented
as below.

1) Timed Automata Model for Sender-Receiver: These two
automata model the components Message Sender and
Message Receiver, which implements the real-time com-
munication protocol, and are responsible for safely transmit-
ting the message from an MVBC (producer) to another MVBC
(consumer). The generic models of the two components are
in Figure. 4, and are accompanied with lots of tables and
sequence diagrams in the original standard. For example, both
sender and receiver are in DISC state, the sender of the
producer may send a connect request and transmit to the
SETUP state, and the receiver of consumer keeps listening to
the connect request and transfers to the LISTEN state when the
connect request confirm packet is received. When the sender
of the producer transfers to the SEND state and the receiver of
the consumer transfers to the RECEIVE state, the acknowledg-
ment data transmission starts. LISTEN state represents request
confirmation, SEND_CANC and RCV_CANC states represent
communication cancelation, and FROZEN state represents
normally acknowledgment.

Based on the generic automata and the accompanying
information, we can construct the timed automata. Each state
in the generic automata is mapped to an ordinary location
with the same name. For the packets of sending and receiving
events with actual parameters specified for the control fields,
we use the synchronous channel of Uppaal timed automata
to simulate the communication. Because there are lots of
none interrupt actions and packets associated with a single
generic state while only one synchronous action is allowed to
be attached in a single transition of Uppaal timed automata,
we need to create a set of committed locations, where none
interrupt actions are sequentially encoded into the transitions
among those committed locations. For the attached actions
as described in Table 32 of the standard, they are translated
into the accompanying actions of the Uppaal timed automata
transition. Furthermore, the timing information defined in

3324 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

Fig. 5. Constructed timed automata for the receiver module of the MVBC.

Fig. 6. Constructed timed automata for the sender module of the MVBC.

the standard such as the three timer SEND_TMO (the send
timeout at the producer, initialized as 14), ACK_TMO (the
acknowledge time-out at the consumer, initialized as 25),
and ALIVE_TMO (alive time-out at the consumer, initialized
as 95) are declared as clock variable in the timed automata,
which can be started and reset on the transition. Other para-
meters such as MAX_REP_CNT (maximum value for the
repetition count) are also initialized in the timed automata.
Finally, we can get the two timed automata as presented
in Figure. 5, 6.

We also need to build a channel timed automaton for
the Physical Link Bus component for the communication
between the sender and receiver. Within this channel timed
automaton, the packet transmission delay, packet loss and
packet retransmission can be captured. For example, when
the sender sends the connect request packet through the
send_connect_req! channel, the send_connect_req? will be
synchronized in the channel timed automaton. Then, this chan-
nel automaton will further trigger a rcv_connect_req! channel
with a probability and a time delay, which will then trigger the
synchronous channel rcv_connect_req? in the receiver channel.

Fig. 7. Generic SDL model for the master transfer module of the MVBC.

If the packet is lost, the channel automation will not trigger
the rcv_connect_req! channel. Similar mechanisms can be
constructed for other events and packets, and encoded in this
single channel automaton.

2) Timed Automata Model for Master Transfer: This timed
automaton models the component Master Transfer,
which accomplishes the task that selects a master MVBC
from one of several bus administrators, and ensures mastership
transfer at the end of a turn or upon the occurrence of a
failure. Usually, at the end of a predefined macro period,
current master MVBC will give up control ability, and a
slave MVBC will be rotated in sequence as the new master
to control message communications. The generic model of
the master transfer is described as an SDL(Specification and
Description Language) diagram as abstracted in Figure.7. For
a standby master MVBC, it starts in the Standby_Master
state, keeps listening to the signal of Master_Transfer_Frame
and T_Standby, and transfers to the Regular_Master state.
While for the current master MVBC in control, it starts in
the Regular_Master state, finds a standby master MVBC for
the next period at the end of this turn, and transfers to the
Standby_Master state. More details can be referred to the
description in the standard.

Then, we construct the timed automata based on the generic
SDL diagram. Each state in the diagram is mapped to an
ordinary location. Some plain C codes in the diagram are
translated into the action attached on the transition of two
locations. The event signal is modeled by the synchronous
channel of timed automata, where receiving an event is
denoted as Rcv_Channel? and sending an event is denoted
as Send_Channel!. In case of situations with more than two
signals between two states, we need to add some intermediate
locations of timed automata. Note that, for the clock signal,

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3325

Fig. 8. Refined timed automata for the master transfer of MVBC.

it is issued by itself. Hence, we do not need to translate it
into a synchronous channel. A clock variable with a pre-
defined threshold is declared for each clock signal such as
T_Standby signal (receives no master frames during a time-
out T_standby). Finally, we can get the timed automata as
presented in Figure. 12.

C. Safety Requirements Formalization

The MVBC safety requirements are mainly derived from
the descriptions of the MVBC conformance testing standard
IEC-61375-2, accompanied with some hazard analysis in the
real use of MVBC. For example, there are two safety require-
ments described in natural language as below:

1) Message Transmission: During the acknowledged data
transfer stage, when some packets are lost in the physical
link layer, they should be retransmitted.

2) Master Transfer: During the master transfer procedure,
there is one and only one master MVBC contained in
the train communication network.

The first requirement is related to the correctness of the
acknowledged data transfer stage, where the producer sends
the individual data packet of the message to the consumer. The
consumer side may bundle acknowledgments. For example,
the consumer may acknowledge several packets at the same
time by acknowledging the packet with the highest sequence
number only. When packets fail to be acknowledged, the
producer shall retransmit them. Besides, the consumer may
indicate to the producer that it receives an out of sequence
packet. In this case, the consumer shall send a Negative
Acknowledgment packet, indicating from which packet on
it requires retransmission. For the second requirement, it is
originated from the fact that the mastership can be shared by
two or more MVBCs with administrator ability, which each
exercises mastership for the duration of a turn. Also in case of
failure of a master MVBC, mastership should be transferred
to another MVBC. But it is not allowed that two MVBCs act
as the master in the same time.

In the original development process, the requirements
are tested through simulation as defined in the standard
IEC-61375-2. Although the general methodology and proce-
dures are well specified to test that the implemented MVBC
is confirmed to the function described in IEC-61375-1, the

result is highly dependent on the input patterns of the test
cases, where the coverage of some extreme conditions may be
ignored and hard to be enumerated due the limited number of
input patterns. While in safety-assured development approach,
we try to ensure that the MVBC implementation satisfies
the requirements with formal verification, which is more
rigorously than simulation-based testing.

1) Formalization of Model Verifiable Requirement: These
requirements that are related to general functions of control
logic and independent of the platform are categorized as model
verifiable safety requirements. We formalize the requirements
as timed computation tree logic formulas defined on the formal
model, and verify them on the formal timed automata. Let
us take the two safety requirements described in the natural
language above as an example. The safety hazards of the first
requirement happen during the data acknowledgment process
and the data retransmission process. The safety hazard of
the second requirement happens during the MVBC master
rotation process.

For the retransmission process, we formalize the require-
ment as two properties based on the timed automata presented
in Figure. 5, 6. When the SENDER automaton receives the
rcv_NKi? signal, it will decide whether the sequence i lies
in the legal interval or not. The decision logic is imple-
mented on the guard of transition as (expected < NK_number
≤ send_not_yet). The value of this decision expression is
assigned to a variable N K . At the same time, when the
RECEIVER automaton sends a legal send_NKi! signal and
switches to the SEND_NK state, the SENDER automata
should decide the sequence number i to be true with boolean
evaluation (N K == true) and be able to deliver the
retransmission request. This property is formalized as P1 in
table 1. Another property for the retransmission process is
about rolling back the window of the SENDER automata
in the retransmission process. After receiving the rcv_NKi?
signal, the SENDER automaton will roll back the sending
sliding window and retransmit the previous data packets from
the sequence number i, Which means that the next_send data
packet of the SENDER module must equal to the value of the
NK_number. This property is formalized as P2 in table 1.

In the same way, we can formalize two properties for the
data acknowledgment process of the first requirement and three
properties for the MVBC master rotation process of the second
requirement. All these requirements and their formalization are
presented in Table I. For example, the property P6 means that
in the MVB master and slave rotation process, there may be
inconsistency such that two masters appear at the same time.

2) Formalization of Implementation Verifiable Requirement:
These requirements related with dynamic runtime situation
and uncertain environment are categorized as implementation
verifiable safety requirements. For these safety requirements,
they are not easy to be defined in the abstract timed automata
level, and we use runtime verification technique and formalize
the safety requirements based on the detail implementation
code to verify the correctness. Let us look at the two safety
requirements below, which are described in the natural lan-
guage in the original standard. These two safety requirements
are not easy to be captured in model level, because it is not

3326 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

TABLE I

PROPERTY LIST

Listing 1. Runtime Property Definition for the Time Interval Between the
Master and Slave Frames During the Message Transmission Process

easy to model dynamic transmission delay of data on MVB
bus and dynamic processing delay of hardware platform, even
with a preliminary channel model and clock variable in Uppaal
timed automata.

1) Message Transmission(P8): The suggested time con-
straint on a slave MVBC between the finish of a master
frame receiving and the start of a slave frame responding
should be less than 4us.

2) Message Transmission(P9): The suggested time con-
straint on a master MVBC between the finish of a master
frame sending and the start of a response slave frame
receiving should be less than 42.7us.

We formalize these two safety requirements as the runtime
verification property presented in the Listing 1. We define
some events based on the variables of the generated C code of
Times, which are configured to I/O pins of the real hardware
platform and will be continuously loaded by accompanied C
functions. Then, the property and the accompanied C functions
are transformed and input to RMOR to get the instrumented
code, which can be made as an integral part of the target
generated system, verifying and guiding its execution within
the dynamic environment.

In this way, we can formally verify not only the require-
ments related to general function of control logic but also the
requirements related to the dynamic physical part. Note that,
the Uppaal model verification and RMOR runtime verifica-
tion cooperate together to acquire a higher safety confidence
for safety critical systems. More specifically, we formalize
92 critical model verifiable safety requirements and 29 critical
implementation verifiable safety requirements. The main cri-
teria to distinguish between the two types of requirements
is to find out whether the timed automata model has suf-
ficient information for describing the requirement in TLTL
format or the integrated code has sufficient information for
describing the requirement in RMOR property format. The
timed automata usually rely on the different level of abstrac-
tion(state and variables) and are not detailed enough to specify
some requirements such as time delay restrictions on the
physical bus. Which means that when all elements in the
TLTL formula of the text-based requirements are described
in the timed automata, it is the first type of requirement,
otherwise, it is the second type of requirement. Besides,
there are also several requirements that can not be formalized
such as the requirement of the industrial grade type of the
MVBC hardware chip. These requirements need to be manu-
ally checked or formalized with additional information from
additional sensors.

D. Code Synthesis and Integration

For the code synthesis, automatical code generation tools
can be applied to reduce the hard work efforts of man-
ual implementation, which is also more human error prone.
For example, the engineers from the industrial sources (the
Duagon company, the China CR corporation) report that their
MVBC is developed by directly writing underlying C or
VHDL code manually, where there are still some bugs such as
dead logic. Besides, the automatical code generation facilitates
the traceability between the model and implementation, which
results in better documentations and easier maintains. There
are many code generators for timed automata, and we choose
Times. Times is co-developed by the group member of Uppaal,
which we believe that keep the semantics consistency and
retain the verification benefits of the original Uppaal timed
automata model.

1) Code Generation Algorithm: The code generator takes
as input the XML timed automata representation to produce
executable code. In the generated program, the controller
automata are encoded as four correlated look-up tables (all
transitions in priority order T rans[], current active transitions
in priority order ActiveTrans[], synchronization transitions
SyncTrans[], out transitions from location OutT rans[])
and two functions (guard-function Guard(), assign-function
Assign()). The second table of current active transitions
ActiveTrans[] is dynamic and used to hold the set of
currently active edges. The execution of those lookup tables
are incorporated in Algorithm 1.

The procedure in Algorithm 1 is executed by the controller
thread whenever an event (such as timeout or arrival of
an external event) has occurred. Initially, the list of active

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3327

edges consists of all edges leaving the initial locations. The
procedure scans ActiveTrans[] in priority order and evaluates
the corresponding guards with Guard(Trans). If a guard is
found to be satisfied Guard(Trans) == T rue, there are two
cases. (1) The if branch in line 3 is for no synchronization
Sync(Trans) == False. The assignment is performed and
the information in the table of locations is used to update the
list of active edges ActiveTrans[]. (2) The else branch in
line 9 is for synchronization. The information in the table of
synchronization SyncTrans[] is used to find an active edge
belonging to another control automata with complementary
action label SyncPare(Trans). If such an edge is found
and the guard is true, the compound transition is performed,
where the assignments of the two edges are performed, and
the ActiveTrans[] is updated. Details about the correctness
of the algorithm can be referred to the paper [3].

Algorithm 1 Execution for the Encoded Automata
1: for (each Trans ∈ ActiveTrans[]) do
2: if (Guard(Trans) == True) then
3: if (Sync(Trans) == False) then
4: Assign(Trans);
5: Add(Trans.Dest, OutTrans, ActiveTrans[]);
6: Delete(Trans);
7: Sort(ActiveTrans[], Priority);
8: else
9: if (Guard(SyncPare(Trans) == True)) then

10: Assign(Trans);
11: Assign(SyncPare(Trans));
12: Add(SyncPare(Trans).Dest, OutTrans,

ActiveTrans[]);
13: Add(Trans.Dest, OutTrans, ActiveTrans[]);
14: Delete(Trans);
15: Delete(SyncPare(Trans));
16: Sort(ActiveTrans[], Priority);
17: end if
18: end if
19: end if
20: end for

2) Automata Model Isolation: Before applying the code
generation algorithm, we need to do some isolations on the
model. The isolation is needed because we construct and
initialize the timed automata template for two or more MVBCs
for comprehensive verification, and now need the timed
automata of a single MVBC for code synthesis. The single
MVBC should receive and send packets onto the physical
bus for communication with other MVBCs, and we use the
synchronous channel of Uppaal timed automata to simulate
the communication for the packets of sending and receiving
events.

One way for isolation is to build a general environment
model, which is ready to receive any output synchronization
action from the isolated MVBC and send input synchroniza-
tion action to the isolated MVBC. Then, we can generate
execution code for both MVBC and the general environment,
and manually separate the generated code. Another way for

isolation is to do some reverse engineering, where the synchro-
nization channels denoting the packets of sending and receiv-
ing events are reversed to the general variable. For example,
the synchronization channel rcv_connect_req? can be replaced
by a declaration of boolean variable rcv_connect_req. At the
same time, an evaluation expression rcv_connect_req ==
true should be added to the guard segment, and an assignment
expression rcv_connect_req := true should be added to the
action segment. We use the second way, because it can
be automatically accomplished by parsing and updating the
XML file of the timed automata model, and the second
isolation way is more closed to the real operation scenario
where the sending and receiving packets from the physical
bus are asynchronous. Besides, because the generated code
is tightly coupled as presented in algorithm 1, the manual
separation code of the first way is more error prone.

After that, we also need to add some glue code, which
is mainly used for two functionalities, the interface between
the software and hardware platform, and timing implemen-
tation of the generated code on the hardware platform. For
interface, we just need to initialize some configure mapping
files, mapping the variable of software to the GPIO of the
hardware platform. Accompanied type conversion functions
may be needed. For clocks, let sc be a global system clock.
For each clock x in the timed automata, let xreset be an integer
variable holding the system time of the last clock reset. The
value of the clock is then (sc − xreset), and a reset can be
performed as xreset := sc.

Finally, based on the generated code and the handwriting
glue code, we can formalize the implementation verifiable
requirements as presented in section IV-C. We input the
formalized properties and the integrated code to RMOR to
generate the runtime verifier, and the system integration is
instrumented with the verifier for the runtime verification.
The integrated verifier keeps verifying the safety requirements
on the running executable system. To improve the safety
confidence, we can also formalize some model verifiable
requirement into verifier, with the cost of increasing the
storage overhead of the system.

V. EXPERIMENT RESULTS

In order to evaluate the proposed safety assured design
approach, we apply it to the real design of MVBC with the
cooperation of CRRC. The formalized 92 critical model veri-
fiable safety requirements are verified on the timed automata
and the 29 critical implementation verifiable safety require-
ments are verified during the runtime execution. Furthermore,
we compare the proposed approach with BeagleBone [25]
(an available design framework for MVBC based on Simulink)
and GalsBlock [15] (a framework for general system
design). We mainly compared them in the bug detec-
tion efficiency and the resource consumption of generated
code.

During the requirement verification process, 11 requirement
violates in the model or the implementation level. After
discussion with the engineers from CRRC, 5 requirements
are violated because of the error brought by our modeling
behavior, and 6 requirements (P1, P2, P5, P6, P7 of Table 1,

3328 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

TABLE II

RESOURCE UTILIZATION OF C COMPILATION FOR MVBC, AND THE VERIFICATION EFFICIENCY

Fig. 9. Real platform communication between the safety-assured MVBC and the worldwide used D113.

P8 of Listing 1) are violated because of the error of the
control logic described in the standard. For the second type of
violation, we need to revise the timed automata model as well
as the back end IEC standard according to analysis results of
counter examples.

Let us see the corresponding debugging and correction
process for the violation of property P2. Through the counter
example of Uppaal, the violation is tracked to encoded
C statement {expected := NK_seq_nr; send_not_yet :=
(expected + credit) % 8;} contained in the action of transition
for data retransmission, which is also located in table 33 of
the standard IEC 61375-1. In this buggy scenario, the system
fails to update the value of packet number to be retransmitted.
To fix the bug, the statement needs to be changed to ({expected
:= NK_seq_nr; send_not_yet := (expected + credit) % 8;
next_send := expected;}). The physical problem corresponding
with this bug occurs when the second packet is lost. In that
case, receiver on the MVB controller (consumer) will also
reply with a number asking for retransmission of the lost
packet 2. However, the MVBC (producer) will mistakenly
retransmit packet 3.

In a similar way, we can locate the violation of Property P1,
which is due to the statement of table 33 of the standard
IEC 61375-1. The guard statement should be changed
to (expected ≤ NK_number ≤ send_not_yet) Furthermore,
the violation of P5, P6 and P7 can be traced back to the
handling logic of timeout event and master collision event
described in SDL model of Figure 7. Actually, P5 is the
combination scenario of P6 and P7. For P6, we propose to add
a handshake before standby master changes to regular master
because of the timeout. For P7, when a collision happens,
we propose to withdraw the responsibility of MVB master
controller that is the slave in the previous cycle. For P8, during
the runtime verification after code synthesis and integration,
the runtime monitor reports an error because of TimeoutReply

event. The time is 6.4us, which is greater than 4us. We solve
the problem by changing the time-consuming GPIO operation
of notifying the arrival of the master frame to direct hardware
interrupt, and change the arbitration mechanism for reading
access of register pool for slave master data. So the slave
MVB controller can response more quickly. After revision,
both the model level verification and the runtime verification
reports no violation. Besides, these bugs and ambiguous-
ness have already been submitted and would be revised in
the new version of IEC standard 61375-1. For the Bea-
gleBone verification based on Simulink Design Verifier,
only one bug is detected through verification on the con-
structed Stateflow model, and three bugs are detected through
verification on the constructed GalsBlock model. Further-
more, we test the verification ability of Uppaal, Simulink
Design Verifier and GalsBlock by injecting 10 division-by-
zero errors into the timed automata, Stateflow and Gals-
block model respectively. As presented in table II, the false
negative rate of the proposed approach is zero, while the
rate of Simulink Design Verifier and GalsBlock is 60%
and 20%.

The generated code according to the revised model and
the integrated executable system with the eCos (Embedded
Configurable Operation System) is synthesized. The compiled
binary file is 302 kb, 683 kb and 489 kb for the code
generated by the proposed approach, BeagleBone and Gals-
Block respectively. The difference is mainly derived from
the fact that BeagleBone and GalsBlock generate many extra
configuration files and introduces many libraries for scalabil-
ity. Then, the synthesized binary files for the integrated C
code can be loaded into the ARM_SRAM, and running on
ARM7-STM32F407IGH6 processor. To test the reliability of
the system as well as some requirements that can not be
formalized, we connect the widely-used industrial product
MVBC card D113 with our synthesized MVBC for real-time

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3329

Fig. 10. Constructed timed automata for the receiver module of the MVBC [Enlarged For Review Purpose].

communication. As presented in Figure. 13, the MVBC is
embedded into the industrial computer to receive instructions
from a keyboard. We use the application running on the
industrial computer to monitor communication, and read the
message data from memory. It shows that the communications
and the master transfer logic are not only executed correctly,
but also satisfied with the real-time constraints, as defined in

the standard IEC 61375-2. The product-level MVBC has been
equipped on real test train and deployed in several subways
with accompanied components by CRRC.

Validity Discussion: Currently, there are four limitations to
the proposed safety assured approach. The first threat concerns
the modeling ability of timed automata and the expression
ability of the TLTL formula.

3330 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

Fig. 11. Constructed timed automata for the sender module of the MVBC [Enlarged For Review Purpose].

There are several parameters and properties that are not easy
to be captured in the abstract model level, such as the time
delay of arriving packets through the vehicle bus. We use some
estimated interval to set the value in the model, and make use
of runtime verification to capture those properties that can
be not formalized as TLTL formula online. The second threat
concerns the verification ability of Uppaal. For complex timed
automata model and property specification, it will easily lead
to the well-known state explosion problem. The state explosion
problem exists in most model checking tools, and can be
partially solved by techniques such as symbolic algorithms and
abstraction. Within our work, we can get the verification result
within 12-60 seconds for all verified requirements. We choose

timed automata and Uppaal because they have been well
applied to the modeling and verification of embedded sys-
tem, and the supporting code generation tool Times supports
automatic implementation. If we choose other tools such as
Spin which use Promela as its modeling language, we can do
some verification but there is no automatic code generation
support. The third threat concerns the quality of the code
generated by Times and the glue code. Because Times has
been used and tested in several real projects, we believe
the generated code is correct. If not, we can apply several
existing code analysis tools to enhance the quality. For exam-
ple, Intel inspector, Coverity, Blast, and CMBC are widely-
used C code analysis tools [8], [18], [22], [24] and can be

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3331

Fig. 12. Refined timed automata for the master transfer of MVBC [Enlarged For Review Purpose].

Fig. 13. Real platform communication between the safety-assured MVBC and the worldwide used D113 [Enlarged For Review Purpose].

integrated into our safety-assured approach to enhance our
work.

VI. CONCLUSION

In this paper, we present a formal model-driven engineer-
ing approach to establishing a safety-assured implementa-
tion of MVBC based on the generic reference models and
requirements described in the International Electrotechnical
Commission (IEC) standard 61375. The design part mainly
includes formal model construction, code generation and inte-
gration, and the safety-assured part mainly includes model
level verification and implementation level verification. During
the engineering practice, several logic inconsistencies in the
original standard are detected and corrected. Although we
address the safety assured design of MVBC in this paper,

it is reasonable to apply the proposed approach to other
similar system design. Our future work is to extend the code
generation mechanism of timed automata, and plans to develop
the tool to allow the code generation for the selected part of
the network of timed automata. Another direction is to ensure
the security requirement based on the formal method.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Proc. 5th Annu. IEEE Symp. Logic Comput. Sci. (LICS),
Jun. 1990, pp. 414–425.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[3] T. Amnell, “Code synthesis for timed automata,” Dept. Comput. Sci.,
Uppsala Univ., Uppsala, Sweden, White Paper up-te-11102, 2003.

3332 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi,
“TIMES—A tool for modelling and implementation of embedded sys-
tems,” in Proc. Int. Conf. Tools Algorithms Construction Anal. Syst.,
2002, pp. 460–464.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” Computer, vol. 36, no. 4, pp. 45–52,
Apr. 2003.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
in Formal Methods for the Design of Real-Time Systems. IL, USA:
Springer, 2004, pp. 200–236.

[7] G. Berry, “SCADE: Synchronous design and validation of embedded
control software,” in Proc. Workshop Next Generat. Design Verification
Methodol. Distrib. Embedded Control Syst., 2007, pp. 19–33.

[8] A. Bessey et al., “A few billion lines of code later: Using static analysis
to find bugs in the real world,” Commun. ACM, vol. 53, no. 2, pp. 66–75,
2010.

[9] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A framework for simulating and prototyping heterogeneous systems,”
Int. J. Comput. Simul., vol. 4, pp. 155–182, Aug. 1994.

[10] Train Communication Network, IEC Standard IEC 61375-1, Int. Elec-
trotech. Commission, Geneva, Switzerland, 2011.

[11] G. Hamon and J. Rushby, “An operational semantics for stateflow,” in
Fundamental Approaches to Software Engineering. Pisa, Italy: Springer,
2004, pp. 229–243.

[12] K. Havelund, “Runtime verification of c programs,” in Testing of
Software and Communicating Systems. Springer, 2008, pp. 7–22.

[13] X. Iturbe, A. Zuloaga, J. Jiménez, J. Lázaro, and J. L. Martín, “A novel
SoC architecture for a MVB slave node,” in Proc. 34th Annu. Conf.
IEEE Ind. Electron. (IECON), 2008, pp. 1455–1460.

[14] F. Jahanian and A. K.-L. Mok, “Safety analysis of timing properties
in real-time systems,” IEEE Trans. Softw. Eng., vol. SE-12, no. 9,
pp. 890–904, Sep. 1986.

[15] Y. Jiang et al., “Design of mixed synchronous/asynchronous systems
with multiple clocks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2220–2232, Aug. 2014.

[16] Y. Jiang et al., “Design and optimization of multiclocked embedded
systems using formal techniques,” IEEE Trans. Ind. Electron., vol. 62,
no. 2, pp. 1270–1278, Feb. 2014.

[17] J. Jiménez, J. Arias, J. Andreu, C. Cuadrado, and I. Kortabarria, “Design
methodology for multifunction vehicle bus devices,” in Proc. 5th WSEAS
Int. Conf. Syst. Sci. Simulation Eng., 2006, pp. 352–357.

[18] D. Kroening and M. Tautschnig, “CBMC—C bounded model checker,”
in Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2014,
pp. 389–391.

[19] J.-H. Lee, J.-G. Hwang, and G.-T. Park, “Performance evaluation and
verification of communication protocol for railway signaling systems,”
Comput. Standards Inter., vol. 27, no. 3, pp. 207–219, 2005.

[20] N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE
Trans. Softw. Eng., vol. SE-13, no. 3, pp. 386–397, Mar. 1987.

[21] Z. Li, F. Yang, and Q. Xing, “Design of multifunction vehicle bus
controller,” in Computer and Computing Technologies in Agriculture IV.
Shenzhen, China: Springer, 2010, pp. 177–183.

[22] P. Louridas, “Static code analysis,” IEEE Softw., vol. 23, no. 4,
pp. 58–61, Jul. 2006.

[23] User Manual for Stateflow, Simulink Inc., Natick, MA, USA, 2010.
[24] P. Petersen, “Intel parallel inspector,” in Encyclopedia of Parallel Com-

puting. CA, USA: Springer, 2011, pp. 944–949.
[25] R. Aarthipriya and S. Chitrapreyanka, “FPGA implementation of mul-

tifunction vehicle bus controller with class 2 interface and verifica-
tion using beaglebone black,” Int. J. Sci. Eng. Res., vol. 3, no. 5,
pp. 3221–3225, 2015.

[26] S. G. Shon and H. J. Byun, “Design and implementation of embedded
MVB-ethernet interface,” in Proc. ACM Symp. Res. Appl. Comput., 2011,
pp. 93–96.

[27] H. Song et al., “Safety-assured formal model-driven design of the
multifunction vehicle bus controller,” in Proc. 21st Int. Symp. Formal
Methods, 2016, pp. 757–763.

[28] W. Sun, F. R. Yu, T. Tang, and B. Bu, “Energy-efficient communication-
based train control systems with packet delay and loss,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 9, p. 452–468, Feb. 2016.

[29] F. Tan, Y. Wang, Q. Wang, L. Bu, and N. Suri, “A lease based
hybrid design pattern for proper-temporal-embedding of wireless CPS
interlocking,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 10,
pp. 2630–2642, Oct. 2015.

[30] F. Tan, Y. Wang, Q. Wang, L. Bu, R. Zheng, and N. Suri, “Guarantee-
ing proper-temporal-embedding safety rules in wireless cps: A hybrid
formal modeling approach,” in Proc. 43rd Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2013, pp. 1–12.

[31] D. Wang, F. He, Y. Deng, C. Su, M. Gu, and J. Sun, “Deadlock detection
in FPGA design: A practical approach,” Tsinghua Sci. Technol., vol. 20,
no. 2, pp. 212–218, 2015.

[32] Y. Wang, Y. Song, H. Gao, and F. L. Lewis, “Distributed fault-
tolerant control of virtually and physically interconnected systems with
application to high-speed trains under traction/braking failures,” IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 2, p. 535–545, Feb. 2015.

[33] WIKIPEDIA. (2015). Philadelphia Train Derailment. [Online]. Avail-
able: https://en.wikipedia.org/wiki/2015_Philadelphia_train_derailment

[34] W. Wu and T. Kelly, “Safety tactics for software architecture design,”
in Proc. 28th Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC),
Sep. 2004, pp. 368–375.

[35] F. Yunxiao, L. Zhi, P. Jingjing, L. Hongyu, and S. Jiang, “Applying
systems thinking approach to accident analysis in China: Case study
of ‘7.23’ Yong-Tai-Wen high-speed train accident,” Safety Sci., vol. 76,
pp. 190–201, Jul. 2015.

[36] L. Zhao, B. Cai, J. Xu, and Y. Ran, “Study of the track–train continuous
information transmission process in a high-speed railway,” IEEE Trans.
Intell. Transp. Syst., vol. 15, no. 1, pp. 112–121, Feb. 2014.

Yu Jiang received the B.S. degree in software
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2010 and
the Ph.D. degree in computer science from Tsinghua
University, Beijing, in 2015. He is currently an
Assistant Professor with the School of Software,
Tsinghua university. His current research interests
include domain specific modeling, formal computa-
tion model, formal verification and their applications
in embedded systems.

Han Liu received the B.S. degree in software
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2012. He
is currently pursuing the Ph.D. degree in software
engineering with Tsinghua University, Beijing. His
current research interests include domain specific
modeling, formal verification and their applications
in embedded systems.

Houbing Song received the M.S. degree in civil
engineering from University of Texas at El Paso,
El Paso, TX, USA, in 2006, and the Ph.D. degree in
electrical engineering from University of Virginia,
Charlottesville, VA, USA, in 2012. In 2012, he
joined the Department of Electrical and Computer
Engineering, West Virginia University, Morgantown,
WV, USA, where he is currently an Assistant
Professor. His current research interests include
cyber-physical systems, intelligent transportation
systems, wireless communications and networking,
and optical communications and networking.

Hui Kong received the B.S. degree in mathematics
from Wuhan University, Wuhan, China, in 2001,
and the Ph.D. degree in computer science from
Tsinghua University, Beijing, China, in 2014. He is
currently a Post-Doctoral Researcher with Institute
of Science and Technology Austria, Austria. His
current research interests include domain specific
modeling, formal computation model, formal veri-
fication and their applications in embedded systems,
safety analysis, and the assurance of cyber-physical
system and hybrid system.

JIANG et al.: SAFETY-ASSURED MODEL-DRIVEN DESIGN OF THE MVBC 3333

Rui Wang received the B.S. degree in computer sci-
ence from Xi’an Jiaotong University, Xi’an, China,
in 2004 and the Ph.D. degree in computer science
from Tsinghua University, Beijing, China, in 2011.
She is currently a Lecturer with the College of
Information Engineering, Capital Normal University,
China. Her current research interests include for-
mal verification and their applications in embedded
systems.

Yong Guan received the Ph.D. degree from the
College of Mechanical Electronic and Information
Engineering, China University of Mining and Tech-
nology, China, in 2004. He is currently a Professor
with Capital Normal University. His research inter-
ests include the formal verification of embedded sys-
tem design. He is a member of the Chinese Institute
of Electronics Embedded Expert Committee.

Lui Sha received the Ph.D. degree from Carnegie
Mellon University, Pittsburgh, PA, USA, in 1985.
He is currently a Donald B. Gillies Chair Professor
of computer science with University of Illinois at
Urbana–Champaign. His work on real-time com-
puting is supported by most of the open stan-
dards in real-time computing and has been cited
as a key element to the success of many national
high-technology projects, including GPS upgrade,
the Mars Pathfinder, and the International Space
Station.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

