
PATA: Fuzzing with Path Aware Taint Analysis

Jie Liang∗, Mingzhe Wang∗, Chijin Zhou∗, Zhiyong Wu∗, Yu Jiang∗B, Jianzhong Liu∗, Zhe Liu†, and Jiaguang Sun∗
∗School of Software, Tsinghua University, KLISS, BNRist, Beijing, China

†Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract—Taint analysis assists fuzzers in solving complex
fuzzing constraints by inferring the influencing input bytes.
Execution paths in real-world programs often reach loops,
where constraints in these loops can be visited and recorded
multiple times. Conventional taint analysis techniques experience
difficulties when distinguishing between multiple occurrences
of the same constraint. In this paper, we propose PATA, a
fuzzer that implements path-aware taint analysis, i.e. one that
distinguishes between multiple occurrences of the same variable
based on the execution path information. PATA does so using
the following steps. First, PATA identifies variables used in
constraints and constructs the Representative Variable Sequence
(RVS), consisting of occurrences of all representative constraint
variables and their values. Next, PATA perturbs the input,
matches its RVS with that of the original input, and looks for
value changes to identify the influencing input bytes for each
entry in the RVS. Finally, PATA mutates the corresponding input
bytes to solve constraints in the given path.

To demonstrate the effectiveness of PATA over conventional
taint analysis methods, we evaluated its performance on the
benchmarks Google’s fuzzer-test-suite and LAVA-M against
AFL, MOPT, TortoriseFuzz, VUzzer, Angora, REDQUEEN, and
GREYONE. On Google’s fuzzer-test-suite, PATA outperformed
these state-of-the-art fuzzers by 29%–1830% and 7%–87% in
the number of unique paths found and basic blocks covered,
respectively. More importantly, it found more bugs than the
comparison fuzzers, including 17 unlisted ones. On LAVA-M,
PATA performed the best out of all evaluated fuzzers and found
2602 bugs. On open-source projects, PATA found 40 previously
unknown bugs, with 12 of them confirmed as CVEs.

I. INTRODUCTION

Mutation-based greybox fuzzing is one of the most popular
techniques for mining vulnerabilities [1, 2, 5, 8, 14, 15, 25,
29, 30]. Most mutation-based fuzzers employ an evolutionary
algorithm, which prioritizes inputs that trigger new program
coverage [3, 7, 20, 24, 36]. While the algorithm can determine
the quality of an existing input, mutated inputs are still gener-
ated using random techniques. This blind generation scheme
severely limits the overall performance of such fuzzers.

Recently, taint analysis has gained much interest in assist-
ing fuzzing. Taint analysis improves the mutation quality of
fuzzers by identifying the influencing input bytes of a given
constraint. This allows the fuzzer to focus on these critical
bytes instead of touching all bytes universally. As a result,
fuzzers can explore program logic more efficiently. There are
two mainstream taint analysis techniques, namely propagation
and inference. Propagation-based taint analysis [4, 11, 26, 32]
taints each byte of the input with different labels, then propa-
gates these labels using propagation rules during program exe-
cution. Inference-based taint analysis [6, 17, 22, 34] perturbs

BYu Jiang and Zhe Liu are the corresponding authors.

the input bytes repeatedly and collects the variables’ values
during program execution. If a variable’s value changes, then
there are data dependencies between the perturbed bytes and
this variable. State-of-the-art fuzzers can achieve significantly
better performance and detect many bugs due to taint analysis.

However, over-tainting and under-tainting will incur major
penalties in analysis correctness, and consequently, fuzzing
performance. One of the most prominent causes is path-
unawareness: loops and multiple function call sites may re-
sult in a given constraint being visited multiple times and
influenced by different input bytes in a single execution path.
Despite having well-known control-flow paradigms when ana-
lyzing real-world programs, both aforementioned taint analysis
approaches are error-prone in such scenarios. (1) Propagation-
based taint analysis suffers from over-tainting without path-
awareness. It fails to distinguish between different occurrences
and cannot determine when to clear redundant labels. There-
fore, when the same constraint is visited multiple times, its
label continues to accumulate, resulting in over-tainting. In
the worst case, all input bytes are labeled as critical to one
constraint, which is no help to mutation at all. (2) Inference-
based taint analysis suffers from under-tainting without path-
awareness. First, the byte-level mutation used by this approach
may alter the execution path, resulting in visiting a constraint
for a different amount of times or skipping it altogether. Its
lack of path-awareness may lead to incorrect or incomplete
results. Second, even if the path remains the same across
mutations, the path-unaware inference technique can only
capture each constraint’s value once; therefore, the bytes which
affect other occurrences are missed in the results.

In this paper, we propose a novel path-aware approach for
inference-based taint analysis. Our approach does so using the
following steps.

First, it collects constraint variables that represent program
states along an execution path into a Representative Variable
Sequence. The challenge here is to trace representative vari-
ables reasonably in taint analysis. Because the analysis is
based on variable occurrences, the highest fidelity approach is
to record the states of all variables during execution. However,
the cost to record them is prohibitive, thus sampling must
be used instead. Therefore, a reasonable strategy must be
deployed to trace a subset of all variables, the representative
variables, without compromising analysis precision.

Then, it identifies corresponding critical bytes for each
variable occurrence. During the inference process, the fuzzer
perturbs each byte of an input and monitors the value changes
of variable occurrences to identify critical bytes. However,
the path might deviate from the original path. For example, a

constraint variable might completely disappear or still appear
but with different occurrence counts. The challenge here is
to match variable occurrences correctly when the execution
path change. Therefore, a matching algorithm is required to
correctly match variable occurrences between changed paths.

Finally, it leverages the results of path-aware taint analysis
to guide the fuzzer’s mutation process. The challenge here is
to utilize analysis results effectively to explore other branches
along the original path. During execution, the results of path-
aware taint inference consist of the critical bytes and values
of each variable occurrence. If the results are sufficiently
utilized, the fuzzer’s mutation effectiveness can be improved,
allowing the fuzzer to solve magic bytes checks as well as
other complicated constraints. Thus a mutation strategy is
needed to exploit these results sufficiently.

To address these challenges, we propose PATA, a fuzzer that
implements the aforementioned procedures. 1 PATA collects
constraint variables along paths, by narrowing down the scope
to variables with high impacts to constraints through searching
and increasing the sensitivity to input bytes by backtracking.
2 It then identifies critical bytes by extracting the sub-
sequence for a given variable from the path, matching the vari-
ables and comparing the values before and after perturbation.
3 Finally, PATA mutates critical bytes by employing a path-
oriented mutation to exploit the analyzed results effectively.
PATA tries to explore every uncovered branch in a given
execution path. With the values and features of variables,
PATA selects proper mutation methods on critical bytes to
bypass constraints.

We evaluated PATA on two widely used benchmarks:
Google’s fuzzer-test-suite, which contains a series of real-
world programs, and LAVA-M, which consists of four real-
world programs with synthetic bugs inserted. The results show
that PATA demonstrates excellent performance. On Google’s
fuzzer-test-suite, PATA outperformed seven state-of-the-art
fuzzers (e.g. Angora and GREYONE) by 29%–1830% and 7%–
87% in the number of unique paths found and basic blocks
covered. In addition, PATA was capable of finding more bugs
than others, including 17 unlisted ones1. On LAVA-M, PATA
performed best and found 2602 bugs. We further evaluated
PATA on a diverse set of open-source projects. PATA found
40 new unknown bugs, with 12 confirmed as CVEs.

II. MOTIVATING EXAMPLE

Problem Description. A PNG file consists of a series of
chunks. Figure 1 shows the first two chunks of a simple PNG
file: the image header chunk, IHDR; and the image data chunk,
IDAT. Listing 1 is extracted from libpng. It uses a loop to
determine the type of the chunk. Specifically, libpng first
gets the chunk length and the chunk name (e.g. “IHDR”).
Then it compares the chunk name with predefined values
sequentially until the matched type is found and handles them
with their corresponding logic. Let v1 and v2 represent the
variables at Line 7 and Line 13. For the sample input, as shown
in Figure 2, its path is “v1 → v2 → v1 → v2”. Note that
both constraint variables are visited exactly two times. Due
to the inability to distinguish between a variable’s different

1https://github.com/PATA-FUZZ/pata

1 void PNGAPI png_read_info(structp png_ptr, /*...*/) {
2 // ...
3 for (/*...*/) {
4 png_uint_32 length = png_read_chunk_header(png_ptr);
5 png_bytep chunk_name = png_ptr->chunk_name;
6 // v1 {lhs: chunk_name, rhs: png_IDAT}
7 if (chunk_name == png_IDAT) {
8 if ((png_ptr->mode & PNG_HAVE_IHDR) == 0)
9 chunk_error(png_ptr,"Missing IHDR before IDAT");

10 //...
11 }
12 // v2 {lhs: chunk_name, rhs: png_IHDR}
13 if (chunk_name == png_IHDR) {
14 // ... png_handle_IHDR ...
15 png_ptr->mode |= PNG_HAVE_IHDR;//...
16 } // ...
17 }
18 }

Listing 1. Code snippet extracted from libpng. This example illustrat-
es the necessity of path-awareness in taint analysis. When the for loop is
executed multiple times, the constraint variables v1 and v2 have different
influencing input bytes on different iterations. Path-unaware taint analysis
methods cannot perceive this information, leaving fuzzers with inaccurate
information regarding constraints.

occurrences, propagation-based taint analysis will over-taint
while inference-based taint analysis will under-taint.

0 1 2 3 4 5 6 7 8 9 a b c d e f

000000 89 P N G 0d 0a 1a 0a 00 00 00 0d I H D R

000010 00 00 00 20 00 00 00 20 08 03 00 00 00 44 a4 8a

000020 3c 00 00 00 61 I D A T 78 da dc 93 31 0e c0
… …

Fig. 1. A sample PNG file. It shows the first two necessary chunks: the image
header chunk, IHDR; and the image data chunk, IDAT.

Propagation-Based Path-Unaware Taint Analysis. This ap-
proach taints the input bytes with labels and propagates them
during program execution. The path-unawareness causes it to
over-taint the critical bytes for constraints. Specifically, fol-
lowing the execution path and propagation rules, when dealing
with the first chunk, the labels of bytes at 0x0c–0x0f (“IHDR”)
propagate to v1. But when parsing the second chunk, the labels
of bytes at 0x25–0x28 (“IDAT”) also propagate to v1. Because
the labels for the first occurrence are not cleaned up, v1 has
the labels of all two chunk names. In other words, the bytes at
0x0c–0x0f and 0x25–0x28 will all be considered as its critical
bytes. However, the bytes at 0x0c–0x0f only affect the first
occurrence of v1, and the bytes at 0x25–0x28 only affect the
second occurrence. In more common cases, more consecutive
bytes would be considered as critical bytes. The results make
it difficult for fuzzers to choose appropriate bytes to mutate.

CMP
LHS:IHDR
RHS:IDAT

v2

CMP
LHS:IHDR
RHS:IHDR

v1

CMP
LHS:IDAT
RHS:IDAT

v2

CMP
LHS:IDAT
RHS:IHDR

v3

CMP
LHS:IDAT
RHS:IEND

v1

CMP
LHS:JHDR
RHS:IDAT

v2

CMP
LHS:JHDR
RHS:IHDR

v3

CMP
LHS:JHDR
RHS:IEND

v1

CMP
LHS:IDAT
RHS:IDAT

path

path’

v1

v1

CMP
LHS:IEND
RHS:IHDR

v2

CMP
LHS:IEND
RHS:IDAT

v3

CMP
LHS:IEND
RHS:IEND

V1

V2

D G

Line 11: len < 15

Line 14: buf[10] < 10

Line 16: buf[12] < 10

bug

V1

V2

V3

T

IHDR IDAT v1 v2

Y
v1:IDAT?

v2:IHDR?

v2v1

v1 v2 v1

Path

√ √ √ ×

Path before and after byte-level mutation. Constraint variables which determined by the
match algorithm to be the same occurrence are marked with √.

Input

Before

After

N

N

Y

Input

B1

B2
B3

(a) Control flow graph (b) Input and path before / after byte-level mutation

MISS_IHDR?
Y

N

JHDR IDAT

B4

B5

Error

B6

Fig. 2. When execution paths alter after input perturbation, PATA utilizes a
matching algorithm to determine which constraint variable occurrence after
perturbation matches with a constraint variable occurrence in the original path.
Matched pairs are marked with Xin the figure.

2

Source
Code

Bug
Report

Step 1: Constraint Variable Collection Step 2: Critical Byte Identification Step 3: Path-Oriented Mutation

Conventional
Fuzzing

Candidate
Inputs

Mutated
SeedsRVSs

Critical
Bytes

Representative
Variables

Features

Value-tracking
Binary

Constraint
Identification

Feature Exploit
Mutation

Occurrence
Matching

Feature
Extraction

Byte-level
Mutation

Values

Fig. 3. Design of PATA. 1) In Step 1, PATA collects constraint variables by identifying representative constraint variables and instrumenting the program to
collect paths and construct the Representative Variable Sequence. Each variable’s relevant features are also extracted. 2) In Step 2, PATA identifies critical
bytes by byte-level mutation and occurrence matching. In byte-level mutation, it collects the RVSs consisting of variable occurrences on different runs. PATA
matches the RVSs of perturbed inputs with that of the original input to identify corresponding critical bytes for each variable occurrence. 3) In Step 3,
PATA performs path-oriented mutation. At each entry along the RVS, using the critical bytes for each occurrence, combined with values and detailed features,
PATA selects proper mutation methods to bypass the constraints. Finally, the mutated seeds are passed to conventional fuzzing to explore the program states
and find new bugs.

Inference-Based Path-Unaware Taint Analysis. The con-
ventional approach infers taint information by mutating each
byte and checking whether the value changes. The path-
unawareness causes under-tainting. The key problem is that
only one value for a constraint variable is recorded. The
process of inferring critical bytes for the sample input is shown
in the following steps: 1 Record values: suppose that we
record the latest value of each variable’s occurrence, then after
executing the sample input, the left-hand side values for v1
and v2 are “IDAT” and “IDAT”. 2 Perturb bytes and record
new values: when the byte at 0x0c in Figure 1 is changed
from “I” to “J”, according to Listing 1, the path will change
into “v1 → v2 → v1”. The reason is that the modified chunk
name “JHDR” is invalid, after parsing the valid chunk name
“IDAT”, the error in Line 9 (“Missing IHDR before IDAT”)
is triggered. After executing the mutated input, the left-hand
side values for v1 and v2 become “IDAT” and “JHDR”.
3 Compare values: because the value of v1 is unchanged
while the value of v2 changes, the analysis will consider the
byte at 0x0c as not critical to v1, but critical to v2. However,
this byte is both critical to v1 and v2. More specifically, in
the path “v1 → v2 → v1 → v2”, the byte is critical to the
first occurrences of both v1 and v2, but not critical to their
second occurrences. In more common cases, losing critical
bytes would be more serious. More importantly, differentiating
critical bytes for different occurrences of a single variable is
important for fuzzers to explore more states.
Basic Idea of PATA. PATA performs path-aware taint
analysis which locates critical bytes more accurately.
The analysis process consists of the following steps:
1 Collect the RVS of an execution path. PATA collects oc-
currences of each variable and records their values along
the path into an RVS. Specifically, for the execution path
[v1, v2, v1, v2], their respective left-hand side values are
“IHDR”,“IHDR”, “IDAT”, and “IDAT”. 2 Perturb input bytes
and record the RVSs under these inputs. As Figure 2 shows,
when the byte at 0x0c in Figure 1 is changed from “I” to “J”,
the new occurrence sequence is [v1, v2, v1], and the left-hand
side values are “JHDR”, “JHDR”, and “IDAT”. 3 Match the
variable occurrences between two RVSs. As shown in Figure
2, the first three occurrences of variables, namely v1, v2, and
v1 are matched. The last occurrence of v2 in the original RVS
does not appear in the new RVS. 4 Compare values between

the matched occurrences. The first occurrences of both v1 and
v2 change while the second occurrence of v1 does not change.
As a result, PATA considers the byte at 0x0c as critical to the
first occurrences of both v1 and v2. This byte does not affect
the second occurrence of v1 because the value “IDAT” is not
changed. Continuing the process, PATA can obtain the critical
bytes for each occurrence of all appeared constraints in the
sequence. The results are effective for fuzzing because the
fuzzer can accurately mutate the critical bytes to explore any
neighbor basic blocks it deems interesting along the path.

III. PATA DESIGN

Figure 3 presents the overall design of PATA, which con-
tains three steps: 1) Constraint Variable Collection, 2) Critical
Byte Identification, and 3) Path-Oriented Mutation. The fol-
lowing text in this section will present the details of each step.

A. Constraint Variable Collection

The first challenge in designing path-aware taint analy-
sis is tracing representative variables reasonably. Formally,
a constraint variable is defined as a tuple (V, P), where
V = {V1, ..., Vn} is a set of program variables used in
a constraint, and P is the predicate used in a constraint.
For example, the constraint a > 5 contains one constraint
variable, whose V = {a, 5} and P =′>′ (greater than). To
address this challenge, as shown in Figure 3, PATA identifies
the representative constraint variables and records their values
for each occurrence into the Representative Variable Sequence
(RVS), which consists of all occurrences of representative
variables visited in the execution path. To collect representative
variables, PATA first collects all program variables used in
constraints; for each variable found, PATA increases input
mutation sensitivity by backtracking to its source variables that
are directly influenced by input bytes if needed. Apart from
identification, PATA extracts the variable features to provide
more information for input mutation.

1) Identify Representative Variables: Constraint variables
consist of variables that can influence a constraint directly or
indirectly. To allow for path-awareness, the ideal strategy is to
record all occurrences of encountered constraints variables and
their values. But it is impractical and unnecessary to record
all of them. To reduce the scope for observing value changes,
PATA searches for all constraints in the programs to extract

3

the variables which influence them directly. However, to infer
critical bytes through mutating and monitoring values, the
variables’ value should be sensitive to inputs. In other words,
when inputs have been mutated, their value should be changed.
We denote these variables as representative variables. Con-
straints that take the form of logical operations and byte array
comparisons require special attention.

Logical Operations: Constraints can take the form of logical
operations. In other words, a constraint can be composed of
the conjunction or disjunction of several basic comparisons.
Because the constraint is dependent on other variables, its
value is difficult to change. Even if we observe a change in
the variable’s value, it is difficult for us to mutate the affecting
bytes because the constraint variable supplies little features.
For these constraints, we should backtrack their sources to
identify their dependent variables and obtain rich constraint
features to assist mutation.

For example, the code snippet in Listing 2 is extracted from
the function png_read_info in libpng. The constraint at
Line 2 checks whether the color is a certain type and verifies
whether the chunk PLTE is missing. This constraint is a logical
operation, where its operand is a boolean variable that has only
two possible values. If we directly monitor this variable, it
will be difficult to observe value changes, preventing us from
effectively locating critical bytes. The solution is to backtrack
its source variables. The variable has two source variables, the
first is related to the color type and the second is related to
the state of the chunk parser. Both of the variables are more
directly influenced by the input bytes. For example, when we
take the sample file in Figure 1 as an input, the byte 0x19 in
IHDR chunk determines the color type. By mutating each byte
in the input, we can easily find any value changes and locate
corresponding critical bytes. If source variables are still logical
operations, we need to backtrack their sources recursively.

1 // ... png_read_info ...
2 else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE
3 && (png_ptr->mode & PNG_HAVE_PLTE) == 0)
4 chunk_error(png_ptr, "Missing PLTE before IDAT");
5 // ...

Listing 2. An example for variable identification. The constraint is a logic-
al operation whose value is difficult to change and has fewer features.

Byte Array Comparisons: Programs often use functions to
compare the content of two byte arrays. Similar to logical
operations, its comparison result is difficult to change. Even if
the value changes under input perturbation, directly recording
its result loses the contents which are essential for mutation.
To overcome such constructs, we should check whether a
variable comes from a byte array comparison and record its
compared contents. To support both logical operations and
byte array comparisons, we employ Algorithm 1 to identify
source constraint variables.

Algorithm 1 takes the source code of a program as the
input and outputs a vector of unique representative variables.
It first scans all constraints and transforms them into constraint
variables that influence the constraints directly. These variables
are added to V without duplication. Next, each recorded
constraint variable is checked: if it is a logic operation, we
substitute it with all of its operand sources. If the constraint
uses the results of byte-array compare functions, we substitute

Algorithm 1: Representative Variable Identification
Input : Source code: src
Output : Vector of unique representative variables: V

1 C = scanConstraint(src);
2 for c in C do
3 recordAndTrans(c,V);
4 end
5 while isChanged(V) do
6 for v in V do
7 if isLogicOperation(v) then
8 substitute(v, operands(v));
9 else if isByteArrayFunction(v) then

10 substituteAsByteCmp(v,
parameter(v));

11 end
12 end
13 end

it as a byte-array comparison variable to record its parameters.
Algorithm 1 continues this process until there are no further
changes for V .

2) Extract Features: As constraint variables are identified,
their detailed constraint variable features are also extracted.
Variable features consist of operand features (operand data
type and length), pattern features (constraint category, e.g.
cmp), and block features (dependent basic blocks of a con-
straint). These features supply more information for path-
oriented mutation.

Operand features describe the operand data type and its bit
length. The data type dictates how compilers or interpreters
should handle its corresponding variable. We use three types
to cover all possible cases in real-world programs, namely
integer types, floating-point types, and byte array types. This
allows the fuzzer to deduce precise runtime values when
mutating seeds. In contrast, many other works ignore the data
type and always interpret the operands as integers, which
introduces inaccuracies during seed mutation. Apart from the
data type, operand bit length is another important feature. The
bit length reduces the solution space for fuzzers when solving
some complicated constraints. It is also useful for fuzzers to
determine the relationship between the critical bytes and the
constraint variables like direct copy, i.e. the constraint value
and critical bytes have a one-to-one mapping relationship.

Pattern features describe a constraint variable’s category and
its specific features. A constraint variable possesses one of the
following three patterns, namely cmp, switch, and call.
1 cmp: This is the most common pattern, which generally
has two operands (lhs and rhs) in comparison. Its specific
features consist of two elements: the predicate and whether it
has a constant operand. The predicate describes how operands
are compared. Recording whether a cmp has a constant value
allows the fuzzer to bypass magic-byte-comparison constraints
efficiently. If one of the operands is a constant, we always set it
as the rhs. 2 switch: This pattern matches one expression
with several certain cases. If one of the cases is matched,
the control flow is transferred to the corresponding destination
of the case; otherwise, the control flow is transferred to the
default destination. Each case in a switch comparison is
always a constant, thus we directly record its data type and all
its case values as its specific features. 3 call: This pattern
represents the program call functions to compare two strings

4

or the content of byte arrays. For this category, we record the
actual function name as its specific feature.

Block features record information of the basic block that a
constraint variable belongs to. Given the block features, we
can find the successor blocks of the constraint and determine
its mutation priority with its success blocks’ coverage. Block
features should be extracted along with the variable identifi-
cation to maintain the corresponding relationship.

B. Critical Byte Identification
The second challenge is to match variable occurrences

correctly when execution paths alter during input perturbation.
To address this challenge, PATA locates critical bytes by byte-
level mutation and occurrence matching, as shown in Figure
3. In byte-level mutation, PATA collects the RVSs consisting
of variable occurrences across runs. PATA matches the RVSs
of perturbed inputs with that of the original input to identify
corresponding critical bytes for each variable occurrence.

Critical bytes represent the bytes that influence the value in
a given occurrence of the constraint variable. PATA slightly
mutates each byte of the input to obtain a new RVS and
monitors the value changes. These mutations may result in
the paths deviating from the original path, with the same
constraint variable having different visit counts or being com-
pletely skipped. Directly abandoning these bytes will result in
precision loss. This leads to a dilemma in inferring critical
bytes. One constraint variable might appear several times in
the sequence. If we only record the value of one occurrence
of the constraint variable, we will lose value changes for
other occurrences. But if we monitor each occurrence of one
constraint variable, then when the execution path changes, one
variable might appear in different places in the two sequences.
To further complicate matters, single-byte mutation sometimes
causes the number of occurrences to increase, decrease, or
reduce to zero. Constraint variable mismatches result in the
incorrect inference of critical bytes.

We take the motivating example in Section II which is
extracted from libpng to demonstrate such issues in path
matching. For each chunk in a PNG file, the code snippet
compares its name with predefined values sequentially until
the matched type is found and handles them with their corre-
sponding logic. Suppose we use the sample input in Figure 1
and perturb the byte at offset 0x0c from ‘I’ to ‘J’. Figure 2
presents the execution path before and after the perturbation.
The path changes because libpng does not allow an IDAT
chunk to come before an IHDR chunk and the modified
input triggers the corresponding error checking logic when
dealing with the IDAT chunk. Although the path changes, we
should match the common occurrence of variables, e.g. the
first occurrence of v1 in both sequences.

We propose Algorithm 2 to address this problem. For each
offset in the input, we modify them using each perturbation
method, including bit flipping, incrementing or decrementing
by one, and replacing it with some interesting values. The
intention is to modify the byte by a small amount to maintain
the execution path as much as possible but alter the value
of byte dependent variables. However, some variables may
be unstable, i.e. they may take different values in different
runs with the same input. The algorithm will skip over

Algorithm 2: Critical Byte Identification
Input : Input seed: s, Original path: path,

Unstable variable identifier list: unstable
Output : Hashmap (occurrences→critical bytes): C

1 vseq = getSeqForEachVar(RVS(path));
2 foreach offset ∈ s do
3 foreach perturb method Opd do
4 s′ = perturb(s, offset, Opd);
5 path′ = execute(s′);
6 vseq′ = getSeqForEachVar(RVS(path′));
7 foreach v ∈ vseq.key do
8 if v ∈ unstable then
9 continue;

10 end
11 occurSeq = vseq[v]; occurSeq′= vseq′[v];
12 min len =

min(len(occurSeq),len(occurSeq′));
13 for i = 0 to min len do
14 if value(occurSeq[i]) 6=

value(occurSeq′[i]) then
15 occur = occurSeq[i];
16 C[occur] ∪ = offset;
17 end
18 end
19 end
20 end
21 end

them to avoid over-tainting. By monitoring value changes,
the dependent critical bytes are identified. However, the path
may change under perturbation. To match variables effectively
when the path changes, we introduce a data structure called
the Variable Occurrence Subsequence. It is a map where the
key is the variable identifier and the value is the occurrence
sequence in the path. The algorithm considers the occurrences
in the common prefix that are matched and compares their
values. If the value changes between the matched variables,
the changed byte is inferred as critical to the occurrence.

We demonstrate the aforementioned steps using the example
in Section II. After perturbing the bytes with offset 0x0c,
PATA extracts occurrences of each constraint variable in the
RVS into a subsequence. For v1, the original left-hand side
value of the subsequence is [“IHDR”, “IDAT”], and the
new subsequence becomes [“JHDR”, “IDAT”]. Following the
algorithm, as shown in Figure 2, the two occurrences of v1
are both matched between changed paths. By comparing the
matched values, we infer that the byte at 0x0c is critical to
the first occurrence of v1. This byte is not critical for the
second occurrence because the value “IDAT” is not changed.
Proceeding with the process, PATA can get the critical bytes
for each occurrence of all visited constraint variables in the
RVS. The results are useful for fuzzing because the fuzzer can
accurately mutate critical bytes to explore other branches of
each occurrence along the execution path.

C. Path-Oriented Mutation
The third challenge is to exploit analysis results effectively,

which implicates path-awareness mutation. As shown in Figure
3, PATA employs a path-oriented mutation method to exploit
the analyzed results. For each seed, we can obtain the RVS
consisting of constraint variables and their respective values.
At each entry along the sequence, our objective is to mutate
certain bytes of the input to explore undiscovered program

5

states. Using the critical bytes for each occurrence of con-
straint variables in a sequence, combined with occurrence
values and detailed features, PATA is capable of performing a
more precise mutation than random fuzzing.

We take the example in Section II to show how the mutation
exploits path-awareness to great effect. The sample input has
the occurrence sequence [v1, v2, v1′, v2′] and corresponding
block sequence [B4, B2, B5, B1, B3]. Path-aware taint
analysis discovers the critical bytes for four constraint variable
occurrences as 0x0c-0x0f, 0x0c-0x0f, 0x25-0x28, and 0x25-
0x28, respectively. Along the variable occurrences in the
sequence, the path-oriented mutation performs the following
steps: 1 For v1, it changes the value of 0x0c-0x0f from
“IHDR” to “IDAT” to explore the new path [B5, B6];
2 For v2, it changes the value of 0x0c-0x0f from “IHDR”
to another value like “AAAA” to explore the new path
[B4, B3, B5, B6]; 3 For v1′, it changes the value of 0x25-
0x28 from “IDAT” to another value like “AAAA” to cover the
new path [B4, B2, B4, B3]; 4 For v2′, it changes the value
of 0x25-0x28 from “IDAT” to “IHDR” to execute the path
[B4, B2, B4, B2]. This process relies on path-aware taint
analysis. Because path-unaware taint analysis will regard v1
and v1′ as the same, then it will only infer the bytes 0x25-
0x28 are critical for v1. By mutating them, only one new path
could be obtained: [B4, B2, B4, B3]. Thus, we may lose
bugs that are implicated in other paths.

Algorithm 3: Path-Oriented Mutation
Input : Input seed: s, Path: path,

Critical byte hashmap: C,
Constraint variable features: B,
Coverage tracking program: P ,
Value tracking program: P ′

1 for v ∈ RVS(path) do
2 if isMeaningfulToMutate(v) then
3 if lengthExplore(s,v,B,P) then
4 continue;
5 end
6 cbytes = C[v];
7 if isEmpty(cbytes) then
8 continue;
9 end

10 if copyExplore(s,cbytes,v,B,P) then
11 continue;
12 end
13 if linearSearch(s,cbytes,v,B,P ,P ′) then
14 continue;
15 end
16 randomExplore(s,cbytes,v,B,P);
17 end
18 end

Algorithm 3 presents the overall process of path-oriented
mutation. For each occurrence of constraint variables along
the RVS, we first check whether it is meaningful to solve.
For instance, if all the successor basic blocks of this variable
have been covered or the value of the constraint variable is
not stable, we consider it to be not meaningful. We aim to
solve the unexplored branches of the occurrence. Then we
explore whether the constraint variable is related to the input
length. If so, we will try to increase or decrease input length
to satisfy the constraint. Next, we check whether the critical
bytes for the occurrence have been successfully located. If not,

we skip and proceed with the next constraint. Using the critical
bytes, values, and features of a given constraint variable, we
mutate the input using the following methods in turn: direct
copy exploration, linear search, and random exploration. The
mutated seeds will be passed to a conventional fuzzer to
execute with a coverage tracking binary and examined if they
have triggered new coverage or exhibited abnormal behaviors.
If so, they will be saved for further mutation or anomaly
analysis. If any mutated seeds successfully cover the target
branch, we then move on to the next occurrence in the RVS.

1) Length Exploration: The length of the input is an
important argument for fuzzed programs. Many program states
could only be triggered when the length meets some preset
conditions. However, many conventional fuzzers prefer short
inputs to boost execution speed. In addition, they do not have
the means to identify the relationship between the input length
and the constraint variables. Therefore, they can only rely on
random methods to modify the input length.

PATA obtains detailed features of the constraints variables,
which allows the fuzzer to explore input length related con-
straints. Specifically, length related constraint variables have a
high probability of exhibiting the pattern cmp and switch.
For a cmp constraint variable, if rhs (right-hand side) is a
constant (call back functions always pass the constant value to
rhs), we check whether the value of lhs (left-hand side) equals
the input length. If so, based on the predicate, current length,
and the constant target value, we could precisely append bytes
or delete bytes to reach the expected length. For a switch
variable, we check whether its runtime value equals the length.
If so, we regard each value of its cases as the target value,
calculate the expected length, and append or delete bytes.

2) Direct Copy Exploration: The constraint variable and its
critical bytes might have many complex relationships, one of
which is “direct copy”, i.e. the input bytes are directly used
in constraints variables. Magic numbers and magic bytes are
commonly recognized roadblocks of fuzzing, and exploring
the direct copy is a decisive factor to satisfy them.

Direct Copy Identification. The process of identifying con-
sists of the following steps: 1 transform the operands into a
byte sequence, 2 split the critical bytes into several continu-
ous sections, and 3 find the byte sequence in these sections.
In the first step, the main issue is determining endianness,
i.e. the ordering of bytes in a multi-byte numerical type.
Intuitively, we should use the endianness of the underlying
system. However, we find that many projects differ from the
system endianness. Thus, we transform the operands into both
little-endian and big-endian byte sequences for the following
process. If one of the sequences matches the input bytes, we
record the matched endianness. For simplicity, we also drain
the extra zero bytes in its prefix in the big-endian sequence or
suffix in the little-endian sequence.

The critical bytes reflect the influence of certain input
bytes on the constraint variables. If the operand has a one-
to-one correlation with certain input bytes, then these bytes
are most likely copied in a continuous section from critical
bytes. Consequently, in the second step, we split the dependent
critical bytes into several sections based on continuity. In the
final step, we search the little-endian or big-endian operand
byte sequences in each section. If one such input section

6

is found, then a direct copy relationship is confirmed. If it
appears several times, then all occurrences would be recorded.

More specifically, the identifying process of different con-
straint variables exhibits some differences. For cmp pattern
constraint variables, they generally have two operands (lhs
and rhs) in comparison and a predicate that specifies the com-
parative operation. The constraint feature indicates whether
the constraint has constant values and if so, the callback
function will always put the constant to rhs. In this case, we
directly check lhs. Otherwise, we should check both lhs and
rhs. For switch pattern constraints, their operand runtime
value controls the execution transforms to which case branch.
Because the cases are always constant, we should only check
whether its operand is a direct copy. There are some small
differences in the call pattern constraints. Its operands are
two byte-sequences, so we skip step 1. Because both operands
might be a direct copy, we need to check both.

Expected Value Calculating. The identified direct copy
implies the source of the operands. The next step is calculating
the expected value to cover the target block.

For cmp patterns, the constraint feature indicates the predi-
cate and the operand data type. We can calculate the expected
value by combining the runtime values of lhs and rhs. There
are mainly three cases. 1 rhs is a constant and lhs is a direct
copy of certain input bytes. In this case, we should set the
lhs based on the predicate and operand data type. Using the
code in Listing 3 as an example, assume the runtime value of
lhs and rhs is 13 and 15. From the predicate “less than” of
constraint feature, we get that the condition is satisfied by the
current value because the lhs is less than rhs. Therefore, we
need to calculate the lhs value which is equal to or greater
than rhs. To calculate a greater value, we simply add 1 to the
constant value based on the data type. Consequently, the target
value of lhs is 15 or 16. 2 rhs is not a constant and both lhs
and rhs are direct copies of the input. In this case, we would
regard the rhs as the constant, maintain the value of the rhs,
and only change lhs as we did in the previous case. 3 rhs is
not a constant and only one of the two operands is the direct
copy of the input. In this case, we would regard the operand
which is not copied from the input as a constant and change
the other one as performed in the first case.

1 void Fuzz(char * input, int len) {
2 if(*(uint64_t *)(input) < 15) { /*...*/}
3 }

Listing 3. The left-hand side directly uses the first 8 bytes of the input.

For switch patterns, the constraint features record values
of each case. Each case is a constant, and its predicate could
always be regarded as “equal”, so the expected value is just
the value of each case.

For call patterns, the constraint features indicate the
name of the called buffer comparison functions. We divide
these functions into two categories: 1 comparing whether
the contents of the two buffers are the same, like “bcmp”,
or 2 checking whether the contents of one buffer contains
another, like “strstr”. No matter in which category, when two
buffers’ contents differ, we could use the contents of one buffer
which is not copied from the input as the expected value.

Critical Byte Patching. After calculating the expected value,
we patch the critical bytes to reach the value. Based on the
endianness previously identified, we transform the expected
value into byte sequences and replace the corresponding bytes
in the input with the required values. Sometimes the length of
byte sequences may be longer than the direct copy bytes, but
we still try to replace them for fault-tolerance.

3) Linear Search: Apart from the direct copy relationship,
other input-to-variable relationships are more complex. Among
them, one common and solvable relationship is the monotonic
relationship between the critical bytes and the constraint
variable. In this mutation method, we view the constraint as a
function, whose argument is the vector of critical bytes and the
value is the gap. The gap measures the difference between the
current state and the target state that satisfies the constraint. For
these constraints which could be seen as monotonic functions,
linear search is a practical way to solve them. Although some
functions are not monotonic globally, they may exhibit local
monotonic behavior. Linear search also has the possibility to
solve them under these situations. Even if they can not be
directly solved, linear search is also helpful to find a temporary
seed that is closer to the target value. Based on the temporary
seed, PATA is more likely to cover the targets. Because buffer
comparisons in call pattern constraint variables generally are
hard to view as monotonic functions, we only employ linear
search on cmp and switch pattern constraints.

Algorithm 4: Linear Search
Input : Input seed: s, Critical bytes: cbytes,

Variable runtime value: v,
Constraint variable features: B,
Coverage tracking program: P ,
Value tracking program: P ′

1 gap = getGap(v, B); ops = []; differences = [];
2 foreach b ∈ cbytes do
3 calMoveOperation(b,gap,ops,differences,P’);
4 end
5 scbytes = sortByDifference(cbytes,differences);
6 foreach b ∈ scbytes do
7 op = ops[b];
8 if isStandStill(op) then
9 break;

10 end
11 while True do
12 s = move(s,b,op);
13 v′ = executeGetValue(s,P’);
14 gap′ = getGap(v’,B);
15 if hasSolved(gap′) then
16 executeCheckCoverage(s,P);
17 return;
18 end
19 if gap′ > gap then
20 break;
21 end
22 gap = gap′;
23 end
24 restoreLast(s);
25 end
26 executeCheckCoverage(s,P);

Algorithm 4 illustrates the process of linear search. We
treat each critical byte as an independent variable and linearly
increment or decrement the value of bytes in turn to find a
suitable answer. The process consists of the following steps:

7

i) Calculate the gap. The gap measures the difference
amount between the current value and the target state that will
solve the constraint. For cmp patterns, the gap is calculated
by obtaining the absolute of the difference between lhs and
rhs. For switch patterns, we regard it as multiple constant
cmp patterns. The gap is calculated by obtaining the absolute
difference between the control value and the case values. The
constraint variable feature indicates the data type at runtime,
so we can get the precise type-aware gap value.

ii) Determine the movement operations. Each byte may have
three movement operations: increase, decrease, or standstill.
The next task is to determine the movement operations for
each byte. First, we add or subtract a small value (e.g. 1)
to the byte and calculate new gaps. Second, we compare the
gaps to determine the operation. The basic rule is choosing
the move direction whose gap is smaller both than the other
and the original gap. If neither of them has a smaller gap,
we set the operation as standstill. Sometimes the gap might
be invalid, for example, the variable disappears because of
the path change caused by an earlier conditional statement.
When the invalid gap is compared, we always regard it as
bigger than others. We call the changes for the gap before or
after the operation as the difference. The mutation difference
applied for the standstill operation is always 0.

iii) Sort critical bytes by differences. The bytes whose
differences are greater will move first.

iv) Move and Search. For each byte in the sorted vector,
we move it according to its required operation, acquire the
new value, and calculate the new gap until the gap does not
decrease. If any of the mutated seeds solves the constraint,
we then conclude the process. If the operation of any bytes
is “standstill”, all succeeding bytes are also regarded as
“standstill” because they are sorted, allowing us to short-circuit
to the end of the loop. When the constraint is not solved after
the whole process, we still execute and save the final mutated
input for further mutations.

4) Random Exploration: If all of the previous methods do
not satisfy the constraint, we still try our best to randomly
mutate the critical bytes. The mutation starts with the final
mutated input from linear search. Specifically, we first split
the critical bytes into several sections according to continuity.
For each section, we randomly choose several bytes to mutate,
operations to mutate, and the number of rounds to mutate. The
operations include bit flipping, interesting values replacing,
and arithmetic operation. The mutations might still not pass
the constraint, but its side effect may help PATA find more
uncovered basic blocks.

IV. IMPLEMENTATION

As Figure 3 shows, the constraint variable collector, critical
byte locator, and the path-oriented mutator are the three main
components of PATA. The constraint variable collector is
implemented using LLVM and Clang with over 2000 lines
of C++ code. The critical byte locator and the path-oriented
mutator are implemented along with other necessary fuzzer
components in over 20000 lines of Rust code. Details are
illustrated as follows.

The constraint variable collector is performed based on
LLVM and Clang. PATA modifies the compiler driver (i.e.

clang and clang++) to output LLVM IR (Intermediate Rep-
resentation) and combine all IR files into one module. Then
the module is analyzed to identify basic blocks and produce
a unified intermediate representation. Then, PATA employs
Algorithm 1 to identify variables. Specifically, PATA scans
for constraints by searching and backtracking all “icmp” or
“switch” instructions. In addition, we summarize 9 byte-array
compassion functions, namely “bcmp”, “memcmp”, “mem-
mem”, “strncmp”, “strncasecmp”, “strcmp”, “strcasecmp”,
“strstr”, and “strcasestr”. For these functions, PATA backtracks
and records their parameters as a constraint variable which has
the call pattern. The block features of the constraints are also
extracted at the same time.

The critical byte locator implements Algorithm 2. For a new
input seed, it perturbs each byte with bit flipping, interesting
values replacing, and arithmetic operation. The path-oriented
mutator implements Algorithm 3. For each input seed, it
analyzes along its path and acquires constraint variables that
are meaningful to solve. Then it mutates critical bytes of the
constraint variables with the aforementioned methods.

The collector, locator, and mutator are supported by low-
level components, mainly consisting of the communication
and executor components. The communication component
exchanges information with the target process by sockets and
shared memory. The executor component provides low-level
support for running one input. It implements the “forkserver”
technique for efficiency. The variable value tracking executor
stores the runtime value of each variable occurrence inside the
shared memory, and the coverage tracking executor also places
a counter for basic blocks in it. Apart from the taint analysis
driving algorithm, we also implement necessary components
like the selector and the saver component to manage input
seeds for conventional fuzzing. They follow the algorithm of
AFL: the selector prefers short and fast seeds, and the saver
promotes an input into the corpus if new coverage is observed.

V. EVALUATION

We first evaluated PATA on two widely used benchmarks:
Google’s fuzzer-test-suite which contains a series of real-
world programs and LAVA-M which consists of four programs
taken from binutils inserted with synthetic bugs. Then
we used PATA to test more popular open-source projects
obtained from GitHub. PATA found 40 previously unknown
bugs. Furthermore, we also evaluated the effectiveness of path-
awareness and its overhead to comprehensively understand the
improvements of PATA.

A. Evaluation Setup
Experiment environment. All experiments were conducted

on a machine running 64-bit Ubuntu 18.04 with 80 cores (In-
tel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz) and 320 GiB of
main memory. We ran each fuzzer on each target application in
identical configurations, specifically single-threaded execution
on one CPU core over a period of 24 hours. All experiments
were repeated 5 times.

Compared fuzzers. In our evaluation, PATA was compared
to AFL [36], MOPT [24], TortoiseFuzz [33], VUzzer [26],
Angora [11], REDQUEEN [6], and GREYONE [17]. AFL is a
classic mutation-based greybox fuzzer that many others have

8

extended upon. MOPT and TortiseFuzz are the two most
recent proposed works which are based on AFL. VUzzer,
Angora, REDQUEEN, and GREYONE are compared because
they are the most related works that combine taint analysis
with fuzzing. Since REDQUEEN is targeted at OS kernels, we
use the REDQUEEN mode of AFL++ [16] for fairness. As the
source code of GREYONE is not available, we reimplement
its taint inference, byte prioritization, and conformance-guided
evolution on PATA’s framework.

Initial input seeds. For Google’s fuzzer-test-suite and
LAVA-M, all fuzzers used the same seeds collected from the
data set. When there was no seed available, an empty seed
was used as a fallback option. For real-world projects, we
randomly selected one valid input obtained from the Internet.

Performance metrics. We evaluated fuzzers using three
metrics, namely the number of paths executed, basic blocks
covered, and bugs triggered. Because different fuzzers may
have different representations of fuzzing states, in order to
have a fair comparison, we collected and ran their seeds
generated over the course of evaluation to gather the number
of paths (identified by AFL’s algorithm) and basic blocks
(identified by LLVM tools) to unify these representations.

Another aspect is the number of bugs triggered. The method
of distinguishing unique crashes also varies between different
fuzzers. To have a fair and better comparison, we use the
number of bugs identified from these crashes as a metric. For
LAVA-M, we identify unique bugs by the printed ID when
the bug is triggered. For others, we define a bug as unique
when it has a different call stack when compared to others. We
distinguish bugs that come from crashes in two steps. First, we
collect the triggered crash inputs, re-execute and filter them by
backtracking the call stack. To improve accuracy, we further
analyze the bugs manually to eliminate duplicate entries.

B. Evaluation on Google’s fuzzer-test-suite
To demonstrate PATA’s practical performance, we employ

the real-world project benchmark, Google’s fuzzer-test-suite,
for evaluation. The binaries for all fuzzers except VUzzer
are built with AddressSanitizer (ASAN) [27] enabled. VUzzer
uses non-sanitized binaries because its taint analysis does not
work on binaries compiled with ASAN.

Coverage. Tables I and II show the number of paths and
blocks covered by each fuzzer. PATA found 111%, 63%,
125%, 1830%, 343%, 43%, and 29% more paths, covered
19%, 12%, 21%, 87%, 41%, 7%, and 19% more basic blocks
compared to AFL, MOPT, TortoriseFuzz, VUzzer, Angora,
REDQUEEN, and GREYONE, respectively. These statistics
illustrate that PATA improves performance in most of the
projects on two metrics, especially in paths. To ensure the
findings are not the result of statistical errors, Tables XIII and
XIV also show the p-value between PATA and other fuzzers
regarding the total number of paths and basic blocks for all
projects in 5 repetitions. They show that for most cases, the
differences are significant (p < 0.05). To show their perfor-
mance over an extended period, we also extend the experiment
to 60 hours. Table X and Table XI in Appendix A-F show
that PATA also outperforms other fuzzers. Specifically, PATA
found 101%, 68%, 132%, 2209%, 390%, 66%, and 49% more
paths, covered 21%, 17%, 29%, 101%, 49%, 14%, and 20%

more basic blocks than AFL, MOPT, TortoriseFuzz, VUzzer,
Angora, REDQUEEN, and GREYONE, respectively.

TABLE I
AVERAGE NUMBER OF PATHS OVER 5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

boringssl 380 486 395 164 270 471 486 662
c-ares 25 25 26 27 19 29 35 34
freetype2 2868 6348 3246 60 2868 6452 9460 9045
guetzli 889 1181 763 31 918 587 1317 2006
harfbuzz 3215 4248 2371 137 1729 4415 4488 5578
json 476 519 443 23 260 604 865 995
lcms 210 208 213 12 340 449 179 775
libarchive 1287 2106 1247 79 1089 2073 1598 3752
libjpeg 990 1491 987 26 741 1349 1440 2643
libpng 298 330 323 17 305 377 509 628
libssh 18 18 18 14 14 366 25 484
libxml2 1530 2350 1753 194 725 2705 2409 6101
llvm-libcxxabi 2245 3154 2444 189 658 4818 6128 6753
openssl-1.0.1f 271 303 218 12 39 240 199 408
openssl-1.0.2d 693 623 667 363 366 731 819 851
openssl-bignum 328 346 324 417 370 332 384 388
openssl-x509 876 881 862 843 858 864 939 966
openthread 586 554 585 35 329 859 818 766
pcre2 11598 11586 9794 325 1748 15445 15529 19318
proj4 70 72 66 20 106 204 108 720
re2 1920 1970 1833 285 1012 1964 2827 2811
sqlite 234 246 230 82 172 248 267 300
vorbis 639 776 662 51 578 690 974 1270
woff2 512 517 555 62 7 456 833 827
wpantund 847 2392 959 143 205 1852 1485 1610

Total 33005 42730 30984 3611 15726 48580 54121 69691
Improve 111%↑ 63%↑ 125%↑ 1830%↑ 343%↑ 43%↑ 29%↑ –
p-value 0.006 0.006 0.006 0.006 0.006 0.006 0.006 –

TABLE II
AVERAGE NUMBER OF BASIC BLOCKS OVER 5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

boringssl 2216 2254 2203 2191 2211 2238 2204 2269
c-ares 63 63 64 64 63 64 66 66
freetype2 10700 12719 10770 5908 10258 14372 13311 15325
guetzli 6193 6283 6107 5408 6188 6034 6178 6290
harfbuzz 9373 9827 8702 5763 8280 9665 9546 9924
json 1249 1264 1196 413 1199 1587 1580 1607
lcms 1661 1662 1656 658 2047 2251 1227 2501
libarchive 3494 4320 3222 1191 4460 4181 3195 6295
libjpeg 2367 2718 2339 1213 2321 2511 2393 2822
libpng 1171 1182 1154 677 1336 1392 1194 1413
libssh 898 898 898 898 852 1618 908 1611
libxml2 4342 5140 4625 2587 3650 4958 4356 8243
llvm-libcxxabi 3575 3657 3566 1812 2818 3850 3742 3952
openssl-1.0.1f 4937 4689 4743 896 1974 5098 2220 5094
openssl-1.0.2d 1408 1411 1396 1343 1092 1412 1386 1394
openssl-bignum 1100 1105 1102 1110 1107 1100 1111 1113
openssl-x509 5304 5304 5281 5281 5312 5305 5347 5349
openthread 5562 5592 5536 3238 5124 6798 5628 5619
pcre2 8830 8673 8124 2268 4407 9293 9022 9494
proj4 202 202 209 141 572 717 209 1752
re2 5587 5582 5575 4092 4797 5584 5654 5663
sqlite 1565 1805 1620 1404 1511 1805 1804 1808
vorbis 2030 2056 2001 1292 1885 1957 1942 2071
woff2 2990 2994 2997 2683 632 2991 3058 3061
wpantund 11795 13409 12105 10403 9458 13166 11473 13019

Total 98612 104809 97191 62934 83554 109947 98754 117755
Improve 19%↑ 12%↑ 21%↑ 87%↑ 41%↑ 7%↑ 19%↑ –
p-value 0.006 0.006 0.006 0.006 0.006 0.006 0.006 –

AFL, MOPT, and TortoiseFuzz obtain little information
about the target program. They mutate seeds randomly and
evolve the seed queue guided by coverage. In contrast, PATA
not only recognizes the critical bytes for each occurrence of
constraint variables but also obtains their runtime value. Based
on the dependent critical bytes, dynamic runtime values, and
static variable features, PATA mutates seeds to explore each
uncovered branch in the path effectively. It is noteworthy
that PATA has several projects (e.g. opensssl-1.0.2d,
wpantund) whose number of paths found or basic blocks
covered are close to those of AFL and MOPT. This may
originate from unstable paths in these projects. In most cases,
sending the same input multiple times should take the exact
same path every time. However, the behavior of programs can
be influenced by randomness, e.g. reaction to timing, etc. Thus,
in some of the re-executions with the same input, the path will
be different across runs. PATA skips the input seeds when their
paths are unstable. Consequently, PATA resorts to a normal
fuzzer, and it performs close to AFL and MOPT.

Compared to the other four taint analysis assisted fuzzers
VUzzer, Angora, REDQUEEN, and GREYONE, PATA also has

9

better coverage. The main reason is PATA identifies dependent
critical bytes more accurately with path-aware taint analysis.
VUzzer and Angora may over-taint or under-taint due to
their inaccurate taint analysis approaches. REDQUEEN only
locates direct copies with costly colorization. GREYONE might
less locate or mismatch critical bytes because of multiple
occurrences. In contrast, PATA employs a path-aware taint
analysis. It locates critical bytes based on the value change of
matched occurrences of constraint variables under byte-level
mutation, which overcomes the obstacles for taint propagation.
More importantly, PATA locates dependent critical bytes for
each variable occurrence in the path, avoiding issues caused
by loops or multiple calls. In addition, PATA mutates seeds
with detailed data flow features in multiple ways. For con-
straints that are related to the input length or direct copies,
PATA solves them effectively. For other more complicated
constraints, PATA also searches answers. With the data types
in constraint features, PATA could acquire precise feedback,
which helps it find solutions more effectively.

Bug Triggering. The coverage improvement increases
PATA’s possibility of finding bugs. Table III presents the
number of bugs triggered by each fuzzer. The bugs are
distinguished by comparing the call stack and conducting
manual analysis. According to our statistics, VUzzer could
not find any bugs, Angora only found 2 bugs on 2 projects,
while AFL, MOPT, TortoiseFuzz, REDQUEEN, and GREYONE
triggered 16, 21, 18, 18, and 9 bugs, respectively. PATA found
31 bugs on 11 projects. Google’s fuzzer-test-suite lists some
bugs which could be found for its projects. It is worth noting
that PATA not only found the bugs listed in fuzzer-test-suite,
but also found 1, 1, 5, and 10 unlisted bugs in project json,
libxml2, llvm-libcxxabi, and pcre2, respectively.
Listing 5 in Appendix A-F illustrates the details of one bug in
libxml2 which is only found by PATA. Table XII also shows
that, in the 60-hour-long experiment, PATA triggers 14, 9, 13,
33, 31, 16, and 24 more bugs than AFL, MOPT, TortoriseFuzz,
VUzzer, Angora, REDQUEEN, and GREYONE, respectively.

TABLE III
NUMBER OF BUGS OVER 5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

c-ares 1 1 1 0 1 1 1 1
guetzli 1 1 1 0 0 0 0 1
json 1 1 1 0 0 1 1 2
lcms 1 1 1 0 0 0 0 1
libxml2 1 2 1 0 0 1 0 3
llvm-libcxxabi 4 7 6 0 0 7 1 7
openssl-1.0.1f 1 1 1 0 1 1 0 1
openssl-1.0.2d 1 1 1 0 0 1 0 1
pcre2 4 5 4 0 0 5 4 12
re2 0 0 0 0 0 0 1 1
woff2 1 1 1 0 0 1 1 1

Total 16 21 18 0 2 18 9 31
Increase 15↑ 10↑ 13↑ 31↑ 29↑ 13↑ 22↑ –

The bugs in Google’s fuzzer-test-suite are complicated and
do not have many common features. VUzzer did not find
any bugs for two reasons. First, it does not support ASAN,
so it could not detect any bugs outside of program crashes.
Second, the relatively low coverage caused by the inaccurate
taint analysis limits its ability to trigger bugs. In real-world
projects which do not have as many magic bytes or values,
random mutation also works well. This randomness allows
AFL, MOPT, and TortoiseFuzz to trigger crashes with higher
probabilities. Different from the AFL-family fuzzers, Angora
only uses gradient descent on critical bytes to mutate inputs.

Its mutation method is more deterministic, which restricts
its ability to trigger crashes. REDQUEEN is able to solve
direct-copy-related constraints. But it experiences difficulties
in finding bugs behind constraints of other types. GREYONE
cannot distinguish between variable occurrences, thus it may
locate inaccurate critical bytes.

In contrast, PATA is more effective in triggering bugs.
First, PATA utilizes path-aware taint analysis to locate more
accurate critical bytes for each occurrence of a given constraint
variable. Second, its path-oriented mutation tries to maximize
the exploitation of one input by exploring all neighboring
branches along the input’s path. Covering more program logic
correlates to having more chances of triggering crashes and
finding bugs. Furthermore, PATA can still resort to random
mutation, which increases the randomness and the possibility
of triggering crashes. From the statistics, we conclude that
PATA is not only able to improve coverage statistics, but also
improves the possibility of triggering bugs.

C. Evaluation on LAVA-M
LAVA-M is an artificially constructed benchmark intended

for evaluating the effectiveness of fuzzers, which has been used
to evaluate many fuzzers such as VUzzer and Angora. It injects
a large number of realistic bugs into four GNU coretuils
programs: base64, md5sum, uniq, and who. Each injected
bug is assigned a unique ID and the ID is printed when the bug
is triggered. Evaluating on LAVA-M demonstrates the ability
of fuzzers to explore program state space and trigger bugs.

Tables VII and VIII in Appendix A-D present the number
of paths and basic blocks covered by fuzzing four projects
in LAVA-M. They show that PATA performs the best in
all four projects. On the LAVA-M data set, PATA executed
149%, 126%, 156%, 446%, 146%, 32%, and 6% more paths,
found 68%, 68%, 68%, 67%, 12%, 7%, and 56% more basic
blocks than AFL, MOPT, TortoriseFuzz, VUzzer, Angora,
REDQUEEN, and GREYONE, respectively.

Table IV shows the range for the number of bugs detected
by each fuzzer in 5 runs. The results show that PATA is more
efficient in finding bugs in LAVA-M than other fuzzers. Specif-
ically, PATA found 2593, 2564, 2593, 2474, 361, 2, and 1
more bugs than AFL, MOPT, TortoriseFuzz, VUzzer, Angora,
REDQUEEN, and GREYONE, respectively. Additionally, PATA
found these bugs very quickly. For base64, md5sum, and
uniq, PATA found all listed bugs in less than 5 minutes.

Different from real-world programs, the bugs artificially
injected in LAVA-M are triggered when their guarded magic
value constraints are solved. Most of these constraints only
occur once. In such a situation, random mutations of AFL,
MOPT, and TortoiseFuzz cannot generate magic values and
trigger bugs effectively. VUzzer utilizes taint analysis to find
more bugs than AFL, MOPT, and TortoiseFuzz. However, its
instruction-level dynamic taint analysis might be rather slow
and inaccurate. Angora, REDQUEEN, and GREYONE perform
better than VUzzer to find bugs in LAVA-M. In particular,
REDQUEEN and GREYONE found almost all of the bugs in
LAVA-M. This is because they can find more accurate critical
bytes. These constraints are almost all related to magic bytes
which come from direct copies. However, they will still suffer
from over- or under-tainting for other constraints in more

10

TABLE IV
NUMBER OF BUGS (ACCUMULATED AND RANGE) DETECTED BY VARIOUS FUZZERS IN 5 RUNS WITHIN 24 HOURS

Project Listed bugs AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

base64 44 5 [3,5] 25 [10, 25] 4 [3, 4] 29 [19, 20] 46 [44, 46] 48 [44, 48] 48 [45, 48] 48 [48, 48]
md5sum 57 1 [0,1] 1 [0, 1] 0 [0, 0] 42 [18, 31] 54 [52, 54] 61 [54, 61] 61 [51, 61] 61 [57, 61]
uniq 28 0 [0,0] 3 [1, 3] 2 [0, 2] 27 [25, 26] 29 [28, 29] 29 [23, 29] 29 [26, 29] 29 [29, 29]
who 2136 3 [1,3] 9 [6, 9] 3 [2, 3] 30 [10, 13] 2112 [808, 2112] 2462 [1957, 2462] 2463 [2250, 2463] 2464 [2273, 2464]

Total 2265 9 38 9 128 2241 2600 2601 2602
Increase – 2593↑ 2564↑ 2593 ↑ 2474↑ 361↑ 2↑ 1↑ –

complex projects (e.g. programs from Google’s fuzzer-test-
suite) because of path-unawareness.

PATA shows better performance than other fuzzers. With
path-aware taint analysis, it identifies critical bytes more
accurately. Based on path-oriented mutation, PATA is quicker
to cover more states, solve the guard constraints, and trigger
more bugs in LAVA-M. However, it is worth mentioning that
the evaluation of fuzzers on LAVA-M might be less close to
reality than on Google’s fuzzer-test-suite, because all its bugs
are inserted artificially, and each original project in LAVA-M
contains less than one thousand lines of code.

D. Fuzzing Real-world Programs
We use PATA to fuzz more projects obtained from GitHub.

Our statistics show that PATA delivers excellent performance.
In total, it found 40 unknown bugs, in which 12 bugs have
been assigned CVEs, as shown in Table V. We also used other
fuzzers to test these projects but they only find a proportion
of these bugs, as shown in Table IX in Appendix A-E.

TABLE V
THE BUGS DETECTED BY PATA

Project Bugs CVEs Bug Type

bigint 1 - segmentation fault
bitmap 1 1 segmentation fault
cyclonedds 9 - buffer overflow, segmentation fault
ffjpeg 1 1 floating point exception
genann 2 2 buffer overflow, segmentation fault
jpeg encoder 3 2 buffer overflow, segmentation fault
jpeg-compressor 6 2 buffer overflow
json 1 1 buffer overflow
libconfig 3 - memory leak
libucl 1 - assertion failure
libpng 3 2 memory leak, segmentation fault
lightmatrix 3 - buffer overflow, segmentation fault
mxml 3 - buffer overflow, segmentation fault
pdfalto 1 1 buffer overflow
SmallerC 1 - buffer overflow
xml2json 1 - memory leak

Total 40 12 -

Some of these bugs are hard to find. Let us use a memory
leak bug found in png2pnm of libpng as an example, as
shown in Listing 4. The bug is triggered when the constraint
in Line 10 is passed through but the previously requested
rpointers (Line 5) memory is not released. The constraint
variable in Line 10 occurs multiple times, which is difficult
for taint-based fuzzers to find the precise bytes in inputs in
practice. Although solving the constraint seems to be trivial,
with more or fewer bytes marked as critical, hardly can path-
unaware fuzzers mutate the bytes efficiently and find this bug.

We also use AFL, MOPT, TortoriseFuzz, VUzzer, Angora,
REDQUEEN, and GREYONE to fuzz this program, but they
could not trigger this bug. Figure 4 illustrates the growing
trends of the number of paths executed and basic blocks cov-
ered over 5 runs of 24-hour experiments. Based on path-aware

1 if (setjmp (png_jmpbuf(png_ptr))) {
2 png_destroy_read_struct(/*...*/);
3 return FALSE; // <= Memory leak happens
4 } // ...
5 if ((rpointers = (png_byte **)
6 malloc (/*...*/) == NULL) {// Allocate memory ...
7 } // ...
8 for (j = 0; j < pass; j++) {
9 for (i = 0; i < image_height; i++) {//...

10 if (length > buf_state->bytes_left) {
11 //Jump to Line 3 but rpointers is not released
12 png_error(png_ptr, "read error");
13 } //...
14 }
15 }

Listing 4. A memory leak detected by PATA.

taint inference, PATA performed better than other fuzzers and
remained ahead most of the time on both metrics. In addition,
the shaded areas of PATA are small, which represents that
PATA performs more stable than other fuzzers.

10-1 100 101 102 103 104 105

Time (s)
0

50

100

150

200

250

300

350

N
um

be
r o

f p
at

hs

10-1 100 101 102 103 104 105

Time (s)
400

500

600

700

800

900

1000

1100

1200

N
um

be
r o

f b
as

ic
bl

oc
ks

PATA
AFL

MOpt
TortoiseFuzz

VUzzer
Angora

Redqueen
GreyOne

Fig. 4. The growing trend of the number of paths executed (left) and
basic blocks covered (right) when fuzzing png2pnm by PATA, AFL, MOPT,
TortoriseFuzz, VUzzer, Angora, REDQUEEN, and GREYONE over 5 runs in
24 hours. Displayed are the median and the 95% confidence intervals.

E. Effectiveness of path-aware algorithms

To evaluate the effectiveness of path-aware taint analysis,
we implemented PATA-unaware, a weaker version of PATA
with path-aware algorithms disabled. Note that path-aware
taint analysis provides fundamental information for the path-
oriented mutation such as byte position; the tightly-coupled
nature requires us to disable them altogether. We evaluated
PATA and PATA-unaware in Google’s fuzzer-test-suite 24
hours for 5 times.

Table VI shows the average results for the number of paths,
basic blocks, and bugs. It illustrates that path-awareness helps
PATA execute 71% more paths, cover 20% more branches,
and find 210% more bugs than the path-unaware version.
Path-awareness enables precise analysis and efficient mutation.
When analyzing the critical bytes, path changes in byte-
level mutation can be detected to prevent under-tainting, and

11

TABLE VI
NUMBER OF PATHS, BASIC BLOCKS, AND UNIQUE BUGS OVER 5 RUNS IN

24 HOURS FOUND BY PATA-UNAWARE AND PATA

Project Number of Paths Number of Basic Blocks Number of Bugs
PATA-unaware PATA PATA-unaware PATA PATA-unaware PATA

boringssl 646 662 2263 2269 0 0
c-ares 35 34 66 66 1 1
freetype2 4453 9045 11120 15325 0 0
guetzli 1824 2006 6284 6290 1 1
harfbuzz 5336 5578 9896 9924 0 0
json 992 995 1607 1607 2 2
lcms 211 775 1658 2501 0 1
libarchive 2960 3752 4474 6295 0 0
libjpeg 2047 2643 2694 2822 0 0
libpng 573 628 1204 1413 0 0
libssh 24 484 895 1611 0 0
libxml2 1375 6101 4296 8243 1 3
llvm-libcxxabi 6735 6753 3913 3952 1 7
openssl-1.0.1f 407 408 4491 5094 1 1
openssl-1.0.2d 839 851 1389 1394 0 1
openssl-bignum 388 388 1111 1113 0 0
openssl-x509 923 966 5348 5349 0 0
openthread 777 766 5642 5619 0 0
pcre2 4637 19318 5591 9494 1 12
proj4 110 720 204 1752 0 0
re2 2813 2811 5647 5663 1 1
sqlite 303 300 1808 1808 0 0
vorbis 698 1270 1946 2071 0 0
woff2 717 827 2980 3061 1 1
wpantund 868 1610 11243 13019 0 0

Total 40691 69691 97770 117755 10 31
Improvement – 71%↑ – 20%↑ – 210%↑

multiple occurrences of one constraint can be identified to
prevent over-tainting. With more precise taint inference than
conventional fuzzers, PATA mutates efficiently and explores
each possible undiscovered state along the path.

F. Overhead of path-awareness

Figure 5 shows the time increase ratio of analyzing one
input seed for path-aware and unaware taint analysis. It shows
that path-awareness introduces about 38% of runtime overhead
on average. The phenomenon can be demonstrated by the
positive correlation between analysis time and overall results.
For example, PATA uses about 64% more time to analyze
a seed for pcre2, but the more precise analysis brings
about 70% more basic blocks. Moreover, the path-aware taint
analysis is only invoked when a new input seed is found. So
it is valuable to conduct a precise analysis.

0

50

100

150

200

250

Ti
m

e(
s)

aware unaware

0

10

20

30

40

50

60

aware unaware

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0%

10%

20%

30%

40%

50%

60%

70%

Fig. 5. The increment in the duration of analyzing one input speed brought
by the path-aware algorithm.

Figure 6 shows the breakdown of time consumption on the
three steps of PATA for processing a new input seed. On
average, the time consumption of Step 1 (constraint variable
collection), Step 2 (critical byte identification), and Step 3
(path-oriented mutation) account for about 31%, 55%, and
14%, respectively. Constraint variable collection is conducted
before fuzzing. It has a sublinear relationship regarding the
total instructions of the program. Critical byte identification
is only invoked when a new input seed is discovered. It has
a linear relationship regarding the input length. Based on
the more accurate critical bytes analyzed by path-aware taint
analysis, path-oriented mutation mutates input more precisely
and spends only about 14% of the time.

0

2

4

6

8

10

12

14

16

18

20

Step 1:Collecting constraint variables Step 2: Locating critical bytes Step 3: Path-oriented mutation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Step 1:Collecting constraint variables Step 2: Locating critical bytes Step 3: Path-oriented mutation

废了的1

第二次汇总

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Step 1:Collecting constraint variables Step 2: Locating critical bytes Step 3: Path-oriented mutation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Step 1:Collecting constraint variables Step 2: Locating critical bytes Step 3: Path-oriented mutation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Step 1: Constraint Variable Collection Step 2: Critical Byte Identification Step 3: Path-Oriented Mutation

Fig. 6. The time consumption of Step 1: Constraint Variable Collection, Step
2: Critical Byte Identification, and Step 3: Path-Oriented Mutation.

Figure 7 presents the length of tracked and modified bytes
compared to the length of the original input. The blue region
represents the bytes that need to be modified and the orange
represents others. On average, the proportion of the critical
bytes for each constraint is about 3% of the input length,
which means only a small part of the inputs is modified
by PATA. As a result, although distinguishing paths does
introduce overhead, it improves the precision of the mutation
and overall performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Modified bytes Other bytes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Modified Bytes Other Bytes

Fig. 7. The length of tracked and modified bytes compared to the length of
the original input in projects of Google’s fuzzer-test-suite.

VI. DISCUSSION

Our approach demonstrates good performance and effec-
tiveness. However, there are still some potential factors that
might limit the use of PATA in practice. First, an input might
execute a long path. For some large projects, collecting paths
may be resource-prohibitive. To overcome the problem, PATA
could be configured in a more flexible way. For example, we
can only record the constraint variables that have uncovered
branches. In this way, all the monitored variables are meant
to improve coverage. Second, the inputs might be very long.
Long inputs may cost a lot of time for PATA to analyze the
critical bytes. PATA mitigates this problem in three aspects. (1)
PATA trims the input before analysis to reduce the input length
but maintain its coverage. (2) PATA prefers short inputs. Long
inputs will get processed with a low priority. (3) The mutation
of PATA will not expand the length of existing inputs unless
their lengths are related to some constraints. Finally, some
constraints might be too hard for fuzzers to bypass by mutating
but appear many times. Repeated mutation of these constraints
costs resources but yields no gains. PATA adds their constraint
variables to a blacklist to skip them when they are not solved
many times.

The complex constraints along the path hinder the fuzzer
from exploring more program states. The complexity can
be explained by 1) the length of critical bytes, and 2) the
complexity of transformations of these bytes. First, PATA
employs path-aware taint analysis to locate critical bytes

12

accurately, reducing the length of critical bytes caused by over-
tainting. Second, PATA obtains more data flow features and
tries to utilize them to explore each unexplored state along the
path. For direct copies (17% of all constraint occurrences as
Figure 10 shows), PATA’s fast path handles them directly. For
other cases, PATA could still handle them with linear search.
However, some constraints might be still too hard to address.
With limited critical bytes, combining symbolic execution
[9, 10, 12, 21] like SAFL [31], Driller [28], QSYM [35] and
DeepFuzzer [23] might be a choice to solve them. Currently,
PATA does not support binary fuzzing. Nevertheless, our
solution is performed on LLVM bitcode. By utilizing some
tools (like Mcsema [13]) that can transform binaries to LLVM
bitcode, PATA could still work when only already compiled
binaries are available.

In this paper, we implement a path-aware taint inference.
Taint inference is more suitable for fuzzing because it is
fast and scalable to most programs. Nevertheless, it is also
possible to integrate path-awareness into taint propagation.
Specifically, instead of accumulating labels, the method should
save unique labels for each occurrence. However, taint labels
may take up a large amount of space. Thus saving labels for all
occurrences would create substantial overhead. For example,
VUzzer represents taint labels with a compressed bit-set data
structure where each bit corresponds to an input byte. The size
of labels would be large when the input bytes have a complex
pattern and cannot be effectively compressed. When labels of
all occurrences are recorded, the consumption is rather large.

VII. RELATED WORK

A. Taint Propagation Based Fuzzers

Taint propagation is leveraged by many fuzzers [32, 18,
19, 26, 11] to determine which part of the input should be
modified. Some works focus on locating the bytes which
are used in security-sensitive operations. TaintScope [32] and
BuzzFuzz [18] both use taint tracking to identify the input
bytes that are used in sensitive systems or library calls and then
focus on modifying such bytes. Dowser [19] performs taint
propagation to figure out which parts of the input influence
memory access in the target location. Other works focus on
using taint propagation to guide fuzzing mutation. VUzzer [26]
concentrates on guiding fuzzing to pass magic value val-
idations. It tracks branches that compare variables against
constants to identify critical bytes. By mutating critical bytes
with collected immediate values, VUzzer generates inputs
that are more likely to satisfy the constraints. Angora [11]
concentrates on guiding fuzzing to solve the constraints and
expand branch coverage. It utilizes the byte-level taint analysis
to locate the bytes which flow into branches. Then it mutates
these bytes with a gradient descent algorithm.

Different from taint propagation-based fuzzers, PATA infers
taints with path-awareness. PATA distinguishes different oc-
currences of one constraint, which will not over-taint because
of loops or multiple calls. Based on accurate critical bytes
and occurrence values along the path, PATA mutates inputs
and explores program states more efficiently.

B. Taint Inference Based Fuzzers

Many fuzzers [34, 6, 17] apply various mutation-based
techniques to infer taints and boost fuzzing. They infer the
dependence between bytes and constraints based on program
state changes when mutating certain bytes. Some works infer
the dependence based on control flow changes. ProFuzzer [34]
conducts byte-level mutation and monitors the path changes.
It groups the bytes which have the same exception path
to probe the input fields (e.g. raw data or off-size). Then
ProFuzzer mutates each field to trigger crashes and get more
coverage. REDQUEEN [6] focuses on solving magic values and
checksums in fuzzing. It colorizes an input seed by replacing
each input byte with random bytes as many as possible but
reserves the execution path. Only monitoring control flow
changes is coarse-grained, thus some recent works infer taints
based on value changes. GREYONE [17] stores the values of
variables used in path constraints in a bitmap. It mutates seeds
and checks value changes to infer taints.

In this paper, we propose a path-aware taint analysis that
infers taints based on fine-grained value changes. Compared to
REDQUEEN which uses colorizing, PATA discovers the critical
bytes for constraints with path-aware taint analysis directly.
Thus PATA could identify direct copies more effectively.
Different from GREYONE which only records one value for a
variable in a bitmap, PATA distinguishes different occurrences
of one variable and records the value of each occurrence.
When the value of one occurrence is changed, PATA cap-
tures it to avoid under-tainting because the value of other
occurrences may not change. Furthermore, besides monitoring
value changes, PATA is also aware of path changes, which is
useful to avoid taint mismatching. Based on the critical bytes
inferred for each node along paths, PATA efficiently mutates
these bytes to explore uncovered branches.

VIII. CONCLUSION

This paper presents PATA, a novel fuzzer that aims to
increase program coverage with path-aware taint analysis. It
first identifies variables used by constraints and collects RVSs
by recording values of each occurrence of these variables.
Then it infers critical bytes for each constraint variable oc-
currence in the RVS by analyzing runtime values. Finally, it
employs a path-oriented mutation. Along the path of the input,
it precisely mutates critical bytes of constraint variables by
combining variable features and occurrence values to explore
the uncovered states. PATA outperforms several state-of-the-
art fuzzers on Google’s fuzzer-test-suite and LAVA-M in both
coverage and bug triggering. In more widespread tests on real-
world projects, PATA finds 40 unknown bugs, with 12 of them
confirmed as CVEs.

IX. ACKNOWLEDGEMENTS

This research is sponsored in part by the NSFC
Program (No. 62022046, U1911401, 61802180), National
Key Research and Development Project (Grant No.
2019YFB1706203, No.2020AAA0107700), Key Research
and Development Project in JiangXi Province (Grant
No.20171ACE50025), NSFC Program in JiangSu Province
(No.BK20180421).

13

REFERENCES

[1] Microsoft Security Risk Detection (”Project
Springfield”). https://www.microsoft.com/en-us/
research/project/project-springfield/, 2015. [Online;
accessed 26-January-2018].

[2] Continuous fuzzing for open source software.
https://opensource.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html, 2016.
[Online; accessed 26-January-2018].

[3] libFuzzer in Chrome. https://chromium.googlesource.
com/chromium/src/+/master/testing/libfuzzer/README.
md, 2017. [Online; accessed 12-November-2017].

[4] DataFlowSanitizer. https://clang.llvm.org/docs/
DataFlowSanitizer.html, 2020. [Online; accessed
27-July-2020].

[5] Abhishek Arya, Oliver Chang, Max Moroz, Martin
Barbella, and Jonathan Metzman. Open sourcing
clusterfuzz. https://opensource.googleblog.com/2019/02/
open-sourcing-clusterfuzz.html, 2019.

[6] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In NDSS, volume 19,
pages 1–15, 2019.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–
1043. ACM, 2016.

[8] Foster Brereton. Binspector: Evolving a secu-
rity tool. https://blogs.adobe.com/security/2015/05/
binspector-evolving-a-security-tool.html, 2015.

[9] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
OSDI, volume 8, pages 209–224, 2008.

[10] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary code.
In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 380–394. IEEE, 2012.

[11] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[12] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. ACM SIGPLAN Notices, 46(3):265–
278, 2011.

[13] Artem Dinaburg and Andrew Ruef. Mcsema: Static
translation of x86 instructions to llvm. In ReCon 2014
Conference, Montreal, Canada, 2014.

[14] Joe W Duran and Simeon Ntafos. A report on random
testing. In Proceedings of the 5th international con-
ference on Software engineering, pages 179–183. IEEE
Press, 1981.

[15] Michael Eddington. Peach fuzzing platform. Peach
Fuzzer, page 34, 2011.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++: Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offensive

Technologies (WOOT 20), 2020.
[17] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,

Xiaojun Qin, Dong Wu, and Zuoning Chen. Grey-
one: Data flow sensitive fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX
Association, Boston, MA. https://www. usenix. org/con-
ference/usenixsecurity20/presentation/gan, 2020.

[18] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based
directed whitebox fuzzing. In Proceedings of the 31st
International Conference on Software Engineering, pages
474–484. IEEE Computer Society, 2009.

[19] Istvan Haller, Asia Slowinska, Matthias Neugschwandt-
ner, and Herbert Bos. Dowsing for Overflows: A Guided
Fuzzer to Find Buffer Boundary Violations. In USENIX
Security Symposium, pages 49–64, 2013.

[20] Sam Hocevar. zzuf - multi-purpose fuzzer. http://caca.
zoy.org/wiki/zzuf, 2007. [Online; accessed 26-January-
2018].

[21] James C King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[22] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted
mutation strategy for increasing greybox fuzz testing
coverage. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering,
pages 475–485. ACM, 2018.

[23] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang
Chen, Houbing Song, and Kim-Kwang Raymond Choo.
Deepfuzzer: Accelerated deep greybox fuzzing. IEEE
Transactions on Dependable and Secure Computing,
2019.

[24] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. Mopt: Optimized
mutation scheduling for fuzzers. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 1949–1966,
2019.

[25] Barton P Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of UNIX utilities. Com-
munications of the ACM, 33(12):32–44, 1990.

[26] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceedings
of the Network and Distributed System Security Sympo-
sium (NDSS), 2017.

[27] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer:
A fast address sanity checker. In Gernot Heiser
and Wilson C. Hsieh, editors, 2012 USENIX An-
nual Technical Conference, Boston, MA, USA, June
13-15, 2012, pages 309–318. USENIX Association,
2012. URL https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany.

[28] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In NDSS, volume 16, pages 1–16, 2016.

[29] Ari Takanen, Jared D Demott, and Charles Miller.
Fuzzing for software security testing and quality assur-

14

ance. Artech House, 2008.
[30] Dmitry Vyukov. syzkaller is an unsupervised

coverage-guided kernel fuzzer. https://github.com/
google/syzkaller, 2015.

[31] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang,
Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun. Safl:
increasing and accelerating testing coverage with sym-
bolic execution and guided fuzzing. In Proceedings of the
40th International Conference on Software Engineering:
Companion Proceeedings, pages 61–64. ACM, 2018.

[32] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool for
automatic software vulnerability detection. In Security
and privacy (SP), 2010 IEEE symposium on, pages 497–
512. IEEE, 2010.

[33] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng,
Tiffany Bao, Dinghao Wu, and Purui Su. Not all coverage
measurements are equal: Fuzzing by coverage accounting
for input prioritization.

[34] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
Fuzzer: On-the-fly Input Type Probing for Better Zero-
Day Vulnerability Discovery. In ProFuzzer: On-the-fly
Input Type Probing for Better Zero-Day Vulnerability
Discovery, page 0. IEEE, 2019.

[35] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[36] Michal Zalewski. American fuzzy lop, 2015.

APPENDIX A
ADDITIONAL EXPERIMENT RESULTS

A. The over-tainting issue of traditional taint analysis without
path-awareness

When the same variable is visited multiple times, the path-
unaware analysis might produce the union of all occurrences
as the result (over-tainting). To evaluate the extent of the
phenomenon, we collect the seeds generated by AFL in 24
hours, then present the number of occurrences of constraint
variables in Figure 8. It shows that constraint variables tend
to occur multiple times in all projects, and some even reach
the order of magnitude of 107. For fuzzers using propagation-
based taint analysis without path-awareness, they may perform
well on LAVA-M, but they may have trouble in maintaining
their advantages on more complicated projects due to their
lack of path-awareness. In contrast, PATA is aware of the paths
and distinguishes between multiple occurrences of a constraint
variable. Therefore, it performs well on real-world projects.

B. The average number of unique path changes and the size
of constraint set

Figure 9 presents the average number of unique path
changes when mutating an input. It also shows the size of the
constraint set for the original path. In total, PATA achieves a
73% effective mutation rate. Specifically, the blue bar shows
the average number of unique path changes when mutating

boringssl
c-ares

freetype2
guetzli

harfbuzz json lcm
s

libarchive
libjpeg

libpng
libssh

libxml2

llvm-libcxxabi

openssl-1
.0.1f

openssl-1
.0.2d

openssl-b
ignum

openssl-x
509

pcre2
proj4

sqlite vorbis
woff2

wpantund

10 3

10 1

101

103

105

107

Nu
m

be
r o

f o
cc

ur
re

nc
es

Fig. 8. The average number of occurrences for all constraint variables.

critical bytes to pass constraints, while the orange bar shows
the size of the constraint set. The ratio of the former to the
latter reflects the effective rate of the mutation. The figure
also demonstrates the benefit of path-awareness: for 9 of all
listed projects, the number of path changes is even higher
than the size of the constraint set. The unusual phenomenon
indicates that PATA successfully solves more occurrences than
the number of constraints. In other words, path-awareness
allows detecting multiple occurrences of a constraint, which
creates more opportunities for PATA’s mutator.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Path changes Set of constraints

0

100

200

300

400

500

600

700

Path Changes Set of Constraints

Fig. 9. The average number of unique path changes and the size of constraints
set for each path.

C. The occurrences of constraint variables which are related
with direct copies

Figure 10 shows that only 17% of all occurrences of
constraint variables are related with direct copies on average.
PATA can handle both direct copies and other cases. For direct
copies, PATA’s fast path directly handles them as prior works
have done. For the most common cases where values are used
after complex transforms, PATA can still handle them by linear
search with operand feature (operand data type and length),
pattern feature (constraint category, e.g. cmp), and runtime
value; searching is fast because the search space is greatly
reduced with precise path-aware taint analysis.

Direct copy

Constraint variable occurrences that related with direct copies
Others

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 10. The occurrences of all constraint variables that are related to direct
copies only account for a small part.

15

D. Coverage of various fuzzers on LAVA-M

Table VII and VIII present the number of paths and basic
blocks covered by fuzzing four projects in LAVA-M. They
show that PATA performs well in four projects. Specifically,
PATA executes 149%, 126%, 156%, 446%, 146%, 32%, and
6% more paths, finds 68%, 68%, 68%, 67%, 12%, 7%, and
56% more basic blocks than AFL, MOPT, TortoriseFuzz,
VUzzer, Angora, REDQUEEN, and GREYONE, respectively.

TABLE VII
AVERAGE NUMBER OF PATHS EXECUTED OVER 5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

base64 83 87 86 30 54 132 125 149
md5sum 167 183 158 69 107 229 186 179
uniq 32 36 29 33 19 37 52 60
who 62 74 62 25 168 253 444 469

Total 344 380 335 157 348 651 807 857
Improvement 149%↑ 126%↑ 156%↑ 446%↑ 146%↑ 32%↑ 6%↑ –

TABLE VIII
AVERAGE NUMBER OF BLOCKS COVERED OVER 5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

base64 299 301 298 320 378 380 315 385
md5sum 419 434 427 421 560 443 441 555
uniq 209 213 211 238 262 253 215 263
who 4495 4502 4495 4495 6924 7449 4890 7929

Total 5422 5450 5431 5474 8124 8525 5861 9132
Improvement 68%↑ 68%↑ 68%↑ 67%↑ 12%↑ 7%↑ 56%↑ –

AFL, MOPT, and TortoiseFuzz are greybox fuzzers. Their
limited knowledge about the target projects restricts their
coverage. VUzzer uses the taint analysis to locate magic bytes,
however, it performs little better than AFL in block covering
because of the inaccurate taint results. Angora, REDQUEEN,
and GREYONE have higher coverage than VUzzer because
they could solve some of the other constraints more than magic
bytes. However, the inaccuracy of taint analysis also limits
their effectiveness. On the contrary, PATA records the values
along the execution path as a sequence. The ordering informa-
tion not only supports multi occurrences of the same variable,
but also enables recovery if the mutated input diverges the
path. Thus PATA could perform better.

E. Number of bugs detected by various fuzzers on some real-
world programs

Table IX presents the number of bugs detected by each
fuzzer within 24 hours on more real-world programs from
GitHub. It shows that PATA finds all 40 bugs, while other
fuzzers only find a proportion of these bugs. Compared to
AFL, MOPT, TortoriseFuzz, VUzzer, Angora, REDQUEEN,
and GREYONE, PATA detects 20, 17, 21, 30, 23, 20, and 21
more unique bugs, respectively.

TABLE IX
NUMBER OF BUGS DETECTED BY EACH FUZZER WITHIN 24 HOURS ON

SOME REAL-WORLD PROGRAMS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

bigint 1 1 1 1 1 1 0 1
bitmap 1 1 1 1 1 1 1 1
cyclonedds 4 5 3 2 2 4 4 9
ffjpeg 1 1 1 1 1 1 1 1
genann 1 1 1 1 1 1 1 2
jpeg encoder 1 1 1 0 1 1 1 3
jpeg-compressor 5 5 5 1 5 6 4 6
json 1 1 1 1 1 1 0 1
libconfig 1 2 1 0 0 1 1 3
libucl 1 1 1 0 1 1 1 1
libpng 0 0 0 0 0 0 0 3
lightmatrix 1 1 1 1 1 1 1 3
mxml 2 2 2 0 2 0 2 3
pdfalto 0 1 0 0 0 0 1 1
SmallerC 0 0 0 1 0 1 1 1
xml2json 0 0 0 0 0 0 0 1

Total 20 23 19 10 17 20 19 40
Increase 20↑ 17↑ 21↑ 30↑ 23↑ 20↑ 21↑ –

F. The performance of various fuzzers in 60 hours

Table X, Table XI, and Table XII show the coverage of
each fuzzer together with their bug finding on fuzzing projects
of Google’s fuzzer-test-suite for 60 hours. They illustrate that
PATA also outperforms other fuzzers. Specifically, PATA found
101%, 68%, 132%, 2209%, 390%, 66%, and 49% more paths,
covered 21%, 17%, 29%, 101%, 49%, 14%, and 20% more
basic blocks, and triggers 14, 9, 13, 33, 31, 16, and 24
more bugs than AFL, MOPT, TortoriseFuzz, VUzzer, Angora,
REDQUEEN, and GREYONE, respectively.

TABLE X
NUMBER OF PATHS IN 60 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

boringssl 440 473 406 127 273 428 467 639
c-ares 27 26 26 26 19 29 33 35
freetype2 6038 7795 4560 68 2948 8184 9288 13599
guetzli 1038 1412 945 35 1012 932 1409 2224
harfbuzz 4631 5009 2865 97 1842 4609 2986 6323
json 688 703 632 41 295 565 818 1052
lcms 238 249 224 9 403 517 275 712
libarchive 1146 2143 1351 113 1239 1659 1635 4748
libjpeg 1124 1666 1009 40 739 1066 1263 2757
libpng 338 345 341 20 292 363 464 647
libssh 17 16 18 16 15 352 24 461
libxml2 1572 2164 2044 229 783 2657 3008 6853
llvm-libcxxabi 2700 4693 5112 220 854 5172 5666 6826
openssl-1.0.1f 421 308 245 14 35 251 360 931
openssl-1.0.2d 749 741 749 399 417 844 861 971
openssl-bignum 332 339 322 338 452 348 384 396
openssl-x509 864 875 852 865 874 866 939 980
openthread 522 496 527 43 346 911 835 857
pcre2 14179 15072 9480 335 2209 14647 16728 19477
proj4 64 70 66 22 125 51 124 4983
re2 2016 1678 1950 307 995 1611 2880 2957
sqlite 225 235 233 46 168 235 288 302
vorbis 641 712 727 64 563 849 916 1341
woff2 554 642 563 17 5 536 897 870
wpantund 1158 1966 976 144 233 2990 3685 2980

Total 41722 49828 36223 3635 17136 50672 56233 83921
Improvement 101%↑ 68%↑ 132%↑ 2209%↑ 390%↑ 66%↑ 49%↑ –

TABLE XI
NUMBER OF BASIC BLOCKS IN 60 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

boringssl 2269 2269 2205 2185 2201 2267 2208 2267
c-ares 64 64 63 66 63 64 66 66
freetype2 12355 12994 11428 5670 10607 15811 13338 15989
guetzli 6183 6325 6131 5391 6231 6237 6180 6340
harfbuzz 9760 10052 8925 5246 8397 9931 8875 10174
json 1578 1580 1532 641 1483 1590 1577 1607
lcms 1667 1655 1687 643 2403 2237 1810 2531
libarchive 3481 4299 3276 1351 5128 3604 3196 6950
libjpeg 2369 2821 2340 1220 2359 2456 2383 2828
libpng 1182 1187 1180 682 1330 1393 1195 1418
libssh 893 893 893 893 817 1664 908 1589
libxml2 4543 5379 4590 2803 3854 5290 4898 9105
llvm-libcxxabi 3618 3920 3669 1865 3082 3874 3722 3957
openssl-1.0.1f 6351 5677 3077 885 1179 4045 5617 6417
openssl-1.0.2d 1416 1412 1408 1369 1096 1408 1402 1412
openssl-bignum 1101 1099 1097 1110 1104 1102 1111 1115
openssl-x509 5304 5304 5281 5281 5329 5304 5570 5572
openthread 5645 5630 5676 3245 5371 7518 5678 5726
pcre2 9316 9466 8050 2551 4197 9659 9300 9879
proj4 204 204 196 126 669 196 210 5342
re2 5605 5593 5590 4177 4819 5593 5662 5701
sqlite 1805 1805 1803 1377 1442 1805 1808 1808
vorbis 2046 2065 2024 1298 1910 2053 1970 2104
woff2 3016 3031 3005 2556 164 2985 3100 3104
wpantund 12754 13632 12860 10442 9594 13540 13557 13790

Total 104525 108356 97986 63073 84829 111626 105341 126791
Improvement 21%↑ 17%↑ 29%↑ 101%↑ 49%↑ 14%↑ 20%↑ –

TABLE XII
NUMBER OF BUGS IN 60 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE PATA

c-ares 1 1 1 0 1 1 1 1
guetzli 1 1 1 0 0 0 0 2
json 2 2 2 0 0 2 1 2
lcms 1 1 1 0 0 0 0 1
libxml2 2 2 1 0 0 2 0 3
llvm-libcxxabi 5 6 4 0 0 5 4 7
openssl-1.0.1f 1 1 1 0 1 1 0 1
openssl-1.0.2d 1 1 1 0 0 1 0 1
pcre2 4 7 6 0 0 4 3 12
re2 0 1 1 0 0 1 0 2
woff2 1 1 1 0 0 0 0 1

Total 19 24 20 0 2 17 9 33
Increase 14↑ 9↑ 13↑ 33↑ 31↑ 16↑ 24↑ –

Listing 5 shows one bug of libxml2 which is only found

16

by PATA. The bug will be triggered when tlen exceeds the
length of ctxt->input. The bug is very difficult to find
because it has many preconditions. For instance, the condition
in Line 2 (logical operation), Line 7 (byte comparison), Line
10 (logical operation), Line 11 (integer comparison), and
Line 12 (byte-array comparison) should all be satisfied. In
particular, the constraint variables related to these conditions
all occur multiple times because of the loop and the recursive
call. It is difficult for other fuzzers to detect bugs in such deep
paths without the path-aware taint analysis of PATA. More
cases could also be found in the PATA’s website.

1 void xmlParseContent(xmlParserCtxtPtr ctxt) {
2 while ((RAW != 0) && ((RAW != ’<’) || /*...*/)) {
3 //...
4 if ((*cur == ’<’) && (cur[1] == ’?’)) {
5 ///...
6 }
7 else if (*cur == ’<’) {
8 if(/*...*/) { return; }
9 xmlParseContent(ctxt);

10 if (ctxt->sax2) {
11 if ((tlen > 0) &&
12 (xmlStrncmp(ctxt->input,ctxt->name,tlen)==0)) {
13 if (ctxt->input[tlen] == ’>’) // <= OVERFLOW
14 //...
15 }
16 }
17 }
18 //...
19 }
20 }

Listing 5. A buffer overflow detected by PATA. The program must pass
through the constraints which occur multiple times in Line 2 (logical op-
eration), Line 7 (byte comparison), Line 10 (logical operation), Line 11 (
integer comparison), and Line 12 (byte-array comparison).

G. Mann-Whitney U Test Results

We repeat all the 24-hour experiments 5 times to avoid
the influence of random variations. Table XIII shows the p-
value of the Mann-Whitney U test on the number of paths
for projects in Google’s fuzzer-test-suite between PATA and
AFL, MOPT, TortoriseFuzz, VUzzer, Angora, REDQUEEN,
and GREYONE. It shows that for most of the projects, the
differences are significant at p < 0.05.

TABLE XIII
P-VALUES OF THE MANN-WHITNEY U TEST ON THE PATHS OVER 5 RUNS

IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE

boringssl 0.006 0.006 0.006 0.006 0.006 0.006 0.006
c-ares 0.005 0.005 0.005 0.004 0.005 0.004 0.079
freetype2 0.006 0.006 0.006 0.006 0.006 0.006 0.105
guetzli 0.006 0.006 0.006 0.006 0.006 0.006 0.006
harfbuzz 0.006 0.006 0.006 0.006 0.006 0.006 0.006
json 0.006 0.006 0.006 0.006 0.006 0.006 0.006
lcms 0.006 0.006 0.006 0.006 0.006 0.006 0.006
libarchive 0.006 0.006 0.006 0.006 0.006 0.006 0.006
libjpeg 0.006 0.006 0.006 0.006 0.006 0.006 0.006
libpng 0.006 0.006 0.006 0.006 0.006 0.006 0.006
libssh 0.006 0.006 0.006 0.006 0.006 0.006 0.004
libxml2 0.006 0.006 0.006 0.006 0.006 0.006 0.006
llvm-libcxxabi 0.006 0.006 0.006 0.006 0.006 0.006 0.006
openssl-1.0.1f 0.006 0.018 0.006 0.006 0.006 0.006 0.030
openssl-1.0.2d 0.006 0.006 0.006 0.006 0.006 0.105 0.018
openssl-bignum 0.006 0.006 0.006 0.338 0.057 0.006 0.064
openssl-x509 0.006 0.006 0.006 0.005 0.006 0.005 0.006
openthread 0.006 0.006 0.006 0.006 0.006 0.072 0.011
pcre2 0.006 0.006 0.006 0.006 0.006 0.006 0.006
proj4 0.006 0.006 0.006 0.006 0.500 0.265 0.006
re2 0.006 0.006 0.006 0.006 0.006 0.006 0.202
sqlite 0.006 0.006 0.006 0.006 0.006 0.006 0.006
vorbis 0.006 0.006 0.006 0.006 0.006 0.006 0.006
woff2 0.006 0.006 0.006 0.006 0.006 0.006 0.265
wpantund 0.006 0.018 0.006 0.006 0.006 0.417 0.417

Table XIV shows the p-value of the Mann-Whitney U test
on the number of basic blocks for projects in Google’s fuzzer-
test-suite between PATA and AFL, MOPT, TortoriseFuzz,

VUzzer, Angora, REDQUEEN, and GREYONE. It also shows
that for most of the cases, the differences are significant at p
< 0.05.

TABLE XIV
P-VALUES OF THE MANN-WHITNEY U TEST ON THE BASIC BLOCKS OVER

5 RUNS IN 24 HOURS

Project AFL MOPT TortoiseFuzz VUzzer Angora REDQUEEN GREYONE

boringssl 0.004 0.115 0.005 0.005 0.005 0.016 0.005
c-ares 0.003 0.003 0.002 0.033 0.003 0.002 0.002
freetype2 0.006 0.006 0.006 0.006 0.006 0.006 0.006
guetzli 0.006 0.458 0.006 0.006 0.006 0.006 0.006
harfbuzz 0.006 0.030 0.006 0.006 0.006 0.006 0.006
json 0.004 0.004 0.004 0.004 0.004 0.004 0.004
lcms 0.006 0.006 0.005 0.006 0.047 0.006 0.006
libarchive 0.006 0.006 0.006 0.006 0.006 0.006 0.006
libjpeg 0.006 0.018 0.006 0.006 0.006 0.006 0.006
libpng 0.005 0.005 0.006 0.005 0.005 0.005 0.004
libssh 0.005 0.005 0.005 0.005 0.005 0.338 0.004
libxml2 0.006 0.006 0.006 0.006 0.006 0.006 0.006
llvm-libcxxabi 0.006 0.006 0.006 0.006 0.006 0.006 0.006
openssl-1.0.1f 0.338 0.202 0.265 0.006 0.006 0.500 0.006
openssl-1.0.2d 0.007 0.006 0.263 0.006 0.005 0.008 0.028
openssl-bignum 0.014 0.050 0.005 0.003 0.224 0.005 0.033
openssl-x509 0.002 0.003 0.002 0.002 0.003 0.003 0.003
openthread 0.047 0.201 0.018 0.006 0.006 0.006 0.500
pcre2 0.006 0.006 0.006 0.006 0.006 0.265 0.006
proj4 0.004 0.005 0.062 0.006 0.500 0.262 0.038
re2 0.006 0.006 0.006 0.006 0.006 0.006 0.298
sqlite 0.003 0.003 0.004 0.004 0.004 0.003 0.089
vorbis 0.037 0.071 0.006 0.006 0.006 0.006 0.008
woff2 0.006 0.006 0.005 0.006 0.006 0.006 0.373
wpantund 0.006 0.006 0.006 0.006 0.006 0.072 0.006

17

