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ABSTRACT

Requirements management and safety analysis have been the key
foundations of the successful development of life-critical systems,
and the traceability of safety-related artifacts across such systems
is becoming ever more important. Unless safety analysts can trace
when and how requirements and design change, their analysis will
become inconsistent, and eventually fail as proof that a given system
can mitigate certain faults during certification processes. However,
most prior research on traceability has focused on requirements, de-
sign and source code changes, rather than the integration of safety
analysis by considering device interactions such as the Medical De-
vice plug-and-play (MD PnP) into traceability and change-impact
analysis. To help fill this gap, this paper proposes a safety-driven
requirement traceability framework, SafeTrace, that traces the rela-
tions between safety requirements, design, and safety analysis, and
the impact of requirement and design changes on safety analysis
for life-critical systems with a focus on medical device interaction
hazards.
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1 INTRODUCTION

Unlike commercial or business software development that does
not require safety analysis during planning and development by
certification agencies, developing medical systems requires safety
analysis and it is mandated by agencies such as the FDA or standards
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such as the Advancement of Medical Instrumentation (AAMI)/IEC
62304 [1]. These safety analyses are performed to prove that the
system meets the safety requirements collected by requirement
analysts from medical professionals. Moreover, each configuration
of the medical systems requires performing a safety analysis on
the artifacts by following FDA requirements. A commonly used
approach for safety is Fault-Tree Analysis and its associated fault
mitigation procedures. With software design changes, the safety
analysis might be out-synchronized with system design soon; hence,
it might no longer reflect whether the current software design still
meets the safety requirements.

One important type of safety hazards in medical systems are
interaction hazards that can create safety hazards with no changes
to existing medical devices’ hardware or software. For example, in
a medical environment that requires device interoperations such
as the Medical Device Plug-and-Play (MD PnP) Interoperability
program [2], a surgical fire could be the result of a laser scalpel
emission while a ventilator is supplying oxygen. Neither of the de-
vices causes the harm to the patient. Instead, it is the interaction of
both devices that brings the harm to the involved patient. Further-
more, the failure of non-safety critical components in an integrated
clinical environment such as the OpenICE [3] of the MD PnP can
lead to critical mishaps. For example, a network router providing
communication is not considered as a safety-critical device. But
router failures can cause the ventilator to not receive commands to
resume oxygen supply and cause brain hypoxia to the patient. As
such, a new change impact analysis that considers the interactions
between components for medical life-critical system development
is needed.

Many studies have examined how to integrate safety analysis
into traceability research. One such approach [4-7] leverages
model-based development, so that system models can generate
safety analysis automatically; examples of this include Fault-Tree
Analysis (FTA) [8] and Failure Mode and Effect Analysis (FMEA) [9].
However, the imperfect process of translation from system mod-
els to safety analysis can cause blind spots in impact analysis. A
significant amount of research has analyzed the impact of require-
ment changes on source code [10], but unfortunately, the impacts
of requirement and design changes on safety analysis have yet to
be addressed. Moreover, most existing impact-analysis work pro-
vides information about the affected areas in artifacts but does not
indicate whether or not an upstream artifact change (e.g., a design
change) causes negative impacts to downstream ones (e.g., safety
analysis), despite such information being crucial for safety analysis.
Furthermore, an intuitive approach to avoid the safety analysis from
becoming outdated is to flag critical components when a change
is made to the component in safety critical system development.



However, this is only necessary but insufficient for medical systems
that require device interactions to provide correct services. Because
configurations of medical devices will be changed due to device
interactions and the configurations themselves can create safety
hazards with no change to safety-critical medical devices (Class III
medical devices).

Commercial tools such as IBM Rational DOORS [11], Yakindu
Traceability [12], and Intland codeBeamer [13], are effective tools
to support traceability for general use, but, they do not and do
not need to meet the FDA requirements of safety analysis when
used to develop non-medical systems. Even though some tools (e.g.,
codeBeamer) support safety analysis such as Failure Mode Effect
Analysis (FMEA) [9], the trace links are at a relatively higher level
and lack a more fine-grained control of trace links. Other tools, such
as the TraceLab [14], are a test-bed for instrumenting trace links
and not designed for project management. Our tool is a complement
to the existing tools. We address this research gap from a safety
aspect on traceability for medical device plug-and-play systems.

Specifically, the focus is how to track down the software compo-
nents that need to be changed when a new configuration creates
a new fault tree. The framework ensures the modified or newly
created fault trees, due to the components changes, still meet the
safety requirements based on the minimum cut set generated by
FTA for safety. Then, with traceability between safety requirements,
design, and safety analysis in place, our tool for modified system
design can decide whether the change can cause potential faults
based on its change-impact-analysis algorithm.

The main contributions of this paper are (1) the design of
the SafeTrace framework capable of managing traceability among
safety requirements, design, and safety analysis in MD PnP sys-
tems, and (2) a change-impact analysis, focused on safety analysis,
that can provide the information needed to answer questions such
as whether a change of requirements or design may cause safety
violations.

The rest of this paper is organized as follows. A network-connected
airway laser-surgery system we use as a case study is introduced in
Section 2, along with background information about requirements;
system design with collaboration diagrams; and FTA. In Section 3,
we present the proposed SafeTrace framework. Two change-impact-
analysis algorithms for safety analysis, one for requirement changes
and the other for design changes, are presented in Section 4. In Sec-
tion 5, we test how SafeTrace applied to an MD PnP system which
can counter communication failures, help trace the root cause of a
failure, and add a safety requirement, as well as how a life-critical
system design change can affect safety analysis. Section 6 discusses
related work, and Section 7 presents our conclusions.

2 MEDICAL LIFE-CRITICAL SYSTEM
EXAMPLE

The present work was motivated by our desire to improve the
safety of airway laser surgery (also known as laser tracheotomy).
Using the design of an airway laser-surgery life-critical system as
an example, this section provides an introduction to life-critical
system safety requirements, system design, and safety analysis.
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2.1 Tracheotomy Laser Surgery

In a laser tracheotomy [15], the life-critical system incorporates a
ventilator and a laser scalpel. A physician uses the scalpel to un-
block the patient’s trachea. Because the patient is under anesthesia,
s/he breathes through a mask that supplies a high concentration
(usually 100% [16]) of oxygen from the ventilator. During surgery,
the laser beam could accidentally ignite the tube; thus, fire in the
operating room is the primary safety hazard. As such, the flow
of oxygen supplied by the ventilator should be blocked while the
laser is emitting. However, if the blocking of the oxygen flow from
the ventilator exceeds a certain duration, it will cause hypoxia and
potential brain damage to the patient.

With this intuition of airway laser surgery, there are a few ob-
servations of the fire hazard. First, the laser emission can ignite in
a close vicinity with high concentration oxygen such as an airway.
It means that a laser scalpel can cause safety hazards only in a
certain condition, and, in this case, the condition is that an airway
with high concentration oxygen. Second, even we stop the oxygen
supply to the patient under anesthesia, we cannot enable the laser
emission immediately. Because there is still high concentration
oxygen in the airway and needs to be ventilated outside the airway.
A safe threshold of oxygen concentration with potential surgical
fire is less than 30%.

From a system perspective, for the laser scalpel, “no-operation,
0” represents it is not emitting the laser, and “in-operation, 1” rep-
resents it is emitting. For the ventilator, “in-operation, 1” indicates
that it is supplying high concentration oxygen, and “no-operation,
0” represents that it is supplying plain air only.

In the following three sub-sections, we introduce a Medical De-
vice Plug-and-Play (MD PnP) system [2, 3] to assist physicians to
perform airway laser surgery, and set forth its safety requirements,
design, and safety-analysis procedures. Following the introduction
of SafeTrace in Sections 3 and 4, we will evaluate our methods using
MD PnP for airway laser surgery in Section 5.

2.2 Safety Requirements

Requirements engineering guides the whole system development
process. For purposes of this paper, we have limited the scope of
safety requirements. An annotated requirement artifact is defined
as a text description of a safety goal that the system that needs to
achieve. An example of annotations is the universal identifier for a
particular requirement. Hereafter, we use the term “requirement”
to refer an annotated requirement artifact.

In airway laser surgery, as discussed above, there are two safety
requirements derived from clinical needs that should be satisfied
during the surgery operation:

e Safety Requirement 1 (SafeReq-1): To avoid fire, the ventila-
tor and the laser scalpel should never be in their respective
in-operation states at the same time.

o Safety Requirement 2 (SafeReq-2): To avoid patient brain
damage due to hypoxia, the ventilator should remain in its
no-operation state for no longer than a specified period.

The two requirements are related to two challenges during surgery,
either of which can lead to severe surgical failures. In regard to
SafeReq-1, current practices rely heavily on the surgery team to
ensure that the laser scalpel and the ventilator are not in the in-
operation state at the same time, and despite their best efforts,
mistakes can still easily occur. Second, to meet SafeReq-2, surgical



teams currently must simply remember what the safe period of the
ventilator’s no-operation state is, and when such a state began; so
again, the possibility of human error causing a tragic accident is
fairly strong [17].

2.3 System Design

There are multiple ways to represent a system’s design. For example,
standard UML diagrams include class-, component-, and sequence
diagrams, among others. In this paper, we use a collaboration
diagram to describe software components, hardware devices, or
platform including both hardware and software as the main system-
design artifacts. This allows a level of design detail sufficient for
our traceability framework to remain visible on users’ operation
views of the system.

To mitigate both medical hazards, an MD PnP laser-surgery
system [2] is proposed to solve the problem. Figure 1 presents its
architecture, in which either the ventilator or the laser scalpel has
an MD PnP device adapter to communicate with a supervisory
computer through a wired network, enabling the coordination of
a series of actions that can prevent failures due to violations of
SafeReq-1 and SafeReq-2.

By coordinating actions through the supervisor computer, the
system can effectively prevent operating-room fires, and thus com-
plies with SafeReq-1. We use a scenario that a laser scalpel operated
by a surgeon requests to laser emission to demonstrate event prop-
agations. When the laser client adapter sends a laser-emission re-
quest to the MD PnP Application (Commands 1 to 4), the supervisor
computer examines the current state of the ventilator (Commands 5
to 11). Then, the MD PnP Application sends a command to acknowl-
edge the laser operations (Commands 12 to 15). And whenever the
ventilator’s oxygen supply is cut, the MD PnP Application sends
out a command to resume it within the timeframe required by
SafeReq-2.
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| MD PnP Application (SW)
12.ack

4.request.on 11.ack

P Platform (OS, HW)
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| MD Pn
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Figure 1: The collaboration diagram of MD PnP Tra-
cheotomy Systems. A rectangle is a software component,
hardware device, or a platform. Each link between blocks
represents an information flow.

2.4 Safety Analysis

Safety analysis helps system engineers to identify the potential haz-
ards associated with a particular scenario, and to analyze whether

1284

the proposed system can mitigate such hazards in a range of situa-
tions. Among various safety-analysis methods, Fault-Tree Analysis
(FTA) is one of the most widely used. One approach to FTA evalua-
tion involves quantitative evaluation of performance metrics, such
as reliability or Mean Time To Failure (MTTF). Another involves
qualitative analysis of whether or not an input event that occurs at
a tree’s leaf node — referred to as a primary event — propagates to
the failure in the root, an event known as the undesired top event
of the tree. Between primary events and the undesired top event in
a fault tree, there are intermediate events and logic gates. However,
provided that a tree’s logic gates are preserved, all the intermediate
events can be eliminated. A method of quality analysis for a fault
tree is called a minimum cut set (MCS) [18], as further defined
below:

Definition 2.1. A cut set in a fault tree is a set of primary events
whose occurrence (at the same time) ensures that the TOP event
occurs. A cut set is said to be minimal if the set cannot be reduced
in size without loosing its status as a cut set.

For example, given the MCS = {{A},{B,C}}, if either A, or
B-and-C becomes true, the hazard of the tree becomes True. For
purposes of this paper, the undesired top event is a medical safety
hazard (e.g., fire or hypoxia). For more detail on fault trees and
their applications, see Hoyland and Rausand [18] and Stamate-
latos et al. [19].

3 SAFETRACE TRACEABILITY FRAMEWORK

This section first presents SafeTrace aimed at facilitating life-critical
system development. Second, it defines the traceable artifacts in
requirements, design, and safety analysis. And third, it introduces
trace links between artifacts and the evolutions of artifacts through-
out development, with a focus on trace management for safety
analysis.

3.1 Overview of SafeTrace

The goal of SafeTrace is to ensure that whenever design documents
or system requirements are changed, the impact on safety analysis
is evaluated. With this concept in mind, Figure 2 presents the Safe-
Trace’s architecture. The left-hand side shows the three targeted
types of artifact: requirements, design documents, and safety analy-
sis. Each artifact has corresponding stakeholders, i.e., its designers;
and all artifacts are either co-located in a physical machine or in
a distributed environment. The middle box circled with a dashed
line represents the SafeTrace framework. The SafeTrace’s main
component is the Traceability Manager, which contains a change
management unit that defines the various trace links for different
artifact types. Once trace links have been created by stakeholders,
these links are stored in a traceability repository.

To detect changes made to requirements and design artifacts,
each artifact type is associated with an Artifact Monitor, whose
monitoring rules are specified in Change Management. One way for
a Monitor to detect an artifact change is by monitoring the artifact’s
repository. Specifically, once a change of requirements or safety
analysis is made and checked into the associated repository, the
corresponding Monitor can retrieve the artifact from the repository
and run an artifacts-parsing program to examine how it differs
from the previous version. Another method is to monitor artifacts
during development, which allows the stakeholders to be alerted
before an updated artifact is checked into the repository. If a change
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Figure 2: The Architecture of the SafeTrace Framework

to a requirements or design artifact is observed, and that change
is configured to trigger an impact analysis, then SafeTrace will
run the change-impact analysis (which will be discussed further in
Section 4). If the results of change-impact analysis show that some
part of the safety analysis might be affected (potentially causing
hazards), the SafeTrace’s notification module notifies the relevant
safety engineers.

3.2 Artifacts of Requirements, Design and
Safety Analysis

A traceable artifact a; can be (1) an annotated requirement, (2) an
annotated component or device, (3) a top event in a fault tree, or (4)
a basic event in a fault tree (we will further discuss this particular
event in short). All artifacts are annotated, but a required annotation
is a universal identification number used for indexing/identification
of all traceable artifacts.

We elaborate each traceable artifact a; below and present the
trace links in the next section.

3.2.1 Requirements. A traceable requirement artifact is defined
as a text description of a requirement with annotations. The text
description may specify safety aspects of the system’s desired goal.

3.2.2 Design. A traceable design artifact is a software compo-
nent, a hardware device, or a platform including both software
components and hardware devices in design diagrams such as a
component diagram (for software components) or a deployment
diagram (for hardware devices). Depending on the need for granu-
larity in tracing, an artifact might also be a platform that includes
both software components and hardware devices in an implemen-
tation diagram. Although other system design levels such as finite
state machines, system configurations, and etc. of the system are
considered significant to a system design, it is beyond the scope of
our work. Here, we focus on the abstract architecture of a system.

3.2.3 Fault-Tree Analysis. In FTA, we can use the MCS theorems
mentioned in Section 2.4 to reduce a tree to its MCSs. For this
purpose, a primary event could be a basic event, an external event,
or some other type of event [8], but for the purposes hereof, we
focus only on basic events and external events. Each event contains
aproposition, which can be True or False. The True value represents
the event being triggered, whereas the False value means the event
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Figure 3: Fault-Tree Analysis, Firep, pr,, for Surgical Fire for
MD PnP Tracheotomy Systems

does not occur. A basic event is one that does not develop further,
i.e, is a leaf of a fault tree. For example, a basic event could be
that a ventilator is switched to its no-operation state, stopping the
supply of oxygen, and does not develop further. On the other hand,
a primary event can be an external event, which is treated as having
a constant value. The purpose of defining such events is to specify
conditions when used with a basic event. For example, one type
of failure in airway laser surgery is hypoxia caused by Sp02, an
estimate of amount of oxygen in the blood, falling below a clinically
required threshold, due to the ventilator not supplying oxygen for
a certain period of time, and the supervisor not being able to send
a command to the ventilator to re-supply it. In this example, the
external event is the ventilator remaining at no-operation, which
serves as a condition for the basic event: that Sp0; falls below the
required threshold.

Figure 3 is the FTA safety analysis of the MD PnP system with
regard to fire hazard, and its Subtree-1 is presented on the right-
hand side of Figure 4. For brain hypoxia, the fault tree is shown on
the left-hand side of Figure 4; and further information on both of
these fault trees is presented in Table 1.

For safety purposes, we define a third type of event, a safeguard
event. A safeguard event is also a basic event, but is caused by a
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safety feature in the system design: for example, a watchdog timer
for monitoring how long a ventilator remains at no-operation. An
event for the watchdog timer could be that it fails to notify the
physicians that the specified duration has elapsed. The proposition
will have the value False, because the timer is designed to monitor
the system at all times.

In an MCS, if all basic events become True simultaneously, the
top event becomes True and causes the type of failure associated
with that top event. A single system may have multiple fault trees,
and each fault tree may have multiple MCSs. Based on the MCS
theory, we specify that a traceable artifact for FTA includes a top
event of the tree (i.e., a failure proposition), a basic event, and a
safeguard event. We omit the traceability of intermediate events
(i.e., events between top events and basic events) and logic gates. An
intermediate event, meanwhile, is caused by some combination of
input events. That is, an intermediate event can always be reduced
to a combination of basic events, so tracing only the basic events
will be sufficient. And logic gates, which are used to set up the
relations between events, are preserved in the MCSs of each tree, so
we only need to trace the basic events belonging to each such MCS
rather than the gates themselves. The fire-hazard tree’s MCS is
shown in Equation 1, and the brain-hypoxia tree’s MCS in Equation
2.

Firep, rr, = {{Ep.1-Ep.7, Ec.2}, {Ep .2, Ep.7: Ec 2},

{Ep.3:Ep.7-Ec.2.{Eb 1, Ep 6> Ec.3}, {Ep.2- Ep .- Ec.3}, (1)
{Ep.3,Ep.6:-Ec.3}}
Hypoxiap, 1, = {{Ep.4-Ep.1- Ec.1}> {Ep.4» Ep 2, Ec 1}, @

{Ep.4-Ep 3. Ec.1}}

With the minimum cut sets, we can then define an affected fault-
tree in Definition 3.1. As mentioned before, a safeguard event in an
MCS is used to guarantee that the proposition of the top event will
not be True. For basic events, we assume at least one basic event
has a trace link to a design artifact so that once the design artifact
changes, the framework can trace the corresponding events.

Network
crashes
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Definition 3.1. An affected fault-tree is defined as:
{AffectedFaultTree | 3 Minimum Cut Set mcsy. that has
1) at least one traced basic event,
2) no safeguard events,
in AffectedFaultTree, Vi, k € N}

Table 1: Events Used In Fault-Tree Analysis

Events| Appeared Fault- | Meaning
Trees
Eiq | P FT! P3.FTy Surgical Fire
EZ, | P,FT; Ps.FTy Brain Hypoxia
E;;l P;.FT,,  P3.FTz, | MD PnP platform crashes
P,.FTy, P5.FT;
Ep 5 Py .FTy, P3.FT,, | MD PnP application crashes
Py.FTy, P3.FTy
Ep 3 | P2.FT,,  P3.FT, | Network crashes
P,.FTy, P3.FT;
Ep 4 P, .FT,, P3.FT, SpO2 drops below safe thresh-
old
Ep s | P3.FTy, P3.FTy Open-loop  safe  software
crashes
Ep P,.FTy, P3.FTy Ventilator is turned On
Ep P, .FTy, P3s.FT; Laser is turned On
E) | | Py.FTy, P FTy Ventilator is Off
Ec o P, .FTy, P3.FTy Ventilator is On
Ec3 P, .FTy, P3.FTy Laser is On
Eg.l P3.FT,, P3.FTy Open-loop safe MD PnP device
adapter crashes

TFault-Tree 1 (i.e., Fire) in Phase 2
2t represents the undesirable top event of a tree.
3Fault-Tree 2 (i.e., Hypoxia) in Phase 2
4p represents a basic event of a tree.
3¢ represents an external event with default value True.
%5 represents an event with value False caused by

safe hardware or software.

3.3 Linking Traceability Relationships Among
Domain Artifacts
Based on the artifact definitions presented in the previous sub-

section, we can proceed to defining and discussing a trace link
between two artifacts, as follows:

Definition 3.2. A trace link (4, a4, ) is a directed edge from a
source artifact ag, to a destination artifact ay,, in a traceability
graph G = (V,T), where asrc,ags, € Vand t(g , q,,) €T A
(asrc» agsy) tuple can be either one of the following:

Acomponent» arequirement)’ (adevicea Arequirement)>

(abasicEvent’ acomponent), (@pasicEvent> Adevice)> and
(atopEventsarequirement .
A trace link can be represented as a directed relation, with the

arrow pointed to a destination artifact from a source artifact. For
traceability within a group of artifacts of the same type, the link



can be built natively inside the artifacts. Here, therefore, we focus
on trace links between artifacts of different types. A link between
a design artifact and a requirement artifact can be realized as the
design implements the requirement. In the bottom of Traceability
Manager, Figure 2 presents such a trace link. For FTA purposes, a
trace link between a top event and a requirement artifact means
that the top event (i.e., a failure) violates the requirement. A trace
link between a basic event at a leaf and a design artifact, mean-
while, indicates that the basic event is caused by the design artifact.
Typically, such a link is built when developing a lower-level artifact
that traces back to its origin, an upstream artifact. For example,
links between requirement- and design artifacts are built during the
design phase by system designers, and links from safety-analysis
to requirement- or design artifacts are built by safety engineers
while analyzing the system. Traceability between requirements
and design objects can be built during the system-design phase,
because a system designer can design the system to satisfy a given
set of requirements.

4 CHANGE IMPACT ANALYSIS

Having extended traceability to safety analysis, we are now ready
to discuss the SafeTrace’s impact-analysis algorithms for safety-
analysis artifacts. Again, SafeTrace employs FTA as its safety-
analysis method. Since FTA shows the logical relations between
different input events, we can leverage it to perform impact analy-
sis, which can reveal whether a change in requirements or design
will propagate to a failure at the root of the tree. In the first sub-
section below, we present our change models. Second, we present
the necessary versions of different artifacts to update one. Then,
we discuss the impact of each change in each model. For impact
analysis, we first look at the impact of requirement changes on
design, and then, at the impact of design changes on safety anal-
ysis. Finally, we develop an integrated view of requirement and
design changes, and discuss the effects of impact analysis on safety
analysis.

4.1 Change Models

For requirement and design artifacts, we define that a change as:

Definition 4.1. A change c; made to a requirement or a design
artifact a; includes the actions Creating, Deleting, or Updating the
artifact aj, Vi, j,€ N

In the best case, we assume that there are no isolated artifacts.
In other words, an artifact must be linked to a source artifact, a
destination artifact, or both: for example, a design artifact might
be linked to both a requirement and to an event in the fault tree.
A trace link can be added at the time an artifact is created, though
this is not required. When we add a requirement, for instance,
we do not add a trace link at the time it is created, because (as
previously mentioned) the building of trace links is associated with
the design or development of downstream artifacts. Hence, creating
a requirement may not add any trace links to the traceability graph.
On the other hand, when adding a new software component to a
design, we generally set up one or more trace links between that
component and one or more requirements.

Given the assumption that there are no isolated artifacts, deleting
arequirement artifact or a design artifact will affect the traceability
graph. For example, if a software module is linked to a requirement
and to safety analysis, then deleting this module from the design
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may lead to that requirement becoming unsupported, or the event
in the fault tree not occurring. We will discuss the impact of deletion
in Section 4.3 and 4.4.

A design or a requirement update might consist of editing the
text description of an artifact or its attributes. Since SafeTrace only
traces artifacts based on their identification numbers rather than
their semantics, an update does not by itself change the relations
in the traceability graph, nor does the framework detect whether
the change has a positive or negative impact on its upstream or
downstream artifacts. Thus, it is vital to notify potentially impacted
artifacts about the update. Then, the corresponding stakeholders
must check the affected artifacts. In Section 4.3 and 4.4, we will dis-
cuss change-impact analysis for requirements and design changes
in terms of their relation to safety analysis.

4.2 Artifact Evolutions

After the trace links between artifacts have been established, they
need to be updated as artifacts change. In the bottom of Traceability
Manager in Figure 2 in Section 3 depicts evolutions and relations
of different artifacts across multiple iterations. Here, an iteration is
defined as one or more changes made in one of the artifacts at a time.
For example, an iteration might only modify the requirements, and
affect neither design nor safety analysis. Hence, each artifact might
have multiple versions, as denoted in the solid boxes in Figure 2.

In the bottom of Traceability Manager in Figure 2, a directed link
between two boxes in the same iteration represents the direction of
a trace link from a downstream artifact to an upstream one. The sub-
script of each artifact represents a committed version. For instance,
the top event of SafetyAnalysis,,, \ is traced to a requirement in
Requirements,,,, ;, and basic events are traced to design artifacts
in Design,,,,. i A dashed-line outer box, on the other hand, repre-
sents an iteration. For each new version of an artifact, we need the
artifact from the previous version and the latest version upstream
artifact, if available. For instance, if a new requirement is given and
the design adjusted accordingly, performing SafetyAnalysis,,,, j41
requires that we have the previous SafetyAnalysis,,,, ., the latest
upstream artifacts Requirements,,. ;.. and Design,,, ;,;. The
following two subsections discusses requirement and deign change-
impact analysis for artifact evolutions.

4.3 Requirement Change Impact Analysis

Assume a traceability graph with reverse links between artifacts,
that is, G’ = (V,T’). Reverse links can be built automatically by
traceability-management tools when a stakeholder sets up the trace
link. A requirement has a reverse direct link to the artifacts it is
immediately related to: a design artifact and the root of a fault tree.
In other words, a requirement has information about which design-
and fault-tree artifacts trace to it. A requirement usually has direct
links to at least one top event in a fault tree and at least one design
artifact, so we need to examine the potential effects on both design
and on safety analysis of each requirement change.

If a change creates a requirement, system designers and safety
engineers need to check whether the current design- and safety
analysis artifacts support the newly created requirement, and mod-
ify or create new design- or safety-analysis artifacts accordingly. If
a change deletes a requirement, system designers and safety engi-
neers need to check whether the original corresponding design- or
safety-analysis artifacts have become isolated. If they have, stake-
holders should consider removing them. Lastly, if a requirement



change is an update to a safety-related requirement, then it is nec-
essarily related to certain fault trees, and the stakeholders of the
relevant FTA need to review it and decide whether the fault tree
needs modifications due to the updated requirement. Then, if the
stakeholders of a design artifact consider modifying their design be-
cause of the updated requirement, the original requirement change
becomes a design change. We address design changes in the next
subsection.

4.4 Design Change Impact Analysis

When creating a design artifact, system designers need to set up
the links between the new artifact and certain requirements. Safety
engineers must also examine whether the new artifact is covered
by safety analysis.

When deleting a design artifact, if its corresponding require-
ments become unsupported by any design artifact, then the system
designers need to check their design for whether or not other de-
sign artifacts can support the requirement. (There should be no
unsupported requirements.) Likewise, safety engineers need to
examine their safety analysis, since deletion of a design artifact
might lead to basic events having no corresponding design artifact.
In that case, safety engineers should consider removing such events
from the trees and re-evaluating the relevant FTA.

The intuition of our approach to change-impact analysis of the
effects of design updates on safety analysis is that, when all events
in a fault-tree’s MCS become True, the failure proposition of the
tree becomes True. If one of the events in the MCS remains False -
e.g., an event caused by a safe design element with high reliability —
then, state-changes of the rest of the elements in the MCS will not
result in such failure. It should be borne in mind that the source of
a trace link between design- and safety-analysis artifacts is a basic
event of a fault tree. If a basic event is also an element of a tree’s
MCS, when a design artifact associated with the basic event changes,
our impact-analysis algorithm simply checks whether or not the
event in the associated MCSs caused the proposition of the failure
to become True. For example, given the MCS = {{A},{B,C}},
assume an upstream design artifact is linked to element A in the
fault-tree. When the design artifact is updated, the algorithm will
determine that event A on the fault-tree might cause the hazard
to occur, because event A is the only element in the inner MCS,
and if A’s state becomes True, it will make the proposition of the
failure become True. However, if there is more than one element
in a cut set, such as {B, C}, we need to further discuss the impact
of the event.

With this in mind, we present Algorithm 1, for analyzing design
changes’ impact on safety analysis. The goal of this algorithm, given
a design-artifact change as the input, is to find all the fault trees
whose failure proposition might become True as a result, along
with the related requirements. This step is described in L:1 and L:2.
The outputs of the algorithm are the affected fault trees and the
related requirements. Affected fault tree is previously defined in
Definition 3.1 in Section 3.2.

Essentially, Algorithm 1 finds fault trees whose MCSs include
basic events associated with the given design artifact. If an MCS
that does not have safeguard events, a change made to the design
artifact can lead to the basic event becoming True, and hence trigger
the failure of the tree.

First, the algorithm finds the relevant basic events in all FTAs
associated with a given design artifact a; in L:4. Second, for each
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Algorithm 1: Impact Analysis Algorithm for Design Update
Changes

1 Input: An update change on an design artifact a;
2 Output:

{FaultTreey, | AffectedFaultTreey by a;, Va, i € N}
begin
linkedEvents « getLinkedEvents(a;)
for each event; in linkedEvents do
relatedMCSs « getMcsBy(event;)
for each mcsy. in relatedMCSs do
requirement r; «— getRequirementInMcs(mcsy)
if event; is the only element in mcsy then
report requirement r; may be violated

W

1 | report fault tree(s) linked by requirement r;

12 else

13 if no safe component in mcsy then
report requirement r; may be violated
report fault tree(s) linked by requirement r;
else

L report requirement r; may NOT be violated

14
15
16
17

basic event, the algorithm finds the MCSs that include this event
from L:5 to L:7. Next, if a basic event e; associated with the design
artifact a; in an MCS mesy is the only element, then the algorithm
reports that the failure proposition of the fault tree might be True,
and reports the requirements linked to the failure proposition of
the tree to the stakeholders.

Additionally, if there is more than one basic event in mesg and
none of its elements is a safeguard event (i.e., an event that will
remain safe, causing the value to remain False in the tree), then
the algorithm also reports that the failure of the fault tree might
be triggered, and identifies the related requirements. On the other
hand, if there is a safeguard event in mcsy, then the change to
design artifact a; does not violate the failure proposition of the tree.
This is presented in L:9 through L:17. Since the algorithm needs to
examine all the MCSs related to artifact a;, the complexity of the
algorithm is then O(n), where n is the number of MCSs associated
with a;.

5 CASE STUDIES

This section evaluates SafeTrace and the impact-analysis algorithms
for the MD PnP laser-surgery system example via a case study, as
described in Section 2. The original MD PnP system represents
the second phase of system development as depicted in Figure 5,
and therefore, the updated version of the system that has a com-
munication fail-safe requirement is the third phase. We begin by
introducing the case of a requirement change: adding a communi-
cation fail-safe requirement to Phase 2. Then, we show how the
system design must be altered in Phase 3 to prevent communication
failures that might be caused by the requirement change.

5.1 Requirement Changes

As previously mentioned, the original MD PnP system relies on a
wired network. Bearing in mind SafeReq-1 and SafeReq-2, suppose
that a surgical team wants a wireless-communication version, to
improve the system’s usability in an already crowded operating
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Figure 5: Traceability Graph in Phase 2 and Phase 3. The areas in read color represent changes made in Phase 3. Ej, 5 and E; 1
are the newly added events in Phase 3. No trace links setup for uncontrollable basic events E, 1, Ej, 3, and Ey, 4.

room. However, in such a scenario, the supervisor computer might
lose contact with its medical client devices due to wireless signal
interference, or suffer long delays in the execution of its instructions
to them. In our case, this might mean the supervisor not being able
to send further commands to the ventilator to re-supply oxygen, and
such failure resulting in hypoxia. As pointed out by the FDA, the
development process of wireless medical devices needs to guarantee
their safety in the face of potential wireless-communication failures
[17]. Communication failure can open the supervisor control loop,
and is thus referred to as the open-loop safe problem. As such, a
new requirement to guard against communication failure, known
as SafeReq-3 or the open-loop safe requirement [20], is added.

e Safety Requirement 3 (SafeReq-3): The system shall bring
the patient connected to the system to a safe state (i.e.,
supply the patient with oxygen) without causing either
fire or hypoxia if communications between the supervisor
computer and medical devices fail.

In Phase 2, for both Eq. 1 and Eq. 2 as set forth in Section 2.2,
we only need to trace basic events (i.e., events with subscript b)
and do not need to trace external ones that serve as conditions (i.e.,
lasting events with subscript c). As such, to comply with SafeReq-3,
the system designer first needs to know the system components
in the second phase that may be related to communication failure,
and then address the related design issues. From Figure 5, we can
see that SafeReq-1, associated with hypoxia, is supported by the
MD PnP Application, MD PnP Platform, Network Router, Adapter,
and Ventilator. However, we only have control over the MD PnP
Application, and Adapter, meaning that we need to trace events
related to these artifacts.

At this point, the system designers know that they need to ad-
dress the design in the MD PnP Application - i.e., supervisory
control computer — and the Adapter for the medical devices. (Be-
cause a device adapter only performs the commands it receives, the
only difference between the adapters for the ventilator and for the
laser scalpel in the real world is the interface; so, for simplicity’s
sake, we do not differentiate between the adapters for these two
devices.) From Figure 5, we can see that Ey, ,, to the MD PnP Appli-
cation; and Ey, ¢ to the Adapter. Ej, , appears among the minimum
cuts in the first set in both Firep, pr, and Hypoxiap, fr, in Eq. 1 and
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Eq. 2, respectively. However, because neither of these sets includes
any safeguard events, if Ej, , becomes True, then both hypoxia and
fire may occur. Hence, according to L:13 in Algorithm 1, we report
that both SafeReq-1 and SafeReq-2 may be violated due to the new
requirement.

5.2 Design Changes

In Phase 3, the system designer modifies MD PnP Application
software and Device Adapters, and sets up a trace link between it
and SafeReq-3. The application software sends out the predefined
timed commands to client adapters, and hence there are periods
when no communication is needed, i.e., after a predefined command
has been received by a MD PnP Adapter.

With SafeReq-3 and the modified design artifacts in place, safety
engineers can update safety analysis in Phase 3. By running Algo-
rithm 1, they can identify the relevant events from the MCSs of each
fault-tree. Given the updated requirements and the updated system
design, the engineers are now able to update the safety-analysis in
the previous version: specifically, to enable examination of whether
the modified components satisfy the new requirement, and what
its impact on the existing system is.

Figure 6 shows the updated safety analysis of fire hazard, with the
fault-trees updated to take account of the open-loop safe MD PnP de-
vice adapters. The new events and trace links are colored in red
and presented in Figure 5. The MCSs of the fire fault-tree in Phase
3 are shown in Eq. 4, and the events are listed in Table 1.

Firep, rr, = {{Es.1,Ep.1, Ep.6- EC.3}>
{Es.1-Ep.2.Ep 5. Ep.6s Ec.3} {Es.1. Ep 3, Ep 6 Ec.3}
{Es.1,Ep.1.Ep 7. Ec.2} {Es.1, Ep 2, Ep 5, Ep 7. Ec 2},
{Es.1.Ep 3,Ep 7, Ec.2}}

From Eq. 4, we can see that a safeguard event E 1 is now present
in each MCS. Eg 1 is “Open-loop safe MD PnP device adapter
crashes”. Since event Es ; is caused by a open-loop safe MD PnP de-
vice adapter, the value remains False, meaning that no MCS in the
Hypoxiap, rr, will become True, even if every basic event within
it becomes True.
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Figure 6: Fault-Tree Analysis, Firep, rr,, for Surgical Fire for
MD PnP Open-Loop Safe Tracheotomy Systems

Figure 7 depicts the updated fault-tree analysis for brain hypoxia.
The MCSs of the Phase 3 hypoxia fault-tree are shown in Eq 5.

Subtree-2 /'

E., Hypoxia

| Ventilator remains off |
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is Off

Open-loop safe MD PnP
SpO, drops below device adapter crashes [OR ]
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MD PnP Supervisor
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The system cannot
coordinate devices
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Network
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Open-loop safe software crashes
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Figure 7: Fault-Tree Analysis, Hypoxiap, rr,, for Hypoxia for
MD PnP Open-Loop Safe Tracheotomy Systems

Hypoxiap, rr, = {{Es.1,Ep.4. Ep.1, Ec.1},
{Es.1.Ep 4.Ep 2. Ep 5.Ec.1},{Es.1,Ep 4. Ep 3, Ec.1}}

The above medical example illustrates how SafeTrace can be used
to set up trace links between different artifact types. With traceabil-
ity between artifacts having been established, we demonstrated a
scenario in which a new safety requirement was added; and having
done so, we used the change-impact analysis algorithms described
in Section 4 to demonstrate how to identify impacts, and update
safety analysis and traceability, when a design is changed.

®)

6 RELATED WORKS

Fault-tree analysis is a widely used safety analysis method to eval-
uate a system’s capabilities against potential hazards. Accord-
ing to Matins and Gorschek [21], FTA is the most used safety-
analysis method for handling safety requirements: accounting
for 23% among the 21 methods they surveyed. Hussian and Es-
chbach [6] proposed a framework to automatically generate FTAs
using system models. In that framework, the negation of safety
constraints is treated as a fault in a fault-tree, and the combina-
tion of events then becomes the path of the fault tree to reach the
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root, which is a failure. However, this model-based approach re-
quires having correct and detailed system models, which are hard
to maintain over the long term; and out-of-date models will even-
tually make a generated fault-tree deviate from reality. Mason [7]
proposed an integrated framework, MATra, which focuses on pro-
viding traceability between the records generated by CASE tools for
safety-critical systems. However, it is not clear how to generalize
the framework without using the CASE tools, which in practice are
frequently updated and constantly evolving.

Traceability is an established tenet in the software-engineering
community, and a large body of research confirms its importance
in and positive impact on project development. Many regulatory
agencies covering a range of industry sectors have also recognized
its importance, and subsequently incorporated it into various stan-
dards and guidelines. For example, the FDA [22] mandates that
traceability analysis be used to verify that the software design of
a medical device implements the specified software requirements;
that all aspects of the design are traceable to software requirements;
and that all code is linked to established specifications and test
procedures. The FAA standard DO-178C [23] specifies that at each
stage of development, software developers need to demonstrate
the capability of tracing designs against requirements. Research
by Gries [24] also indicates that the most powerful aspect of trace-
ability is that it provides the foundation for impact analysis, and
hence provides the affected components once a change is made —
even in a large-scale project like the Boeing 777’s autopilot flight-
director system. Rahimi et al. [25] proposed a framework that
enables automatic updating of the links between requirements and
source code across different software- and requirement versions.
Hill and Victor [26] created a software safety risk taxonomy for
safety-critical systems; and Kugele and Antkowiak [10] proposed a
method for visualizing trace links based on component-based soft-
ware development, along with an impact-analysis algorithm based
on the traceability graph generated by the visualization. Guo et al.’s
[27] automated approach to generating the rationales for each link
improves upon the legacy approach, in that many links can share
the same semantics and a richer expression per link. And based
on an examination of numerous open-source projects, Rempel and
Mader [28] found that software quality was positively affected by
increases in the completeness of requirements traceability.

Although it is important to maintain requirement-to-code trace-
ability, it is also necessary — from a safety-critical system-development
perspective — to maintain trace links to safety analysis, since such
analysis is mandated by certification organizations and develop-
ment standards. Mader et al. [29] recommended that, instead of
focusing on tracing all requirements, a more pragmatic approach
would be to focus on creating trace links that specifically support
safety-analysis feasibility. However, it is not always clear what
safety-analysis methods are in use, or how to trace their relation-
ships with requirements and design. Our work is a complement to
the above-mentioned studies. Katta et al. [30] proposed a concep-
tual model of traceability for safety systems, in which the level of
traceable artifacts is relative higher when specific safety-analysis
methods are not referred to. We would take this line of thinking
further, by elaborating safety analysis and pinning down a detailed
traceability framework for FTA. Bishop and Bloomfield [31] used
safety cases as traceable artifacts from different system levels, and
although they mentioned FTA, the question of how to set up and
manage trace links within FTA remained unclear.



Another approach to integration traceability for safety-critical
systems is model-driven development. Briones et al.’s [4] method-
ology, for example, integrates safety analysis into software devel-
opment — the key being to have software engineers and system
analysts edit the same system models. This helps to avoid consis-
tency issues by linking models with different versions of software.
Sanchez et al. [32] also proposed a model-driven methodology to
support safety requirements, by embedding such requirements
into software development, thus rendering them traceable. Peraldi-
Frati [33] proposed another method of model-driven development,
focusing on timing-critical systems; but it did not include safety
analysis, which is also crucial to the success of safety-critical sys-
tems development. The present research can therefore be regarded
as a complement to model-driven development for traceability in
life-critical systems.

7 CONCLUSION

This paper has proposed a safety-driven traceability framework,
SafeTrace, for managing traceability in life-critical systems, includ-
ing trace links between safety requirements, design objects, and
events of safety-analysis. Specifically, our proposed method sets
up trace links (1) between design artifacts and basic events in fault
trees’ MCSs, and (2) between requirements and the top event (i.e.,
failure proposition) of each tree; and once such trace links have
been established, the proposed impact-analysis algorithms can be
used to identify the effects on safety analysis that are caused by
requirement- and design changes. In the case study of an airway
laser-surgery system with SafeTrace, we added a new safety re-
quirement: that the system, once modified to a wireless version,
can function fail-safe during communication failures. The results
demonstrate that SafeTrace was capable of quickly and accurately
locating the impacted safety-analysis areas, and of correctly updat-
ing and maintaining traceability within the system. Our approach
on safety-driven traceability could be potentially apply to other
application areas that safe interaction between devices is a key
concern. We plan to adopt the SafeTrace framework in the devel-
opment of a pediatric cardiac resuscitation system from an adult
version [17, 34]. Future directions of our work include source-code-
to-fault-tree traceability, and traceability on quantitative safety
analysis.
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