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Abstract

Automated unit test generation is essential for robust software de-
velopment, yet existing approaches struggle to generalize across
multiple programming languages and operate within real-time de-
velopment. While Large Language Models (LLMs) offer a promising
solution, their ability to generate high coverage test code depends
on prompting a concise context of the focal method. Current solu-
tions, such as Retrieval-Augmented Generation, either rely on im-
precise similarity-based searches or demand the creation of costly,
language-specific static analysis pipelines. To address this gap, we
present LspRag, a framework for concise-context retrieval tailored
for real-time, language-agnostic unit test generation. LspRag lever-
ages off-the-shelf Language Server Protocol (LSP) back-ends to
supply LLMs with precise symbol definitions and references in real
time. By reusing mature LSP servers, LspRag provides an LLM with
language-aware context retrieval, requiring minimal per-language
engineering effort. We evaluated LspRag on open-source projects
spanning Java, Go, and Python. Compared to the best performance
of baselines, LspRag increased line coverage by up to 174.55% for
Golang, 213.31% for Java, and 31.57% for Python.

CCS Concepts
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1 Introduction

Unit testing for modern software systems is crucial yet labor-
intensive [4, 68]. To ensure reliability, test suites must achieve
high coverage to expose subtle bugs and edge cases. It requires
developers to have a deep understanding of the internal logic and
dependencies of the codebase, including how the functions under
test interact with their surrounding implementation. This challenge
is even greater in today’s software development, where enterprise
codebases frequently spanmultiple programming languages, and de-
velopers expect real-time test generation as they code [1, 32, 41, 62].

Recent advances in Large Language Models (LLMs) have invig-
orated research on real-time multi-language unit-test generation.
Commercial systems such as GitHub Copilot [54] already offer
one-click test generation, boosting test quality with simple heuris-
tics—for example, giving higher weight to files a developer has
recently opened [24]. At the same time, Repository-level Retrieval-
Augmented Generation (RAG) techniques supply LLMs with addi-
tional code context obtained via textual similarity [38, 63], graph-
based relationships [36, 37], or even web search [60, 66].

Problem. Although existing methods enhanced code genera-
tion practice, they are still limited in generating high coverage
unit tests, because they fail to retrieve relevant context precisely.
For example, in Figure 1, to cover the “true” branch of line 3 in
checkout method, it is necessary to retrieve the definition of the
guard-condition method isValid, which resides in another loca-
tion. ( e.g., PaymentService.java). Existing approaches, however,
struggle to handle this seemingly straightforward task effectively.
GitHub Copilot is not able to pull dependent context across files,
so the user must supply the relevant code manually [25].

Existing RAG approaches for code generation, unfortunately,
also struggle to discover such a use-definition relationship precisely.
This is because the RAG’s embedding-and-similarity approach de-
pends on superficial cues such as similar function names, variable
names, and comments to infer relationships. These cues are often
noisy and prone to variation across coding styles and conventions.
Recent research [7, 36] recognizes this deficiency and augments
retrieval with static-analysis-based searches; however, that solu-
tion demands substantial human effort and remains tied to specific
programming languages, limiting their generalizability in today’s
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boolean checkout(Cart cart, Card card) {
    long t0 = System.nanoTime();                 
    if (paymentService.isValid(card)) { // branch guard
        ship(cart);
        metrics.markSuccess();                   
        return true;
    }
    metrics.markFailure();                       
    return false;
}

boolean isValid(Card c) {      // in PaymentService.java
    return !c.isExpired() && 
           luhnCheck(c.number());
}

Generate
Unit Test

Need To
Refer

Generator

Unit
Tests

Figure 1: Unit test generation scenario for focal method

checkout. To cover the “true” block of the first branch of the

focal method, the generator needs the definition of isValid
from another file.

software development. This highlights the urgent need for a new
approach for real-time and language-agnostic unit test generation.

Insight. This paper introduces LspRag, a concise context re-
trieval framework for multi-language unit test generation. Our key
insight is that modern editors already ship with mature static an-
alyzers exposed through the Language Server Protocol (LSP). By
querying these analyzers on demand, LspRag obtains the precise
location of context for every used symbol (e.g., function, method,
etc) in the focal method.

Challenges. Despite having sufficient and precise symbol infor-
mation, generating high-coverage unit tests remains non-trivial:
there still exist challenges. (1) The focal method includes exces-

sive irrelevant context. Achieving high test coverage requires
precisely identifying the definitions of symbols that control branch
conditions. However, in practice, a focal method often includes
many symbols unrelated to the branch condition. For example,
the nine-line checkout method in Figure 1 references eight exter-
nal symbols (Cart, Card, System, ..., and markFailure),
each with potentially several lines of definition. Despite this, test
coverage is only influenced by the isValid call. While retrieving
the definition for isValid is essential, collecting every definition
within the focal method introduces unnecessary, noisy context.
This excess context complicates the generator’s ability to locate
the correct context for solving the branch condition, ultimately
hindering the generation of high-quality unit tests.

(2) Hard to guarantee valid tests in real-time. Even when
concise and relevant context is collected, simply providing LLMs
with more context does not guarantee the generation of valid test
code. As noted in prior research [35, 64, 67], large code context
slices often introduce noise, which can obscure the original intent
and reduce the LLM’s ability to generate correct code. As a result,
the generated test code is likely to contain syntax errors, which hin-
der high-coverage test generation rather than support it. Previous
works [2, 23, 29, 47, 61] have mitigated this issue by executing the
generated test code in advance and collecting error messages in a
fixing loop. However, this approach is not practical for a real-time
scenario, as it requires a significant amount of time to compile and

Integration Effort
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Definition

Diagnosis

...LSP
RAG
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Figure 2: Integration effort before and after LSP.

execute the generated test code. Furthermore, the codebase under
test is often not compilable or executable in real-time.

We tackle these challenges from two dimensions. To address
Challenge (1), we design a key token extraction strategy that identi-
fies symbols essential for high-coverage test generation. Specifically,
we employ a hybrid analysis approach that combines fine-grained
lexical information from the LSP with structural information from
the Abstract Syntax Tree (AST), effectively filtering out unneces-
sary context. To address Challenge (2), we design a compile-free
self-repair mechanism that automatically fixes syntax errors in
unit tests. Specifically, we utilize the LSP’s diagnostic feature in a
compilation-free loop and retrieve the necessary context for repairs.
We continue this process iteratively until the errors disappear or
the retry budget is exhausted, ensuring real-time performance.

We implemented LspRag as a Visual Studio Code Extension to
streamline language-agnostic unit test generation and evaluated its
performance on real-world Java, Python, and Golang projects. The
results show that LspRag consistently improves the line coverage
and the rate of valid tests generated, irrespective of the program-
ming language or the underlying LLM employed. Our evaluation
demonstrates that LspRag yields substantial improvements in unit
test quality in terms of its line coverage and valid rate. Specifi-
cally, when compared to the best value among baselines, LspRag
improved line coverage by a range of 91.4% to 174.55% for Golang
projects, 27.79% to 213.31% for Java projects, and 16.87% to 31.57%
for Python projects. Similarly, the valid rate of generated tests in-
creased by up to 242.86% for Golang projects, 251.91% for Java
projects, and 20.16% for Python projects.

In summary, this paper makes the following contributions:

• We identify a gap between academic research and industry prac-
tice: developers in large companies require high-quality test cases
in real-time for different programming languages, yet concise
context for LLM is difficult to obtain without compilation, execu-
tion, or heavyweight analysis.

• We designed and implemented LspRag, which generate language-
agnostic high-coverage unit tests in real-time. The source code
is available at https://thu-wingtecher.github.io/LSPRAG.

• We conducted a comprehensive evaluation of LspRag on real-
world projects in three different programming languages. The
results validate the ability of LspRag to consistently improve
the performance of unit test generation in terms of both line
coverage and the rate of valid tests.

https://thu-wingtecher.github.io/LSPRAG
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2 Background

2.1 Language Server Protocol

The Language Server Protocol (LSP) was introduced byMicrosoft [42]
to address a significant challenge in software development: the need
for each editor and IDE to have a unique implementation for every
programming language’s analysis features. As the number of editors
and languages proliferated, this approach became unsustainable,
forcing language authors to repeatedly rewrite the same analysis
logic. At the same time, tool vendors struggled to keep pace with
the emergence of new languages. LSP has resolved these problems
by standardizing communication between a language server and
any compliant editor or IDE.

Before vs. After LSP As illustrated in Fig 2, LSP significantly
reduces implementation costs by defining a standardized commu-
nication protocol between language clients and language servers.
The language client, typically an editor or IDE used by a developer
(shown on the right in each sub-figure), communicates with a stan-
dalone language server process. This server, depicted on the left,
handles parsing, static analysis, and other language-specific tasks.
Before the adoption of LSP, adding rich language support required
redundant effort. For instance, both Eclipse and VS Code needed
separate Java plug-ins, with each language client implementing
its pipeline for identical language features. LSP streamlines this
process by establishing a standard protocol. Now, any compliant
IDE can leverage existing language servers that also adhere to the
LSP standard. This enables a single server to support multiple edi-
tors, allowing one editor to work with various languages by simply
connecting to the appropriate servers.

Typical LSP capabilities. A standard LSP provides a suite of
powerful features, including code completion, go-to-definition, find-
all-references, and real-time diagnostics that display errors and
warnings as you type. It also offers hover-to-view documentation,
symbol renaming, code actions for quick fixes, and refactoring.
Since these capabilities are delivered through a unified protocol,
users can enjoy a consistent, IDE-grade experience across any LSP-
compatible editor with minimal configuration.

2.2 Real-Time Unit Test Generation

In today’s fast-paced software development, developers frequently
need to generate unit tests while writing code, especially when
working on incomplete or experimental features. The traditional ap-
proach of writing tests after the code is complete can slow down de-
velopment, particularlywhen dealingwith rapidly evolving projects.
This is because some function implementations may be incomplete
or stubbed, which can temporarily leave the project not compil-
able and complicate test generation. Real-time unit test generation
addresses this by enabling developers to generate tests concur-
rently with their code, even for incomplete or partial function im-
plementations. Modern tools like GitHub Copilot [54] and Amazon
CodeWhisperer [51] leverage LLMs to create unit tests in seconds,
helping developers stay in their flow. These are integrated directly
into IDEs, providing test candidates within well under a minute,
ensuring that the development process remains uninterrupted.

3 Motivating Example

Existing real-time code-generation techniques struggle to produce
comprehensive unit tests, mainly because they cannot automatically
retrieve the concise context that the focal method relies on. Closing
this gap is essential because exercising every branch demands a
precise understanding of the symbols that guard those branches.
Without this understanding, it’s difficult for LLM to understand
branch conditions and fails to generate the specific inputs needed
to exercise them. To ground the problem, we present a motivating
example from the project Black [21], a widely used Python code
formatter, and compare how existing research efforts attempt to
retrieve necessary context.

Figure 3 (a) illustrates the simplified focal method of the Black
project for which we want to generate unit tests. The method
is_split_before_delimiter evaluates a tree leaf and its prede-
cessor to assign a numeric priority that determines whether the
formatter should split the line before that delimiter. It skips var-arg
constructs, then gives higher priority to dots in attribute chains and
logical operators, returning 0 when no split is warranted. To trigger
diverse actions of this method, the generator must supply inputs
that make each branch guard evaluate to true and false. For instance,
to satisfy the first guard, we must understand exactly when the
function is_vararg returns true and which value of leaf produces
that outcome. To do this, we need to retrieve the definition of the
function is_vararg from other files, which requires (1) identifying
the correct file names and (2) isolating the precise code snippets
that define the needed functions.

Context retrieval is a well-studied problem in the field of LLM,
with many RAG techniques proposing advanced strategies. Existing
RAG techniques may address real-time unit-test generation for the
focal method is_split_before_delimiter in three main ways. (i)
Normal RAG [30] employs similarity search with fixed-size chunk-
ing, designed for unstructured natural language. (ii) Code-aware
RAG, such as CodeRAG [45] incorporates code-specific features by
employing AST-based chunking and codebase indexing. (iii) Static-
analysis-based RAG, such as DraCo [7], enhances code-aware RAG
by leveraging traditional program analysis techniques, such as data-
flow analysis. Although RAG techniques have shown encouraging
results, they still face limitations in retrieving the necessary context
for unit test generation.

These limitations are exemplified in Figure 3 (c). Both Normal
RAG and Code RAG were able to identify only partial dependen-
cies (e.g., nodes.py ) while missing other essential contexts (e.g.,
pytree.py and tokens.py). This occurs because their retrieval is
based on an embedding-and-similarity algorithm, which depends
on textual information such as variable names, function names, and
comments. These cues are often noisy and prone to variation across
different coding styles and project conventions. Furthermore, they
cannot isolate the relevant snippet and therefore feed the LLM large
amounts of noise (e.g., 20,389 and 13,859 tokens) that hinders code
generation. As the latest open-sourced technique for static-analysis-
based RAG, DraCo addressed the above limitations by building an
import graph to follow dependencies, yet notable drawbacks remain.
First, it is still prone to including noise. Because it cannot recognize
which part of the imported library is used, it retrieves every im-
ported target, thereby including unnecessary context. For instance,
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 # brakets.py
 from blib2to3.pytree import Leaf, Node
 ...
 def is_split_before_delimiter(leaf, previous) -> Priority:
    if is_vararg(leaf, within=VARARGS_PAR | UNPACKING_PAR):

# defined in nodes.py from 760 to 780, 76 to 91.
        return 0
    if (
        leaf.type == token.DOT # defined in token.py line 32
        and leaf.parent # defined in pytree.py line 66
        and leaf.parent.type not in {syms.import_from, syms.dotted_name}
        and (previous is None or previous.type in CLOSING_BRACKETS)
    ):  #               # defined in nodes.py line 136 ↑↑ 
        return DOT_PRIORITY
    # ... existing code ...
    if leaf.value in LOGIC_OPERATORS and leaf.parent:
        return LOGIC_PRIORITY # ↑↑ defined in nodes.py line 49
    return 0

Ground Truth
 # nodes.py (line 760 ~ )
 def is_vararg(l, w):
   if l.type ...
      return False
 ...
 VARARGS_PAR: Final
 ...

 # pytree.py (line 66 )
 parent: 
 Optional["Node"]= None

 # token.py (line 32 )
 DOT: Final = 23
 ...

368 Tokens

Normal RAG

20,389 Tokens

Code RAG

13,859 Tokens

# comments.py 
  ==> 3,477 Tokens
@dataclass
class ProtoCommnt:
...

# nodes.py 
 ==> 7,519 Tokens
MATH_OPERAT:= {
    token.VBAR,
...

 # brakets.py
   ==> 2,863 Tokens
 LN = Union[Leaf, Node]
 Depth = int
 ...

Dataflow - Guided RAG

3,901 Tokens

# token.py - 
  ==> 640 Tokens
from typing ...
ENDMARKER: Final = 0
...

# pytree.py 
  ==> 2,690 Tokens
class Base:
...

# nodes.py 
  ==> 571 Tokens
COMPARATORS: Final = {
    token.LESS,
...

(b) Condition Context(a) Focal Function (c) Retrieved Context Comparison for Unit Test Generation 

 # nodes.py 
  ==> 7,519 Tokens
 MATH_OPERAT:= {
    token.VBAR,
 ...

 # brakets.py
   ==> 2,863 Tokens
 LN = Union[Leaf, Node]
 Depth = int
 ...

# lines.py 
  ==> 10,007 Tokens
@dataclass
class Line:
...

Figure 3: Illustrative example of existing work’s context retrieval in unit-test generation. (a) presents a simplified version of

the focal method; (b) displays the ground-truth condition context and its location; and (c) compares the context slices and the

number of tokens retrieved by three existing RAG techniques.

it loads all constant definitions from tokens.py when only a single
constant, token.DOT, is required. Second, the implementation cost
is prohibitive. Although DraCo’s retrieval accuracy is relatively
high, constructing and maintaining these language-specific data-
flow graphs requires substantial manual effort, limiting DraCo to
codebases written in Python alone.

Our approach. Rather than hand-crafting language-specific
data-flow graphs, we simply reuse the static-analysis features of
LSP. Through the LSP, these services surface the exact, minimal
code fragment for requested symbols, in almost any mainstream
language, giving us precise context with minimal effort. The next
section details how LspRag turns this observation into practice.

4 Basic Concepts

This section formalises the four LSP providers used by LspRag. We
introduce each concept in a top-down hierarchy—from workspace
to file, symbol, and token—so that their relationships are clear
before provider interfaces are stated.

4.1 Workspace, File, Symbol, and Token

Definition 4.1 (Workspace). A workspace, denotedW, is a finite
set of source files:W = { 𝑓1, . . . , 𝑓 |W| }.

Definition 4.2 (File). Each file 𝑓 ∈ W is an ordered sequence of
characters and contains a finite set of symbols, Σ𝑓 = {𝜎1, . . . , 𝜎 |Σ𝑓 | }.

Definition 4.3 (Symbol). A symbol 𝜎 is a named program entity,
such as a class, function, or constant, represented by the tuple

𝜎 =
(
name, kind, loc, children

)
.

Here, name is the identifier appearing in the source code; kind is
an enumerated tag (e.g., Class, Function, or Constant); loc is the
inclusive character location (𝑓 , 𝑜start, 𝑜end) of the symbol within its
file 𝑓 , start offset 𝑜start, and end offset 𝑜end; and children⊆ Σ𝑓 is
the set of nested symbols whose spans lie strictly inside loc (e.g., a
method symbol is one of the children from its class symbol.)

Definition 4.4 (Token). A token 𝜏 is the smallest lexical unit recog-
nised through LSP. We describe 𝜏 as the tuple

𝜏 =
(
loc, lex, tok_kind

)
, 𝑓 ∈ W .

The 𝑓 denotes the file containing the token; loc is the character
location (𝑓 , 𝑜start, 𝑜end); lex is the raw lexeme text; and tok_kind

indicates the lexical category (e.g., identifier, keyword, . . . ).

4.2 Provider Interfaces

In addition to the above concepts, we specify the four code-context
providers implemented on top of LSP that LspRag invokes.

Definition 4.5 (Symbol Provider). The Symbol Provider, denoted
SYM, is a function that, given a file 𝑓 ∈ W, returns the set of all
symbols in 𝑓 that are not nested within another symbol.

SYM(𝑓 ) = Σ𝑓 \
⋃

𝜎 ′∈Σ𝑓

𝜎 ′ .children

where Σ𝑓 is the set of all symbols in file 𝑓 .

Definition 4.6 (Token Provider). The token provider, denoted TOK,
is a function that, given a location 𝑙𝑜𝑐𝑞 ∈ W, returns an ordered
sequence of all tokens whose spans are contained within 𝑙𝑜𝑐𝑞 . Let
𝑇𝑓 be the complete, ordered sequence of all tokens in file 𝑓 . The
function is defined as:

TOK

(
𝑙𝑜𝑐𝑞

)
= ⟨𝜏 ∈ 𝑇𝑓 | 𝜏 .loc ⊆ 𝑙𝑜𝑐𝑞⟩

The output is a sequence, not a set, preserving the original order of
the tokens as they appear in the file.

Definition 4.7 (Definition Provider). ADefinition Provider, denoted
DEF, is a function that maps a given token 𝜏 to the set of locations 𝐿𝜏
of its corresponding definition symbols. This can be expressed as:

DEF(𝜏) = 𝐿𝜏 ≜

{
{𝜎.loc | 𝜎 is a definition for 𝜏} if definitions exist
∅ otherwise

Subsequent to the definition retrieval, resolving a location 𝑙 to a
symbol 𝜎 involves finding the symbol within the file’s symbol set
from SYM(𝑙 .𝑓 ) that satisfies:

𝜎 ∈ SYM(𝑙 .𝑓 ) ∧ 𝜎.loc = 𝑙
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Figure 4: Overall workflow of LspRag.

Note that the file containing the definition, 𝑙 .𝑓 , may reside outside
of the current workspaceW, for instance, within an external library
or a standard system header.

Definition 4.8 (Reference Provider). The reference provider, de-
noted REF, performs the inverse operation of the definition provider.
Given a token 𝜏 , it finds all tokens in the workspace that refer to
the same definition. Let 𝜎def indicates the definition symbol for the
token 𝜏 . The function is defined as:

REF(𝜏) =


{𝜏 ′ .loc | 𝜏 ′ ∈

⋃
𝑓 ∈𝑊

𝑇𝑓

∧ DEF(𝜏 ′) = 𝜎def}
if 𝜎def ≠ null

∅ if 𝜎def = null

The output is a set of locations, each corresponding to a token that
references the same definition symbol.

5 Design of LspRag

This section presents the design of LspRag, an enhanced RAG
framework for multi-language real-time unit test generation. As
illustrated in Figure 4, LspRag consists of three core modules that
operate on a developer’s workspaceW. We assume that a developer
is working on a focal method within a file 𝑓 ∈ W, which may have
dependencies on various symbols defined in other files.

Upon a developer’s request to generate a unit test, LspRag begins
with Key Token Extraction module. This module is responsible
for identifying a set of key tokens within the focal method. These
tokens are pivotal in guiding the generation of high-coverage test
cases as they typically govern the method’s control flow and its in-
teractions with external components. Subsequently, these extracted
tokens are passed to the RAG Module. This module leverages DEF
and REF providers to gather contextual information, including defi-
nitions and usages of the key tokens. This context is then used to
construct a detailed prompt that is fed to an LLM. Finally, to address
potential syntactic errors in the generated test code, the Unit Test
Refinement module inspects the test code without compilation.
If any potential errors are detected, it gathers the necessary con-
text for remediation and feeds this information back to the LLM to
correct the code.

5.1 Key Token Extraction

A primary challenge in context retrieval is that a focal method often
contains many tokens irrelevant to its core logic. Including context
of these tokens can degrade the quality of the generated tests by
retrieving non-essential context. To address this, we introduce the
concept of a key token, which is a token 𝜏 whose semantics are
essential for constructing high-coverage tests. Specifically, we de-
fine key tokens as those that represent control-flow decisions or
external dependencies. To identify these tokens, LspRag performs
a hybrid analysis that combines fine-grained lexical information
with a structural understanding, as illustrated in Figure 5.

5.1.1 Lexical Information from LSP. LspRag begins by invoking a
token provider, TOK (Definition 4.6), to retrieve a sequence of all
tokens within the scope of the focal method’s location, 𝑙𝑜𝑐𝑚 .

⟨𝜏1, 𝜏2, . . . , 𝜏𝑛⟩ = TOK(𝑙𝑜𝑐𝑚)
Each token 𝜏 in this sequence includes its location, lexical name,
and a semantic role, such as parameter or identifier. This in-
formation is necessary for the subsequent context retrieval phase,
because the context provider on top of LSP accepts input as a spe-
cific location of a token. Additionally, based on semantic role, one
can filter out unnecessary tokens, such as constants. While this
lexical information is useful, it is insufficient on its own because it
lacks structural context. For example, tokens like “if” and “def” are
both classified simply as “Keyword” by TOK, despite their different
structural implications for control flow. The LSP-oriented solution
cannot resolve this limitation, since it is designed for editor-centric
features, not compiler-level control-flow analysis1. Consequently,
relying solely on LSP features is insufficient for identifying the key
tokens needed for high-coverage test generation.

5.1.2 Structural Analysis via AST. To overcome the limitations of
the LSP, LspRag leverages the Abstract Syntax Tree (AST). The AST
provides a language-agnostic structural view that is essential for
understanding program hierarchy and can be easily implemented
in a language-agnostic way, which is crucial for multi-language
support. The effectiveness of this technique has been demonstrated
in prior RAG research [7, 50]. LspRag reuses widely-used Tree-
sitter [40] to construct a AST for focal method. The critical step in
this process is to bridge the structural AST view with the lexical
LSP tokens. To achieve this, LspRag preserves the precise source
code location (i.e., line and column numbers) of every node during
AST construction. This allows for a precise mapping between an
AST node and its corresponding set of tokens if the node’s location
span contains the tokens’ locations.

5.1.3 Key Token Identification. With the combined data, the tool
constructs a lightweight, language-agnostic Control-Flow Graph
(CFG) for the focal method. The CFG enables path-sensitive anal-
ysis to identify the final set of key tokens, 𝑇key. At a high level, a
token 𝜏 from the focal method is added to 𝑇key if it participates in
or affects the change of a conditional expression that determines
a branch in the CFG. Specifically, we first identify tokens 𝜏 ′ that
participate in a conditional expression. Next, we filter out the token
sequence TOK(𝑙𝑜𝑐𝑚) that does not need a context search by ex-
cluding tokens with semantic roles such as Keyword, Identifier,
1https://github.com/microsoft/language-server-protocol/issues/1675

https://github.com/microsoft/language-server-protocol/issues/1675
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 def is_split_before_delimiter(leaf, previous) -> Priority:
    leaf.type = token.DOT
    if is_vararg(leaf, within=VARARGS_PAR | UNPACKING_PAR):

# defined in nodes.py from 760 to 780, 76 to 91.
        return 0
    if (
        leaf.type == token.DOT # defined in token.py line 32
        and leaf.parent # defined in pytree.py line 66
        and leaf.parent.type not in {syms.import_from, syms.dotted_name}
        and (previous is None or previous.type in CLOSING_BRACKETS)
    ):  #               # defined in nodes.py line 136 ↑↑ 
        return DOT_PRIORITY
    # ... existing code ...

 1. is_split_before_delimiter( ... )
 2. leaf ( loc, lex, tok_kind), 
 3. previous ( ... ),
 4. Priority ( ... ),

 5. leaf
 6. type 
 7. token
 8. DOT

 9. is_vararg ( ... ),
 10. leaf ( ... ), 
 11. within ( ... ),
 12. VARARGS_PAR ( ... ),
 13. UNPACKING_PAR ( ... ),
 ...

Semantic Tokens Under Focal Method

Co-located with 
10. leaf

Function Node
  Text: is_split
  Range: ...

Condition Node
  Text: (\n\t\tleaf.ty...
  Range: ... 

Condition Node
  Text: is_vararg
  Range: ... 

...

Return Node
  Text: return 0
  Range: ...

Return Node
  Text: return ...
  Range: ...

...

CFG

Key Tokens : { ..., is_vararg, leaf, within, VARARGS_PAR, UNPACKING_PAR, leaf, type, 
token, DOT ... } 

Figure 5: This figure illustrates the key token selection pro-

cess. The red box highlights how key tokens are identified.

Using the lexical information and CFG, LspRag identifies

those tokens involved in or influencing branch decisions.

Literal, Comment, String, and Regex. In general, these tokens are
either constants or syntax keywords that do not require a context
search. Then, we extract tokens from TOK(𝑙𝑜𝑐𝑚) that appear on
the same line as the token 𝜏 ′ and add them to𝑇key. The resulting set
𝑇key represents the tokens most likely to affect the focal method’s
execution path. It is then passed to the subsequent RAG module.

5.2 RAG

This module is designed for precise context retrieval for the set
of key tokens, 𝑇key, identified in the previous stage. To achieve
this, LspRag systematically queries the LSP’s DEF (Definition 4.7)
and REF (Definition 4.8) for each token in 𝑇key and assembles the
retrieved information into a coherent prompt.

5.2.1 Context Retrieval. To retrieve a token’s definition, LspRag
invokes the DEF to find the location where the token is defined,
which we denote as 𝑙𝑜𝑐def. By default, DEF resolves symbols across
the entire project space, including standard and third-party libraries.
To maintain contextual relevance, LspRag filters these results, con-
sidering only definitions within the current workspace W. This
prevents the inclusion of unnecessary definitions from standard
libraries (e.g., String, Integer). This filtering is expressed as:

process 𝑙𝑜𝑐def only if 𝑙𝑜𝑐def .𝑓 ∈ W, where 𝑙𝑜𝑐def = DEF(𝜏 .𝑙𝑜𝑐)
If a valid definition location is found, LspRag first locates 𝜎def at
𝑙𝑜𝑐def and then extracts the source code from 𝜎def .𝑙𝑜𝑐 .

Next, to find usage examples, LspRag queries the REF to find all
use-sites of the token’s symbol within the workspaceW. We de-
note 𝐿refs as the queried result of REF(𝜏). A raw reference location

𝑙𝑜𝑐′𝑟 ∈ 𝐿refs (e.g., a variable in an expression) is often insufficient,
as it only points to the token at other file without its surrounding
context. To create a meaningful example, LspRag enriches each
reference. For each location 𝑙𝑜𝑐′𝑟 ∈ 𝐿refs, the tool identifies the
smallest symbol 𝜎enclosing that fully contains the reference location
(𝑙𝑜𝑐′𝑟 ⊆ 𝜎enclosing .loc). This is achieved by retrieving all top-level
symbols in the reference’s file 𝑙𝑜𝑐′𝑟 .𝑓 through SYM and then recur-
sively searching their children. The source code of 𝜎enclosing is then
extracted, transforming a simple location into a complete usage
example (e.g., the entire function that uses the token 𝜏), which
demonstrates how the symbol is used in other locations.

5.2.2 Prompt Construction. The final step synthesizes the retrieved
information into a structured prompt for the LLM. This prompt
is designed to guide the LLM in generating comprehensive unit
tests and consists of three parts: (1) The full source code of the
focal method to be tested. (2) The definitions and references of
the key tokens retrieved previously. (3) A lightweight unit-test
template with necessary import statements and class or function
structures inferred from the focal method’s file. This structured
prompt provides the LLM with focused and relevant information,
minimizing noise that can degrade code generation quality and
empowering it to produce accurate and thorough unit tests. Due to
page limitations, we provide the full prompt format in our artifact,
which is open-sourced. The prompt is designed using CoT [59] with
a one-shot setting [5].

5.3 Unit Test Refinement

While LLMs excel at code generation, their output can be imperfect,
containing syntactic errors that cause compilation failures. To ad-
dress this, LspRag employs an automated refinement module that
detects and repairs them. This process operates in two phases: (1)
real-time error detection and (2) context-aware error repair.

5.3.1 Real-Time Error Detection. LspRag leverages the diagnostic
capabilities of the LSP to perform immediate analysis on the gen-
erated code. In detail, when code is modified within a file 𝑓 ∈𝑊 ,
LspRag notifies the corresponding language server. The server, in
turn, analyzes the file and returns a set of diagnostics. Each diagnos-
tic is a tuple (𝑚, 𝑙𝑜𝑐), where𝑚 is a human-readable error message
(e.g., “undefined variable ’x”’) and 𝑙𝑜𝑐 is the location of the code that
triggers the error. This mechanism provides instantaneous feedback
without requiring a project compilation or code execution, which
is critical for real-time context.

Table 1: Error Categories Grouped by Necessary Context

Error Category Frequency Context Needed for Fix

Redeclaration/Duplicate Definition 28 300 Workspace-level context
(e.g., project structure)Import/Module Resolution Error 13 517

Member Access/Usage Error 13 387 Symbol-level context
(e.g., context of a specific symbol)

Type Mismatch/Compatibility Error 4388
Constructor Call Error 1670

Syntax Error 5467 No external context requiredUnhandled Exception 179

Total 66908
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5.3.2 Context-Aware Error Repair. Upon receiving a set of non-
empty diagnostics, LspRag initiates the repair phase. The core
challenge in automated code repair is providing the LLM with
sufficient and relevant context to understand and fix the error.

To determine the optimal context for different error types, We
constructed the dataset (Table 1) ourselves by collecting 70k errors
across Java, Python, and Golang, since no dataset exists for LLM-
generated code paired with error messages. These errors were
generated by prompting diverse LLMs to produce test cases for
different projects (including those used in evaluation), and then
diagnosing them via the LSP-based workflow. After collection, we
manually analyzed the errors, identifying their root causes and the
contextual information helpful in fixing them. This information is
general rather than tied to specific projects. For instance, “imported
and not used” consistently indicates import-related issues, while
“redeclared in this block” points to symbol redeclaration errors.
Based on the analysis result, LspRag gathers the corresponding
necessary context by invoking the providers implemented on top
of LSP. For a given diagnostic (𝑚, 𝑙𝑜𝑐𝑒𝑟𝑟 ), LspRag collects context
as follows:
• Symbol-Level Context: For errors related to a specific symbol
(e.g., undefined variables, incorrect method calls), LspRag re-
trieves its definition and usage examples. It invokes DEF to fetch
the canonical definition and REF to find usage examples for the
tokens at 𝑙𝑜𝑐𝑒𝑟𝑟 , providing the LLM with both the ground-truth
specification and concrete examples of correct usage.

• Workspace-Level Context: For errors involving project struc-
ture (e.g., missing imports), a broader view of the project is nec-
essary. LspRag provides this by supplying: (1) the workspace’s
file structure and (2) a list of top-level symbols (e.g., classes,
functions) in the file where the error occurred (𝑙𝑜𝑐𝑒𝑟𝑟 .𝑓 ).
Finally, LspRag constructs a prompt containing the erroneous

code, the diagnostic message 𝑚, and the retrieved context. This
process is iterative: after the LLM proposes a fix, LspRag re-triggers
the diagnostic mechanism. This loop continues until all diagnostics
are resolved or a predefined number of attempts is reached.

6 Implementation

We implemented a prototype of LspRag in TypeScript, comprising
approximately 22k lines of code out of 8k lines of unit test code.
The implementation was guided by two primary goals: developer
usability and language generalizability.

To enhance usability, LspRag was implemented as a VS Code
extension, which integrates seamlessly into the developer’s ex-
isting workflow and reduces the barriers to adoption. The tool
leverages the VS Code Extension API, which provides comprehen-
sive capabilities for user interface interactions, editor functionality,
and command handling. To achieve language generalizability, we
designed LspRag to be language-agnostic. It leverages the LSP to
consume semantic information from any compliant language server
and utilizes Tree-sitter [40] for robust source code parsing into an
AST. Consequently, LspRag is compatible with any programming
language supported by an LSP server and Tree-sitter. We have vali-
dated LspRag’s functionality with several major language servers,
including Pylance for Python [43], the Oracle Extension Pack for
Java [46], and the official Go extension [27].

LspRag currently offers two main features for unit test gener-
ation. The first is method-level test generation, which automati-
cally generates a unit test class for a given focal method. Such a
class contains multiple test functions, each designed for a unique
execution branch within the focal method. The second feature,
branch-targeted test generation, allows developers to select a spe-
cific conditional branch within a focal method and generates a set of
test cases specifically designed to exercise the logic of that branch.

7 Evaluation

In this section, we comprehensively evaluate LspRag’s performance
on real-world projects across different programming languages. Our
evaluation investigates the following questions:
• RQ1(§7.2): Can LspRag generate higher coverage unit tests than
other baselines?

• RQ2(§7.3): Does LspRag maintain low latency and efficient token
usage during generation?

• RQ3(§7.4): How much does each pipeline component of LspRag
contribute to test coverage?

7.1 Experiment Setup

Benchmarks. Our evaluation is conducted on six open-source
projects written in Python, Java, and Golang. Python and Java were
selected due to their common use in prior unit test generation
research. Golang was chosen as it is widely adopted in industry
but less examined in academic studies, which we anticipated would
present different challenges for LLMs. As shown in Table 2, we
selected two projects per language, all of which are frequently used
as benchmarks in the unit test generation domain [29, 39, 57, 58, 61].

Table 2: Dataset Statistics

Project Domain Version Language

Black [21] Code formatter 8dc9127 Python
Tornado [14] Network/Web framework 81d36df1 Python
Commons-CLI [19] Command line interface parser 266ab84a Java
Commons-CSV [20] Library for processing CSV files ca3a95c3 Java
Cobra [22] Framework for creating Go CLI ceb39ab Golang
Logrus [53] Structured logging library d1e6332 Golang

Baseline Selection. To evaluate the performance of LspRag,
we selected four baselines, comprising three RAG techniques and
one prompt engineering method.
• RAG: A normal RAG with OpenAI embeddings and FAISS index
via LangChain. It retrieves the top 3 most similar snippets based
on cosine vector similarity.

• CodeQA [50]: An open-source RAG pipeline designed for code
generation. Its approach, which involves indexing the codebase
and parsing code structure with an AST, is analogous to that used
in modern AI-assisted IDEs like Cursor [11].

• DraCo [7]: A RAG pipeline integrated with program analysis.
Although it is specific to Python, this tool’s use of static analysis-
guided retrieval plays a comparable baseline for evaluating the
context retrieval capabilities of LspRag.

• SymPrompt [48]: A prompt engineering technique for unit test
generation. It proposes a novel prompt format that translates
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Table 3: Comparison of line coverage and valid rate across all baselines. Our approach, LspRag, consistently outperforms all

baselines, achieving higher scores across diverse projects and models. Missing values (–) indicate that the baseline does not

support test generation for those projects.

Project Model

Coverage Valid Rate

CodeQA RAG SymPrompt LspRag DraCo CodeQA RAG SymPrompt LspRag DraCo

Black
GPT4o-m 34.92% 26.29% 22.09% 41.91% 32.58% 55.57% 37.26% 66.35% 79.73% 54.52%
GPT4o 40.47% 29.94% 23.99% 48.10% 35.33% 79.46% 77.53% 59.87% 85.15% 73.31%
DS-v3 46.03% 38.98% 34.18% 56.89% 37.64% 59.26% 72.24% 75.18% 88.03% 71.04%

Tornado
GPT4o-m 29.04% 49.44% 31.44% 57.78% 46.54% 71.26% 64.30% 77.01% 81.84% 75.82%
GPT4o 29.97% 46.29% 34.35% 60.90% 41.09% 80.14% 83.95% 72.82% 84.53% 85.03%

DS-v3 38.45% 54.05% 50.78% 64.62% 48.99% 85.93% 81.84% 85.30% 91.13% 90.48%

Commons
CLI

GPT4o-m 10.63% 5.02% 2.76% 33.29% – 12.40% 8.18% 7.05% 45.08% –
GPT4o 9.60% 3.21% 3.00% 34.69% – 8.23% 7.27% 7.20% 48.12% –
DS-v3 20.72% 17.68% 5.62% 37.72% – 13.29% 14.55% 9.21% 60.52% –

Commons
CSV

GPT4o-m 40.97% 24.93% 18.50% 80.51% – 23.64% 13.20% 6.28% 82.85% –
GPT4o 44.85% 44.84% 25.28% 78.33% – 20.68% 26.53% 14.41% 90.90% –
DS-v3 65.11% 44.68% 35.07% 83.20% – 43.27% 32.24% 29.82% 90.95% –

Cobra
GPT4o-m 7.11% 12.03% 3.39% 23.03% – 6.01% 9.50% 1.23% 23.88% –
GPT4o 10.05% 7.57% 0.22% 27.60% – 9.70% 8.12% 0.81% 33.27% –
DS-v3 15.50% 13.01% 8.57% 37.22% – 10.30% 10.69% 2.78% 34.65% –

Logrus
GPT4o-m 5.52% 11.14% 0.23% 23.71% – 14.32% 20.83% 0.83% 34.02% –
GPT4o 5.61% 13.09% 0.23% 27.75% – 14.17% 26.52% 0.83% 32.02% –
DS-v3 11.34% 11.00% 5.43% 21.81% – 13.33% 15.83% 7.5 % 33.11% –

CFG paths into descriptive comments, thereby improving the
readability and structure of the generated tests. We replicated
this prompt format using our own CFG.

Model Selection and Environment. Our evaluation utilizes
three LLMs to assess LspRag’s performance across different ar-
chitectures and scales. We selected GPT-4o [18] and its smaller
variant, GPT-4o-mini (GPT4o-m), to represent the transformer archi-
tecture. To test against a different model design, we also included
Deepseek-V3 [34] (DS-v3), which is based on a Mixture-of-Experts
architecture. The experiments were conducted on a server run-
ning Ubuntu 22.04 LTS, equipped with a 128-core AMD EPYC 7763
CPU and an NVIDIA V100 GPU featuring 32GB of memory. For
all language models, we used the default generation parameters,
including temperature, to ensure a consistent baseline.

7.2 Generation of High Coverage Unit Tests

To answer RQ1, we evaluated LspRag’s ability to generate high
coverage unit tests against selected baselines. We measured per-
formance using two key metrics: line coverage to quantify test
effectiveness, and valid rate to assess the proportion of syntacti-
cally correct, usable tests. We define the valid rate as the ratio of
grammatically correct test cases to the total number of unit test
generation attempts. Since invalid test cases are not compilable or
executable, they cannot produce any coverage.

Evaluation Setup. For each project listed in Table 2, we gen-
erated unit tests for methods exceeding 10 lines of code, as these
typically contain complex logic that is difficult to fully cover. This

resulted in 299 focal methods for Black, 521 for Tornado, 101 for Co-
bra, 24 for Logrus, 43 for Commons-CLI, and 145 for Commons-CSV.
To ensure reliable results, we repeated each experiment five times
and report the average values. We configured LspRag to perform a
maximum of five self-correction iterations.

Statistical Analysis. To verify the significance of our findings,
we performed statistical tests on the results. We computed p-values
to assess the significance of the improvements and reported effect
sizes to quantify their magnitude, following the guidelines from
Arcuri et al [3]. The null hypothesis (𝐻0) posits that there is no
statistically significant difference in line coverage between LspRag
and the baselines. Conversely, the alternative hypothesis (𝐻1) states
that LspRag achieves a statistically significant improvement.

Results. The overall results, presented in Table 3, show that
LspRag consistently improves line coverage across all projects, re-
gardless of the programming language or the underlying LLM. Our
statistical analysis confirms that these improvements are significant,
with all p-values being less than 0.05, thus supporting the 𝐻1. This
finding highlights the effectiveness of LspRag’s context retrieval
and code correction mechanisms. The following analysis examines
the specific design choices in the baselines that may contribute to
this performance gap.

While SymPrompt is designed to guide an LLM in generating
tests for specific conditions specified within comments, we found
its effectiveness in our experiments to be limited by the absence
of code dependency information. We observed that its complex
prompt structure, when not grounded with the necessary context,
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complicated the LLM’s generation process. This suggests that the
approach is robust but requires sufficient contextual input to steer
the LLM effectively, and without it, it can struggle to match the
performance of simpler methods.

The RAG-based approaches (RAG, CodeQA, and DraCo) showed
varied performance, highlighting different trade-offs in context
retrieval. For instance, DraCo is a sophisticated tool employing
dedicated static analysis for Python. While effective, its reliance on
import statements for dependency analysis means it can sometimes
miss crucial intra-file context, such as helper functions or constants
defined in the same file. On the other hand, CodeQA and RAG are
designed to retrieve full code snippets of functions or classes, in-
cluding intra-file context. This approach, however, sometimes led to
an excess of retrieved context, particularly in larger projects, such
as Tornado. This frequently caused the context to exceed the LLM’s
token limitation, resulting in the loss of potentially important in-
formation. Interestingly, our simpler baseline RAG, which retrieves
a maximum of three code snippets, often performed better than the
more complex RAG tools, suggesting that a more constrained and
focused context can be more effective than a larger, unverified one.

LspRag’s strong performance stems from two primary mecha-
nisms. First, for higher coverage, LspRag leverages LSP features
like "go to definition" and "find references" to construct a precise
semantic dependency graph. This provides the LLM with a com-
plete yet concise context, avoiding the noise of generic RAG and
the intra-file blind spots of other methods. Second, to achieve a
higher valid rate, LspRag utilizes real-time diagnostics on top of
LSP to detect and correct syntactic errors in the generated code
iteratively. This self-correction loop consistently improves the valid
rate of generated test cases, as evidenced by the consistently high
valid rates in Table 3. The specific contribution of these LSP-driven
features is quantified in our ablation study (§7.4).

The improvement in the valid rate for the Python projects (Black
and Tornado) was less obvious than for the Java and Golang projects.
This is an expected outcome, as Python is a dynamically typed
language, which limits the language server’s ability to catch all
potential errors statically before execution. Conversely, for projects
written in statically-typed languages like Java and Go, LspRag
consistently delivered significant improvements in validity rates
because the language server could identify a broader range of po-
tential errors.

We did not include Copilot in our experiments because it heav-
ily relies on human interaction during the unit test generation. In
detail, it requires manual clicks to trigger its functionality, which
prevents large-scale automated experimentation as it does not pro-
vide automated APIs for programmatic code generation [9, 10].
Furthermore, it assumes that users will perform context collection
and error correction during interaction, introducing human factors
that make fair and consistent evaluation difficult.

7.3 Latency and Cost

For a code generation tool to be practical in an interactive develop-
ment workflow, it must operate with acceptable latency and cost.
To answer RQ2, we assess whether LspRag meets this real-time
requirement by measuring its performance overhead in terms of la-
tency and cost. The evaluation was conducted on the projects from

Table 4: Overall token usage distribution and comparison.

Method Java Golang Python Averaged

LspRag - Breakdown

GEN 2,144 3,379 2,674 2,732
FIX 3,252 1,458 586 1,832

Total Token Usage Comparison

LspRag 5,396 4,837 3,260 4,497
CodeQA 11,720 4,831 5,466 7,339
RAG 3,790 4,006 4,582 4,126
DraCo – – 2,439 –

Table 2 using the GPT4oAPI, following the same experimental setup
as in §7.2. For each focal method, we measured the time and tokens
consumed across all processes of the LspRag pipeline, including a
maximum of five self-correction attempts. The results of latency,
averaged by programming language, are detailed in Figure 6.

On average, our tool requires 28.27 seconds and 4,497 tokens
per focal method to generate and refine a unit test. As detailed
in 6, the majority of this time (approximately 70%) is spent on LLM
API querying for generation and refinement. Our retrieval strategy,
which includes key token extraction and leveraging the LSP for
reference and definition providers, accounts for about 5 seconds of
the total time. While the refinement stage constitutes over 30% of
the generation time, we consider this a necessary and acceptable
trade-off for the improvements it yields in both line coverage and
the rate of valid tests.

As shown in Table 4, LspRag averagely uses 2,732 tokens for
the initial generation and 1,832 for fixing. While LspRag’s token
consumption is not the lowest in all cases, we consider the gains in
coverage justify the trade-off. For instance, compared to CodeQA,
LspRag uses 39% fewer tokens while achieving a 135% improvement
in coverage. When measured against DraCo, LspRag uses 9.6%
more tokens for generation and 24% more for fixing, but these
increases yield coverage improvements of 30% and an additional
6%, respectively. Furthermore, LspRag demonstrates its efficiency
against a RAG approach, delivering a 174% coverage improvement
with an 8.9% increase in total tokens used for generation and fixing.

REF : 295
Build CFg : 217

DEF : 417
REF : 277
Build CFg : 3.2

REF : 244
Build CFg : 344

Figure 6: Test generation cost distribution per focal method,

classified by programming languages.

7.4 Ablation Study

To answer RQ3, we conducted an ablation study to isolate and
quantify the contribution of each of LspRag’s core components.
We evaluated three configurations, with same setup from §7.2:
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Table 5: Comparison of valid rate and line coverage across

different versions of LspRag. This shows that each compo-

nent of LspRag shows meaningful improvement both on

coverage and valid rate.

Project Model

Coverage Valid Rate

Naive LspRag− LspRag Naive LspRag− LspRag

Black
GPT4o-m 22.72% 39.51% 41.91% 57.32% 72.04% 79.73%
GPT4o 23.56% 42.30% 48.10% 56.58% 77.99% 85.15%
DS-v3 39.74% 53.36% 56.89% 75.62% 87.02% 88.03%

Tornado
GPT4o-m 27.52% 56.72% 57.78% 67.14% 81.54% 81.84%
GPT4o 29.55% 60.03% 60.90% 54.36% 82.00% 84.53%
DS-v3 46.04% 63.70% 64.62% 89.56% 90.36% 91.13%

Commons
CLI

GPT4o-m 4.59% 27.10% 33.29% 13.40% 23.49% 45.08%
GPT4o 12.71% 23.16% 34.69% 32.61% 28.59% 48.12%
DS-v3 6.46% 28.77% 37.72% 17.20% 31.32% 60.52%

Commons
CSV

GPT4o-m 26.70% 69.77% 80.51% 15.74% 37.43% 82.85%
GPT4o 39.16% 76.05% 78.33% 35.69% 54.45% 90.9 %
DS-v3 32.67% 75.29% 83.20% 36.76% 49.29% 90.95%

Cobra
GPT4o-m 1.36% 9.91% 23.03% 1.19% 7.13% 23.88%
GPT4o 2.72% 12.56% 27.60% 1.79% 8.91% 33.27%
DS-v3 11.58% 25.61% 37.22% 9.13% 21.78% 34.65%

Logrus
GPT4o-m 2.32% 11.55% 23.71% 3.33% 18.86% 34.02%
GPT4o 0.65% 10.58% 27.75% 0.83% 15.00% 32.02%
DS-v3 10.67% 13.55% 21.81% 22.50% 17.05% 33.11%

• Naive: A baseline using the same prompt template as LspRag
but without LSP-guided context or code fixing.

• LspRag
− : The baseline enhanced with our context retrieval on

top of LSP features.
• LspRag: The complete LspRag system, incorporating both con-
text retrieval and the real-time code fixing module.
The results, averaged over five runs and presented in Table 5,

reveal two key findings. First, context retrieval is crucial for gen-
erating comprehensive tests. As shown in Table 5, adding context
(LspRag−) substantially increases line coverage over the Naive base-
line across all projects and LLMs. Specifically, LspRag− improved
line coverage by 26% to 1528% for Golang, 82% to 490% for Java,
and 34% to 106% for Python. This demonstrates that the precise,
semantically aware context provided by our context retrieval on top
of the LSP module enables the LLM to understand class structures,
method dependencies, and necessary initializations.

Second, the real-time fixing module is vital for maintaining cor-
rectness, especially when the context is complex.While rich context
boosts coverage, it can be a double-edged sword. For instance, with
a complex project like Commons-CLI, the large volume of context
can distract the LLM, leading to syntactically incorrect code and a
lower valid rate for LspRag− . The full LspRag system mitigates this
issue. By adding the fixing module, LspRag improved line coverage
by an additional 45% to 162% for Golang, 3% to 49% for Java, and
1% to 13% for Python over LspRag− . More importantly, it increased
the valid rate by 59% to 273% for Golang, 67% to 121% for Java,
and 0.5% to 10% for Python. The improvements for Python are less
pronounced, which is an expected outcome due to the language’s
dynamic nature. Python’s dynamic nature means that its LSP diag-
nostics, which rely on static analysis, cannot detect certain error
classes that would cause compile-time failures in statically-typed

languages. Nevertheless, the fixing module proves its general utility
by consistently enhancing both the validity and coverage of gener-
ated tests across all three languages, demonstrating that real-time
correction is a crucial component for robust test generation.

8 Discussion

Fault-Finding Capability.While LspRag is designed to maximize
test coverage, it does not explicitly optimize for the quality of test
assertions. Since effective assertions are critical for detecting faults,
we conducted an experiment to evaluate this capability. We injected
faults into the source code using standardmutation tools (Pit [8] and
MutPy [16]) and measured whether the generated tests could detect
them. As summarized in Table 6, LspRag consistently outperforms

Table 6: Comparison of mutation scores across all baselines.

Project Model LspRag SymPrompt CodeQA StandardRAG DraCo

Black
DS-v3 25.21% 12.75% 11.85% 5.03% 7.73%
GPT4o 30.28% 21.04% 18.47% 9.69% 17.03%
GPT4o-m 31.90% 15.01% 8.18% 2.31% 8.71%

Tornado
DS-v3 35.39% 1.46% 2.03% 21.16% 2.03%
GPT4o 30.37% 9.11% 7.66% 18.16% 21.69%
GPT4o-m 24.96% 5.15% 13.62% 9.28% 15.68%

Commons
CLI

DS-v3 19.67% 3.22% 4.21% 12.73% —
GPT4o 19.01% 1.32% 7.19% 0.41% —
GPT4o-m 19.92% 0.08% 1.40% 0.74% —

Commons
CSV

DS-v3 58.50% 11.75% 39.63% 17.63% —
GPT4o 50.50% 0.25% 9.38% 5.63% —
GPT4o-m 50.13% 1.13% 7.63% 2.75% —

the baselines, suggesting that its accurate context retrieval not only
boosts coverage but also enhances fault detection.

Comparison with SBST Tool. To contextualize the perfor-
mance of our LspRag, we conducted a direct comparison with
EvoSuite, a widely-used SBST tool for java. For fair comparison,
EvoSuite was configured to generate unit tests per method under
a fixed time budget of 28 seconds per method under test. The re-
sults are summarized in Table 7. The results indicate that LspRag

Table 7: Comparison with EvoSuite on Java projects.

Project

Coverage Valid Rate

LspRag EvoSuite LspRag EvoSuite

Commons-CLI 37.72% 56.33% 60.52% 100%

Commons-CSV 83.20% 69.70% 90.95% 100%

achieves competitive code coverage against EvoSuite. EvoSuite con-
sistently achieves a 100% valid generation rate. This is an expected
outcome, as its test generation process is rooted in a strict code mu-
tation strategy that inherently guarantees syntactically correct and
compilable tests. In contrast, LspRag is designed with a different
primary goal: to support multiple languages through a lightweight
static analysis framework. This design choice involves a trade-off,
where we sacrifice a guaranteed valid rate for broader applicability
and scalability. Nevertheless, the result demonstrates that LspRag
still delivers coverage results that are comparable to EvoSuite.
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Threats to Validity. We identify two primary external threats
to the generalizability of our approach. First, the effectiveness of
LspRag is inherently coupled with the correctness of the underlying
LSP server implementation for a given language. Our approach
relies on the LSP server to provide accurate static analysis results
(e.g., definitions, references, and type hierarchies). Consequently, if
a programming language lacks robust LSP support, or for servers
with erratic or incomplete analysis capabilities, the quality of the
retreived context would be degraded, potentially impacting the
quality of the generated code. Second, the behavior of LspRag can
be influenced by environment-specific configurations. For example,
the behavior of LSP server is affected by different IDEs.We observed
that for a Java project, VS Code [44] might define the class path
as the project’s top-level directory, whereas Cursor [11] sets it to
the src/ subdirectory. Such discrepancies can affect which files are
analyzed, potentially affecting the LSP’s static analysis results. Our
prototype accommodates these variations through configuration.

Extensibility to Other Languages.One of the key design goals
of LspRag is extensibility. Its architecture is modular, comprising:
(1) a language-specific module for AST parsing and key feature
extraction, and (2) language-agnostic modules that leverage the
LSP for context retrieval and code fixing. To adapt LspRag for a new
programming language, manual implementation is only necessary
for the first module. This task involves translating the language’s
specific tree-sitter based AST nodes into LspRag’s IRs. This is a well-
defined task requiring a modest implementation effort. Integrating
the LSP-based capabilities is straightforward. It only requires the
installation of the appropriate language server (e.g., as an IDE exten-
sion). Once installed, LspRag can immediately utilize the server’s
rich functionalities, such as “Go To Definition,” without any further
modification to its core logic.

9 Related Work

Existing Approaches on Unit Test Generation. Automated unit
test generation has been a long-standing goal in software engineer-
ing, with two primary waves of innovation: classical search-based
and symbolic techniques, and more recent LLM-based approaches.
Classical techniques primarily focus on maximizing a specific cri-
terion, most often code coverage. Search-Based Software Testing
(SBST) tools [15, 23, 33, 47, 49] for Java, and tools [2, 29, 39] for
Python, employ evolutionary algorithms or random testing to gen-
erate test suites. While powerful, these methods are inappropriate
for real-time. They rely on whole-program compilation, heavy in-
strumentation, and numerous execution iterations—steps that are
too slow and fragile when the codebase is in flux, changing every
few minutes during active development. Their operation assumes
a stable, buildable project state, which is often not the case in the
early, exploratory stages of writing new code. More recently, LLMs
have been applied to test generation, often outperforming classical
tools in terms of the readability and initial quality of generated
tests [2, 13, 48, 56, 61]. However, most of these works have selected
an iterative loop either for error detection or coverage feedback.
For instance, Altmayer et al. [2] propose coverage-guided pipelines
where an LLM generates tests, which are then executed to gather
coverage data; this feedback is used to prompt the LLM to cover
the remaining branches. While these approaches have improved

previous work in terms of latency and coverage, they are still inap-
propriate for real-time scenarios. Furthermore, both classical and
many LLM-based approaches are tailored for specific programming
languages (e.g., Java and Python), limiting their generalizability.

Retrieval-Augmented Generation. RAG [28, 31] mitigates
LLM’s limitation of having finite training data. Initially proposed
for NLP, it has been widely applied to code, notably through
repository-level techniques. These use code-specific features for
context retrieval, such as AST-based chunking [17, 50, 52] or
program-analysis-based retrieval [6, 36, 37, 65]. Repository-level
RAG techniques are representative of this effort. They used code-
specific features to retrieve context, such as AST-based chunk-
ing [17, 50, 52], or program-analysis based retrieval [6, 36, 37, 65].
These techniques expose a fundamental trade-off. AST-based chunk-
ing is multi-lingual, but its reliance on superficial features leads to
imprecise retrieval. In contrast, program-analysis-based retrieval
achieves far greater precision by understanding the code’s execu-
tion and data-flow relationships. However, this precision comes
at a steep price: they require building and maintaining complex,
language-specific static analyzers, thereby limiting their applica-
bility to one specific language [7, 36, 37]. We compare LspRag
with DraCo[7] and CodeQA[50] as they are the only open-sourced,
referred code-aware RAG works.

Neuro-Symbolic Approaches in Software Engineering. Re-
cent neuro-symbolic approaches combine LLMs with program anal-
ysis for enhanced code intelligence. This synergy aids code auditing
and bug detection, with tools like LLMDFA [55] and DeepCon-
str [26] using LLMs for dataflow and constraint generation while
symbolic techniques validate paths and mitigate hallucinations. For
unit test generation, Tratto [12] uses a neural module to propose
tokens and a symbolic module to constrain the search space based
on program context. However, a common limitation is that they are
tailored to a single programming language. In contrast, LspRag ad-
dresses this gap by leveraging the LSP to perform language-agnostic
neuro-symbolic unit test generation.

10 Conclusion

We addressed the challenge of generating high-coverage unit tests
for modern, multi-language software systems in real-time. We iden-
tified a key deficiency in existing approaches: their inability to pre-
cisely retrieve the necessary context, which hinders the generation
of high-coverage and valid tests. To overcome this, we introduced
LspRag, a novel framework that leverages the LSP to obtain precise
code context. LspRag incorporates a hybrid analysis strategy to dis-
till essential, branch-governing symbols from the retrieved context
and a compile-free self-repair mechanism to ensure the syntactic
validity of the generated tests without the overhead of compilation.
Our extensive evaluation on real-world projects in Java, Python,
and Golang demonstrates that LspRag significantly improves both
line coverage and the rate of valid test generation across different
programming languages and underlying LLMs.
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