
Effective On-Hardware Fuzzing of Embedded
Operating Systems

Yuheng Shen
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

syh1308@gmail.com

Jianzhong Liu
Shandong University

Qingdao, China
liujianzhong@sdu.edu.cn

Qiming Guo
Beihang University

Beijing, China
grub_49@163.com

Yifei Chu
Tsinghua University

Beijing, China
chuyf24@mails.tsinghua.edu.cn

Qiang Zhang
Hunan University
Changsha, China

zhangqiang9413@126.com

Heyuan Shi
Central South University

Changsha, China
hey.shi@foxmail.com

Yu Jiang
Tsinghua University

Beijing, China
jiangyu198964@126.com

Abstract
Fuzz testing embedded OSs is difficult because their im-
plementations vary widely and rely on specialized hard-
ware. These factors render many existing methods ineffec-
tive, since they prevent adapting established fuzzing rou-
tines, disrupt communication with the target OS, and im-
pede observation of runtime behavior. This paper introduces
EOF, a feedback-guided fuzzer designed to test embedded
OSs running on actual hardware. Through the debug port,
EOF communicates with the target embedded OS, executes
test cases, and collect feedback data, with no dependence
on OS services. Then, EOF deploys a cross-platform agent
and executes API-aware input across diverse hardware. Last,
EOF collects runtime coverage and critical execution events
to identify interesting seeds and find potential bugs during
fuzzing.We implemented EOF and evaluated its performance
on four different embedded OSs, where EOF discovered 19
bugs and achieved a 50.84% coverage improvement on aver-
age compared with other comparable fuzzing methods.

CCS Concepts: • Security and privacy→ Operating sys-
tems security; Embedded systems security.

Keywords: Fuzz Testing, Embedded Operating System

Heyuan Shi and Yu Jiang are the corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EUROSYS ’26, Edinburgh, Scotland Uk
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769326

ACM Reference Format:
Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang,
Heyuan Shi, and Yu Jiang. 2026. Effective On-Hardware Fuzzing of
Embedded Operating Systems. In European Conference on Computer
Systems (EUROSYS ’26), April 27–30, 2026, Edinburgh, Scotland Uk.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3767295.
3769326

1 Introduction
Embedded Operating Systems (Embedded OSs) are essential
in powering billions of IoT devices that are integrated into
our daily lives. The diversity in implementation and runtime
environment of embedded OSs allows them to suit different
use scenarios. However, this diversity introduces complex-
ity that makes these systems prone to errors. For example,
eleven 0-day bugs in VxWorks [3] made 200 million devices
worldwide vulnerable. Therefore, it is important to proac-
tively identify these potential bugs to ensure the security
and robustness of embedded OSs.

Background: Fuzz testing (fuzzing) [4, 15, 17, 18, 24] is a
popular software testing technique. This approach involves
randomly generating test cases for the system-under-test
(SUT) and monitoring for unexpected behaviors. In order
to test embedded OSs [8, 26, 27, 32], fuzzers typically gener-
ate API sequences and deploy the target OS on emulators
or real devices to trigger and detect potential bugs. For in-
stance, Tardis [28] utilizes the shared memory mechanism
to test several embedded OS on top of the QEMU emulator,
Gustave [9] employs a highly customized QEMU board to
detect memory-related errors in POK OS, and GDBFuzz [10]
proposes to use GDB as the communication channel to test
embedded software on actual physical devices.

Motivation: Despite ongoing efforts, existing embedded
OS fuzzing technologies fall short of conducting full-system

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767295.3769326
https://doi.org/10.1145/3767295.3769326
https://doi.org/10.1145/3767295.3769326

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

testing on hardware. Specifically, emulator-based testing is
not a one-size-fits-all method; most embedded OSs need
to run on diverse hardware to meet specific task require-
ments. For example, in industrial control and robotics, where
embedded OSs run on STM32H745 [1], emulators are not
available. This bars emulation-based tools such as Tardis
from testing them. Another aspect is that application-level
fuzzing falls short because it mutates random buffers at entry
points without considering embedded OS API constraints or
system state, resulting in the testing process being rejected
early and leaving kernel subsystems under-exercised. This re-
stricts the vulnerability discovery capabilities, as a large part
of the embedded OS’s functionalities and deeper kernel-level
interactions remain under-explored. To this end, we need
a method that is capable of fuzzing embedded OSs, which
is capable of (1) testing embedded OSs running on actual
hardware and (2) conducting full system testing. To achieve
the above goal, we need to address three main challenges.
Challenges: First, to fuzz embedded OSs, we need to

deploy our fuzzing harness across diverse embedded OSs
and hardware platforms. Specifically, fuzzing needs an agent
process on the target system to conduct data transmission
and test case execution. However, different embedded OSs
vary in implementation details, i.e., API definitions and error
handling mechanisms, and embedded OSs tend to be tightly
coupled to the specific hardware platforms. Each platform
may have different processor architectures, memory layouts,
and peripheral settings. Conventional OS fuzzing [25, 32]
often targets uniform POSIX environments with standard-
ized APIs. In contrast, embedded OSs often implement the
same function differently. For task creation, FreeRTOS uses
xTaskCreate() with optional static stacks and tick-driven
scheduling, whereas Zephyr uses k_thread_create() un-
der fully preemptive scheduling with work queues. Existing
embedded-system fuzzers [10, 21] typically rely on random
byte buffers, which ignore structuredAPI constraints, and are
thus rejected early, and fail to drive exploration of deeper ker-
nel subsystems. This requires the fuzzer to navigate a broad
spectrum of system implementations and tailor these ap-
proaches to accommodate different hardware architectures,
significantly complicating the deployment and execution
process.
Second, we need to monitor and maintain the integrity

of the target OS. Since embedded OSs tend to be volatile,
and previously executed test cases may result in the sys-
tem entering certain degraded states that hinder further
fuzzing payload executions. For example, due to some im-
proper use of APIs, the execution may get stuck in an infinite
polling loop. These degraded states, while not being actual
bugs, need to be detected promptly and signal the fuzzer
to restore the system to a benign state, where fuzzing can
proceed. Acquiring such information is challenging due to
hardware isolation, inherently limiting the fuzzer from ob-
serving and manipulating the target. General OS fuzzing

approaches often rely on VM introspection and snapshots
to monitor and reset the system state, while hardware-based
fuzzing approaches [10] rarely address this issue, leading to
the fuzzing process requiring certain manual interventions.
Therefore, fuzzing on hardware requires watchdogs to check
the system’s liveness, facilitate a reliable state restoration,
and accommodate different hardware platforms.
Third, we need to construct an effective fuzzing loop for

the target system running on hardware. An effective fuzzing
process must rely on various feedback mechanisms, such
as code coverage and runtime bugs. However, embedded
OSs are tightly integrated with their varied hardware archi-
tectures, which often lack standardized coverage tools and
exhibit hardware-specific bug-handling behaviors, includ-
ing unique interrupt signals and crash responses specific to
each hardware environment. Existing mechanisms, such as
KCOV [31] and Kernel Address Sanitizer (KASAN) [12], tar-
get Linux-style kernels with MMU-based processes. KCOV
relies on a kcov device with per-thread buffers exposed via
ioctls, and KASAN relies on compiler instrumentation with
shadow memory and a runtime. However, typical embedded
OS lack process isolation and user space, have minimal C
library support, run much of the time in interrupt context,
and impose tight RAM and allocator constraints, so it is hard
to implement these mechanisms. Additionally, some fuzzing
approaches [9, 21] adapt ASAN to embedded systems by
heavily modifying the sanitizer, which is labor-intensive and
challenging to port across different architectures.
Solutions: To effectively address these challenges, we

propose EOF, a feedback-guided embedded OS fuzzer that
can test embedded OSs running on actual physical devices.
The core idea is to conduct guided fuzzing and runtime moni-
toring through the hardware debug interface without relying
on the details of the OS implementation and architecture.
EOF conducts fuzzing through the following procedures.
First, via the hardware debug interface, EOF controls and
synchronizes the fuzzing process, it establishes communica-
tion with the target, deploys a small cross-platform agent,
and drives API-aware tests uniformly across different embed-
ded OS implementations and hardware. Second, the debug
interface enables EOF to establish a unified feedback-guided
and liveness maintenance mechanism. It can collect runtime
coverage and critical system events such as exceptions, error
logs, and reset the system when the system reaches unre-
coverable states or crashes are detected. By combining these
procedures, EOF is capable of conducting effective embedded
OS fuzzing on real physical devices.

Evaluation: We evaluated EOF on four widely-used em-
bedded OSs. In detail, EOF found a total of 19 bugs among
these embedded OSs. Also, compared to existing fuzzing ap-
proaches, including Tardis and GDBFuzz, EOF achieved an
average of 34.84%, 35.51%, and 107.03% coverage improve-
ment. Furthermore, we implemented EOF-nf, which is EOF
without feedback guidance, and evaluated its effectiveness

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

compared to EOF, where EOF demonstrated an average of
35.16% coverage improvement. For the instrumentation over-
head, EOF on average exerts a 6.44% and 23.39% runtime
overhead in terms of the memory consumption and the exe-
cution latency.

In summary, this paper makes the following contributions:
• We propose EOF, a feedback guided embedded OS
fuzzer that can test different embedded OSs across
diverse environments, and we have open-sourced it 1.
• We present a hardware-based fuzzing technique. By
leveraging the debug interface and cross-platform exe-
cution agent, EOF is capable of testing embedded OSs
on hardware.
• For evaluation, EOF detected a total number of 19 bugs
among four popular embedded OS, with 5 bugs con-
firmed, while achieving a higher code coverage com-
pared to other fuzzing approaches.

2 Background and Related Works
2.1 Embedded Operating Systems
Embedded Operating Systems (a.k.a, embedded OSs) are spe-
cialized frameworks designed to manage hardware resources
and provide essential services for embedded systems. They
support a broad range of applications and are adaptable to
various hardware architectures, serving devices from simple
microcontrollers to complex controllers in automotive and
industrial environments.

Middleware
Libraries

Protocal
Stack

Inter-Process
Communication

File System

Embedded Operating System
Hardware

Abstraction Layer

Embedded Applications

System ControlCommunication
Interface Data Processing User Interface

Hardware

ESP32STM32 RaspPi Arduino...

Memory
Management Device Drivers Task Scheduler

Figure 1. Architecture of embedded operating systems.

The overall architecture of an embedded OS is depicted
in Figure 1. The embedded OS is deployed on various hard-
ware platforms, such as STM32 onARM and ESP32 on Xtensa
or RISC-V. These boards enable the embedded OS to suit var-
ious application scenarios. Also, the embedded OS comprises
several essential components. At its core, the task sched-
uler coordinates task execution, and the memory manage-
ment optimizes resource allocation. Device drivers enable
hardware communication, and inter-process communica-
tion (IPC) ensures process coordination. The hardware ab-
straction layer (HAL) standardizes interactions across differ-
ent hardware, enhancing portability. Additionally, protocol
1the source code can be found at https://github.com/Rrooach/EOF-eurosys26

stacks like TCP/IP manage networking, while file systems
handle data storage. Middleware libraries provide essential
services, such as security checks and support for higher-level
functions. The top application layer integrates components
for communication, data processing, system control, and user
interface, facilitating tasks from external device interaction.

Due to the complex implementations and diverse deploy-
ment environments, embedded OS are inherently hard to
run on emulated environments. In detail, running directly
on hardware such as STM32 and ESP32, embedded OS of-
ten exhibits hardware-specific behaviors that are difficult
to replicate in emulators, particularly peripheral simulation.
Furthermore, communication with embedded OS on hard-
ware is constrained by limited interfaces like serial ports
or specific networking protocols, which complicates remote
interaction compared to a general-purpose OS.

2.2 Embedded System Fuzzing
Fuzz testing [6, 14, 15, 20, 23, 26, 29, 30, 36, 38], a.k.a. fuzzing,
is an automatic software testing technique. Fuzzing lever-
ages program analysis, generating large test suites and mon-
itoring targets for crashes or bugs. By leveraging different
feedback information, such as code coverage or new sys-
tem states [35], fuzzers can generate more high-quality test
cases to explore more system behaviors. Due to its high effi-
ciency, fuzzing has been widely adopted in various software
testing scenarios. Currently, embedded system fuzzing can
typically be classified into two types: embedded OS fuzzing
and embedded application fuzzing.
For embedded OSs, the fuzzer usually runs the target

OS in an emulation-based environment such as QEMU or
VMware. Then, it uses predefined API specifications as in-
put; each specification encompasses an API sequence with
the corresponding arguments. Based on specifications, the
fuzzer generates corresponding test cases and feeds them
to the target embedded OS through the network stack or
shared memory. Through some VM introspection techniques,
the fuzzer collects runtime signals such as code coverage
and potential crashes. For example, Tardis [28] is built upon
Syzkaller; by extending Syzkaller to support data transfer
using QEMU’s shared memory mechanism, Tardis can test
various embeddedOSs. Gustave [9] is built uponAFL; it lever-
ages the QEMU TCG mechanism to collect code coverage
and detect memory corruption errors.
However, current fuzzing methods cannot cover the full

spectrum of embedded OS that operate directly on hardware.
In detail, the emulation-based fuzzing technique cannot test
those embedded OSs solely running on hardware. These
embedded OSs require direct interaction with hardware pe-
ripherals and sensors that are tailored for specific micro-
controllers. This is particularly evident in industrial con-
trol and robotics, where embedded OSs run on customized
hardware. For example, many STM32H7-based controllers
lack peripheral-accurate emulators, making emulation-based

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

tools impractical. Consequently, the inability of emulation-
based fuzzing to replicate and interact with these specific
hardware setups significantly limits its testing coverage.

For fuzzing embedded applications, some works try to
conduct fuzzing on emulators; for example, AFL’s QEMU
mode [16] runs embedded applications under QEMU and
tests them like ordinary user-space programs. Some works
attempted fuzzing on embedded applications running on
real physical devices. For instance, GDBFuzz [10] leverages
debug interfaces for effective fuzzing of embedded systems,
enhancing feedback with hardware breakpoints across di-
verse microcontrollers. P2IM [11] employs automatic periph-
eral interface modeling to enable the fuzzing of embedded
firmware across a broad range of devices. SHIFT [21] lever-
ages semihosting instrumentation, enabling fuzzing on cer-
tain hardware platforms with sanitizer and coverage support.

However, current approaches remain insufficient for exer-
cising theOS itself. Application-level fuzzing typically adopts
AFL-style random buffers that rarely satisfy OS API precon-
ditions, and focusing on high-level services such as network
servers, seldom drives deep kernel behaviors such as sched-
uling and interrupt handling. Semihosting instrumentation
can indeed uncover more bugs by enabling sanitizer and
coverage signals on real hardware, but it is tied to specific
architectures and OSs and often demands substantial manual,
board-specific setup, which limits portability.

3 Motivation
Although current works such as Tardis, GDBFuzz, and SHIFT
can test embedded systems effectively, adapting these fuzzers
to test embedded OSs that are running on diverse hard-
ware would require extensive redevelopment of their core
functionalities and involve overcoming inherent limitations
in how they interact with the target system. For example,
such hypothetical modifications would require GDBFuzz
and Tardis to integrate deeper-level system monitoring and
control capabilities that can handle the complex interactions
and dependencies of full operating systems. Moreover, SHIFT
would need to extend its semihosting approach to support
a wider range of architectures and embedded OSs beyond
its current scope. Therefore, we need an approach that can
effectively conduct full embedded OS fuzzing on hardware.
Despite embedded OS diversity, the basic fuzzing princi-

ples remain similar, as shown in Figure 2. The fuzzing pro-
cess contains three steps: (1) fuzzing harness deployment, (2)
liveness management, and (3) unified fuzzing loop construc-
tion, each of which poses unique challenges when fuzzing
embedded OSs on actual physical devices.

3.1 Fuzzing Harness On-Target Deployment
The first step for embedded OS fuzzing loop is to estab-
lish communication with the target system and deploy the

Step 1: Fuzzing Harness Deployment

Challenge: Diverse Hardware Targets

ProceduresInputs Results

Embedded OS

Step 2: Liveness Management

Challenge: Host&Target Hardware Isolation
Execution Env

Fuzzing
Harness

Fuzzing
Persistence

Step 3: Unified Fuzzing Construction

Challenge: Effective Fuzzing on Hardware Fuzzing
Guidance

Coverage

Bug Monitor

Figure 2. Embedded OS fuzzing steps and challenges.

fuzzing harness on the target system. This includes establish-
ing channels for data transfer and setting up a fuzzing agent
on the target system to execute the test cases. Furthermore,
we need to synchronize the execution status between the
fuzzer and the target OS, i.e., tracking whether it is ready to
receive the next test case and is prepared for execution.
Challenge: Deployment of a fuzzing harness on di-

verse hardware targets. Different embedded OSs are tai-
lored to specific hardware and use cases, so their APIs, re-
source abstractions, and memory models diverge, which dic-
tate unique runtime logic and communication mechanisms.
For example, automotive systems favor deterministic exe-
cution and often use QNX, managing I/O interfaces over
CAN [19]. In contrast, IoT devices typically run FreeRTOS
on single-tasking MCUs and prioritize low-power connec-
tivity such as Bluetooth and USB. This heterogeneity breaks
assumptions of general fuzzing that rely on IPC, a unified
network stack, or glibc-based harnesses. However, on real
hardware, such facilities are absent, and there is no standard
control channel. Therefore, to enable embedded OS fuzzing
across different environments, we need to establish a unified
fuzzing harness that avoids specifics of each OS and platform
and thus can accommodate diverse OS implementations and
hardware architectures.

3.2 State and Liveness Management
To guarantee that fuzzing proceeds normally, we need to
conduct liveness management. This requires monitoring the
system’s states to determine whether the system is running
correctly. Then, in the case of reaching a degraded state due
to improper API use or unexpected connection breakup, we
need to restore it to a benign state effectively and correctly.

Challenge: Maintain system states under hardware-
isolated scenarios. Embedded OSs are volatile due to the
lack of proper isolation between user space and kernel space,
so faults in application code can propagate into the kernel
and leave the device hung or even with a corrupted image.
Because on-board diagnostic methods are proprietary and

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

restricted, liveness monitoring on real hardware is difficult,
as error signals and behavior vary by board, and UART logs
may vanish after a fault, especially in hardware-isolated en-
vironments. Previous approaches detect degraded states by
leveraging the program exit code or watchdog timers and
resetting the system state with a simple reboot. However, in
the embedded OS setting, a simple reboot is insufficient when
the flash or filesystem is damaged, and reloading firmware
requires board-specific bootloader steps. For example, on
FreeRTOS with ESP32, liveness is typically inferred from
UART logs, and recovery requires board-specific bootloader
settings and memory layout tweaks to reflash the image.
More broadly, there is no uniform, OS-independent way to
read the fault status or memory health, nor a portable way
to reset and reflash across platforms. Thus, any viable solu-
tion needs a single vendor-agnostic control and observation
channel that works across boards and operating systems.

3.3 Unified Fuzzing Loop Construction
The final step for effective on-board fuzzing is to monitor the
system’s runtime feedback and use this information as gen-
eration guidance in the overall fuzzing process. In detail, this
involves collecting coverage data, detecting potential bugs
from different embedded OSs, and using this information to
guide payload generation.
Challenge: Construct an effective fuzzing loop for

the target system on hardware. Embedded OSs often lack
comprehensive feedback mechanisms, like coverage or bug
monitoring, due to limited hardware resources and diverse
OS implementations. General fuzzing techniques leverage
KCOV or other coverage tools to collect coverage and lever-
age KASAN to detect memory-related bugs. However, em-
bedded OSs tend to have diverse error-handling mechanisms,
such as different interrupt signals and error-handling func-
tions. This inconsistency in feedback mechanisms prevents
the fuzzer from effectively collecting coverage and moni-
toring vulnerabilities. Furthermore, compared to general-
purpose OSs, embedded OSs have much smaller memory
footprints and fewer facilities (e.g., no MMU or user space),
making feedback tools such as KCOV or KASAN hard to
adapt and deploy. Therefore, to conduct in-depth fuzzing
on embedded OSs, a more comprehensive and unified feed-
back mechanism is needed to guide the fuzzing process and
monitor the overall fuzzing status.

4 Design
In this section, we first introduce the threat model, then we
propose our design choices that are tailored to address the
identified challenges and threat model.

4.1 Threat Model
Throughout this paper, we use the following threat model.
(1) Attackers’ capabilities. We assume no OS–application

isolation, and that an adversary can steer application code
to invoke OS APIs with arbitrary arguments and sequences.
This worst-case assumption facilitates systematic fuzzing but
exceeds typical deployments. (2) Bug definition. A bug is a
liveness or memory-safety failure (e.g., crash, out-of-bounds
access) observable via explicit fault signals.

The justification is that memory-safety and liveness faults
are common and can render systems unavailable. In prac-
tice, adversaries usually affect only a subset of APIs and
arguments exposed by a specific application.

4.2 EOF Architecture
To this end, we propose EOF, a embedded OS fuzzer that
runs on real hardware and uses the hardware debug inter-
face as the single channel for control and observation. First,
EOF runs a cross-platform agent on the device to execute
API-aware tests and collect feedback, reducing porting effort
and avoiding reliance on OS services. Second, it externalizes
guidance and liveness over the debug interface, enabling ab-
normality detection and uniform coverage collection across
different embedded OS implementations and boards. Third,
it uses API specifications to generate inputs that satisfy pre-
conditions and drive deeper kernel paths rather than mu-
tating opaque buffers at application entry points. As shown
in Figure 3, EOF instruments the target for sanitizer-style
coverage, uses log and exception monitors for bug detection,
extracts API specifications to produce API-aware test cases,
and maintains liveness with stall and timeout watchdogs,
as well as image restoration based on the target’s memory
layout. Hardware breakpoints keep the host fuzzer and tar-
get embedded OS synchronized during execution. Over the
debug interface, EOF transfers test cases, GDB control, and
reflash commands, and collects feedback such as coverage,
exceptions, and logs. Inputs that trigger new coverage or a
crash are marked as interesting and added to the corpus for
further mutation.

4.3 Fuzzing Harness Deployment
The fuzzing harness is responsible for managing the fuzzing
process. This involves connecting the host fuzzer to the hard-
ware board, transferring and executing test cases, and syn-
chronizing execution flow between the host fuzzer and the
guest execution agent. However, embedded OSs are diverse
in terms of implementation details and hardware environ-
ment and lack standard system abstraction. Therefore, to
effectively conduct fuzzing on embedded OSs, we need to
establish a unified interface that can accommodate the diver-
sity of OS implementations and have a control mechanism
that can synchronize the execution between host and guest.

4.3.1 Communication Establishment. Given the diver-
sity of embedded OS implementations and runtime envi-
ronments, with different system abstractions and commu-
nicating mechanisms, a standardized approach is essential

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

①

Debug Interface

GDB Control
Command

Reflash&Reboot
Command

Feedback
Information

System State
Restoration

State Maintance
GDB Stall
Watchdog

Connect Timeout
Watchdog

Runtime
Coverage

Feedback Process
System Log

Monitor
Exception
Monitor

Fuzzer-side State
Synchronization

Fuzzing Loop
Test Case

Generation
Corpus

Test Cases

Host Fuzzing Engine

Memory Layout
Analysis

Interface
Generation

Embedded OS
Instrumentation

Target OS

Hardware
Breakpoints

Test Case
Execution

Feedback
Collection

Executor-side State
Synchronization

②

③

④

⑤⑥

⑦

Figure 3. Overall workflow of EOF. Before fuzzing starts, EOF ① analyzes the target embedded OS’s memory layout, ②
extracts and generates the API specifications, and ③ instruments the target OS. Using the debug interface, EOF establishes
the connection with target OSs, ④ sends test cases and fuzzing commands, and receives ⑤ feedback such as coverage and
exceptions. Utilizing runtime coverage and detected bugs, EOF ⑥ guides the test case generation. The state maintenance
module monitors the system’s liveness and ⑦ resets it when the system reaches an unrecoverable state.

to ensure the interaction across different platforms. To ad-
dress this, EOF utilizes debug interfaces on hardware, such
as JTAG and SWD, to establish communication between the
host fuzzer and the target embedded OS. These interfaces en-
able EOF to read/write memory, set breakpoints, and manage
the fuzzing harness’s execution.
Take testing FreeRTOS running on an ESP32 board, for

example. The ESP32 development board uses JTAG as the
debug interface, while the fuzzer employs OpenOCD [13] to
connect to the JTAG interface. Once OpenOCD is connected
to the JTAG, the fuzzer can interact with the target embedded
OS, sending test cases via direct memory access, controlling
execution flow by setting breakpoints, and monitoring the
system’s status. Additionally, EOF captures the target OS’s
UART output and redirects it to the stdout channel as the
target OS’s runtime log to facilitate further bug analysis. This
setup allows for precise control over test execution and real-
time monitoring of the target system. By leveraging such
a communication framework, EOF can be deployed across
different platforms with minimal customization.

4.3.2 Cross-platform Execution Agent. After establish-
ing communication with the target embedded OS, EOF re-
quires an execution and synchronization mechanism to man-
age the execution flow and data transfer between the host
fuzzer and the target OS. However, embedded OSs are di-
verse in implementation details, EOF needs to ensure that
the execution and synchronization mechanism can adapt
to diverse embedded OS implementations. To this end, EOF
employs a cross-platform agent, which is embedded within
the target system to manage the overall fuzzing process.
This agent is responsible for deserializing and executing

test cases. It utilizes only primitive operations such as in-
teger/bitwise arithmetic and direct array reads/writes, and
is independent of any specific architecture or OS services.

Initialize Connection

Generate Test Case

Send Test Case

Run Test Case

void fuzz_post_prog()Monitor Execution

void execute_one()

void executor_main()

void fuzz_start_one()

void read_prog()

Host Fuzzer Execution Agent

No error

Has error

Figure 4. Execution and synchronization mechanism be-
tween the host fuzzer and target embedded OS.

For synchronization, once the target OS starts, EOF inserts
breakpoints at key points within the agent’s workflow, such
as at the start and end of the execution. During fuzzing, the
agent pauses at each breakpoint, waiting for the fuzzer to
perform tasks such as test case transmission and feedback
collection before continuing execution. This setup ensures
that the fuzzer maintains precise control over the execution
flow and data transfers, enabling efficient and correct input
execution. It is worth noting that EOF focuses on testing
the basic functions of embedded OS, and while features like
interrupt handling are important, they are currently outside
EOF’s scope.
We use Figure 4 to show how EOF uses the debug inter-

face to manage the fuzzing process after attaching it to the
target OS. Initially, the fuzzer sets breakpoints at binding
points within the agent’s workflow, such as startup, test case
reception, and execution start. When the target OS boots,

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

it pauses at executor_main(), where EOF generates and
sends a new test case (target OS’s API sequences). The agent
receives this case and deserializes it in read_prog(). Once
deserialization completes, the fuzzer commands the agent
to execute the test case at execute_one(). After the execu-
tion, the agent loops back to the starting point of the fuzzing
loop. During this loop, the fuzzer monitors for anomalies
like system crashes or coverage buffer overflow. If a crash
is detected at handle_exception(), EOF resets and recon-
nects to the system. If the coverage buffer is full, the agent
program will pause while the fuzzer collects and clears the
buffer accordingly. This method ensures precise control over
the execution flow and data transfer between the host fuzzer
and the execution agent, enabling efficient input handling
and output monitoring.

4.4 System State Maintenance
To ensure the target embedded OS remains alive and opera-
tional during the fuzzing process, EOF needs to monitor the
target embedded OS’s runtime states continuously. This in-
volves periodically checking if the system is still responsive
and functioning as expected. These checks are vital because
embedded OSs often operate under constrained and complex
hardware conditions that can lead to unexpected failures.
When a liveness check detects that the system has entered
an unrecoverable state, such as when the embedded OS be-
comes unresponsive, EOF needs to recover the damaged OS;
this action ensures that the fuzzing process can continue
without manual intervention.

4.4.1 Liveness Watchdogs. Unlike general-purpose oper-
ating systems that run in virtualized environments, where
system states can be probed using various VM introspection
techniques, embedded OSs running on hardware often lack
straightforward access points to assess their internal state.
This makes it difficult to determine whether the system still
functions correctly or has entered an unrecoverable state.
To address this, EOF leverages two liveness watchdogs com-
patible across different hardware platforms that can reflect
the system’s operational status. These watchdogs do not de-
tect actual bugs but are essential for determining whether
the target embedded OS has become unresponsive or has
reached some critical states that can impede further testing.
Also, these watchdogs run on the host side with event-driven
heartbeat checks and PC stall checks over the debug link,
require no target instrumentation, and do not interfere with
test execution. This is critical for maintaining system stabil-
ity and preventing extended downtimes in scenarios where
the system’s functionality is compromised.
In detail, to make testing proceed effectively, the mon-

itor detects three event types, namely boot failure, unre-
sponsiveness to the host, and execution stall. The above

events are then mapped to 2 watchdog checking mecha-
nisms, (1) whether the debug interface encounters a connec-
tion timeout and (2) if the GDB’s exec-continue command
fails to change the program counter (PC) value, as shown
in LivenessWatchDog() in Algorithm 1. For the first watch-
dog, when the debug interface encounters a timeout, it sug-
gests that the system has either failed to boot correctly or has
become entirely unresponsive (lines 4-5). This often indicates
that the embedded OS image is compromised or the system
has experienced a severe fault. The second watchdog trig-
gers when the GDB continue command (-exec-continue)
fails to change the PC value (lines 6-10). This means that the
system cannot execute any instructions, likely due to a cor-
rupted image. When either of these watchdogs is triggered,
EOF determines that the system needs to be salvaged and
initiates restoration procedures to restore the system to a
known good state.

Algorithm 1: System State Monitor and Restore
Input: 𝐾𝐶𝑜𝑛𝑓 𝑖𝑔: OS’s Build Configuration File

𝐷𝑒𝑏𝑢𝑔𝑃𝑖𝑝𝑒: Debug Interface
1 𝐿𝑎𝑠𝑡𝑃𝐶 ← 𝐼𝑁𝑇_𝑀𝐼𝑁 ;
2 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑀𝑎𝑝 [file:offset] ← ∅;
3 Function LivenessWatchDog(DebugPipe):
4 if ConnectionTimeout(DebugPipe) then
5 return 𝑓 𝑎𝑙𝑠𝑒;
6 if 𝐿𝑎𝑠𝑡𝑃𝐶 = 𝐼𝑁𝑇_𝑀𝐼𝑁 then
7 𝐿𝑎𝑠𝑡𝑃𝐶 ← 𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝐶 (𝐷𝑒𝑏𝑢𝑔𝑃𝑖𝑝𝑒);
8 return 𝑡𝑟𝑢𝑒;
9 else if 𝐿𝑎𝑠𝑡𝑃𝐶 = 𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝐶 (𝐷𝑒𝑏𝑢𝑔𝑃𝑖𝑝𝑒)

then
10 return 𝑓 𝑎𝑙𝑠𝑒;
11 return 𝑡𝑟𝑢𝑒;
12 Function StateRestoration():
13 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ← 𝐺𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒 (𝐾𝐶𝑜𝑛𝑓 𝑖𝑔);
14 while true do
15 if ¬𝐿𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑊𝑎𝑡𝑐ℎ𝐷𝑜𝑔(𝐷𝑒𝑏𝑢𝑔𝑃𝑖𝑝𝑒) then
16 for each 𝑃𝑎𝑟𝑡 ∈ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑀𝑎𝑝 do
17 DebugPipe.flash(Part.file, Part.offset);
18 DebugPipe.reboot();
19 sleep(5s);

4.4.2 System State Restoration. After detecting that the
system has entered an unrecoverable state, EOF needs to
automatically restore the system to an initial state to re-
sume the fuzzing process. However, unlike emulation-based
fuzzing, where the system can be reset through snapshots or
reboot, embedded OS running on hardware cannot be reset
using such means, as there are no snapshot mechanisms in
the embedded scenarios, and as such a failure is often due to

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

image damage, and a reboot cannot resolve it. Therefore, to
restore the system state, EOF needs to reset the system by re-
flashing the entire image. However, the embedded OS image
usually contains several components, such as the bootloader
and kernel, and each component has its start address and
offset; any misconfiguration in these addresses can lead to
critical failures. To this end, EOF needs to analyze the target
embedded OS’s memory layout for different components
under different hardware platforms and then leverage the
debug interface to reflash the system.
The detailed procedure is depicted in StateRestoration().

In concrete, EOF first examines the embedded OS’s build
configuration, which extracts the memory partition table
(a configuration file supplied by the developer) (line 13).
Then, during fuzzing, EOF periodically checks the system’s
liveness based on the liveness watchdogs (lines 14-15). If
EOF finds that the system is unresponsive or has entered
erroneous states, it resets the system by reflashing the image
and rebooting it using the debug interface (lines 16-18). This
mechanism allows EOF to maintain the system’s liveness
across diverse hardware and embedded OSs, ensuring the
fuzzing process can continue without manual intervention.

4.5 Feedback Guided Fuzzing
For feedback-guided fuzzing, EOF needs to generate test
cases, collect the target OS’s runtime feedback (i.e., cover-
age data and potential bugs), and leverage such informa-
tion to guide future test case mutation. However, embedded
OS’s API are diverse, we need to ensure that the test case
generation mechanism can adapt to different embedded OS
implementations. Also, embedded OS works under limited
memory space and functionalities; as a result, to collect such
feedback information, we need a feedback collection mecha-
nism that can be compatible with different embedded OSs
and can effectively collect the feedback information.
LLM-based Input Generation. EOF leverages the sys-

tem call specification, also known as the Syzlang [34], which
is adapted from Syzkaller as the initial corpus. Each API spec-
ification defines the API signature (name, typed arguments),
as well as its constraints. Behaviors that Syzlang does not
model well, such as event setting, callbacks, and priorities,
are expressed as pseudo syscalls [33]. Each pseudo function
can encompass a target OS API sequence that is designed
to conduct certain tasks, such as creating and processing
a JSON object or sending a network packet, as we can see
in Figure 6 lines 3-8. Because manual authoring is tedious
and error-prone, we used GPT-4o to generate these specifi-
cations, as shown in the left part of Figure 5. The model is
prompted with the target embedded OS’s headers, unit test
examples, and API reference text. We then asked to extract
the API signature, typed arguments, and constraints such as
value bounds and flags, and to emit pseudo functions that

satisfy dependencies. Generated specifications are then post-
validated by parsing and type checking, and only validated
specifications are admitted to the corpus.

When fuzzing starts, EOF converts Syzlang into an inter-
nal abstract syntax tree (AST) that encodes API name, typed
arguments, and constraints to facilitate input generation.
During each iteration, it constructs a test input by selecting
and mutating API specification sequences, scoring call ad-
jacency by resource dependencies and recent coverage, and
then sends it to the target embedded OS for execution under
the debug interface. After execution, EOF collects coverage
and bug information and determines whether the last test
case triggered new coverage or revealed faults such as sys-
tem exceptions or error logs. If so, EOF saves the case to the
corpus for further mutation by altering API parameters or
adjusting the order of the sequence; otherwise, it discards the
case and generates a new one according to the specifications.

Instrumented
Image

 Coverage Runtime

Test Case
Generation

Test Case
Execution

Corpus

compile

new cov or bug

drop

Coverage
Collection

Coverage
Storage

 Guided Generation

 Feedback Monitor
Bug

Detection
Coverage
Analyze

Has New
Feedback

Target OS
Source Code

// Header file
#include <rt_thread.h>
// Resourece define
resource pid[int32]
// API declare
thread_suspend(th pid)
thread_delay(ms int32)

LLM-based
API generation

API Specification

Figure 5. Diagram of the guided fuzzing process.

4.5.1 Coverage Instrumentation. Embedded OSs lack
many facilities that current fuzzers rely on, they can hardly
provide valid feedback information during fuzzing. There-
fore, to measure the runtime coverage and conduct feedback-
guided fuzzing, EOF needs to have a coverage collection
mechanism that can be deployed across different embedded
OSs, with limited overhead.
To this end, EOF instruments the target embedded OS

with Sanitizer Coverage (SanCov) [7]. In detail, SanCov pro-
vides low-overhead, architecture-agnostic edge coverage
that guides fuzzing across diverse embedded OSs, improv-
ing portability and efficiency. As shown in the upper part
of Figure 5, during compilation, EOF inserts a set of callback
functions __sanitizer_cov_trace_cmp() at each branch
condition to track the program counter and return address
at each basic branch. Then, these callback functions call the
function write_comp_data() to store this data into a local
coverage buffer, facilitating EOF to collect and analyze such
data at the host machine. Additionally, when the coverage
buffer is full, it traps at the function _kcmp_buf_full() to
inform EOF to reset the coverage buffer and ensure continu-
ous data collection.

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

4.5.2 Bug Monitors. Unlike general-purpose OSs, which
have unified error-handling mechanisms, different embed-
ded OSs have different error-handling behaviors in terms
of error signals and exception-handling functions. To effec-
tively monitor the system’s abnormal behaviors and detect
bugs, EOF needs to implement a unified monitoring mecha-
nism that can adaptively capture and analyze error behaviors
across various embedded OS implementations.

To detect potential bugs in embedded OSs, EOF leverages
two types of bug monitors. (1) Log Monitor. EOF tracks the
system output from both the debug interface and the target
OS to identify potential system errors during testing. In par-
ticular, EOF redirects all kernel and user logs to the stdout
channel and monitors it for any output that matches prede-
fined patterns using regular expressions. Any output match-
ing the defined patterns is considered indicative of a crash.
(2) Exception Monitor. During fuzzing initialization, EOF
also inserts breakpoints at various embedded OS-specific ex-
ception functions like panic_handler() in FreeRTOS and
common_exception() in RT-Thread. Once the agent reaches
these functions, the fuzzer captures the relevant crash infor-
mation. These twomonitors can capture the system’s explicit
errors, such as crashes and assertions, enabling it to detect
and analyze potential system exception behaviors.

4.6 Implementation
Overall, we implemented EOF using Golang, Rust, and C.
EOF now supports four widely used open-source embed-
ded OSs, namely FreeRTOS [5], RT-Thread [37], NuttX [2],
and Zephyr [22]. The execution agent is implemented in
C and is used to initialize the target OS, deserialize and
execute test cases, and collect feedback information. The
host fuzzer engine is implemented in Golang; it controls
the overall fuzzing process, including fuzzing loop control,
test case generation, mutation, feedback analysis, corpus
management, and log output. For host-guest connectivity,
we leverage OpenOCD [13], a widely recognized tool for
hardware debugging known for its broad support across var-
ious platforms. The interaction between the host fuzzer and
OpenOCD is implemented using Rust.

EmbeddedOSAdaptation. To adapt EOF to different em-
bedded OSs, take FreeRTOS as an example. First, we prepare
the kernel image. We adapt the execution agent by adding
FreeRTOS’s system initialization and boot-check logic to the
start of the agent, which requires around 50 lines of code. Sec-
ond, we add instrumentation options during compilation and
analyze the kernel build configuration to obtain the memory
layout, which requires around 10 lines of modifications to
the compilation scripts and an inspection of the build config-
uration file. Third, we prepare the API specifications for the
target OS. This requires writing the corresponding API spec-
ifications based on FreeRTOS’s source code and documenta-
tion; a detailed example can be found in Figure 6, lines 1–8.
To ensure a comprehensive specification, we generate 203

lines of API specification code. Fourth, we register the target
OS in EOF, which involves adding the target’s specifications,
such as architecture type and endianness information, and
requires around 100 lines of code. Lastly, we provide a con-
figuration file to explicitly set QEMU arguments to boot the
kernel and OpenOCD arguments to establish the connection,
which requires around 20 lines of code.

5 Evaluation
We list the following research questions to help us under-
stand EOF’s performance and effectiveness.
• RQ1:What is the adaptability of EOF?
• RQ2: Is EOF able to uncover new bugs in embedded
OSs running on actual hardware?
• RQ3: Can EOF achieve comparable or better code cov-
erage than existing methods?
• RQ4:Does EOF present an acceptable instrumentation
overhead during fuzzing?

RQ1 verifies whether the cross-platform harness can be de-
ployed on various boards and operating systems, addressing
the challenge of harness deployment. RQ2 checks if EOF’s
liveness management mechanisms and bug detectors enable
it to uncover previously unknown bugs on real hardware,
addressing the liveness-management and hardware-isolation
challenge. RQ3 verifies whether EOF’s fuzzing methods
explore deeper code paths than state-of-the-art baselines,
thereby resolving the effective fuzzing challenge. RQ4 mea-
sures the memory and runtime cost added by these features
to confirm that they remain acceptable for typical microcon-
troller budgets.

5.1 Experiment Setup
We evaluate EOF on FreeRTOS(v5.4), RT-Thread(2f55990),
NuttX(fc99353), Zephyr(143b14b), and PoKOS(b2e1cc3), we
chose these embedded OSs because they are widely used in
various embedded scenarios and have different system archi-
tectures and implementations, which can effectively demon-
strate EOF’s adaptability. To adapt fuzzing to the above tar-
get, we predefined API specifications based on their user
manuals, API specifications, and source code. For coverage
comparison, we compared EOF with Gustave [9], SHIFT [21],
GDBFuzz [10], Tardis [28], and EOF-nf (EOF without the
feedback guidance). Firstly, to demonstrate the full-system
fuzzing performance, we compared EOF with Tardis, EOF-nf,
and Gustave on target operating systems using the same
fuzzing payload. Since Tardis does not support hardware
fuzzing, the evaluations are conducted on QEMU. Further,
to demonstrate the effectiveness of hardware fuzzing, we
compared EOF with GDBFuzz and SHIFT. Since GDBFuzz
does not support full-system testing, we chose to test the
HTTP server and JSON component in FreeRTOS running on
STM32. EOF is limited to testing the HTTP server and JSON
API, only with JSON and HTTP server instrumented, same

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

as GDBFuzz. Furthermore, to demonstrate the effectiveness
of guided fuzzing, we implemented EOF-nf, which is EOF
without the coverage guidance mechanism.

For overhead analysis, we compared the OS images with
and without instrumentation to evaluate the memory over-
head by comparing the image sizes. Also, we record the
number of executed inputs and the execution time to evalu-
ate the execution overhead. To minimize statistical bias, each
experiment is repeated 5 times with a duration of 24 hours.

5.2 System adaptability
To answer RQ1 and evaluate EOF’s adaptability, we com-
pared the targets that EOF supports against those supported
by GDBFuzz, Tardis, and SHIFT. As we can see from Table 1,
EOF supports a broader range of target systems and boards
than other tools.

Table 1. Comparsion on Supported Targets Between EOF,
GDBFuzz, SHIFT and Tardis.

Target Systems Arch EOF GDBFuzz Tardis SHIFT

FreeRTOS ARM ✓ – ✓ ✓

RISC-V ✓ – ✓ ✓

Power PC – – – ✓

MIPS – – – ✓

RTThread ARM ✓ – ✓ –
Nuttx ARM ✓ – ✓ –
Zephyr ARM ✓ – ✓ –

Applications ARM ✓ ✓ – ✓

RISC-V ✓ – – ✓

Power PC – – – ✓

MIPS – – – ✓

MSP430 – ✓ – –

In detail, EOF supports both embedded OS and application-
level fuzzing, and can support multiple hardware platforms,
including ARM and RISC-V. While GDBFuzz supports em-
bedded applications testing on various hardware platforms,
it lacks support for direct embedded OS testing. Furthermore,
Tardis can support fuzzing on diverse embedded OSs and
on different platforms comparable to EOF, but its inherently
design prevents it from testing embedded OSs on hardware,
and is limited to QEMU-based fuzzing. SHIFT, on the other
hand, shows good compatibility, where it is spans many ar-
chitectures and both levels. However, SHIFT only supports
FreeRTOS, where the rest are not adapted yet.
Although EOF does not yet support architectures such

as MIPS and PowerPC, this reflects missing per-platform
adaptations rather than inherent capability limits. These plat-
forms provide mature toolchains and boards with standard
hardware-debug interfaces (e.g., JTAG/SWD). In practice,
any board exposing such interfaces can be ported to EOF,
further extending EOF’s applicability.

5.3 Bug Detection Capability
To answerRQ2 and evaluate EOF’s bug detection capabilities
in embedded OSs, we collected and analyzed the crashes re-
ported by EOF. In detail, EOF found 19 previously unknown
bugs, with 5 confirmed, as listed in Table 2.

Table 2. Previously unknown bugs detected by EOF.

Target OSs Scope Bug Types Operations Status

1 Zephyr Heap Kernel Panic sys_heap_stress()
2 Zephyr Kernel Kernel Panic z_impl_k_msgq_get() ✓

3 Zephyr JSON Kernel Panic json_obj_encode() ✓

4 Zephyr KHeap Kernel Panic k_heap_init() ✓

5 Rt-Thread Kernel Kernel Assertion rt_object_get_type()
6 Rt-Thread RTService Kernel Panic rt_list_isempty()
7 Rt-Thread Memory Kernel Panic rt_mp_alloc()
8 Rt-Thread Kernel Kernel Assertion rt_object_init()
9 Rt-Thread Heap Kernel Panic _heap_lock()
10 Rt-Thread IPC Kernel Panic rt_event_send()
11 Rt-Thread Memory Kernel Panic rt_smem_setname() ✓

12 Rt-Thread Serial Kernel Panic rt_serial_write()
13 FreeRTOS Kernel Kernel Panic load_partitions()
14 NuttX Kernel Kernel Panic setenv() ✓

15 NuttX Libc Kernel Panic gettimeofday()
16 NuttX MQueue Kernel Panic nxmq_timedsend()
17 NuttX Semaphore Kernel Assertion nxsem_trywait()
18 NuttX Timer Kernel Panic timer_create()
19 NuttX Libc Kernel Panic clock_getres()

As we can see, EOF is capable of detecting bugs in all four
target OSs, ranging from user space to kernel space. Con-
cretely speaking, EOF detected 4 bugs in Zephyr, 1 in FreeR-
TOS, 6 in NuttX, and 8 in RT-Thread, respectively. Among the
detected bugs, 3 were found within the user API, mainly the
JSON library and libc library (bugs #3, 15, 19), and 16 were
located within the kernel, indicating that EOF is capable of
conducting full-system level testing of the entire embedded
OS. The location of detected bugs is mainly attributed to the
fact that EOF’s initial specifications target those modules.
Also, we find that, with the help of different bug monitors,
EOF is capable of detecting a wide range of bugs. In detail,
the log monitor helps detect 3 bugs (bugs #5, 8, 17), and the
exception function helps detect 16 bugs (bugs #1-4, 6-7, 9-16,
18-19). Among this bug, 5bugs (bugs #2-4, 11, 14) have been
confirmed by corresponding maintainers.
Bugs in embedded OSs can cause severe consequences.

Specifically, the bugs detected by EOF can lead to potential
data loss and system crashes, causing the target system to
transition into erroneous states. For example, kernel panic-
like bugs #4, 12 are usually raised from illegal memory ac-
cesses within the system, which can crash the system and
cause data loss. While assertion bugs like #5, 17 indicate that
the program encountered an unexpected condition, i.e., an
infinite loop in most cases, which leaves the system hung
and results in denial-of-service.

5.3.1 Case Study. We use bug #12 in Table 2 to briefly
describe a previously unknown kernel panic bug found by
EOF in Rt-Thread as the case study to demonstrate the bug
detection capability.

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

1 // The predefined syscall definition and implementation

2 syz_create_bind_socket (0xbc78, 0x0, 0x101, 0x0)

3 long syz_create_bind_socket(long domain, long type,

long protocol, long sockaddr_ptr) {

4 int sock = socket((int)domain, (int)type,

(int)protocol);

5 if (sock < 0)

6 return -1;

7 ...

8 }

9 // The corresponding stack trace

10 Stack frames at BUG: unexpected stop:

11 Level: 1: /path/to/serial.c : rt_serial_write : 917

12 Level: 2: /path/to/device.c : rt_device_write : 396

13 Level: 3: /path/to/kservice.c : _kputs : 298

14 Level: 4: /path/to/kservice.c : rt_kprintf : 349

15 Level: 5: /path/tosal_socket.c : sal_socket : 1059

16 Level: 6: /path/to/net_sockets.c : socket : 244

17 Level: 7: /path/to/agent : syz_create_bind_socket : 896

18 // the bug is triggered in rt_serial_write, line 917,

where finally calls _serial_poll_tx

19 rt_inline int _serial_poll_tx(struct rt_serial_device

*serial, ...) {

20 RT_ASSERT(serial != RT_NULL);

21 ...

22 if (*data == '\n' && (serial->parent.open_flag &

RT_DEVICE_FLAG_STREAM)) {

23 serial->ops->putc(serial, '\r');

24 }

25 }

Figure 6. A previously unknown bug in Rt-Thread.

In this case, EOF tries to test Rt-Thread’s socket-related
API (lines 3-8), where it tries to create a socket instance. The
socket() call uses valid arguments (line 2). According to the
backtrace provided by EOF (lines 9-17), the error is located
in function rt_serial_write() (line 11). In detail, during
socket creation, the system attempts to print a log message
over the serial port (lines 11–14), which eventually invokes
rt_serial_write(). Inside rt_serial_write(), the rou-
tine forwards the serial pointer to _serial_poll_tx().
Although serial is non-NULL, it is stale (dangling after
an unregister or incomplete init), so the RT_ASSERT() does
not trigger (line 20). Subsequent indirect accesses derefer-
ence corrupted fields (lines 22-23), causing a bus/usage fault.
The exception leaves the system unresponsive; EOF detects
and records the crash when the fault propagates to the OS’s
exception handler. EOF exposes this bug because (1) its spec-
ification allows full-system testing of embedded OS, includ-
ing the networking stack; (2) its coverage-guided generator
reaches the serial-logging path during socket creation; and
(3) its crash monitor recognizes the fault signature and at-
tributes it via the captured backtrace.

5.4 Comparison with Existing Fuzzers
To answer RQ3 and evaluate the effectiveness of EOF, we
compare the code coverage achieved by EOFwith othermeth-
ods, including Tardis, GDBFuzz, and EOF-nf. By comparing
code coverage metrics, we demonstrate EOF’s performance
across diverse hardware platforms and systems, highlight-
ing its ability to conduct comprehensive full-system testing,
including both application and system-level operations on
both hardware and emulation environments.

5.4.1 Full-system Fuzzing Analysis. To demonstrate
EOF’s full-system testing capability, we compared EOF with
Tardis and EOF-nf (without feedback guidance) with the
same input payloads.
Coverage Statistics.We first plot the coverage growth

curve for 24 hours, as shown in Figure 7. Comparing with
EOF-nf, the improvement achieved by EOF shows the effec-
tiveness of the coverage guidance, where EOF can identify
which payloads trigger new code coverage and provide them
with a higher chance of mutation, thereby further explore the
embedded OS’s code space, as we can refer from 7(e) and 7(b)
that both EOF and EOF-nf can reach a high coverage in the
first 12 hours, while EOF-nf reach a certain saturation status,
and EOF can keep growing slowly.

Table 3. Coverage comparison between EOF, EOF-nf, Tardis,
and Gustave on five embedded OSs. The base unit is the av-
erage number of branches found by each fuzzer, and paren-
theses indicate EOF’s improvement.

Target OSs EOF EOF-nf Tardis Gustave

NuttX 2139.0 1719.4 (+24.40%) 1442.6 (+48.27%) –
Rt-Thread 3572.2 2844.6 (+25.58%) 3031.8 (+17.82%) –
Zephyr 1313.4 858.2 (+53.04%) 887.4 (+48.00%) –
FreeRTOS 1608.4 965.0 (+66.67%) 1040.4 (+54.59%) –
PoKOS 2015.8 1470.6 (+37.07%) – 1600.2 (+25.97%)

The detailed coverage statistics are given in Table 3. Com-
pared with Tardis, EOF improves coverage by 48.27% on
NuttX, 17.82% on RT Thread, 48.00% on Zephyr, and 54.59%
on FreeRTOS. Compared with the no feedback variant, im-
provements are 24.40% on NuttX, 25.58% on RT Thread,
53.04% onZephyr, 66.67% on FreeRTOS, and 37.07% on PoKOS.
On PoKOS, where Tardis is unavailable, EOF exceeds Gustave
by 25.97%. These gains come from two aspects. First, EOF
leverages LLM to help generate API specifications, which
can cover more system functionalities. Second, unified feed-
back from coverage, exceptions, and logs guides exploration
toward new paths.

Bug Detection. The EOF-nf variant detects 11 bugs (bugs
#1-5, 8-9, 13, 15, 18-19) as listed in Table 2, while Tardis can
detect 6 bugs (bugs #3-5, 8, 18, 15). This improvement can
be attributed to EOF’s liveness watchdog and bug monitors,
which help it to identify system crashes and hangs. Unlike
Tardis, which solely relies on the timeout mechanism as the

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

0 4 8 12 16 20 24
0

500
1000
1500
2000

EOF EOF-nf Tardis

(a) Coverage on NuttX

0 4 8 12 16 20 24
500

1000
1500
2000
2500
3000
3500
4000

EOF EOF-nf Tardis

(b) Coverage on Rt-Thread

0 4 8 12 16 20 24
0

200
400
600
800

1000
1200
1400

EOF EOF-nf Tardis

(c) Coverage on Zephyr

0 4 8 12 16 20 240
200
400
600
800

1000
1200
1400
1600

EOF EOF-nf Tardis

(d) Coverage on FreeRTOS

0 4 8 12 16 20 24
0

500

1000

1500

2000

EOF EOF-nf Gustave

(e) Coverage on PokOS

Figure 7. Coverage comparison on four embedded OS. The x-axis shows elapsed testing time (hours), and the y-axis shows
branch coverage count, where the shaded area indicates the maximum and minimum coverage achieved by each tool.

bug monitor and liveness checker, the diverse watchdog and
bug monitors mechanism helps EOF not only maintain the
embedded OS’s runtime state and ensure fuzzing efficiency
but also effectively identify potential bugs. In other words,
even if Tardis can generate a test case that triggers such an
error, it cannot identify the bug.

Table 4. Coverage comparison of EOF and GDBFuzz on
HTTP Server and JSON running on hardware. The base unit
is the average number of branches found by each fuzzer, and
parentheses indicate EOF’s improvement.

Fuzzers HTTP Server JSON Average

EOF 446.4 785.4 615.9
GDBFuzz 222.4 (+100.01%) 686.6 (+14.39%) 454.5 (+35.51%)
SHIFT 246.2 (+81.13%) 348.8 (+125.17%) 297.5 (+107.03%)

5.4.2 Application-Level Fuzzing Analysis. To further
demonstrate the fuzzing performance of EOF, we compared
the coverage achieved by EOF and GDBFuzz, running on the
ESP32 development board. Also, since GDBFuzz only sup-
ports application-level testing, here we chose http_server
and JSON interface as the testing target, and our instrumen-
tation is strictly confined to these two modules.

The overall coverage statistics are demonstrated in Table 4.
In detail, EOF finds an average of 446.4 and 785.4 branches
on the http_server and JSON modules, and gains 35.51% and
107.03% branches compared with GDBFuzz and SHIFT on
average. The overall coverage growth curve for 24 hours is
depicted in Figure 8.
As we can see from these two figures, EOF can achieve

higher code coverage with faster speed. Such improvement
is primarily attributed to two factors. First, EOF’s bug moni-
tors turn OS-level signals, such as exceptions and error logs
into actionable feedback. In detail, when a payload triggers
a panic or invariant violation, EOF gives such a payload
higher weights for mutations, which yields a more interest-
ing payload that progresses deeper. Second, unlike GDBFuzz
and SHIFT, which follow the AFL-style design that sends
randomly generated data buffers, EOF performs API-aware,
dependency-guided generation. From specifications with
typed arguments and explicit constraints, EOF builds API

0 4 8 12 16 20 240
100
200
300
400
500

EOF GDBFuzz SHIFT

(a) Coverage on http_server

0 4 8 12 16 20 240
100
200
300
400
500
600
700
800

EOF GDBFuzz SHIFT

(b) Coverage on json

Figure 8. Coverage comparison on EOF and GDBFuzz. The
x-axis shows elapsed testing time (hours), and the y-axis
shows branch coverage count.

call sequences and orders them by resource production/-
consumption, ensuring preconditions are met before deeper
handlers execute. This allows EOF to conduct in-depth test-
ing on the target embedded OS. Also, we notice that both EOF
and EOF-nf stop growing after the first four hours, which
we attribute to the limited exposed and API specifications
by these modules.

5.5 Instrumentation Overhead
Since EOF needs to run the target OS directly on hardware,
it is important to ensure the memory and execution effi-
ciency. Therefore, to address RQ4 and assess the impact of
instrumentation on the system’s overall performance, we col-
lect the extra memory overhead and the execution overhead
before and after the instrumentation.

5.5.1 Memory Overhead. We evaluated the binary sizes
of the target operating systems, observing an increase in size
due to instrumentation. For NuttX, the binary size increased
by 4.76%, showing a change from 3.36 MB to 3.52 MB. Rt-
Thread’s size increased from 2.53 MB to 2.71 MB (7.11%),
Zephyr from 0.803 MB to 0.88 MB (9.58%), and FreeRTOS
from 2.825 MB to 2.947 MB (4.32%). On average, the increase
was around 6.44%. This inflation is primarily due to coverage
instrumentation, which adds space for callback functions
and the necessary memory for coverage collection, although
OS codebase sizes vary, all figures are reported with the same
number of significant digits.

Effective On-Hardware Fuzzing of Embedded Operating Systems EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

5.5.2 Execution Overhead. In terms of execution speed,
we measured the total payloads (API sequences) executed
within 10 minutes for each target OS. NuttX showed a de-
crease from 1070 to 740.2 payloads, marking an overhead
of 30.82%. Rt-Thread executed 721.0 payloads after instru-
mentation, down from 858.2, resulting in a 15.99% over-
head. Zephyr’s payload count decreased from 1308 to 989.8
(24.32%), and FreeRTOS saw a reduction from 1580.4 to 1193.6
(24.44%). On average, the execution overhead was about
23.39%. This overhead remains within acceptable limits, con-
sidering KCOV can introduce around 10% overhead, and
AFL, which may slow down applications by 2x to 5x. Also,
consider the enhanced coverage and bug-detection capabili-
ties provided by the instrumentation. This trade-off between
performance and improved testing efficacy highlights the
value of instrumentation in fuzzing environments.

6 Threats to Validity
Failure Handling on Hardware Levels. EOF’s current
failure detection and restoration mechanisms, primarily de-
signed to address software-level failures, may not be suffi-
cient for addressing hardware faults, such asmemory failures.
Hardware faults can occur unpredictably and may propa-
gate errors that software mechanisms are not equipped to
handle, potentially leading to data corruption or system in-
stability. In the future, EOF can integrate more hardware
debug mechanisms and implement additional redundancy
strategies, such as error-correcting memory and hardware
watchdogs, which can detect and mitigate hardware-related
issues. Additionally, enhancing EOF’s restoration can include
hardware fault tolerance measures that will ensure better
system reliability.

Limitations in More Comprehensive Bug Detectors.
Currently, EOF primarily detects explicit errors, such as ker-
nel panics and assertion errors, which are straightforward
to identify because they have clear system signals and defin-
able system states. However, for more subtle errors that do
not result in immediate system crashes but may nonetheless
significantly impact system performance and security, we
cannot currently uncover them effectively. These include
timing issues that can lead to race conditions or silent mem-
ory corruption, such as use after free and double free. In the
future, we can adapt more diverse bug detectors, such as
address sanitizer and thread sanitizer, to the embedded OS
domain. These enhanced detectors can analyze detailedmem-
ory and thread operations to identify subtle system faults
and can extend EOF’s detection capabilities. Also, we can
leverage hardware signals, such as power consumption, to
spot spikes/plateaus that indicate liveness issues, and JTAG
sampling to catch tight loops or repeated memory accesses.
These signals can inform EOF to stop unproductive runs and
reset quickly.

Limitations in Quality of Input Payload. To adapt
EOF to different embedded OSs with acceptable overhead,
we currently generate input payloads with LLM assistance
from embedded OS documentation and API usage; while
flexible, this can yield suboptimal cases such as API mis-
use and meaningless arguments, which reduce effectiveness.
Also, currently EOF does not exercise interrupt handlers or
low-level I/O, which would require hardware event injection
such as GPIO toggles or serial input. In future work, we can
augment the corpus with real firmware and test traces that
exhibit correct API usage and well-formed arguments. We
can also apply lightweight validation, such as type and range
checks, and handle lifecycle checks to prune low-quality pay-
loads. Additionally, we can introduce lightweight peripheral
models to drive interrupt paths and I/O error handling.
Lessons learned. We summarize two lessons learned

during the design of EOF. First, defining detectable events
is important. Embedded systems running on isolated hard-
ware can fail silently or enter degraded states, making it
hard to detect failures. Practically define detectable events,
such as exceptions and log messages, that can be monitored
and acted upon to maintain system liveness and identify
bugs. Second, corpus quality affects testing performance.
Low-quality inputs with invalid API usage or meaningless
arguments waste cycles and rarely reach deep kernel paths;
in our evaluation, we found AFL-style inputs struggled to
satisfy API preconditions and make progress. To address
this, we built a curated corpus from LLM-derived API speci-
fications and pseudo functions, thereby improving testing
validity and efficiency.

7 Conclusion
In this paper, we introduce EOF, an embedded OS fuzzer
that performs feedback-guided testing directly on hardware
platforms. Traditional methods either rely on emulation or
cannot exercise full system paths on real boards. EOF uses
the hardware debug interface as the control and observation
channel between the host and target board, without depend-
ing on embedded OS services. Over this link, EOF deploys
an agent to execute API-sequences-based test cases, collects
runtime coverage, and monitors system crashes. System live-
ness is maintained with watchdogs and fast restoration so
that the fuzzing process can continue after crashes or stalls.
We adapted EOF to four embedded OSs, discovering 19 bugs
with 5 confirmed. Compared with existing fuzzers, EOF in-
creased code coverage by 50.84%, with an average of 6.44%
and 23.39% memory and execution overhead.

8 Acknowledgments
We thank the shepherd and reviewers for their valuable com-
ments. This research is partly sponsored by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62525207,62472448,62202500).

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Yuheng Shen, Jianzhong Liu, Qiming Guo, Yifei Chu, Qiang Zhang, Heyuan Shi, and Yu Jiang

References
[1] Peter BENSCH Anuj. STM32H745. https://community.st.com/t5/

stm32-mcus-products/emulator-for-stm32h745/td-p/649287, 2024.
[2] Apache Software Foundation. Apache NuttX: A POSIX-Compliant

Real-Time Operating System. https://github.com/apache/nuttx, 2024.
Written in C, C++, assembly; Real-time microkernel; Initial release:
2007; Latest release: 12.5.1 (April 15, 2024).

[3] Armis. URGENT/11: Exposing Security Flaws in the TCP/IP Stack.
https://www.armis.com/research/urgent-11/, 2019. Accessed: 2024-09-
04.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, and Thorsten
Holz. REDQUEEN: Fuzzing with Input-to-State Correspondence. In
Symposium on Network and Distributed System Security (NDSS), 2019.

[5] Richard Barry et al. FreeRTOS. Internet, Oct, 4:18, 2008.
[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-

Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 1032–1043, New York, NY, USA, 2016. Association for
Computing Machinery.

[7] Clang Project. Sanitizer Coverage, 2024. Accessed: 2024-09-13.
[8] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,

Shuang Hao, Christopher Kruegel, and Giovanni Vigna. DIFUZE:
Interface Aware Fuzzing for Kernel Drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 2123–2138, New York, NY, USA, 2017. Association for
Computing Machinery.

[9] Stéphane Duverger and Anaïs Gantet. GUSTAVE: Fuzz it like it’s app.
DMU Cyber Week, 2021.

[10] Max Eisele, Daniel Ebert, Christopher Huth, and Andreas Zeller.
Fuzzing Embedded Systems using Debug Interfaces. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, page 1031–1042, New York, NY, USA, 2023.
Association for Computing Machinery.

[11] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface
Modeling. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1237–1254. USENIX Association, August 2020.

[12] Google. Kernel Address Sanitizer. https://www.kernel.org/doc/html/
latest/dev-tools/kasan.html.

[13] Hubert Högl and Dominic Rath. Open On-Chip Debugger. Fakultät
für Informatik, Tech. Rep, 2006.

[14] Hsin-Wei Hung and Ardalan Amiri Sani. BRF: Fuzzing the eBPF
Runtime. Proc. ACM Softw. Eng., 1(FSE), jul 2024.

[15] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding Bugs in File Systems with an Extensible
Fuzzing Framework. ACM Trans. Storage, 16(2), may 2020.

[16] lcamtuf. American Fuzzy Lop, 2013. https://lcamtuf.coredump.cx/afl/.
[17] Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang. Leveraging bi-

nary coverage for effective generation guidance in kernel fuzzing. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS ’24, page 3763–3777, New York, NY,
USA, 2024. Association for Computing Machinery.

[18] Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang. Ho-
rus: Accelerating Kernel Fuzzing through Efficient Host-VM Memory
Access Procedures. ACM Trans. Softw. Eng. Methodol., 33(1), nov 2023.

[19] Siti-Farhana Lokman, Abu Talib Othman, and Muhammad-Husaini
Abu-Bakar. Intrusion Detection System for Automotive Controller
Area Network (CAN) Bus System: A Review. EURASIP Journal on
Wireless Communications and Networking, 2019(1):1–17, 2019.

[20] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. MOPT: Optimized Mutation Scheduling
for Fuzzers. In Proceedings of the 28th USENIX Conference on Security
Symposium, SEC’19, page 1949–1966, USA, 2019. USENIX Association.

[21] Alejandro Mera, Changming Liu, Ruimin Sun, Engin Kirda, and Long
Lu. SHiFT: Semi-hosted Fuzz Testing for Embedded Applications. In
33rd USENIX Security Symposium (USENIX Security 24), pages 5323–
5340, Philadelphia, PA, August 2024. USENIX Association.

[22] Anas Nashif. Zephyr is a new generation, scalable, optimized, secure
RTOS, 2016. https://github.com/zephyrproject-rtos/zephyr.

[23] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Op-
timizing OS Fuzzer Seed Selection with Trace Distillation. In 27th
USENIX Security Symposium (USENIX Security 18), pages 729–743,
Baltimore, MD, August 2018. USENIX Association.

[24] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling Ji,
Chunming Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. V-Shuttle:
Scalable and Semantics-Aware Hypervisor Virtual Device Fuzzing.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 2197–2213, New York, NY,
USA, 2021. Association for Computing Machinery.

[25] Sergej Schumilo, Cornelius Aschermann, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In 26th USENIX Security Symposium (USENIX Security 17),
pages 167–182, Vancouver, BC, August 2017. USENIX Association.

[26] Yuheng Shen, Shijun Chen, Jianzhong Liu, Yiru Xu, Qiang Zhang,
Runzhe Wang, Heyuan Shi, and Yu Jiang. Brief Industry Paper: Di-
rected Kernel Fuzz Testing on Real-time Linux. In 2023 IEEE Real-Time
Systems Symposium (RTSS), pages 495–499. IEEE, 2023.

[27] Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli
Chang. Rtkaller: State-Aware Task Generation for RTOS Fuzzing. ACM
Trans. Embed. Comput. Syst., 20(5s), sep 2021.

[28] Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo
Cui, Heyuan Shi, and Yu Jiang. Tardis: Coverage-Guided Embedded
Operating System Fuzzing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 41(11):4563–4574, 2022.

[29] Hao Sun and Zhendong Su. Validating the eBPF Verifier via State
Embedding. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 615–628, Santa Clara, CA, July
2024. USENIX Association.

[30] Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, NanGuan, and Yu Jiang.
Finding correctness bugs in eBPF verifier with structured and sanitized
program. In Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys ’24, page 689–703, New York, NY, USA,
2024. Association for Computing Machinery.

[31] The Linux Kernel Organization. KCOV: Kernel Code Coverage. https:
//docs.kernel.org/dev-tools/kcov.html.

[32] Dmitry Vyukov. Syzkaller: an unsupervised coverage-guided kernel
fuzzer, 2015. https://github.com/google/syzkaller.

[33] Dmitry Vyukov and Andrey Konovalov. Pseudo-syscalls, 2015. https://
github.com/google/syzkaller/blob/master/docs/pseudo_syscalls.md.

[34] Dmitry Vyukov and Andrey Konovalov. Syzlang: System Call De-
scription Language, 2015. https://github.com/google/syzkaller/blob/
master/docs/syscall_descriptions_syntax.md.

[35] Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Jingzhou Fu,
Zhuo Su, Qing Liao, Bin Gu, Bodong Wu, and Yu Jiang. Data Coverage
for Guided Fuzzing. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 2511–2526, Philadelphia, PA, August 2024. USENIX
Association.

[36] Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan. Fuzzing Mobile
Robot Environments for Fast Automated Crash Detection. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages
5417–5423, 2021.

[37] Bernard Xiong and Man Jianting. RT-Thread is an open source IoT
operating system., 2007. https://github.com/RT-Thread/rt-thread.

[38] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM
: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In
27th USENIX Security Symposium (USENIX Security 18), pages 745–761,
Baltimore, MD, August 2018. USENIX Association.

https://community.st.com/t5/stm32-mcus-products/emulator-for-stm32h745/td-p/649287
https://community.st.com/t5/stm32-mcus-products/emulator-for-stm32h745/td-p/649287
https://github.com/apache/nuttx
https://www.armis.com/research/urgent-11/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://lcamtuf.coredump.cx/afl/
https://github.com/zephyrproject-rtos/zephyr
https://docs.kernel.org/dev-tools/kcov.html
https://docs.kernel.org/dev-tools/kcov.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/pseudo_syscalls.md
https://github.com/google/syzkaller/blob/master/docs/pseudo_syscalls.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/RT-Thread/rt-thread

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Embedded Operating Systems
	2.2 Embedded System Fuzzing

	3 Motivation
	3.1 Fuzzing Harness On-Target Deployment
	3.2 State and Liveness Management
	3.3 Unified Fuzzing Loop Construction

	4 Design
	4.1 Threat Model
	4.2 EOF Architecture
	4.3 Fuzzing Harness Deployment
	4.4 System State Maintenance
	4.5 Feedback Guided Fuzzing
	4.6 Implementation

	5 Evaluation
	5.1 Experiment Setup
	5.2 System adaptability
	5.3 Bug Detection Capability
	5.4 Comparison with Existing Fuzzers
	5.5 Instrumentation Overhead

	6 Threats to Validity
	7 Conclusion
	8 Acknowledgments
	References

