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Abstract—Security cameras are widely deployed in safety-
critical environments, supporting real-time video streaming
and device control via protocols such as RTSP, ONVIF, and
HTTP. Vulnerabilities in these systems can lead to frozen
video feeds or surveillance failures, potentially resulting in
property or safety losses. While fuzzing is a useful technique for
discovering vulnerabilities, existing protocol and IoT fuzzers
typically treat each protocol independently, overlooking the
cross-protocol dependencies present in real-world cameras.

To address this gap, we propose CAMVEIL, a fuzzing
framework designed to uncover vulnerabilities in security
cameras through multi-protocol coordinated fuzzing. The key
insight is that certain protocols can modify the internal state
of the camera, indirectly affecting the behavior of other pro-
tocols, making some vulnerabilities only discoverable through
state-dependent, cross-protocol interaction. To exercise such
interactions, CAMVEIL builds a protocol-aware camera status
model that abstracts internal camera states and defines their
dependencies across protocols. Guided by this model, CAMVEIL
generates coordinated test sequences to explore interleaved
protocol behaviors. Additionally, it integrates a logic-aware
monitoring component that continuously analyzes response
packets to detect semantic inconsistencies or abnormal control
flows. Using this approach, CAMVEIL has discovered 22 previ-
ously unknown vulnerabilities across 9 industrial camera mod-
els from Hikvision, Honeywell, TP-Link, FOSCAM, EZVIZ,
and Santachi. These flaws could allow attackers to disrupt
live video streams or disable camera functionality, potentially
causing critical surveillance failures.

1. Introduction

Security cameras play a vital role in safety-critical envi-
ronments such as industrial facilities, energy infrastructure,
and hospitals, where real-time video monitoring is essential
for operational safety and incident response. These devices
communicate with clients via standard network protocols,
including ONVIF [1], HTTP [2], and RTSP [3], to support
functionalities such as live video streaming, camera control,
and configuration. Through these protocols, clients can re-
trieve video feeds, adjust viewing angles, and issue device-
specific commands.
BYu Jiang and Ting Chen are the corresponding authors.

In real-world deployments, camera protocols often inter-
act by accessing and modifying shared system states. These
interactions arise when multiple clients simultaneously is-
sue commands through different protocols that manipulate
common internal resources. For example, as illustrated in
Figure 1, an HTTP client may send a continuous_move
request that changes the camera’s movement status from
idle to moving and updates its position values. At the same
time, an ONVIF client may issue a move_up command that
also modifies the movement and position states. Similarly,
an RTSP client may initiate video streaming via a PLAY
request, while an ONVIF client concurrently resets the
encoding method, both operations affecting the encoding
state of the camera.

Pan-Tilt-Zoom status
position: x=0.5, y=0.2
zoom: 0.8
move: idle

Media status
resolution: 1920,1080
quality: 5

encoding: H264

Http Onvif Rtsp

move_up set_encodingcontinuous_move play

Figure 1. Camera protocols always interact with each other. HTTP and
ONVIF may access the position and move state of system ‘Pan-Tilt-Zoom’
status. While, ONVIF and RTSP may achieve the encoding value in the
media status.

These cross-protocol interactions reflect a tightly cou-
pled runtime environment, where changes made by one
protocol can influence or conflict with the behavior of others.
Such inter-dependencies are a potential source of logic
bugs and race conditions. A real-world example is CVE-
2023-3959 [4], a critical vulnerability discovered in Zavio
security cameras. This bug is triggered when concurrent
ONVIF and RTSP requests access shared resources, such
as the encoding status, leading to XML parsing errors and
real-time video feed interruptions. With a CVSS score of
9.8, the vulnerability highlights the risks introduced by
uncoordinated protocol behavior. This also underscores the
importance of systematically exercising and testing cross-
protocol interactions to uncover such vulnerabilities.

Fuzzing has become a mainstream technique for vul-
nerability discovery in IoT devices and protocol imple-
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mentations. IoT device fuzzers such as IoTFuzzer [5] and
DIANE [6] rely on companion apps to generate syntactically
valid inputs that reach deep code paths. Protocol fuzzers like
Peach [7] and Bleem [8] focus on specific protocol structures
to construct test cases. However, both lines of work typically
treat protocols in isolation, lacking the coordination needed
to trigger state-dependent bugs that arise from protocol in-
teractions. To effectively uncover vulnerabilities in security
cameras, two key challenges must be addressed.

The first challenge lies in effectively generating test
messages for multiple protocols in a way that can exercise
their interactions. A straightforward approach might involve
running multiple fuzzers in parallel, each targeting a dif-
ferent protocol such as RTSP, ONVIF, or HTTP. However,
in the absence of a coordination mechanism or scheduling
logic, the messages generated by these independent fuzzers
lack inter-dependencies and fail to induce the protocol in-
teractions that occur in real-world deployments. As a result,
these independent messages do not effectively trigger com-
plex protocol interactions within the camera, leading to low
testing effectiveness.

The second challenge is detecting non-crashing bugs
when they occur. Since camera firmware is often inacces-
sible, failures may not be immediately apparent, even if a
test message triggers errors within the device. Tools like
IoTFuzzer and DIANE address this issue by monitoring
heartbeat responses or TCP disconnections, but these tools
can only detect vulnerabilities that cause camera crashes.
Other logical bugs, such as video feed freezing, go unde-
tected by existing methods. Therefore, timely detection of
these bugs is a significant challenge in camera testing.

To address these challenges, we propose CAMVEIL, a
fuzzing framework designed to uncover vulnerabilities in
security cameras through multi-protocol coordinated test-
ing. To tackle the first challenge, CAMVEIL constructs
a Camera Status Model that captures key runtime states
of the camera, including PTZ (pan-tilt-zoom) [9] status,
media configuration, and system parameters. This model
defines the interactions and dependencies between these
states, and CAMVEIL labels messages from protocols such
as ONVIF, HTTP, and RTSP with their corresponding state
transitions. By doing so, it generates semantically linked test
sequences across protocols, effectively exercising complex
cross-protocol behaviors and improving fuzzing depth. To
address the second challenge, CAMVEIL integrates a Logic
Vulnerability Monitor. This monitor continuously probes the
camera using standard operations and observes behavioral
anomalies such as frozen video streams, or inconsistent state
updates. By semantically checking runtime status changes,
CAMVEIL is able to detect subtle logic bugs that would
otherwise evade traditional crash-based detection methods.

We implemented CAMVEIL and evaluated it on 9 popu-
lar industrial cameras from TP-Link, Hikvision, FOSCAM,
Honeywell, EZVIZ, and Santachi. So far, CAMVEIL has
identified 22 previously unknown vulnerabilities. These vul-
nerabilities could have serious consequences. For example,
one issue identified in the TP-Link security camera model
TL-IPC433H-A4-W10 can cause the video feed to freeze,

allowing attackers to disrupt any RTSP clients connected to
the camera with well-crafted packets. To compare, we also
tested these devices using DIANE and Peach, running sep-
arate fuzzing instances on different protocols, but they de-
tected no vulnerabilities. When we equipped Peach with the
monitoring mechanisms designed for CAMVEIL, it identified
only 3 bugs. These results demonstrate the effectiveness of
CAMVEIL’s multi-protocol coordinated fuzzing approach.

Our paper makes the following contributions:
• We propose a method for multi-protocol coordinated

fuzzing to detect vulnerabilities in security cameras.
• We design and implement CAMVEIL1. By leveraging a

camera status model and a semantic monitor, CAMVEIL
generates interrelated test messages and effectively de-
tects logical bugs in cameras.

• We evaluate CAMVEIL on 9 industrial security cameras
from 6 vendors. To date, CAMVEIL has detected 22
previously unknown vulnerabilities.

2. Protocols in Security Cameras

Security cameras typically use network protocols to
communicate with clients. While some vendors implement
proprietary protocols alongside specific applications [10],
most security cameras rely on public protocols to ensure
compatibility with NVR (Network Video Recording) devices
and VMS (Video Management Systems) [11]. Common pub-
lic protocols used by security cameras include ONVIF [1],
RTSP [3], and HTTP [2].

ONVIF is a global standard that promotes interoper-
ability among IP-based security devices, enabling seam-
less communication between cameras, recorders, and other
equipment from different manufacturers. As of 2024, over
30,000 products comply with the ONVIF protocol [12],
illustrating its widespread adoption in the security camera
industry. RTSP is a network protocol designed to control the
transmission of video and audio streams. Typically, RTSP
operates in conjunction with RTCP [13] and RTP [14]:
while RTSP manages the streaming session, RTP handles
the actual transport of media data. RTCP, on the other hand,
provides monitoring and feedback on the quality of the
transmission. In security cameras, HTTP typically functions
as a web server, enabling users to access camera settings
and live feeds through a web browser.

All protocols in a security camera interact by concur-
rently modifying or accessing the system status. For ex-
ample, ONVIF can perform many of the same functions
as the HTTP web server, such as rotating the camera or
adjusting various configurations. This overlap allows multi-
ple protocols to manage similar settings, which can lead to
conflicts. Both ONVIF and RTSP, for instance, can control
media transmission by sending commands like ‘play’ or
‘stop’, potentially resulting in overlapping commands if
used simultaneously. Additionally, RTSP and HTTP both
access and modify the camera’s media status; if a user
changes the encoding settings via the HTTP web interface,

1. Camveil at: https://anonymous.4open.science/r/CamVeil-15FB
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the RTSP clients need to respond to these changes to ensure
seamless functionality. Such interactions among protocols
require careful management to avoid conflicts that could
disrupt the camera’s operation.

3. Overview

3.1. A Motivating Example

In this section, we gave a motivating example to show
how multi-protocol coordinating bugs are triggered and why
existing work fail to detect them. The case is based on the
bug CVE-2023-3959 [4], which has a CVSS score of 9.8.
It is a logic bug found in Zavio security cameras.

Vulnerability Triggering. As shown in a prior public
analysis [15], CVE-2023-3959 stems from protocol interac-
tions between ONVIF and HTTP in Zavio cameras, where
conflicting operations cause XML parsing errors. Figure 2
illustrates the detailed steps involved in triggering this vul-
nerability. The process begins with a crafted ONVIF packet
that embeds attacker-controlled input, such as the command
sleep 9999, which stalls the internal update logic and
may lead to video stream freezing. This packet tries to
set the video encoder configuration of the camera. It is
processed by the ONVIF handler in the Zavio IP camera
firmware. During handling, the malicious payload is stored
into the first field of a global structure.

Motivating figure

Camera Status Model

ONVIF packet
<SetVideoEncoderConfiguration>

</SetVideoEncoderConfiguration>

<Resolution>
<Height>$(reboot)</Height>

</Resolution>

HTTP packet
POST /CGI-
BIN/ADMIN/
PARAM?Acti
on=Update
HTTP/1.1

BOA web server
global struct

.Field1=$(reboot)

.Field2=SomeValue
…

update action

check_para rebootread

ONVIF packet
<SetVideoEncoderConfiguration>

</SetVideoEncoderConfiguration>

<Resolution>
<Height>$(sleep 9999)</Height>

</Resolution>

HTTP packet
POST /CGI-
BIN/ADMIN/
PARAM?Acti
on=Update
HTTP/1.1

BOA web server
global struct

.Field1=$(sleep)

.Field2=SomeValue
…

update action

check_para sleepread

Figure 2. A motivating bug case where an ONVIF packet and a HTTP
packet trigger a command injection bug together.

Concurrently, an HTTP request is issued to trigger
the update action on the encoder too, which invokes the
check_para function. Within this function, the code ac-
cesses the previously populated global structure and passes
the unvalidated user input to the popen() system call for
execution. As a result, this sequence leads to command
injection: arbitrary shell commands embedded in the ON-
VIF configuration can be executed via the HTTP interface,
ultimately allowing unauthenticated remote code execution.

Challenges to Detect this Bug. Detecting the vulnera-
bility illustrated in Figure 2 presents two major challenges:
Challenge 1: First, triggering the bug requires coordinated
interaction between multiple protocols: ONVIF and HTTP.

A naive multi-protocol fuzzing approach might launch in-
dependent fuzzers for each protocol, such as RTSP, ONVIF,
or HTTP, in parallel. However, without a scheduling mech-
anism that enforces causal or temporal dependencies across
protocols, these fuzzers fail to generate sequences that reflect
realistic inter-protocol workflows. Detecting the behaviors
in this case necessitates a fuzzing strategy that is aware of
cross-protocol state propagation and interaction semantics.
Existing fuzzing tools do not model such interdependencies,
leading to poor coverage of interaction-induced bugs.

Challenge 2: Second, even if the malicious sequence
is successfully triggered, identifying the bug is non-trivial
due to the absence of immediate crash symptoms. Unlike
memory corruption vulnerabilities that result in segmenta-
tion faults or device crashes, this bug may silently disrupt
the device’s behavior. Conventional detection methods, such
as monitoring TCP disconnections, heartbeat failures, or
service crashes, are insufficient to capture such non-crashing
logic flaws. Consequently, detecting these issues requires
semantic-level observation of device functionality, such as
responsiveness of the video feed, which remains a largely
unaddressed challenge in embedded system fuzzing.

Requirements to Detect such Bugs. Based on the
two challenges discussed earlier, we identify two essential
requirements for a fuzzing framework to effectively detect
such vulnerabilities. First, the framework must support co-
ordinated fuzzing across multiple protocols. This requires
awareness of how different protocol messages affect shared
device state, and the ability to schedule messages accord-
ingly. Second, the framework must be capable of detecting
non-crashing logic bugs. The system should incorporate
semantic-level monitoring techniques, such as checking for
video liveness, execution side effects, or inconsistent con-
figuration responses, to uncover these subtle failures.

3.2. Threat Model

We consider an attacker attempting to exploit security
vulnerabilities in IP cameras through remote access. The
threat model is defined as follows:

Attacker Capabilities. The attacker does not need to
fully compromise the underlying operating system or ob-
tain root access. Instead, the focus is on abusing exposed
application-layer behaviors through valid protocol inter-
faces. The attacker has network access to the target device,
either via the same local network or through an exposed
public interface (e.g., ONVIF or HTTP services accessible
over the Internet). The attacker is capable of crafting and
sending arbitrary messages conforming to standard protocols
supported by the camera, such as ONVIF, HTTP, and RTSP.

Attack Vectors. Given the ability to send crafted mes-
sages over multiple protocols, attackers can exploit incon-
sistencies and interactions across protocol boundaries to
trigger unintended behavior. For example, a malicious ON-
VIF message can be used to modify the device’s internal
state, which is later consumed by an HTTP request that
processes it without proper validation. Similarly, a sequence
of legitimate-looking RTSP and ONVIF messages may lead
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Figure 3. The overall workflow of CAMVEIL. Based on the camera status model, CAMVEIL labels protocol packets with the specific statuses they attempt
to access, then selects and mutates interacting packets as test inputs. Additionally, CAMVEIL employs a logic vulnerability monitor to detect vulnerabilities
by checking if valid packets time out and verifying that responses remain consistent with previous ones.

the device into a specific internal state that causes logic
flaws, such as service freezing, unauthorized command ex-
ecution, or persistent misconfiguration. These attacks rely
not on protocol-level exploits in isolation, but on the subtle
interplay between independently functioning modules.

4. Design of Camveil

Design Goal: A practical security camera vulnerability
detection framework should have the following properties:
• Cross-Protocol Interaction Coverage. The framework

should enable effective exploration of interactions across
multiple protocols. Many real-world vulnerabilities in IP
cameras arise from the interplay between different pro-
tocols. The system must be able to generate semantically
meaningful and state-aware message sequences that reflect
realistic multi-protocol workflows and expose interaction-
induced bugs.

• Detection of Non-Crashing Logic Bugs. The framework
should be capable of identifying functional vulnerabilities
that do not lead to system crashes. These include com-
mand injection, configuration inconsistencies, and video
stream freezing. To detect such subtle issues, the system
must incorporate semantic monitors that analyze runtime
behavior and detect anomalies beyond simple connection
loss or exceptions.

• Black-Box Compatibility. Since many commercial
IP cameras provide limited access and closed-source
firmware, the framework must work under black-box
settings, where collecting code coverage is infeasible. It
should rely only on externally observable behaviors and
publicly exposed protocol interfaces, without requiring
instrumentation, debug symbols, or root access. This en-
sures practical applicability to off-the-shelf devices.

4.1. Overall workflow

Figure 3 presents the overall workflow of CAMVEIL,
which consists of two main components: the Camera Status

Model and the Logic Vulnerability Monitor. The work-
flow proceeds as follows: 1) For each supported proto-
col, HTTP, RTSP (including RTP and RTCP), and ON-
VIF,CAMVEIL collects valid packets from real-world clients
and labels them according to the internal camera status
they access (e.g., PTZ, media, system). 2) In each fuzzing
round, CAMVEIL selects a subset of packets that are likely
to trigger cross-protocol interactions based on the camera
status model. 3) The selected packets are then mutated
while preserving protocol semantics, using knowledge of
the protocol-specific data structures. 4) The mutated packets
are sent to the target camera. 5) In parallel, a VLC player, a
PTZ status retriever, and a system status retriever generate
standard requests to query the camera’s runtime status. 6)
These status-checking requests are sent to the camera. 7)
When responses are received, they are stored in a request-
response pool, indexed for later analysis. 8) Two logic mon-
itors analyze the collected responses: a timeout monitor de-
tects unresponsive behavior, while an inconsistency monitor
identifies semantic anomalies (e.g., frozen video, incorrect
PTZ state). These checks enable detection of non-crashing
logic vulnerabilities. We will describe each component in
detail in the following sections.

4.2. Camera Status Model

4.2.1. Camera Status Model Construction. To define the
resources and global runtime state of a security camera, we
first construct a comprehensive camera status model. This
model categorizes the device’s internal status into seven
distinct sub-statuses, each representing a key functional
dimension of camera behavior. Figure 4 illustrates the struc-
ture of this model and the dependencies between different
statuses. We now describe each sub-status in detail:
• PTZ Status: Represents the pan-tilt-zoom state of the

camera. It includes four fields: position, which indicates
the current camera angle; zoom, which denotes the mag-
nification level of the lens; move, which reflects whether
the camera is actively rotating; and speed, which captures
the rotation velocity.
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Camera Status Model

PTZ status

position

zoom

move

Media status

resolution

quality

encoding

speed

Alarm status

flashing

voice

Network status

Connection

latency

Recording status

local

remote

System status

user

power

Storage status

disk

streaming

Figure 4. The constructed camera status model comprises seven statuses.
Solid lines indicate internal dependencies within specific sub-statuses, while
dotted lines represent inter-dependencies between different statuses.

• Media Status: Describes the characteristics of the video
stream. The resolution and quality fields define the visual
clarity of the footage; encoding specifies the compression
format (e.g., H.264); and streaming indicates whether the
video feed is actively being transmitted.

• Alarm Status: Indicates the status of alarm mechanisms.
It includes flashing, which controls visual alerts such as
blinking LEDs, and voice, which manages audio warn-
ings. These alarms are typically triggered by motion
events or system rules.

• Storage Status: Reflects the availability of on-device
storage resources, such as internal memory or attached
disks. It indicates whether the storage is operational, full,
or unavailable.

• Recording Status: Captures the current recording state
of the device. The camera may record to either local or
remote destinations, and this status includes modes such
as recording, idle, or finished.

• Network Status: Represents the connectivity condition
of the camera. It includes connection, which denotes
whether the device is online, and latency, which measures
communication delay or responsiveness.

• System Status: Covers global system attributes such as
user, which stores information about the active user ses-
sion, and power, which reflects the power state of the
device (e.g., on, off, rebooting).

We formally define each status category in the model as
Si, and its corresponding sub-status fields as si, where si ∈
Si. When the value of a sub-status changes, we denote the
transition using the notation si → s′i, where s′i represents the
updated value of si. A change in any sub-status si implies
that the overall status Si has also changed. Formally, we
define a status transition as follows:

∀si ∈ Si, si → s′i =⇒ Si → S′
i

The edges in the camera status model represent de-
pendencies between different statuses or sub-statuses. We
classify these edges into two categories: The first is the

inner edge, which represent intra-status dependencies—that
is, relationships between sub-statuses within the same status
group. An inner edge indicates that a change in one sub-
status may trigger or imply a change in another sub-status
from the same Si. Formally, an inner edge is defined as:

E inn(si, sj) : si, sj ∈ S, si → s′i ⇒ sj → s′j

This means that if any change occurs in a sub-status si,
and another sub-status sj , which belongs to the same status
S, always changes as a result, then there exists an inner
edge between si and sj .

For example, within the PTZ status, when the sub-status
move changes (e.g., from idle to rotating), the sub-status
position is also updated accordingly. This reflects a
causal dependency captured by an inner edge. Beyond inner
edges, the second type of edge is an inter edge, which cap-
tures dependencies across different status categories. Based
on the origin and destination of the edge, we further classify
inter edges into two types. The first type of inter edge
describes the dependency between two sub-statuses from
different status groups. Formally, it is defined as:

E int(si, sj) : si ∈ Si, si ∈ Sj , si → s′i ⇒ sj → s′j

Similar to the inner edge, this type of inter edge indicates
that a sub-status sj always changes when another sub-status
si changes, but si and sj belong to different status groups.
For example, in the camera status model, when the sub-
status zoom in the PTZ status is updated, it often triggers a
change in the quality sub-status under the Media status,
due to internal camera reconfiguration processes. This rela-
tionship is captured by an inter-sub-status edge. The second
form of inter edge represents dependencies between entire
statuses. It describes a situation where a change in any sub-
status within Si can affect the overall status Sj . This is
formally defined as:

E int(Si, Sj) : ∃si ∈ Si, si → s′i ⇒ Sj → S′
j

This means that a change in any sub-status within Si

leads to changes in all sub-statuses in Sj , indicating a strong
inter-status dependency. For example, if the power field
in the System Status changes (e.g., due to a shutdown or
reboot), it typically affects all other functional statuses, such
as halting PTZ movement, interrupting media streaming, or
disabling alarms.

All edges in the camera status model are derived from
empirical analysis of packet interactions between the cam-
era and client applications. We first manually label each
protocol packet with the primary status it directly affects.
For instance, an HTTP move-up request is labeled as
affecting the move sub-status within the PTZ status. Next,
we analyze the response behavior and observe secondary
effects. For example, we may find that when the move sub-
status is updated, the position and speed sub-statuses
also change in the subsequent responses. As a result, we
add inner edges from move to position and move to
speed to reflect these causal relationships. This modeling
process allows us to systematically capture both explicit and
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implicit dependencies among camera functionalities, which
are later used to guide interaction-aware fuzzing.

Although the labeling process and edge construction
are performed manually, they are designed to be one-time
efforts. The camera status model captures protocol-level
behaviors and interactions that are consistent across a wide
range of commercial IP cameras adhering to standard pro-
tocols such as ONVIF, HTTP, and RTSP. Once the model
is constructed, it can be reused across different devices.

4.2.2. Testing Packets Generation. Leveraging the camera
status model, CAMVEIL generates test packets that specif-
ically target relevant status fields to explore protocol inter-
actions. To bootstrap this process, CAMVEIL first collects
protocol-compliant packets from real-world camera clients.
After that, each one is labeled with the corresponding status
or sub-status it attempts to access. All labeled packets are
stored in a packet corpus for reuse. During each fuzzing
round, CAMVEIL randomly selects one seed packet and
then selects two additional packets from other protocols that
either access the same status or are related via status depen-
dencies defined in the camera status model. Each selected
packet is then mutated in a type-aware manner. Specifically,
CAMVEIL identifies protocol fields (e.g., integers, enumer-
ations, strings) and applies mutations that preserve their
type and structural validity, thereby increasing the chance
of triggering deep logic in the camera while avoiding early
rejection due to malformed formats.

For ONVIF packets, which use SOAP/XML encoding,
CAMVEIL implements both value-level and structure-level
mutations. At the value level, it mutates the textual con-
tent of XML elements to cover boundary values, proto-
col keywords, and syntactic anomalies. At the structure
level, it introduces element reordering, optional field inser-
tion/removal, and unexpected nesting to test the robustness
of the camera’s XML parser and SOAP handler.

In addition, to explore potential command injection or
RCE vulnerabilities, such as those exemplified by CVE-
2023-3959 in Section 3.1, CAMVEIL performs targeted se-
mantic injections. For XML elements, HTTP query strings,
or other string-type fields, the fuzzer mutates content using a
curated set of payloads that include suspicious directives like
sleep=9999 and reboot. These payloads are inserted
in contexts where they may be interpreted as embedded
commands by vulnerable backend handlers, enabling the
discovery of logic bugs beyond standard format violations.

4.3. Logic Vulnerability Monitor

To determine whether a test input triggers a functional
vulnerability in the camera, we design a logic-level mon-
itoring component. This component continuously probes
the camera’s runtime behavior by issuing status queries
using standard protocol clients, HTTP, RTSP, and ONVIF.
Each client is responsible for retrieving one or more of the
seven statuses defined in the camera status model. All status
requests and their corresponding responses are stored in a
request-response pool in the form of key-value pairs, where

the key is a timestamped request ID and the value is the
associated response. This structured storage allows efficient
lookup and comparison of camera states over time.

To evaluate whether abnormal behavior occurs, we de-
ploy two specialized monitors: the timeout monitor and the
inconsistency monitor. The timeout monitor detects cases
where the camera becomes unresponsive to standard status
queries within a predefined threshold, indicating potential
service hangs or crashes. The inconsistency monitor com-
pares the latest camera response with previously recorded
results to identify logic-level anomalies such as status diver-
gence, state corruption, or video feed freezing. The work-
flow of these two monitors is detailed in Algorithm 1.

Algorithm 1: The workflow of the logic monitor
Input : Pr: The current req-res pool

Ri: The request sent by the status getter
Output: Vl: The logic vulnerabilities detected

1 await res = sendToCamera(Ri, timeout);
2 if res == null then
3 Vl.construct(Ri, TIMEOUT); return Vl;
4 end
5 responseInPool = fetchResponse(Pr, Ri);
6 if responseInPool == null then
7 Pr.add(Ri, res);
8 end
9 returnCode = res.code;

10 if responseInPool.code == returnCode then
11 originMessage =

responseInPool.statusMessage;
12 if originMessage != res.statusMessage then
13 Vl.construct(Ri, INCONSISTENT); return

Vl;
14 end
15 end
16 else
17 Vl.construct(Ri, INCONSISTENT); return Vl;
18 end

The inputs to Algorithm 1 are the current request-
response pool Pr and the status query request Ri issued by
one of the protocol-specific status getters. The output is a set
of logic vulnerabilities Vi identified based on the camera’s
runtime behavior. As shown in line 1, CAMVEIL sends the
request Ri to the target camera with a predefined timeout.
If no response is received within this timeout window (lines
2–4), the monitor flags a potential timeout vulnerability by
calling construct with the label TIMEOUT. This captures
issues such as communication hangs or firmware stalls.

Next, in line 5, the algorithm attempts to retrieve a
previously recorded response for the same request Ri from
the pool Pr. If no prior response is found (line 6), the
current request-response pair is stored (line 7), and the
algorithm exits without reporting a vulnerability. If a his-
torical response exists, the algorithm proceeds to compare
it with the new response. As shown in lines 9–15, the first
comparison is on the return code (e.g., HTTP status code,
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ONVIF result code). If the return codes differ (line 16),
the inconsistency is flagged as a logic vulnerability. If the
return codes match, the algorithm performs a finer-grained
comparison by checking the actual statusMessage fields
(lines 11–13). For example, two responses may both return
code 200, but with different status messages such as OK
versus Partial Content. Any mismatch in these mes-
sages is considered an inconsistency, and CAMVEIL reports
it accordingly. This dual-level monitoring, based on both
connectivity and semantic consistency, enables CAMVEIL
to detect subtle logic bugs that do not cause crashes but
still indicate abnormal or vulnerable behavior.

Handling False Positives. Our inconsistency detection
relies on the response code and statusMessage, which,
by design, reflect the semantic validity of a request rather
than the device’s current state. State-specific info (e.g.,
”Moving” vs. ”Idle”) is typically in the response body or
separate data fields. For example, a GetStatus command
always returns 200 OK, but the body specifies whether the
device is in the “Moving” or “Idle” state. Thus, under nor-
mal conditions, identical requests yield the same response
code/statusMessage. Discrepancies are rare.

However, we observe that the logic oracles in CAMVEIL
may occasionally produce false positives. For example,
when an HTTP request is issued to move the camera upward,
the initial response might be 200 OK. However, if the cam-
era reaches its mechanical upper limit, subsequent responses
may change to 409 Conflict. While this change reflects
expected behavior, the oracle may incorrectly interpret it
as an inconsistency. To mitigate such cases, we incorporate
a manual verification step for all candidate vulnerabilities
flagged by the monitor. Specifically, we identify request pat-
terns that may produce variable but legitimate responses and
verify whether the observed change reflects a true functional
issue. This verification is performed across multiple camera
states and device sessions to ensure consistency. If the
anomaly consistently appears under controlled conditions
and deviates from expected behavior, we classify it as a
logic vulnerability and report it for further validation.

Bug Reproduce. To reproduce the logic vulnerabilities
detected by CAMVEIL, we leverage the complete log of
protocol messages recorded during fuzzing. Once a potential
vulnerability is identified by the monitors, we first attempt
to reproduce the issue by re-sending the most recent test
packets from each involved protocol (e.g., ONVIF, HTTP,
or RTSP). If the issue does not reappear, we perform a
backward traversal through the previously sent messages,
gradually replaying earlier sequences until the vulnerability
is successfully triggered again. This step-wise reproduction
process ensures the root cause packet or sequence is isolated
and verifiable. To further validate the bug, we repeat the
reproduction multiple times under the same network and
camera state to confirm its stability, and rule out side effects
caused by network latency or race conditions.

5. Implementation

We implement CAMVEIL using a combination of pro-
tocol parsing, traffic capture, and status-aware mutation
techniques. For HTTP and RTSP packets, we adopt the
Scapy library [16], which provides flexible support for de-
serialization and field-level mutation. However, since Scapy
does not natively support ONVIF parsing, we implement
a custom parser to handle the SOAP/XML structure [17]
used in ONVIF requests and responses. To collect real-
world protocol packets for status labeling and mutation, we
interact with the camera using standard protocol clients. For
HTTP, we use vendor-provided web interfaces accessed via
a browser. For RTSP, we use the VLC media player [18],
which streams live video and issues standard RTSP control
messages. For ONVIF, we utilize easy_onvif [19], an
open-source Dart implementation of the ONVIF protocol.
These real-world packets form a diverse and representative
corpus, allowing CAMVEIL to perform context-aware mu-
tation across protocols, and effective multi-protocol fuzzing
guided by our camera model.

To adapt CAMVEIL to another camera, no firmware
access or device-specific customization is required. Since
the camera status model is protocol-driven and protocol-
agnostic at the packet level, it can be reused across different
camera models that conform to standard protocols such as
ONVIF, HTTP, and RTSP. To test a new security camera, we
need to follow 4 steps: 1) Setup the camera and CAMVEIL in
the same local area network. 2) Using CAMVEIL to capture
the normal packets sent by HTTP, RTSP and ONVIF clients.
3) Label the statuses accessed by the collected normal
packets. This step requires some human effort, but different
cameras generally share similar types of protocol requests.
For example, most cameras follow the ONVIF standard,
meaning they support common requests like ‘get-services’
(accessing system status) and media ‘multi-casting’ (ac-
cessing media status). Similarly, most HTTP packets use a
POST request with position information to move the camera.
Therefore, most patterns labeled for one camera can often
be reused for another, keeping the human effort in this step
manageable. 4) Start the fuzzing process and checks whether
any vulnerabilities occur.

6. Evaluation

6.1. Environment Setup

To set up the testing environment for security cameras,
we deployed the cameras and CAMVEIL within the same
local network. First, CAMVEIL captured 1,000 normal pack-
ets for each protocol. Based on these collected packets, we
identified the camera statuses to monitor, then initiated the
fuzzing process and observed the camera’s behavior. For
comparison, we also set up state-of-the-art fuzzing tools. For
Peach, we deployed multiple instances, with each instance
dedicated to fuzzing a single protocol independently. For
DIANE, we attempted to replicate their evaluation setup by
purchasing the devices they used. However, as many models

7



are no longer commercially available, we were only able to
obtain one: a FOSCAM camera of type FI9831P, which is
supported by DIANE’s companion app analysis approach.

We deployed CAMVEIL on a MacBook Pro (2019
model) to run all the evaluation tasks. The machine is
equipped with a 64-bit Intel Core i7 processor (6 cores,
12 threads), running at 2.6 GHz. It has 16 GB of
LPDDR4 memory and a 512 GB SSD for storage. All
software components, including protocol parsers, mutators,
and logic monitors, were run locally without requiring re-
mote servers or distributed systems. This setup demonstrates
that CAMVEIL can operate efficiently on widely available
hardware and is capable of conducting both comprehensive
testing and even real-world attacks.

TABLE 1. SUMMARY OF THE SECURITY CAMERAS UNDER TEST.

ID Vendor Model Firmware Version

1 Hikvision DS-2SC3Q140MY-TE V5.7.20

2 Hikvision DS-2CD2X22FWD V5.3.0

3 Honeywell HVCD-43001 V1.000.HW01.0.R

4 TP-Link TL-IPC44K-4 1.0.1

5 TP-Link TL-IPC44AW 1.0.12

6 TP-Link TL-IPC433H-A4-W10 1.0.6

7 FOSCAM F19831P 1.5.2.11

8 EZVIZ H9c V5.3.8

9 Santachi ST-AD100 1.0.0

The detailed information of the security cameras we
chose for evaluation can be found in TABLE 1. All de-
vices were commercially available off-the-shelf products
purchased from major online retailers. The selected cameras
span nine different camera models from six well-known
vendors, including Hikvision, Honeywell, TP-Link, FOS-
CAM, EZVIZ, and Santachi. These devices vary in terms of
functionality, firmware implementations, and vendor ecosys-
tems, and collectively represent a diverse and representative
sample of widely deployed IP cameras in both consumer
and enterprise environments. This diversity ensures that our
evaluation results reflect real-world scenarios and highlights
the generalizability of CAMVEIL across heterogeneous cam-
era platforms.

While our approach bootstraps from 1000 intercepted
packets, we repeated the experiments for various times and
obtained consistent results. In each run, the initial packets
were collected by exercising the full set of client operations
(e.g., rotation, video streaming, triggering alarms), ensuring
that the seed corpus covers the main protocol functionalities.

6.2. Vulnerabilities Found in Security Cameras

Totally, we have adapted CAMVEIL on 9 security cam-
eras from 6 vendors, including Hikvision, Honeywell, TP-
Link, FOSCAM, EZVIZ, and Santachi. These cameras were
selected as evaluation targets due to their widespread de-
ployment in both industrial and residential environments.
Hikvision leads the IP surveillance market with a 20–25%

global share [20], and models like DS 2SC3Q140MY TE
and DS 2CD2X22FWD are part of its mainstream product
lines. Besides, EZVIZ is also a top player in the smart
home camera market [21]. Our selection spans 6 vendors
to ensure codebase diversity. Currently, we have found 22
vulnerabilities in these devices. Details can be found in
TABLE 2. Each fuzzing session was configured to run for 24
hours. In practice, however, most vulnerabilities were trig-
gered within the first two hours of testing. Upon detecting a
vulnerability, we immediately halted the current run, saved
all relevant logs and packet traces for further analysis, and
then rebooted both the camera and the fuzzing environment
before continuing with the next round of testing.

Bug Types. As shown in the table, the identified vulnera-
bilities fall into three categories: The first and most common
type is Video Freezing, observed in 16 of the discovered
cases. These bugs manifest as streaming timeouts, causing
the video feed in VLC players, HTTP web interfaces, or
ONVIF clients to become unresponsive or frozen. This
type of vulnerability is detected by the timeout monitor
in CAMVEIL. The second type is Inconsistent Response,
where identical test inputs produce inconsistent outputs,
such as differing HTTP status codes or response content.
CAMVEIL detected 4 such bugs across multiple devices
using its inconsistency monitor. The final type is Internal
Error, in which protocol interactions lead to disconnection
or system instability. Two cases of this type were observed.
This category aligns with bugs typically captured by crash
monitors, as used in prior works like DIANE. CAMVEIL
incorporates similar mechanisms to identify such failures.

Bug Severity. All the discovered vulnerabilities have
the potential to cause significant security and operational
consequences. For Video Freezing vulnerabilities, attack-
ers can launch denial-of-service (DoS) attacks by remotely
sending specially crafted protocol packets. These packets
can freeze the live video feed accessed via VLC players,
HTTP interfaces, or ONVIF clients, effectively disabling
real-time surveillance. This allows attackers to operate unde-
tected within the camera’s coverage area, potentially leading
to property loss or security breaches. For Inconsistent Re-
sponse vulnerabilities, attackers may exploit inconsistencies
in response handling to manipulate camera behavior. For
instance, some malformed or invalid requests still receive
200 OK responses (e.g., in Bug #3, #8, #10, and #11),
enabling attackers to craft deceptive commands that bypass
input validation and trigger unintended camera movements
or configuration changes. Finally, Internal Error vulnera-
bilities can cause disconnection between the camera and
its clients, effectively interrupting all real-time monitoring.
Such vulnerabilities may be exploited to launch DoS attacks
by destabilizing the device through protocol-level interac-
tions, thereby disabling its surveillance functionality.

The affected vendors are listed as CNAs, so we cannot
request CVEs directly from MITRE. CVE assignments must
be initiated by the vendors. We are currently assisting them
in the application process. Once approved, the CVEs will
be published.

Bug Disclosure. We reported all the bugs to the vendors
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TABLE 2. VULNERABILITIES DISCOVERED BY CAMVEIL IN CAMERAS OF HIKVISION, HONEYWELL, TP-LINK AND FOSCAM.

Num Vendor Model Type Bug Type Bug Description Report Time Vendor Response Patched Version

1

Hikvision

DS-2SC3Q

140MY-TE

Video Freezing RTSP packets with CSeq over 256 bytes cause HTTP video freezing. 2025-06-17 2025-07-09 confirmed /

2 Video Freezing RTSP packets with url over 4096 bytes cause HTTP video freezing. 2025-06-17 2025-07-09 confirmed /

3 Video Freezing Same ONVIF packets sometimes get ‘200 OK’, other times timeout. 2025-06-17 2025-07-09 confirmed /

4 DS-2CD2X

22FWD

Video Freezing HTTP packets with over-sized field may lead to RTSP crashes. 2025-06-17 2025-07-09 fixed V5.8.1

5 Video Freezing Global variable reused in multiple protocols and cause semantic errors. 2025-06-17 2025-07-09 fixed V5.8.1

6
Honeywell HVCD-43001

Video Freezing RTSP packets with CSeq over 1024 bytes cause HTTP video freezing. 2024-10-21 2024-11-06 confirmed /

7 Video Freezing RTSP packets with url over 4096 bytes cause HTTP video freezing. 2024-10-21 2024-11-06 confirmed /

8

TP-Link

TL-IPC44K-4
Inconsistent
Response Same HTTP get ‘200 OK’ or ‘443 Entity Too Large’ responses. 2024-10-09 2024-10-15 fixed 1.0.2

9 Internal Error HTTP and ONVIF packets on related statuses lead to disconnection. 2024-10-15 2024-10-18 fixed 1.0.2

10 TL-IPC44AW Inconsistent
Response Same HTTP get ‘200 OK’ or ‘443 Entity Too Large’ responses. 2024-10-09 2024-10-15 fixed 1.0.12(V6.0)

11 TL-IPC433H

-A4-W10

Inconsistent
Response Same HTTP get ‘200 OK’ or ‘443 Entity Too Large’ responses. 2024-10-09 2024-10-15 fixed 1.0.8

12 Video Freezing Media statuses accessed by RTSP are corrupted by HTTP packets. 2024-09-12 2024-09-24 fixed 1.0.8

13
FOSCAM FI9831P

Video Freezing RTSP packets lead to ONVIF video requests timeout and freezing. 2025-06-17 2025-08-23 further reported /

14 Inconsistent
Response ONVIF ptz requests get ‘200’ response and other times get errors. 2025-06-17 2025-08-23 further reported /

15

EZVIZ H9c

Video Freezing RTSP with User-Agent exceeding 1900 causes the HTTP video freeze. 2025-06-17 2025-07-09 confirmed /

16 Video Freezing RTSP with Cseq exceeding 1900 causes the HTTP video freeze. 2025-06-17 2025-07-09 confirmed /

17 Video Freezing RTSP with invalid request headers causes the HTTP video freeze. 2025-06-17 2025-07-09 confirmed /

18 Video Freezing RTSP with URL path exceeding 1920 causes the HTTP video freeze. 2025-06-17 2025-07-09 confirmed /

19 Video Freezing RTSP with an invalid URL structure causes the HTTP video freeze. 2025-06-17 2025-07-09 confirmed /

20 Video Freezing RTSP DESCRIBE request with long Accept field leads to video freeze. 2025-06-17 2025-07-09 confirmed /

21
Santachi ST-AD100

Video Freezing Interaction between RTSP and ONVIF freeze the video stream. 2025-06-17 2025-08-23 further reported /

22 Internal Error The network interface crashed after being tested under crafted packets. 2025-06-17 2025-08-23 further reported /

immediately after preparing the reproduction script and col-
lecting the bug manifestation photos or video. 18/22 of the
bugs are acknowledged by the vendors in about 1-2 weeks.
For the bugs without responses, we tried to further contact
the vendors in about 1-2 months. 7 of the bugs are patched
by the vendors, we listed the related versions in Table 2.

Bug Types. Among the 22 discovered bugs, 16 are
memory bugs and 6 are logic bugs. All memory bugs are
vulnerabilities, as they can cause overflows or leaks leading
to crashes or RCE. Of the logic bugs, 2 are vulnerabilities
that can crash the camera, while bugs #8, #10, #11, and #14
are not, as they only cause inconsistent responses without
exposing an attack surface.

Bug Root Causes. The detected bugs mainly fall
into two categories: 1) Memory check deficiency. Missing
boundary checks on RTSP/HTTP fields (e.g., long CSeq,
URL, or headers) caused buffer overflows, where the over-
flowed data interfered with adjacent protocol handlers. This
root cause accounts for 15 out of 22 bugs. 2) Global variable
concurrency conflict. Different protocols (HTTP, RTSP, ON-
VIF) concurrently accessed shared global variables without
proper synchronization, leading to inconsistent responses or
stream corruption. This root cause explains 7 out of 22 bugs.
Camveil’s cross-protocol fuzzing was essential in surfacing
these vulnerabilities, as they would not have been exposed
under single-protocol testing.

Bugs found by other tools. We also evaluated two state-
of-the-art fuzzing tools, Peach and DIANE, on the same set
of devices. Notably, DIANE supports only the FOSCAM

camera due to its hardware dependencies. The result shows
Peach successfully detect Bug #22, while DIANE detects
no bugs. The primary reason is that most of the discovered
bugs (excluding Bug #9 and Bug #22) do not result in
device crashes. Both Peach and DIANE are primarily de-
signed to detect crash-based vulnerabilities, and thus failed
to capture these logic-level issues. To further evaluate the
contribution of our camera status model, we extended Peach
by integrating the same logic monitors used in CAMVEIL.
With this enhancement, Peach was able to detect 4 bugs
(Bug #8, #10, #11, and #22). However, it still missed
the remaining bugs, which require coordinated interaction
across multiple protocols to be triggered. These results
highlight the importance of status-aware, cross-protocol test
generation. Without sending interrelated messages guided
by the camera status model, such complex vulnerabilities
remain undetected.

Ablation Study. To evaluate the contribution of each
core component in CAMVEIL, we conducted an ablation
study by selectively disabling key modules and observing
the impact on bug detection.

We first disabled the Camera Status Model, resulting
in protocol-agnostic random fuzzing. In this configuration,
CAMVEIL sent isolated, randomly selected packets under
a non-coordinated setting, where messages are generated
independently without modeling cross-protocol dependen-
cies. . As a result, only 3 bugs (Bug #6, Bug #8, Bug
#9) were discovered. All other bugs, which require protocol
interaction, remained undetected. Next, we disabled the
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Logic Vulnerability Monitor, relying solely on crash-based
detection (e.g., segmentation faults, TCP disconnections). In
this setup, only Bug #9 and Bug #22 (two internal errors
causing disconnection) was detected. The remaining 20 logic
bugs, which do not result in crashes, were entirely missed.

These results demonstrate that both components are
essential: the status model enables semantically meaningful
test generation, while the logic monitor uncovers impactful
vulnerabilities beyond crash bugs.

False Positives. During our experiments, we observed
two false positives, resulting in a false positive rate of
2/(22 + 2) = 8.33%. Both false positives occurred during
testing on TP-Link cameras. In these cases, the initial test
request received a 200 OK response, while the subsequent
identical request returned a 409 Conflict. Upon manual
inspection, we confirmed that these were not true vulnerabil-
ities but instead expected behavior: the camera had reached
its physical rotation limit and could not process further pan
or tilt commands.

Reproducing Bugs. CAMVEIL successfully reproduced
20 out of 22 reported bugs, yielding a 90.9% success rate.
Bugs #9 and #22 could not be reproduced due to their
reliance on precise timing. For example, bug #9 requires
modifying memory read by HTTP exactly as ONVIF up-
dates a buffer, while bug #22 involves a shared global
variable being altered within a critical window.

6.3. Typical Case Study

To illustrate how CAMVEIL identifies vulnerabilities in
practice and to provide deeper insights into their root causes,
we present four representative cases for in-depth analysis.
These case studies highlight the diverse types of logic
vulnerabilities uncovered and demonstrate the effectiveness
of our multi-protocol coordinated fuzzing approach. Cases
1–4 arise from two protocols concurrently accessing the
same memory region, causing read/write conflicts. The root
causes include memory overflow (cases 1&2) and global
variables concurrent accessing (cases 3&4). These bugs
were exposed only by CAMVEIL, which intentionally drives
cross-protocol interactions to access shared states, revealing
memory conflicts. In contrast, existing fuzzers operate on
isolated protocols and cannot trigger such issues.

Case 1: The first case involves a vulnerability we
discovered in a TP-Link camera, model TL-IPC433H-A4-
W10, listed as bug #12 in TABLE 2. As shown in the
Fig 5, we initiated CAMVEIL to fuzz the camera within the
same local network provided by a router. During testing,
the media stream in the VLC player froze unexpectedly:
the terminal time displayed 09:44:45, while the VLC video
stream time remained at 09:43:51, indicating a media trans-
mission freeze. We further observed that the video stream
remained frozen indefinitely, and playback only resumed
after manually rebooting the camera. Analysis revealed that
this issue was triggered when CAMVEIL sent a combination
of HTTP and RTSP packets that concurrently accessed and
interfered with the camera’s media status. The cross-protocol
interference caused the internal media pipeline to become

unresponsive. This vulnerability has been acknowledged and
subsequently patched by the vendor.

TP-Link Camera

Camveil Fuzzer

Tue Nov 5 09:44:45 20242024-11-05 09:43:51

Video Freeze

Figure 5. A real vulnerability case found by Camveil in the TP-Link
camera. The terminal time displayed 09:44:45, while the video stream time
remained at 09:43:51, indicating a media transmission freeze.

To further investigate the root cause of this vulnerability,
we contacted the vendor and obtained the corresponding
firmware for the affected TP-Link camera. Through reverse
engineering and static analysis of the firmware binary, we
identified the relevant code snippet shown in Figure 6.

char *__fastcall curl_maprintf(int a1, int a2, int a3, int a4){
...
v4 = sub_104D8((int)&ptr, sub_10444, a1, (int *)varg_r1) == -1;
...

}

int __fastcall sub_10444(unsigned __int8 a1, int a2){
...
v8 = ((void *(__fastcall *)(void *, size_t))realloc_0)(v3, 2 * v7);
if ( !v8 )

goto LABEL_3;
...

LABEL_3:
result = -1;
*(_DWORD *)(a2 + 12) = 1;
return result;

allocation failed

not free 
the memory 

Figure 6. Code snippets from the vulnerability case in the TP-Link camera.
HTTP packets corrupt the memory, and subsequent RTSP packets attempt
to access this corrupted memory, causing the system to become unrespon-
sive. Camveil triggers this bug by coordinating the HTTP and RTSP packets
that access the same fields.

As shown in Figure 6, the malformed HTTP packet
triggers the execution of the curl_maprintf function,
which in turn invokes sub_10444. Within this function, a
memory allocation is attempted via realloc_0. However,
due to field mutations introduced by the fuzzed HTTP
packet, the allocation may fail. When this happens, the vari-
able v8 is set to NULL, causing the program to jump directly
to LABEL_3. This bypasses any memory cleanup or error
handling, resulting in a memory leak and leaving internal
state inconsistent. Subsequently, when an RTSP test packet,
such as a PLAY request, is sent, the RTSP handler accesses
the corrupted media status, which leads to the observed
freeze in the real-time video stream. This vulnerability is
difficult for existing fuzzing tools to detect, as it does not
cause a system crash or disconnection. Instead, it arises
from a subtle cross-protocol interaction where one protocol
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corrupts internal state, and another protocol subsequently
triggers the faulty behavior. CAMVEIL detected such issues
by multi-protocol coordination and logic-level monitoring.

Vulnerability’s Severity and Exploitation. This vulnera-
bility poses a security risk, as it enables attackers to launch
denial-of-service (DoS) attacks that disrupt the camera’s
real-time video functionality. Once triggered, the camera be-
comes unresponsive to RTSP streaming requests, effectively
cutting off all live video feeds. Exploitation requires only
local network access to the camera, which can be obtained
through common techniques such as ARP spoofing or rout-
ing attacks [22]. Given the prevalence of IP cameras in both
industrial surveillance and residential security systems, such
vulnerabilities can have wide-ranging consequences, from
surveillance blind spots to physical security breaches. The
issue has been acknowledged and addressed by the vendor in
a subsequent firmware update, mitigating the attack vector
in newer device versions.

Case 2: The second case involves a vulnerability dis-
covered in a Honeywell camera (model HVCD-43001),
listed as Bug #7 in Table 2. In this scenario, CAMVEIL
simultaneously sends a mutated RTSP OPTIONS packet
and an HTTP request, both of which access the camera’s
media status. As a result, both VLC clients streaming and
the web-based HTTP control interface become unresponsive.
The camera stops serving RTSP responses, and the HTTP
interface times out, indicating a failure in the shared media
subsystem triggered by concurrent protocol interaction.

Unfortunately, we were unable to obtain the firmware
for this camera model, so our analysis relies solely on the
observed network behavior. We found that the vulnerability
could be consistently reproduced by sending an RTSP packet
with an excessively long URI, exceeding 4096 characters,
starting with a standard RTSP stream path. At the same
time, a mutated HTTP request containing a similarly long
string in the URI field was sent, targeting the camera’s video
stream endpoint. Figure 7 shows the pair of packets used to
trigger this issue. After repeated testing, we hypothesize that
the camera experiences a memory handling issue, likely a
buffer overflow or memory corruption, when parsing these
overly long URI fields across different protocol handlers.
The simultaneous access to the camera’s media subsystem
via both RTSP and HTTP seems to compound the issue, re-
sulting in the complete unresponsiveness of both interfaces.

This vulnerability went undetected by existing tools dur-
ing our evaluation. DIANE does not support this Honeywell
model, and Peach, despite being equipped with our logic
vulnerability monitor, was unable to uncover the bug. This
is because the vulnerability requires a specific combination
of malformed RTSP and HTTP packets with long URIs,
whereas existing tools typically fuzz each protocol indepen-
dently. In contrast, CAMVEIL’s multi-protocol coordination
and status-aware test generation were key to successfully
identifying this issue.

Vulnerability’s Severity and Exploitation. This vulnera-
bility can be exploited to perform DoS attacks against the
affected camera. In addition to freezing the real-time video
stream, it also renders the HTTP control interface unrespon-

OPTIONS rtsp://192.168.31.64:554//Streaming/Channels/101Aa0Aa1Aa2(>4096)
RTSP/1.0
CSeq: 1
User-Agent: VLC media player (LIVE555 Streaming Media v2010.02.10)

GET /video_stream/110283A78F8d(>4096) HTTP/1.1
Host: 192.168.31.64
Authorization: Basic base64-encoded-credentials
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) 
Accept: application/json, text/html, */* HTTP packet

ONVIF packet

Figure 7. The packets used to trigger the vulnerability in HVCD-43001.
Camveil sends a RTSP and HTTP request simultaneously, which both
access the media status.

sive, effectively disabling both live monitoring and remote
management functionalities. An attacker requires only local
network access to execute the attack. By disrupting both
the streaming and control channels, attackers could create
blind spots in surveillance systems, enabling further mali-
cious activities without detection. The vulnerability has been
acknowledged and addressed by the vendor in a subsequent
firmware update.

Case 3: The third case involves a vulnerability found in
the FOSCAM FI9831P camera, listed as Bug #13 in Table 2.
In this scenario, the ONVIF client becomes unable to receive
video data, and the video stream freezes entirely. As shown
in Figure 8, the client detects this failure and displays an
on-screen warning labeled NO SIGNAL. This issue arises
when CAMVEIL sends a combination of ONVIF and RTSP
test packets, both of which interact with the camera’s media
streaming status. The cross-protocol interference appears to
corrupt internal stream management logic, resulting in the
loss of video transmission. During our evaluation, neither
Peach (even when equipped with our custom logic mon-
itors) nor DIANE was able to identify this vulnerability.
Peach generated ONVIF and RTSP packets independently,
without protocol-level coordination. However, this bug is
only triggered by a specific sequence of interleaved ONVIF
and RTSP messages, demonstrating the necessity of cross-
protocol fuzzing for such logic vulnerabilities.

Figure 8. A real vulnerability case found by CAMVEIL in the FOSCAM
camera. There is an alarm with the messages ‘NO SIGNAL’ in the middle
of the screen

Vulnerability’s Severity and Exploitation. Similarly, this
vulnerability can be exploited to launch DoS attacks. In this
case, not only is the real-time media stream disrupted, but
the ONVIF Device Manager (ODM) interface also becomes
unresponsive, effectively freezing both video output and
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camera control functionalities. An attacker only needs access
to the camera’s local network to launch the attack. By
freezing both the control interface and the media output,
the attacker not only disrupts live surveillance but also
disables administrative recovery mechanisms via ONVIF.
This elevates the severity of the attack, as even remote
operators or automated recovery systems relying on ONVIF
cannot restore the camera’s functionality without a physical
reboot or secondary access channel.

Case 4: The final case involves a vulnerability we dis-
covered in a Hikvision camera, model DS-2CD2X22FWD,
listed as Bug #4 in TABLE 2. During testing, we observed
that RTSP packets received no response, and the video
stream became frozen. This issue was triggered by coor-
dinated testing involving both RTSP and HTTP protocols.
To investigate the root cause of the bug, we attempted to
analyze the camera’s firmware. However, we found that
the firmware was encrypted, preventing direct reverse en-
gineering. Fortunately, we discovered a blog post [23] that
introduced a method to decrypt Hikvision firmware, specif-
ically including the one used by our target device. The
blog outlines a technique involving the extraction of the
decryption key from the bootloader and use of XOR-based
decoding, allowing the firmware image to be unpacked for
further analysis. This enabled us to proceed with static
analysis and locate the relevant code associated with the
vulnerability. The related code snippet is shown in Figure 9.

Speed_RTSP_003751F8
(*v31, a2a);

void __fastcall Speed_RTSP_003751F8(int a1, char *a2){
...
int v8 = 0;
char s[80];
memset(s, 0, 64u);
if ( a2 && !strchr(a2, 45) ){

memset(s, 0, 64u);
if ( strchr(a2, 0x2E) ) 

sscanf(a2, "%d.%s", &v8, s); 
else

sscanf(a2, "%d", &v8);
...}

}

a2a = byte_68D99C;
if a2’s length is 
bigger than 80,
the vulnerability 
occurs .bss:0068D99C 

byte_68D99C

HTTP packets

a global 
variable

set

read

Figure 9. Code snippets from the vulnerability case discovered by
CAMVEIL in the Hikvision camera. HTTP packets set a global variable,
and subsequent RTSP packets attempt to access this variable, causing the
system to become unresponsive.

As shown in Figure 9, the malformed HTTP packet
triggers an update to a global variable located at memory
address 0x0068D99C. This global variable stores a string
value that is later accessed by the RTSP handling function
Speed_RTSP_003751F8. Specifically, the RTSP handler
retrieves the string pointer a2a from this global vari-
able and attempts to parse it using the function sscanf.
Within Speed_RTSP_003751F8, the function first de-
clares a fixed-size buffer char s[80] and then condi-
tionally parses the value of a2 using the format string
"%d.%s" into an integer and the buffer s. However, due to
mutations introduced by the fuzzed HTTP packet, the string
assigned to the global variable may exceed 80 bytes. If the
RTSP packet subsequently triggers this vulnerable path, the
sscanf operation overflows the buffer s, resulting in a
memory corruption that causes system unresponsive.

This vulnerability is particularly challenging for conven-

tional fuzzers to detect, as it requires a coordinated sequence
of cross-protocol interactions: an HTTP packet must first
set a global variable with an oversized string, and an RTSP
packet must then invoke a vulnerable parsing function that
misuses this global value. Such inter-protocol dependencies
are typically outside the scope of single-protocol fuzzing
tools, highlighting the necessity of CAMVEIL’s coordinated
multi-protocol approach.

Vulnerability’s Severity and Exploitation. This vulner-
ability introduces a DoS risk by allowing remote attack-
ers to corrupt memory through cross-protocol interaction.
Beyond causing a system freeze, this memory corruption
could potentially be escalated. If the attacker carefully crafts
the injected string, it may overwrite return addresses or
function pointers on the stack, paving the way for control-
flow hijacking. This opens the door to arbitrary code exe-
cution, such as injecting shellcode or spawning a reverse
shell, depending on the surrounding memory layout and
runtime protections. The attack can be launched by sending
a specially crafted HTTP packet that sets an oversized global
string variable, followed by an RTSP request that activates
the vulnerable parsing routine. Because the malformed string
persists in global memory across protocols, even short-lived
access can result in persistent system-level failure. Given
the widespread deployment of IP cameras in critical envi-
ronments, the possibility of turning a cross-protocol parsing
flaw into a persistent compromise highlights the importance
of multi-protocol-aware fuzzing and secure memory han-
dling in embedded systems.

7. Discussion

Generalizability and the scope. The camera status
model proposed in this paper is designed to be general
and applicable to a wide range of IP cameras, as most
devices implement the core statuses and inter-status re-
lationships captured in the model. In our evaluation, all
six tested cameras adopted the same model without mod-
ification. However, certain edge cases may require model
customization. This occurs in two scenarios: 1) Some cam-
eras may not support specific functionalities. For example,
cameras lacking motorized control will not include PTZ-
related statuses such as position or speed. In such cases,
the model should be pruned by removing the unsupported
statuses and their associated dependency edges. 2) Some
cameras support additional statuses. Other cameras may
introduce new functionalities not covered by the original
model. For instance, models with audio recording may
require the addition of a volume or microphone status. These
extensions involve adding new status nodes and evaluating
whether their changes affect or are affected by existing
statuses, such that appropriate dependency edges can be
incorporated. Even if the camera model is only partially
aligned with a specific device, fuzzing can still proceed.
However, without an accurate status map, certain cross-
protocol interactions may be missed, leading to reduced
coverage and effectiveness.
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For the generalizability of other protocols, we currently
focused on HTTP, RTSP, and ONVIF because they are the
dominant configuration in IP cameras (for example, ONVIF
alone covers 72% of the global network video surveil-
lance market [24]). However, Camveil’s design is protocol-
agnostic and can be extended by modeling dependencies.
For example, we also tested a camera from Xstrive which
support WebRTC, and uncovered a previously unknown bug:
RTSP cooperated with the WebRTC testing packets triggered
a freeze in the video stream [25].

For encrypted communication (e.g., HTTPS or RTSP
over TLS), CAMVEIL cannot directly fuzz encrypted traffic
in our current setup due to missing private keys, and thus
cannot perform effective mutation on the ongoing packets.
In future work, we plan to intercept decrypted traffic inside
the client application (e.g., via reverse engineering or dy-
namic hooking), enabling effective fuzzing over encrypted
channels. However, this requires protocol-specific client in-
strumentation and presents engineering challenges.

Some manufacturers employ proprietary protocols, often
encapsulated within encrypted SDKs, which pose signif-
icant challenges for analysis. While proprietary protocols
are less common in the broader market, they are present
in certain specialized or high-security environments. The
lack of public documentation and the use of encryption in
these protocols hinder the ability to perform effective fuzz
testing and vulnerability assessment. Reverse engineering
such protocols is not only time-consuming but may also
raise legal and ethical concerns. Given these constraints,
CAMVEIL currently focuses on cameras utilizing standard
protocols, ensuring broad applicability and compliance with
legal standards. Future work may explore methods to ethi-
cally extend support to devices with proprietary protocols,
potentially through collaboration with manufacturers or the
development of generic analysis frameworks that can adapt
to undocumented interfaces.

CAMVEIL also doesn’t support non-camera systems like
drones or robots yet, as they involve more complex pro-
tocol interactions. To extend support, we would need to
build richer status models and integrate with protocols like
MAVLink or DDS. For example, when adapting CAMVEIL
to drones, the status model would need to incorporate flight-
related states such as flight mode (AUTO, GUIDED), GPS
fix level, and arming status.

More monitors. CAMVEIL integrates the crash monitor
proposed by prior works [5], [6], and introduces a logic
vulnerability monitor to detect non-crashing issues such
as response timeouts and inconsistencies. However, not all
logic vulnerabilities in security cameras manifest through
such symptoms. In some cases, the camera responds cor-
rectly and consistently to protocol messages, yet fails to
perform the expected physical behavior. For example, an
ONVIF packet that instructs the camera to pan may return
a 200 OK response, while the camera does not move at all.
Similarly, an HTTP request that sets the movement speed
to level 5 may succeed syntactically, but the camera still
rotates at a noticeably low speed.

These types of bugs are particularly difficult to detect

using standard request-response monitors. One potential so-
lution is to maintain a reference model that records the ex-
pected camera status transitions in response to each packet.
By comparing the actual observed status with the predicted
outcome, discrepancies can be identified as potential logic
bugs. However, implementing such a model presents sig-
nificant challenges. First, it is difficult to precisely define
and update all affected statuses for each incoming packet,
especially those that induce continuous or dynamic changes.
For instance, a ‘move-up’ request may alter both the position
and speed statuses over time, requiring fine-grained and
real-time status tracking. Second, concurrency introduces
ambiguity: when multiple conflicting commands are sent
in parallel, (e.g., setting speed to 3 via HTTP and 5 via
ONVIF), it becomes unclear which effect should take prece-
dence, making deviation detection unreliable. Addressing
these challenges requires more advanced semantic modeling
and device-level feedback collection, which we leave as an
important direction for future work.

Manual Effort and Scalability The manual effort in
CAMVEIL mainly comes from two aspects: 1) Labeling
the initial packet corpus with the corresponding status/sub-
status. Our labeling process begins by executing all avail-
able client commands (e.g., “pan left”, “zoom in”, “get bi-
trate”, etc.) through the camera client. This produces around
50–100 packets covering different functional categories of
the device. We then manually annotate these representative
request–response pairs. After that, subsequent similar pack-
ets can be auto-labeled based on shared structure and se-
mantics. For instance, once ‘pan left’ is labeled, commands
like ‘pan right’ or ‘tilt up’ follow the same format and can
be auto-labeled. Adapting CAMVEIL to a new camera only
requires repeating this process and typically takes 1–2 hours.
For example, I adapted CAMVEIL to a new camera from
Xstrive, which takes me 35 minutes.

2) Verifying Candidate Bugs. Candidate bug verification
requires manual effort to confirm whether an inconsistency
reflects a real bug. In our experiments, CAMVEIL found
6 inconsistencies(indicating a low candidate count), 4 of
which were true bugs. Verification involves: (1) replaying
the triggering sequence, (2) checking whether the inconsis-
tency persists, and (3) examining logs or device behavior.
Each case typically takes under 30 minutes, making the
overall manual effort modest.

For the scalability, the manual effort required by Camveil
is modest and does not pose a barrier to scaling the approach
across other devices. Since initial labeling can be largely
reused through structural similarity, adapting to a new cam-
era is typically a one-time effort of under 1–2 hours. Bug
verification is also lightweight, given that Camveil produces
only a small number of high-quality candidate inconsis-
tencies. Moreover, as more packet templates and verified
cases accumulate, the adaptation cost further decreases due
to higher coverage of reusable patterns.

Peach’s multi-protocol messages CAMVEIL is de-
signed to automatically generate lots of concurrent message
pairs that access the same camera status, thereby inducing
conflicting interactions. This automated construction enables
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systematic exploration of cross-protocol race conditions
without manual effort. In contrast, with Peach, generating
such message pairs requires a scheduler to set up multi-
ple Peach instances, each hardcoded with specific message
types. For example, here we gave configurations (Pit files) of
two Peach instances: Instance A sends RTSP PLAY packets,
while Instance B sends ONVIF packets to set the video
encoder configuration. Running these two fuzzers in parallel
only tests one specific pair of concurrent accesses: RTSP and
ONVIF both modifying the camera’s media status.

To test any new pair of conflicting status accesses, users
must create a new set of configurations, and restart the Peach
instances to enable the new protocol pairs. In CAMVEIL,
each camera status involves about 20 types of the packets,
and thus producing about 20 * 20 = 400 concurrent message
pairs. For Peach, we need to write about 2*30 (round code
lines for each Pit file) * 400 (pairs) = 24,000 lines to config
all these message pairs, which needs huge effort.

8. Related Work

Protocol Fuzzing. Many works have been conducted
on developing fuzzing frameworks for protocol implemen-
tations. These approaches can generally be categorized into
two types based on how they generate test cases: generation-
based and mutation-based. The first category is generation-
based protocol fuzzers [7], [8], [26], [27], [28], [29]. They
create test inputs from scratch using protocol specifications.
For example, Peach [7] is a widely adopted generation-
based fuzzer that uses XML-formatted documents to define
a protocol’s state model and data structure. Based on this
specification, Peach can synthesize protocol-compliant pack-
ets to explore different code paths systematically. Another
representative tool is Defensics [30]. Defensics is a com-
mercial fuzzing suite that provides support for hundreds of
network protocols with millions of pre-defined test cases,
enabling broad testing coverage without requiring manual
input. Besides, Boofuzz [31] is another open-source frame-
work of this type. It provides programmable APIs to define
protocol states and fields.

The second category consists of mutation-based proto-
col fuzzers [32], [33], which generate test cases by mu-
tating existing protocol messages captured from real ex-
ecutions. For example, AFLNet [32] extends the widely-
used AFL [34] fuzzer to support stateful network proto-
cols by mutating recorded packets and applying state-aware
scheduling strategies. A more recent tool, ChatAFL [35],
enhances this approach by integrating large language models
to guide structure-aware mutations. Built on top of AFLNet,
ChatAFL improves mutation effectiveness by better preserv-
ing protocol semantics during fuzzing. Another representa-
tive work is Bleem [8], which functions as a transparent
proxy to capture live network traffic and perform real-time
mutation. Unlike traditional fuzzers that focus on either
server or client endpoints, Bleem supports fuzzing both sides
of a communication session, making it applicable to diverse
scenarios.

The work by Garousi et al. [36] leverages model-based
testing (MBT) for end-to-end test automation of several
large web and mobile applications. Similarly, the work by
Godoy et al. [37] discusses search-based testing (SBT), in
which they exploit a particular abstraction of object proto-
cols to find failures. Our approach can be considered a spe-
cific form of MBT and search-based testing SBT. Like MBT,
we use an abstract status model to guide the generation
of valid, state-dependent fuzzing inputs. And like SBT, we
explore sequences that can lead to unexpected inter-protocol
interactions, though our “search” is guided by protocol-
aware coordination rather than heuristic optimization.

IoT Device Fuzzing. In addition to protocol fuzzers,
numerous efforts have focused on developing fuzzing tech-
niques specifically tailored for IoT devices. One line of
research targets the firmware of IoT devices [38], [39],
[40], where the firmware is emulated or instrumented to
enable dynamic fuzzing without requiring access to phys-
ical hardware. Another approach focuses on the mobile
companion applications that communicate with IoT devices.
For instance, IoTFuzzer [5] performs fuzzing by identifying
and reusing device-specific logic (e.g., encryption routines)
embedded within mobile apps to craft test messages. Build-
ing on this idea, DIANE [6] leverages static analysis and
dynamic fuzzing to extract mutation points from Android
apps, enabling field-level modifications before messages are
sent to devices. Wang et al. [41] further extend this idea by
using the companion app to infer device functionality and
then extrapolate potential vulnerabilities based on known
issues from similar devices. More recently, RIoTFuzzer [42]
proposes a hybrid approach that combines app analysis with
side-channel-guided fuzzing. By monitoring side-channel
information, it enhances the effectiveness of fuzzing even
when internal device states are opaque.

Main Differences. Unlike traditional protocol fuzzing
tools, CAMVEIL performs multi-protocol coordinated
fuzzing guided by a status-aware model, while existing
fuzzers typically test each protocol in isolation. Compared to
IoT device fuzzers such as DIANE, which rely on compan-
ion app modification, CAMVEIL directly mutates protocol-
level packet fields, enabling fine-grained and systematic ex-
ploration of device behavior. Moreover, CAMVEIL integrates
both logic vulnerability monitors and crash-based detectors,
allowing it to uncover a broader spectrum of issues, includ-
ing both semantic inconsistency bugs and timeout bugs, that
are often missed by prior tools.

9. Conclusion

In this paper, we present a tool called CAMVEIL to
uncover vulnerabilities in security cameras through multi-
protocol coordinated fuzzing. By constructing a camera
status model, CAMVEIL identifies key resources within a
security camera and maps the dependencies among them.
Utilizing the mode, CAMVEIL generates inter-related pack-
ets from multiple packets for camera testing. Additionally,
to detect non-crash vulnerabilities, CAMVEIL includes a
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semantic oracle to check for response timeouts or inconsis-
tencies from standard clients. We have successfully adapted
CAMVEIL for 9 industrial cameras from Hikvision, Honey-
well, TP-Link, FOSCAM, EZVIZ, and Santachi, detecting
22 critical vulnerabilities in these devices. In future ‘work,
we aim to develop additional monitors to detect a broader
range of vulnerabilities in security cameras under black-box
conditions. We also plan to expand our testing to include
more cameras from different vendors.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents Camveil, a new fuzzer for security
cameras. The core insight is that vulnerabilities can be trig-
gered by the interplay of different protocols such as HTTP,
RTSP, and ONVIF, an issue that single-protocol fuzzers may
not find. To find these cross-protocol bugs, the authors de-
signed a Camera Status Model to capture key runtime states
and guide the generation of test sequences. The framework
also includes a dedicated Logic Vulnerability Monitor that
detects not only crashes but also domain-specific logical
flaws, such as a frozen video stream. The authors evaluated
Camveil on nine commercial IP cameras and discovered 22
previously unknown vulnerabilities.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Independent Confirmation of Important Results with

Limited Prior Research
• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

The paper was accepted due to its strong central idea,
novel methodology, and impressive, practical results. It ad-
dresses an important and overlooked real-world problem.
The discovery of 22 new bugs in nine commercial cameras
from six different companies provides compelling evidence
of the technique’s effectiveness. A particular strength high-
lighted by reviewers is the Logic Vulnerability Monitor,
which provides a tangible way to find tricky but serious
logic bugs like video freezes. The paper is well-written,
and the case studies effectively demonstrate the proposed
technique’s ability to detect vulnerabilities.

A.4. Noteworthy Concerns

Manual Effort and Scalability: Reviewers identify that
the approach requires a degree of manual effort, particularly
in building the initial packet corpus, labeling packets, and
verifying candidate vulnerabilities.
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