
Themis: Finding Imbalance Failures in Distributed File
Systems via a Load Variance Model

Yuanliang Chen
KLISS, BNRist, School of Software,

Tsinghua University
China

Fuchen Ma∗
KLISS, BNRist, School of Software,

Tsinghua University
China

Yuanhang Zhou
KLISS, BNRist, School of Software,

Tsinghua University
China

Zhen Yan
KLISS, BNRist, School of Software,

Tsinghua University
China

Qing Liao
Harbin Institute of Technology,

Harbin, Heilongjiang
China

Yu Jiang∗
KLISS, BNRist, School of Software,

Tsinghua University
China

Abstract
A distributed file system (DFS) is a file system that spans
across multiple file servers or multiple locations. The load
balancing mechanism in a DFS is crucial, as it optimizes re-
source utilization across all nodes and improves response
times. However, incorrect load scheduling or implementation
errors in load balancing algorithms can lead to system imbal-
ance, hang-ups, and even crashes. Such imbalance failures
may be critical and pose a significant threat to the availability
and security of distributed file systems.
This paper presents a detailed study of real-world im-

balance failures in four widely used DFSes, exploring their
symptoms and triggering conditions. We found that test
cases that incorporate both client requests and system con-
figuration inputs are crucial for exposing these imbalances.
However, generating such high-quality test cases is challeng-
ing due to the extensive combinations of these two input
spaces. Guided by our study, we designed a testing frame-
work named Themis. To efficiently prune the search space,
Themis first models both the request and configuration in-
puts and transforms them into operation sequences. It then
employs load variance-guided fuzzing to thoroughly explore
the operation sequence and constantly generate test cases
that make nodes loaded as differently as possible. Finally,
Themis introduces a load detector to monitor the resource
∗Fuchen Ma and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696082

usage of each distributed node and precisely identify any
imbalances. Themis has detected 10 new imbalance failures
in four real-world DFSes, which have been addressed by the
respective maintainers.

CCS Concepts: • Security and privacy → Database and
storage security.

Keywords: Testing, Distributed File System, Load Balance
ACM Reference Format:
Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing
Liao, and Yu Jiang. 2025. Themis: Finding Imbalance Failures in
Distributed File Systems via a Load Variance Model. In Twentieth
European Conference on Computer Systems (EuroSys ’25), March 30–
April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3689031.3696082

1 Introduction
Distributed file systems (DFSes) have become ubiquitous in
modern computing environments, driven by the need for
scalable storage solutions [27, 42]. As organizations increas-
ingly rely on DFSes to manage vast data volumes across
interconnected nodes, the importance of efficient load bal-
ancingmechanisms has been emphasized [28, 29]. Evenly dis-
tributing data and processing loads is crucial for optimizing
resource utilization and ensuring high availability, scalabil-
ity, and reliability. Load balancing mechanisms dynamically
allocate and redistribute tasks to prevent any single node
from becoming a bottleneck, improving system performance,
scalability, and reliability.

Load balancing mechanisms are inherently complex, with
intricate architectures that manage data across multiple dy-
namically changing nodes. Consequently, it is difficult to
avoid implementation errors in these mechanisms. Given
the critical role these mechanisms play in DFSes [13], errors
causing imbalanced load distribution or ‘hot spots’ can lead
to severe consequences [9], including degraded performance
and potential service unavailability, thereby impacting the
reliability, availability, and security of DFSes. For instance,

https://doi.org/10.1145/3689031.3696082
https://doi.org/10.1145/3689031.3696082

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

in 2018, GitHub faced a network partition outage lasting
over 24 hours, caused by improper load distribution and
subsequent system overload, which affected millions of de-
velopers worldwide. Similarly, due to load balancing errors,
Virgin Blue [36] experienced an 11-day outage, while Mi-
crosoft Azure Storage Service was interrupted [25], causing
severe financial losses. Such failures, caused by errors in load
balancing mechanisms that result in disproportionate load
distribution, leading to hot spots, hang-ups, or even crashes,
are what we refer to as Imbalance Failures.
We first conduct a comprehensive study on imbalance

failures based on 53 real-world imbalance failures from four
widely used DFSes, including HDFS [55], CephFS [59], Glus-
terFS [20], and LeoFS [41]. For each failure case, we manually
analyzed their reports and the corresponding fixes to thor-
oughly understand their symptom severity and triggering
conditions. Our study revealed two key insights: 1○Most im-
balance failures (82%) can lead to significant issues that affect
all or a majority of distributed nodes; 2○ While only a few
imbalance failures are triggered by straightforward scenar-
ios, i.e., either through client requests (e.g., file write/read) or
system configuration (e.g., volume expansion, node scaling)
alone, most (83%) require a combination of both request and
configuration inputs to trigger.
Researchers have proposed various technologies for de-

tecting failures in DFSes. Workload generation tools like
SmallFile [2] and Filebench [18] excel at generating dis-
tributed workloads for DFSes testing but primarily focus
on file-related operations, neglecting the impact of system
configuration changes on load balancing. Traditional file sys-
tem testing tools such as Janus [62] and Hydra [38] explore
file operation and file image inputs alternately, successfully
identifying numerous implementation errors in file systems.
Distributed system testing tools such as CrashFuzz [19] and
Mallory [45] primarily focus on common issues such as error
handling or logic bugs, which typically involve exploring
only the fault input space. However, most imbalance fail-
ures require coordinated interactions between configuration
and request inputs to be triggered, a scenario existing tools
struggle with due to their limited exploration of the potential
execution dependencies between these input spaces. Addi-
tionally, all existing testing tools lack a precise detector for
imbalance failure detection in DFSes.

To effectively detect imbalance failures in distributed sys-
tems, there are two main challenges: (1) The first challenge
is to develop a precise detector that can identify whether
loads inDFSes are imbalanced. Load distribution varies across
different DFSes and changes dynamically. Even though fail-
ures occur, it is difficult to detect them without a precise
imbalance detector. (2) The second challenge lies in gen-
erating high-quality test cases for efficiently triggering the
imbalance detector. Some imbalance failures tend to be hid-
den deep within the system, requiring specific execution
dependencies, i.e., distributed nodes executing a series of

varied operations involving both client requests and system
configurations, to activate them. The vast number of possi-
ble combinations between the two types of inputs makes it
difficult to effectively explore the input spaces.
To tackle these challenges, we introduce Themis, a test-

ing framework designed to automatically detect imbalance
failures in DFSes. Themis first designs a general test case
specification that models both client requests and system
configuration inputs, converting them into an operation se-
quence. In this way, Themis simplifies the complexity of han-
dling two separate input spaces by reducing them to a single
operation sequence, which is well-suited for exploration us-
ing fuzzing techniques [44, 68]. To effectively trigger deep
imbalance failures, Themis employs load variance-guided
fuzzing, inspired by our study, which found that the ulti-
mate imbalanced state results from many cumulative small
storage differences across distributed nodes. Themis contin-
uously generates numerous test cases designed to vary the
distributed nodes’ load as much as possible. Finally, to pre-
cisely identify imbalance failures, we propose an imbalance
detector that monitors the load states of distributed nodes.

We implemented Themis and evaluated it on four widely
used DFSes: HDFS, CephFS, GlusterFS, and LeoFS. Compared
with other state-of-the-art testing approaches, Themis ex-
celled in exposing more imbalance failures and achieved 10%
to 21% higher code coverage. Additionally, Themis identified
10 new imbalance failures in total, with 4 in GlusterFS, 3 in
LeoFS, 1 in CephFS, and 2 in HDFS.

In summary, we make three key contributions:
• We conducted a detailed analysis of 53 real-world imbal-
ance failures in widely used DFSes and determined their
symptom severity and triggering conditions.

• We designed a testing framework that synthesizes high-
quality test cases incorporating both request and config-
uration inputs, effectively detecting imbalance failures
through a load variance model.

• We implemented and evaluated Themis on four widely
used DFSes. We will open-source Themis1 for practical
usage. Currently, it has detected 10 imbalance failures.

2 Background
2.1 Load Balancing Mechanism in DFS
In a DFS, nodes or volumes can be removed, replaced, or
added, and files can be dynamically created, deleted, or ap-
pended. All of these operations affect the load distribution
within the DFS [13, 42, 56]. The load balancing mechanism
ensures that data and processing tasks are evenly distributed
across nodes, preventing overburdening and optimizing effi-
ciency. Figure 1 illustrates a typical load balancing mecha-
nism, which includes three main kinds of balancers: network,
computation, and storage balancers.

1Themis: https://anonymous.4open.science/r/Themis-97C4/

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Load Balancing Mechanisms in DFS

𝐶𝑙𝑖𝑒𝑛𝑡!

𝐶𝑙𝑖𝑒𝑛𝑡"

𝐶𝑙𝑖𝑒𝑛𝑡#

𝐶𝑙𝑖𝑒𝑛𝑡$

…

N
et
w
or
k
&
C
om

pu
ta
tio
n
B
al
an
ce
r

𝑆𝑡𝑜𝑟𝑎𝑔𝑒!

𝑆𝑡𝑜𝑟𝑎𝑔𝑒"

𝑆𝑡𝑜𝑟𝑎𝑔𝑒#

𝑆𝑡𝑜𝑟𝑎𝑔𝑒%

St
or
ag
e
B
al
an
ce
r

Load
Calculator

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

Data change

Volume change

Node change

𝑡𝑟𝑖𝑔𝑔𝑒𝑟

Threshold
Violate?

𝑌𝑒𝑠Load
Collection

𝑌𝑒𝑠Load
Migration?

Migration
Candidates
Selection

Finish
Dynamic
File

Migration

𝑁𝑜

𝑁𝑜

𝑀𝑁!

𝑀𝑁"

𝑀𝑁#

𝑀𝑁&

…

tasks 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ

Figure 1. The typical load balancing mechanism in the DFS.
𝑀𝑁𝑖 presents the metadata management nodes and 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑗
means the storage nodes in the system.

The influx of intensive client requests, encompassing ac-
tions like file creation and data searches, etc., can occur
rapidly in a DFS. To enhance resource utilization and alle-
viate performance bottlenecks, various load balancing al-
gorithms, including hash partitioning [61], least connec-
tions [1], and weighted distribution [54], are employed to
intelligently distribute incoming requests, computation tasks
and data storage for nodes in the DFS. For example, consider
the storage load balancing process, as shown in Figure 1. In a
healthy DFS, storage nodes are primarily responsible for stor-
ing file data. The storage load balancing mechanisms [26, 60]
are activated in response to various events, such as data
changes due to file operations, volume adjustments from ex-
pansion or reduction commands, or changes in node dynam-
ics, including entries and exits. In practical load balancing
implementation, the load distribution among nodes is typi-
cally relatively balanced, not absolutely equal. To this end, a
Load Calculator is employed to determine if the DFS is im-
balanced by checking whether the current load distribution
exceeds a predefined threshold (e.g., the default threshold
in the HDFS Balancer [24] is set at 10%). If the threshold is
exceeded, the Load Collector recalculates an optimal storage
distribution and initiates data migration to achieve a bal-
anced state. Note that since real world DFSes already store a
large amount of data, the frequency of triggering a 10% load
imbalance is usually quite low, and the overhead caused by
data migration is generally minimal. Thus, the load balanc-
ing mechanism in DFSes is influenced by two primary types
of inputs: Client Requests and System Configurations.

2.2 Definition of Imbalance Failures
System Model: Throughout this paper, we use the follow-
ing system model. First, we formally define a DFS as 𝜙 =

{𝑆,𝑀, 𝐿}. Specifically, 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} represents the set
of storage nodes. 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑙 } denotes the set of
management nodes. 𝐿 =

∑(𝐿𝑠, 𝐿𝑛, 𝐿𝑐) represents the total
load within the DFS. Here, 𝐿𝑠 =

∑𝑛
𝑖=1 𝑓 𝑑𝑖 indicates the total

storage load, where 𝑓 𝑑𝑖 is the file data stored on node 𝑠𝑖 .

𝐿𝑛 =
∑𝑙

𝑖=1 𝑟𝑝𝑠𝑖 represents the total network load, where 𝑟𝑝𝑠𝑖
represents the number of requests received per unit time by
node 𝑚𝑖 . 𝐿𝑐 =

∑𝑙
𝑖=1 𝑐𝑝𝑢𝑖 represents the total computation

load, where 𝑐𝑝𝑢𝑖 is the CPU resource usage of node𝑚𝑖 .
We assume that all nodes work normally and that the

hardware performance between them is very similar, almost
indistinguishable (i.e., the difference between nodes’ disk
read and write capacity, CPU performance, network band-
width, and latency is small and can be negligible). Formally,
we define the Load Balance State (𝐿𝐵𝑆) in a DFS as:
𝐿𝐵𝑆 :=

𝑀𝐴𝑋𝑎=1...𝑙 {𝑟𝑝𝑠𝑎 }
1
𝑙

∑𝑙
𝑎=1 {𝑟𝑝𝑠𝑎 }

≤ 𝑡 &
𝑀𝐴𝑋𝑎=1...𝑙 {𝑐𝑝𝑢𝑏 }

1
𝑙

∑𝑙
𝑏=1 {𝑐𝑝𝑢𝑏 }

≤ 𝑡 &
𝑀𝐴𝑋𝑐=1...𝑛 { 𝑓 𝑑𝑐 }

1
𝑛

∑𝑛
𝑐=1 { 𝑓 𝑑𝑐 }

≤ 𝑡

All types of load 𝐿 =
∑(𝐿𝑠, 𝐿𝑛, 𝐿𝑐) in a DFS need to be dis-

tributed evenly. This means that any type of load variance
between any two nodes should not exceed a threshold value
of 𝑡 . Otherwise, the DFS is considered to be in a Load Im-
balanced State. In HDFS Balancer [24], the default threshold
value 𝑡 is 10%. In GlusterFS Balancer [3], the default threshold
value 𝑡 is 20%.

We define imbalance failures as errors in the load bal-
ancing mechanism of DFSes that can lead 𝜙 to enter the
imbalanced state for an extended period and cannot auto-
matically recover to the 𝐿𝐵𝑆 state. To effectively detect im-
balance failures, the main idea is to construct a large number
of test cases that bring the DFS into the imbalanced state as
much as possible, triggering and exercising the load balanc-
ing mechanism more frequently. For a DFS under test, after
conducting an imbalance test that triggers the load balancing
mechanism and executes corresponding rebalancing code,
the system should return to its normal 𝐿𝐵𝑆 state and provide
functional services as usual. Otherwise, the DFS remains in
the imbalanced state, indicating an imbalance failure.

3 Motivation Study
To better understand the characteristics of imbalance failures
in practical scenarios and guide our detection strategy, we
selected four widely used DFSes as our study targets: HDFS,
CephFS, GlusterFS, and LeoFS. We identified potential imbal-
ance failures by searching the issue trackers of these systems
for reports containing the keyword ’balance’. After manu-
ally reviewing these reports to exclude issues not related to
the load balancing mechanism in DFSes, we identified 53
imbalance failure cases, as presented in Table 1.

Table 1. Number of imbalance failures we analyzed.

HDFS CephFS GlusterFS LeoFS Total
18 16 12 7 53

3.1 Symptoms of Imbalance Failures
We first examined the consequences and symptoms of each
imbalance failure to aid in designing a precise anomaly de-
tector for automatic identification.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

Finding 1: imbalance severity. Most (82%) imbalance fail-
ures lead to serious consequences that affect all or a majority
of distributed nodes instead of only a few of them.
We found that 20 out of 53 (38%) imbalance failures lead

to performance degradation, significantly slowing down the
entire system (e.g., GlusterFS bug #3356 [34]). Additionally,
9 out of 53 (17%) bugs cause partial system outages, mak-
ing some but not all services unavailable (e.g., HDFS bug
#13279 [33]). 7 out of 53 (13%) bugs result in data loss (e.g.,
LeoFS bug #1115 [48]), while a further 7 out of 53 (13%) bugs
can lead to the complete failure of the entire cluster, severely
impacting the system’s availability and security (e.g., CephFS
bug #64333 [10] caused the entire Ceph cluster to crash). The
remaining 10 out of 53 (18%) imbalance failures cause either
partial request suspensions or single-node performance bot-
tlenecks, affecting only a limited number of nodes and users
(e.g., CephFS bug #65806 [63]). Thus, imbalance failures in
DFSes are severe and deserve greater attention.
Finding 2: imbalance root cause. Most (72%) imbalance
failures are caused by implementation errors in the data mi-
gration process of load balancing mechanisms.
We then conducted a root cause analysis for each imbal-

ance failure by examining the patches used to fix them. We
found that 15% of imbalance failures are triggered by im-
plementation errors in the load calculation processing. For
example, HDFS bug #13279 [33] mistakenly includes the load
of offline nodes in its calculations, resulting in an imbalanced
load distribution plan. Additionally, 13% of imbalance failures
result from code mistakes in the load state collection process
of DFSes: for instance, in CephFS bug #64611 [57], different
daemons return inconsistent status codes, leading to errors
during load state collection and consequently causing system
load imbalance. The majority of imbalance failures (72%) are
caused by implementation errors in the data migration logic:
for instance, GlusterFS bug #3513 [7], where improper error
handling during the data migration caused load imbalance,
eventually leading to data loss.
Finding 3: internal symptoms. All 53 imbalance failures
lead to significant disparities in the usage of computing re-
sources, such as network traffic, CPU, and disk space.
Although the symptoms of these imbalance failures are

subtle, through further analysis of each failure’s internal
states during the imbalance occurrence, we find that before
these imbalance failures lead to serious consequences, there
are significant variances in resource usage among distributed
nodes. The load disparity between nodes is at least 30%, and
in some cases, it exceeds 100%. We discovered that 64% of
imbalance failures result in significant disparities in disk
usage across storage nodes, 21% cause considerable varia-
tions in CPU usage, and 15% lead to substantial differences
in network traffic. This finding suggests that monitoring the
internal states of the DFS under test, e.g., CPU, storage, net-
work, etc., could be an effective way to identify imbalance

failures before they cause serious consequences, e.g., data
loss, crashes, etc.

3.2 Triggering of Imbalance Failures
We then analyzed the production steps of each imbalance
failure to understand how these failures are triggered, which
assisted us in designing an automatic triggering strategy.
Finding 4: triggering workload. Most (83%) imbalance
failures require both client requests and configuration changes.

We found that a small percentage (13%) of imbalance fail-
ures are triggered solely by one type of input, such as client
requests for file creation, deletion, and rewriting. A few im-
balance failures (4%) can be triggered solely by system con-
figuration changes, like volume expansion and node scaling.
However, the majority (83%) of imbalance failures require
specific workloads from both request and configuration in-
puts to be triggered.
Finding 5: triggering steps. All 53 imbalance failures can
be triggered with no more than 10 distributed nodes repeatedly
executing short sequences of up to 8 operations, with gradual
variation in the operation sequences as they are repeated.

More than half (66%) of imbalance failures can be triggered
in no more than five steps. For example, bug #63014 [67] in
CephFS, which is caused by increased latency across mul-
tiple mclock queues, resulting in imbalanced traffic, can
be exposed through a critical three-step process: restarting
the storage node to clear its storage device, writing large
amounts of file data to exercise the data indexing, and then
monitoring the load distribution of nodes to reveal the bug.
Another 34% of imbalance failures are hidden in deeper logic
and require sequences of 6 to 8 operations to trigger. For
instance, bug #1245142 [47] in GlusterFS, which incorrectly
returns a balance status, requires sequences of at least 8 op-
erations: ‘create, volume_add, mount, mkdir, touch, remove,
node_kill, status’ to be triggered successfully.
Finding 6: imbalance accumulation. The load imbalanced
status in DFS is not achieved all one stroke; rather, it accumu-
lates gradually through minor imbalances.

10 20 30 40 50 60
80

100

120

140

160

Time [Minute]

Lo
ad

St
at
us

𝑛𝑜𝑑𝑒𝑎

𝑛𝑜𝑑𝑒𝑏

𝑛𝑜𝑑𝑒𝑐

𝑛𝑜𝑑𝑒𝑑

0

15%

30%
M
ax

Va
ria

nc
e

Figure 2. Storage status of each distributed storage node
during the reproduction of Bug GlusterFS-3356.

Additionally, we recorded and analyzed load changes dur-
ing the imbalance failure triggering process. We found that
the ultimate load imbalanced state in a DFS is usually caused
by continuously accumulating many intermediate states of
slight load variances. For example, in bug #3356 [34] in Glus-
terFS, Figure 2 shows how disk resource usage across nodes

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

changes during bug reproduction. The line chart indicates
the maximum storage variance among the nodes. Through-
out the bug reproduction, the disk load variance between
𝑛𝑜𝑑𝑒𝑎 and 𝑛𝑜𝑑𝑒𝑐 gradually increases until 𝑛𝑜𝑑𝑒𝑐 reaches full
capacity and becomes a ‘hotspot’, eventually triggering the
bug. This observation suggests that we can use runtime load
variance as feedback to guide optimized test case generation.

3.3 A Motivation Example

Load
Changes

check

sortByLoad

Data
Migration

weightTree

Connection
checker

HeartBeat

NameNode

DataNode

Load
Balancer

Data Storage

data transferXrequests & configs

NetworkTopology.java

clusterMap

calculate

update

Alive
Data Nodes

imbalanced?

1… N

update not in time

volume_add
mkdir create
volume_remove
data_remove
node_remove
new_data ops

Figure 3. The HDFS-13279 imbalance failure causes stor-
age hotspots and blocks new data from being stored in the
DataNodes, resulting in service unavailability for HDFS.

1 private void sortByLoad(T[] nodes, ...) {

2 /** Sort weights for the nodes array */

3 TreeMap<...> weightedTree = new TreeMap<>();

4 ...

5 // Sort nodes which have the same weight.

6 for (List<T> l : weightedTree.values()) {

7 Collections.shuffle(l);

8 for (T n : l) nodes[idx++] = n;

9 }

10 + Preconditions.checkState(idx != activeLen,

11 + "Sorted the wrong number of nodes!");

12 }

Figure 4. The core code snippet of HDFS-13279. Lines 10-11
are the fixed code.

Imbalance failures can lead to severe consequences in DF-
Ses. One such example is an imbalance failure in HDFS [33],
where incorrect data distribution calculation led to service
unavailability. Figure 3 illustrates the seven key steps to trig-
ger this bug, and Figure 4 presents the core code snippet of
the bug. In an HDFS cluster, the NameNode manages meta-
data, while the DataNodes handle the actual storage of data.
After mounting a new volume and receiving data storage
requests, the Load Balancer first calculates load changes and
updates the storage distribution accordingly. HDFS employs
a ‘clusterMap’ to record connected DataNodes and a ‘weight-
Tree’ to sort storage load. If the tree becomes imbalanced
due to a volume change, a data migration process is trig-
gered. However, if a DataNode happens to go offline, this
imbalance failure is triggered. The disconnected DataNode’s
status isn’t promptly updated in the ‘clusterMap’, resulting
in an erroneous perception of the DataNode as being still

active. Consequently, the migrated data calculation is incor-
rect, creating ‘hotspots’ (where the data of some nodes is
not migrated out, but still retained) and blocking new data
stored to these hotspot DataNodes. This bug leads to service
hang-ups, affecting HDFS availability. It is fixed by adding a
timely state checker (lines 10-11). If node[idx] is not active,
then the code throws an exception and recalculates the data
migration to be performed.

3.4 Limitation of Existing Methods
Currently, several state-of-the-art testing tools for complex
systems, such as distributed systems and file systems, incor-
porate test case generation using both client requests and
configuration changes. However, these tools overlook the po-
tential execution dependencies between the two input spaces,
which hampers their effectiveness in triggering imbalance
failures in DFSes. Existing methods can be categorized into
three main types:

fixed

2.feedback
&

guide

1.explore

DFS Under Test

explore

Configs

1.generate
&

load

2.feedback
&

guide

2.1explore

3. alternate concurrent
generate

no
feedback

x

Inputs Modelling

feedback
& guide

operation sequence

Method 1:
Fix one-dimensional

Method 2:
Alternate generation

Requests Requests Configs ConfigsRequests

Method 3:
Concurrent generation

Themis:
Operation Sequence

Requests Configs

Figure 5. Methods to explore two types of input spaces
are discussed. Detailed experimental comparisons between
these methods are provided in Section 6.2.

Method 1: Fix one input. One straightforward approach
is to fix one type of input space and explore the other. This
method is commonly used bymost testing tools [2, 18, 19, 45].
Figure 5 illustrates the testing process. Fault injection tools,
such as CrashFuzz [19] and Mallory [45], utilize runtime
feedback fuzzing to guide the generation of cluster config-
urations (e.g., killing node, adding node) while fixing the
client request workloads to test the fault-tolerant mecha-
nisms of distributed systems. Workload generation tools
like SmallFile [2] and Filebench [18] excel in generating
file-related operation workloads with fixed configuration
settings. However, this approach fails to explore the com-
binations of request and configuration inputs, leading to
ineffective detection of imbalance failures in DFSes.

Method 2: Alternate generation. Similar to file system
testing tools like Janus [62], Hydra [38], and Falcon [64],
the alternate generation strategy involves three key steps:
(1) it begins by randomly generating a system configura-
tion, which the DFS under test loads and executes; (2) it
employs a coverage-guided fuzzing process to explore the
client request input space; (3) once the exploration of the
request input space is complete (indicated by test coverage
converging, with no new coverage growth for an extended
period), it generates a new random configuration and moves
to the next iteration (repeating steps 1 and 2). Although this
method does explore some combinations of the two input

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

spaces, it explores each input separately. As a result, it over-
looks some potential execution dependencies where the two
types of inputs are frequently combined and executed over
a short duration, e.g., the triggering steps ‘data_new, vol-
ume_remove, data_remove, node_remove’ in the motivation
example, which limits its ability to detect deep bugs.
Method 3: Concurrent generation. Another potential

solution is to concurrently generate two types of inputs. As
depicted in Figure 5, it simultaneously conducts stress test-
ing with a high volume of client request workloads while
generating numerous system configuration test inputs in
parallel. However, this method struggles to effectively utilize
runtime feedback for optimizing the input spaces. Since the
request and configuration inputs are generated concurrently
and independently, it becomes challenging to identify which
input type changes trigger the current runtime status. Con-
sequently, this method relies on a random search across the
expansive input spaces, making it inefficient.

TheKey insight of Themis:Unlike existing testing tools,
we represent both changes to the system configuration and
user requests as sequences of operations instead of consider-
ing them as two independent input spaces. Building on our
Finding 6, which shows that load imbalances in DFSes result
from the accumulation of minor variances, Themis employs
load variance-guided fuzzing to effectively explore the exe-
cution space of operation sequences and detect imbalance
failures hidden in DFSes.

4 Themis Design
Design goal: A practical imbalance failure detection frame-
work should have the following properties.
• General: Themis is designed to find imbalance failures
for most practical distributed file systems, from Clustered
File Systems, e.g., HDFS [55], to Network File Systems
(NFS), e.g., LeoFS [41], and from Distributed Block Storage,
e.g., GlusterFS [20], to Distributed Object Storage, e.g.,
CephFS [59]. The tool can be deployed to different kinds
of DFSes with minor adjustments.

• Non-intrusive: For most DFSes [31, 49, 52], neither can
Themis directly modify their source code nor alter their
software stacks. Therefore, Themis can only rely on their
runtime performance status (e.g., CPU/network usage,
storage distribution, etc.) for detection.

• Efficient: Themis is able to frequently exercise the load
balancing logic and effectively detect imbalance failures
in real-world DFSes within 24 hours.

• Accurate: Themis is designed to have satisfactory precision
and recall to avoid reporting false positives.

4.1 Themis Workflow
Figure 6 illustrates the workflow of Themis, consisting of
two key components: a Test Case Generator for synthesiz-
ing high-quality test cases and an Imbalance Detector for

identifying imbalance failures. (1) Themis first constructs
a test case input model that describes both client requests
and system configurations. (2) Based on the model, Themis
converts both request and configuration inputs into an oper-
ation sequence opSeq. (3) Test Case Generator creates initial
test cases and stores them in the seeds pool [44], a collection
of test cases used to generate variations through mutation.
(4) Themis then generates new test cases by selecting and
mutating existing ones from the seeds pool. (5) The DFS un-
der test executes the test cases. (6) The Imbalance Detector
monitors and collects the runtime load data (e.g., CPU/IO
usage, storage distribution, etc.) from the DFS. (7) The load
variance between distributed nodes is calculated in real-time.
(8) The Load Variance Model is updated accordingly. Mean-
while, Imbalance Detector identifies the imbalanced states
and reports the imbalance failures once they are detected. (9)
Test cases contributing to new imbalance failures or larger
load variance are prioritized to the seeds pool for guiding
subsequent test case generation. Themis proceeds to the next
testing iteration (from step 4 to step 9, the load imbalance
gradually accumulates across iterations) until the imbalance
exceeds a predefined threshold. At this point, Themis identi-
fies that the DFS has entered a failure state, resets the DFS
to its initial state and restarts the testing process.

Client
Requests
System
Configs

Test Case Generator

DFS Under Test

Load Variance
ModelSeeds pool

…
Imbalance Detector

6. Monitor

8.1
update

Runtime Load Data

9.guide5. execute

1.construct

2. convert

8.2 check

opSeq’=[op1’ ,op2’,…,opn’]

4.select & mutate

Inputs Modeling

3.generate

Initial op Sequences

opSeq=[op1,op2,…, opn]2.convert

load variance

7. calculate

Imbalance Failure report
Imbalance State Analyzer

Figure 6. The workflow of Themis. It includes two main
components: (1) Test Case Generator for generating high-
quality test cases. (2) Imbalance Detector for identifying
imbalance failures.

4.2 Test Case Generator
Both client requests and system configuration impact the
load on DFS, triggering its load balancing mechanism. How-
ever, the search space for combinations of these two types of
inputs is vast. To effectively explore this space, Themis first
models all load-related client requests and system configura-
tions, transforming them into an operation sequence opSeq,
and then Themis employs a load variance-guided fuzzer to
thoroughly explore the sequence space and effectively detect
imbalance failures hidden in the deep logic.
Inputs Modeling: Themis uses a test case specification,

as shown in Figure 7, to model all load-related operations.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Figure 7. The test case specification of Themis that models
both request and configuration inputs in DFSes.

Specifically, each test case is an operation sequence that con-
tains at least one operation. Each operation consists of an
operator and at least one operand. Operators can be divided
into three main categories: file_op is designed to describe
the client requests inputs, e.g., file create, append, delete, etc.
node_op and volume_op are designed to model the system
configuration inputs, e.g., node add/delete and volume expan-
sion/reduction. Operation ‘add_MN nodea’ means adding
a metadata management node, nodea and ‘remove_storage
nodeb’ represents removing a storage node, nodeb. The num-
ber and contents of operands opd are determined by the
operator opt. For example, if the opt is create, then there
should be at least two operands, opd1 is the ‘filename’ and
opd2 is the size of the newly created file.

Initial𝑂𝑝𝑆𝑒𝑞 Generation: Before starting the testing phase,
Themis needs to create initial test cases to drive the testing
process. Themis first determines the maximum length,maxn,
of the operation sequence opSeq. Guided by our finding 5
that the imbalance failures require no more than 8 triggering
steps, we set maxn to 8. Then, Themis randomly generates
opSeq with lengths varying from 1 to maxn. For each opera-
tion in opSeq, the operator, opt, is generated randomly with
an equal probability of 1

𝑡
, where 𝑡 , the number of all distinct

load-related operations, is 17 in our model. The operand, opd,
is instantiated according to its category.
• Category FileName: Themis uses a file tree Treefiles to man-
age and record all file names and their storage topological
relationships within the DFS. When instantiating a file
name, Themis either selects an existing FileName using a
uniformly random distribution from this tree or creates a
new FileName and adds it to the tree.

• Category NodeId: Themis uses two lists, listMN , and listS , to
keep track of all management nodes and data storage nodes
in the DFS, respectively. When instantiating the ‘nodeId’,
a node is randomly selected from these lists according
to the specific opt. For instance, if opt is add_MN , the
nodeId is randomly chosen from listMN . Similarly, if opt is
add_storage, the nodeId is selected from listS .

• Category Size: This category is used to specify the size
of the data being manipulated. Themis keeps track of the
remaining storage capacity, freespace , of the DFS. To more
effectively test the load balancing logic, Themis creates
boundary scenarios of the data size. For example, when
instantiating a "create filename size" operation, the file size
is randomly assigned a value between 0 and freespace .

Node Load Variance Model: In most DFSes, the goal
of the load balancing mechanism is to achieve a balanced
load distribution among nodes as possible, rather than main-
taining constant uniformity. Consequently, transient and
minor load differences among nodes are considered normal
and acceptable. However, a core insight of Themis is that the
ultimate state of load imbalance in a DFS is caused by the con-
tinuous accumulation of many intermediate states of minor
load variances. Therefore, to efficiently reach the deep code
logic and trigger the imbalance failures efficiently, Themis
introduces the load variance model to guide the test case
generation and ensure the nodes in the system experience
as much load variation as possible.

𝑪𝒐𝒎𝒑𝒖𝒕𝒂𝒊𝒐𝒏	𝑳𝒐𝒂𝒅	𝑫𝒂𝒕𝒂
𝐶𝑜𝑟𝑒! : the average number of CPU Cores used by 𝑛𝑜𝑑𝑒! during test case execution
				𝐶𝑝𝑢": the usage rate of the ath CPU core

𝑵𝒆𝒕𝒘𝒐𝒓𝒌	𝑳𝒐𝒂𝒅	𝑫𝒂𝒕𝒂
𝑅𝑒𝑞𝑢𝑒𝑠𝑡! 	: the average number of requests handled by 𝑛𝑜𝑑𝑒! during test case execution
𝑅𝑒𝑎𝑑! 	: the network I/O read usage of 𝑛𝑜𝑑𝑒!
𝑊𝑟𝑖𝑡𝑒! 	: the network I/O write usage of 𝑛𝑜𝑑𝑒!

𝑺𝒕𝒐𝒓𝒂𝒈𝒆 𝑳𝒐𝒂𝒅 𝑫𝒂𝒕𝒂
𝑆𝑡𝑜𝑟𝑎𝑔𝑒! 	: the average size of data stored in 𝑛𝑜𝑑𝑒! during test case execution

𝑳𝒐𝒂𝒅	𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒!# = ∑ 𝐶𝑝𝑢"

$%&'!
"() 	− 	∑ 𝐶𝑝𝑢*

$%&'"
*() + 𝑅𝑒𝑞𝑢𝑒𝑠𝑡! − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡#

																								+ 𝑅𝑒𝑎𝑑! − 𝑅𝑒𝑎𝑑# + |𝑊𝑟𝑖𝑡𝑒! −𝑊𝑟𝑖𝑡𝑒#| + 𝑆𝑡𝑜𝑟𝑎𝑔𝑒! − 𝑆𝑡𝑜𝑟𝑎𝑔𝑒#

Figure 8. Definition of the Load Variance Model, which
includes four parts: Computation Load Data, Network Load
Data, Storage Load Data, and their Load Variance.

Figure 8 describes the load variance model of nodes in
DFSes. The node’s load data can be divided into three main
types. Computation load data indicates the core computa-
tion distribution of each management node, including Corei,
the number of CPU Cores used by nodei, and the utiliza-
tion of each CPU core Cpua. Network load data presents
the key real-time network IO usage information of each dis-
tributed node. Note that Requesti indicates the number of
requests handled by nodei; Readi means the network read
IO usage (i.e., the number of input operations) of nodei and
Writei presents the network write IO usage (i.e., the num-
ber of output operations) of nodei. The storage information
Storagei indicates the size of data stored in nodei . During the
execution of each test case, the load information for each
node is calculated. The load variance between two nodes is
quantified by the sum of their respective load differences.
Specifically, the computation load difference between nodei
and nodej is calculated as |∑corei

a=1 Cpua −
∑corej

b=1 Cpub |. The
difference in client requests processed by nodei and nodej is
given by |Requesti − Requestj |. The difference in read I/O us-
age between nodei and nodej is calculated as |Readi − Readj |,
and similarly, |Writei −Writej | quantifies the difference in
write I/O usage. The storage load difference between nodei
and nodej is measured as |Storagei − Storagej |. However, the
weights of three variance types may have varying impacts

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

on testing performance, and we will discuss it in detail in
Section 7.

Load variance-guided Fuzzing: Themis employs load vari-
ance guided fuzzing to explore the input space of test cases,
i.e., operation sequences. In each fuzzing iteration, Themis
first dequeues a sequence opSeq from the seed pool and
mutates it to opSeq′ by the 𝑂𝑝𝑆𝑒𝑞 Mutation strategy, as ex-
plained below. Then the operations in opSeq′ are sent to the
DFS to be executed, and the load states of distributed nodes
are updated and analyzed in real-time. Based on the load
variance model, variances among distributed nodes are cal-
culated. In the meanwhile, our imbalance detector analyzes
the variances to determine if it indicates an imbalanced state.
The detailed imbalance failure detection process will be in-
troduced in Section 4.3. If the variance becomes larger or
any new imbalance failures are found, then the new test case
opSeq′ will be regarded as an interesting seed and stored
in the seed pool to guide the next fuzzing iteration. In this
way, Themis constantly generates high-quality operation se-
quences as test cases, aiming to maximize the load imbalance
across distributed nodes.
𝑂𝑝𝑆𝑒𝑞 Mutation: Similar to the mutation process used by

the state-of-the-art tool AFL [21], Themis proposes three
types of mutation operations: (1) opt replace; (2) opt delete;
and (3) opt insert. For a given operation sequence opSeq,
Themis first randomly selects a set of positions 𝑃 = {𝑝𝑎, 𝑝𝑏, ...,
𝑝𝑘 }within opSeq, where k ≤ length(opSeq). For each selected
position 𝑝𝑖 , Themis performs the corresponding mutation
operation based on the type specified. (1) Replace Mutation,
Themis replaces the 𝑝𝑖 th opt in 𝑜𝑝𝑡𝑠 with a new randomly
created 𝑜𝑝𝑡 ′. (2) Delete Mutation, Themis removes the 𝑝𝑖 th
opt from the sequence. (3) Insert Mutation: Themis gener-
ates a new opt based on our model and inserts it at the 𝑝𝑖 th
position. Subsequent to the opt mutations, the operands for
the new or modified operations are instantiated in the same
manner as described in Initial opSeq Generation. Note that
for each mutated 𝑂𝑝𝑆𝑒𝑞, we will scan all its opts and check
whether an opt references a file or node that no longer ex-
ists. If such a reference is found, the opt will be updated by
replacing its FileName or NodeId with a random one from
Treefiles , listMN , or listS .

4.3 Imbalance Detector
Inspired by finding 3, the Imbalance Detector is designed
to monitor the runtime load states of nodes in the DFS and
identify any unreasonable load imbalances.
Based on the imbalance definition in Section 2.2, we pro-

pose the Imbalance Detector, as shown in Figure 9. After
executing the test cases generated by Themis, the States
Monitor collects runtime load data and calculates the Load
Variance Model (LVMij) for each pair of nodes, nodei and
nodej , within the DFS. Three anomaly detectors are then
employed to separately assess computation load, network
load, and storage load variances. These detectors determine

DFS Under Test

States
Monitor

Computation
Load Oracle

Network
Load Oracle

Calculate
Collect runtime

load data

Load
Imbalanced

State 𝑳𝑰𝑺

Remains 𝑳𝑰𝑺

𝑠! 𝑠" 𝑠# 𝑠$

…

𝑚! 𝑚"

𝑚#
𝑚%

𝑚&

… 𝐿𝑉𝑀!"

𝐿𝑉𝑀#$

𝐿𝑉𝑀#%

Load Variance

…

Storage Load
Oracle

testcasestestcasestestcases
Execute

Check

Violate
𝑳𝑩𝑺

Imbalance Failure

Rebalance
Mechanism

Explicitly
call

Imbalance Detector

Double Check

Test Cases

Figure 9. Imbalance Detector in Themis for monitoring the
load state and identifying imbalance failures in real-time.

whether the DFS has entered a Load Imbalanced State by
verifying if the maximum load among the nodes exceeds
the average node load multiplied by the variance threshold,
𝑡 . If an imbalanced state is detected, a candidate imbalance
failure is identified. To confirm its validity and minimize
false positives, a double-check process is performed.
Double Check: In practice, different DFSes use various

load balancing mechanisms. For example, CephFS calculates
and balances loads in real time, whereas GlusterFS uses peri-
odic timing tasks for load balancing. Consequently, the time
required to complete test cases, activate the load balance
mechanism, and achieve a balanced load state differs across
DFSes. This variation makes it hard for Themis to precisely
determine when detectors should check the load state to
identify imbalances without producing false positives. The
appropriate checking time varies significantly depending on
the specific DFS implementation and factors in its distributed
runtime environment, such as latency, bandwidth, etc. For-
tunately, most DFSes provide rebalance APIs that enable
users to directly trigger and execute their load balance mech-
anisms. To filter out false positives, Themis incorporates
a double-checking process. Specifically, when a candidate
imbalance failure is identified, Themis explicitly calls the
rebalance API. Following this, Themis invokes the ‘rebal-
ance state’ API to confirm whether the rebalance operation
has been completed. Once the API returns ‘rebalance done’,
Themis immediately re-executes the test case and checks
the current load state. If the DFS still remains in imbalance
state, the candidate failure is confirmed as a true positive
imbalance failure.

In Themis, the variance threshold value 𝑡 is used to deter-
mine the extent of load difference between two nodes that
constitutes an imbalance. This threshold is crucial for the
accuracy of imbalance detection. Setting the value 𝑡 too low
may result in numerous false positives because, in practical
DFS implementations, the load distribution among nodes is
typically relatively balanced but not equal, and minor im-
balances are considered normal and acceptable. Conversely,

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

setting the value 𝑡 too high could compromise the effective-
ness of imbalance detection, as it may miss some potential
imbalance failures. How to find a optimal 𝑡 will be thoroughly
explored and discussed in detail in Section 6.4.

5 Implementation
We implemented Themis on four widely-used DFSes, using
their latest versions: HDFS v3.4, CephFS v18.0.0, GlusterFS
v12.0, and LeoFS v1.4.4. The reasons for choosing them are
listed below:

DFS Popularity:HadoopDistributed File System (HDFS) [55],
a linchpin in Apache Hadoop, is widely embraced by organi-
zations like Facebook [5] and Yahoo [6] for its scalability and
fault tolerance. GlusterFS [20], tailored for high-performance
computing, is lauded by major industry users such as Red
Hat [50] and Cisco [35]. CephFS [59], integral to the Ceph
storage platform, is selected by many entities like CERN [40]
and DigitalOcean [11]. LeoFS [41], prioritizing high avail-
ability, favored by enterprises like Hyperscalers [30].
DFS Diversity: These distributed systems come from dif-

ferent organizations with different implemented languages.
HDFS is developed by Apache Software Foundation in Java
language. GlusterFS is developed by Red Hat and imple-
mented in C++. LeoFS is developed by Rakuten in Erlang.
CephFS is developed by the Ceph community in C++ lan-
guage. Implementation and evaluation of these DFSes can
demonstrate that Themis is a cross-platform and language-
independent testing framework with high generality.

Target Systems

Bug Detector

Bug Analyzer

State Collector
Test Case Generator

Variance Calculator

Themis components

Hadoop GlusterFS

Op Sequence Mutator

Load Variance Model

OpSeq Seed pool

Interaction Adaptor

Operation Sender

Data Extractor

Figure 10. Core components of Themis implementation,
contain three key parts: Test Case Generator, Imbalance De-
tector, and Interaction Adaptor.

Figure 10 presents the components of Themis, which can
be divided into three main parts. The first part is the Test
Case Generator which is implemented for synthesizing high-
quality test cases that model both request and configuration
inputs, and diverge the load of DFS as much as possible. The
second part is the Imbalance Detector for monitoring the
load variance of distributed nodes and identifying load im-
balance failures. The third part is the Interaction Adaptor,
which is designed to interact with target systems, including
sending specific load-related operations (e.g., create/remove
files, expand/reduce volume, etc.) and collecting load data
of the DFS under test. The first and second parts are inde-
pendent of the DFS under test. Only the third part requires

minor modifications when adapting to a new DFS. The rest
of the section describes notable implementation details.

Adaption to New Distributed File Systems: The effort
of adapting Themis to other DFSes could be small. Mod-
ules in Themis are well-encapsulated and loosely coupled.
Hence, when adapting Themis to a new DFS under test, de-
velopers only need to implement two interfaces related to a
specific DFS. (1) The first interface is ‘operation.send()’, to
send operations to DFS for execution. Specifically, for file
operations, since most of the DFSes support the Filesystem
in Userspace (FUSE) [37] that allows users to access and in-
teract with distributed file systems seamlessly, enabling the
mounting of remote file systems as if they were local, all file
operations produced by Themis conform to Fuse’s interface
specifications, so this type of operations does not require
any adaptation costs. For the Nodes and Volume operations,
we need to implement an adaptor that converts the opera-
tions in Themis to commands in the target DFS (e.g., convert
operation ‘remove_volume gluster1’ in Themis to operation
‘gluster volume remove-brick Themis-Test gluster1:brick1 start’
in GlusterFS). (2) The second interface is ‘LoadMonitor()’,
which is responsible for monitoring key load data in each
distributed node. For instance, to gather detailed storage
information, e.g., used space, free space, etc., on the disks
mounted by the DFS, we use the system command ‘df | grep
Disk_MountedbyThemisTest’ to retrieve this data in real-time.
Imbalance Reproduce, Diagnose and De-duplicate:

When Themis detects an imbalance state, it automatically
sorts and records all operations performed by each node,
organizing them by timestamp in a reproduction log. This
step of operations logging is automatic. We then provide
this reproduction log, along with the comprehensive DFS
execution logs (LOG.LEVEL=ALL), to the developers. Using
these operation sequences, we attempt to replay the oper-
ations according to chronological order to reproduce the
imbalance-triggering process and manually analyze the root
cause. Once the imbalance is successfully reproduced and
its root cause identified, developers confirm the failure and
implement the necessary fixes. If two Imbalance Failures
share the same root cause, we consider them duplicates and
remove the one with the longer operation sequence. This
step of analyzing imbalance failures is manual. Thanks to
our testing environment setup, where imbalance detection is
conducted using virtual machines on a single computer, we
can effectively avoid the impact of other input factors such
as network delays and hardware faults on the test results.
Consequently, imbalance failures can be reliably reproduced
based on the reproduction log.

6 Evaluation
To evaluate the effectiveness of Themis, we compared it with
three state-of-the-art methods widely used in distributed
system testing: Fix one input space, Alternate generation,

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

Table 2. 10 new imbalance failures were detected by the tools within 24 hours. Themis found all 10 imbalance failures, including
4 in GlusterFS, 3 in LeoFS, 1 in CephFS, and 2 in HDFS.

Platform Failure Type The Root Cause Analysis Identifier
1 GlusterFS Imbalanced Storage load imbalance due to mistakenly removing plenty of file data in dht.rebalancer, causing serious data loss in GlustreFS. Bug#S24387
2 GlusterFS Imbalanced Storage Imbalanced storage distribution after mistakenly handling plenty of file operations with large size differences in gf.handler. Bug#S24389
3 GlusterFS Crash Some nodes in the network crash down after frequently executing load rebalance commands due to a null-pointer hashID. Bug#S25081
4 GlusterFS Imbalanced CPU Imbalanced computation load caused by wrong assignment in gf_self_healing after nodes change and surge in client requests. Bug#S25088
5 LeoFS Imbalanced Storage Storage distributes unevenly due to wrong rebalance_list read in leofs.cluster after constant file resizing and volume changing. Bug#S231116
6 LeoFS Imbalanced Storage Some nodes become ‘hotspots’ caused by incorrect data sync in leofs.migration after nodes enter and exit frequently. Bug#S231117
7 LeoFS Imbalanced Network Requests distrusted imbalance due to wrong rebalance measuring between two LeoGateways when two nodes happen to exit. Bug#S231137
8 CephFS Imbalanced Storage Imbalanced storage where some storage devices are full while others only occupy 65% caused by balancing IO hangs in replicas. Bug#63890
9 HDFS Imbalanced Storage Some disks become ‘hotspots’ due to Inode conflicts in balancing when executing many file operations within nodes scaling. Bug#20240111
10 HDFS Imbalanced Network NameNodes traffic jams due to blocks in newly generated files in checkpointSize when some storage replicas went offline. Bug#20240126

and Concurrent generation, on four widely used DFSes. We
ran each DFS in a cluster of 10 virtual nodes isolated by
Docker [46]. Each Docker container had a 2.25 GHz 6-core
CPU, 16 GB of RAM, and a 480 GB SATA SSD. They were con-
nected via a 10 Gbps network bandwidth. They ran Ubuntu
20.04.2 with Linux kernel version 4.4.0. All containers were
hosted on a physical machine, a 64-bit system with 128 CPU
cores (AMD EPYC 7742 64-Core Processor), and 512 GB main
memory. All the experiments were conducted multiple times
with the same environment setups, and the average values
are used in this paper. We designed experiments to address
the following research questions.
• RQ1: Is Themis effective in finding imbalance failures in
real-world DFSes?

• RQ2: Can Themis cover more code of DFSes compared
with state-of-the-art methods?

• RQ3: Does the load variance model effectively improve
testing performance?

• RQ4: How does the variance threshold 𝑡 influence the
accuracy and false positives of Themis?

6.1 Imbalance failures in real-world DFSes.
We applied Themis to all four DFSes under test for imbal-
ance failure detection evaluation. Distributed system testing
tools, e.g., CrashFuzz [19] explore system fault inputs with
fixed client request inputs. But they only support injecting
configuration faults of killing and adding nodes. To enable
a fair comparison, we modified Themis to align the strat-
egy with CrashFuzz, which we call Fixreq. Specifically, we
first generate a set of client requests as the fixed inputs.
Then, we replace Themis’ load variance-guided fuzzing with
CrashFuzz’s coverage-guided strategy to explore the system
configuration inputs. DFS testing tools, e.g., SmallFile [2],
generate plenty of file operations with fixed system con-
figuration, we ran it on the same DFSes, labeled as Fixconf .
File system fuzzers, e.g., Janus [62] alternately explore file
operation inputs and file image inputs. To facilitate compar-
ison, we adapted Janus’s alternate exploration method in
Themis but replaced its file image inputs with our system
configuration inputs, denoted as Alternate. Additionally, we

also concurrently generate client requests and system con-
figurations, which we call Concurrent. For comparison, we
ran all the tools on the same DFSes using the same exper-
imental setup. Considering that all existing methods lack
an effective detector for imbalance failures, we enhanced
them with our imbalance detectors. Each experiment was
conducted for 24 hours. In total, Themis produced 60,000+
operations, successfully detected 16 imbalance issues, with
10 being identified as distinct imbalance failures. Detailed in-
formation on these previously unknown imbalance failures
is presented in Table 2.
As shown in Table 2, the majority (6/10) of imbalance

failures caused uneven data distribution across distributed
storage nodes, creating ‘hotspots’ that degraded overall DFS
performance and even blocked the provision of certain func-
tionalities. Two imbalance failures (#7 and #10) led to uneven
handling of network requests by the metadata management
nodes, causing numerous client requests to be suspended.
One imbalance failure (#4) resulted in an unbalanced CPU
usage load on distributed nodes, leaving some nodes over-
loaded all the time, unable to provide function properly, and
they were unable to recover themselves. One imbalance fail-
ure (#3) caused storage nodes to crash, and the distributed
nodes could not be recovered automatically. Some of the
imbalance failures can lead to serious consequences. Take
failures #3, #6, and #10 for example, attackers may deliber-
ately crash or hang specific target nodes, disrupting their
ability to handle requests or impeding the data synchroniza-
tion process through the execution of specific load-related
operations. This malicious activity has the potential to di-
rectly result in the loss of critical data, cause the outage of
essential functions in cloud services, and consequently lead
to significant economic losses.

Table 3. Imbalance failures found by Themis and other state-
of-the-art methods. Other methods detect no more than 4
failures, while Themis detects all 10 imbalance failures.

Method Themis Fixreq Fixconf Alternate Concurrent
Number 10 1 2 3 4
Bugs ID# #1 - #10 #5 #2, #9 #2, #5, #9 #2, #3, #5, #9

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Comparison with existing methods: In our 24-hour ex-
periments, Fixreq only found 1 imbalance failure (#9). Fixconf
detected two failures (#2, #9). Alternate and Concurrent suc-
cessfully detected 3 failures (#2, #5, #9) and 4 failures (#2,
#3, #5, #9) respectively. However, the remaining 6 imbalance
failures were not found by them because these imbalance
failures are hidden in the deep logic. To trigger them, several
operations (at least 6 steps) involving both types of inputs,
i.e., client requests and system configuration changes, need
to be executed first. Unfortunately, existing methods lack
efficient strategies for exploring two input spaces, ignoring
their execution dependencies and thereby missing these im-
balance failures. In contrast, Themis models both request
and configuration inputs into a sequence and employs load
variance-guided fuzzing to effectively explore the execu-
tion space of the operation sequences. This approach allows
Themis to successfully exercise the load balance logic in the
deep path and detect all 10 imbalance failures, proving the
effectiveness of Themis in detecting imbalance failures in
real-world DFSes, which adequately answers RQ1. Com-
pared with other state-of-the-art testing techniques, Themis
found all the imbalance failures that other methods found.

6.1.1 Case Study. We will now use one case to illustrate
how imbalance failures detected by Themis impact the over-
all distributed file system and how Themis identifies this
failure. This case corresponds to failure #1 listed in Table 2.
This is an imbalance failure in GlusterFS, discovered in ver-
sion v12.0. The failure was caused by incorrect file deletion
within the rebalance code implementation, which potentially
led to arbitrary data loss, compromising the system’s avail-
ability and reliability. During our testing process, this error
was frequently triggered, causing significant data loss and
leading to an imbalanced storage distribution, which was
eventually detected by Themis. The code snippet in Figure 11
describes details of this imbalance failure and its fixed code.

1 static void rebalance(...){

2 ...

3 for(auto file: queue) gf_migrate_file(file);

4 }

5 static int gf_migrate_file(...){

6 if (cached_list.contains(hashed_id)) {

7 - if (is_linkfile == 1) {

8 - i = rebal_entry->local_index;

9 - ret = syncop_unlink(local_subvols[i]...);}

10 + i = rebal_entry->local_index;

11 + link_id = local_subvols[i];

12 + if (is_linkfile == 1 && hashed_id != link_id) {

13 ret = syncop_unlink(linkfile_id, ...);

14 gf_msg_debug("Unlink linkfile");

15 }

16 }

Figure 11. An imbalance failure due to incorrect file deletion
in data migration within the dht-rebalance.c of the GlusterFS.

Root Cause: In GlusterFS, when the storage load becomes
imbalanced, the ‘rebalance()’ function is invoked to redis-
tribute the storage load, initiating the data migration process.
In the scenario where a datafile fd has recently undergonemi-
gration and its hash_id remains in the cache, if the rebalanc-
ing mechanism is subsequently triggered and executed again
and fd’s linkfile (hard link or soft link) happens to require
migration, GlusterFS first checks whether its hashed_id is in
cached_list. Given that the linkfile shares the same hashed_id
as its original datafile fd, this linkfile is erroneously deleted,
as shown in lines 6-9. Consequently, this sequence triggers
the imbalance failure, leading to the erroneous removal of
linkfiles from GlusterFS. The developer has fixed this imbal-
ance failure by adding an extra linkfile_id check, as shown
in lines 10-12. This imbalance failure poses a severe security
threat to GlusterFS, enabling the deletion of an arbitrary
number of linkfiles stored in distributed storage nodes.
In our experiments, this imbalance failure was only de-

tected by Themis. It is difficult to detect due to the complexity
of the required long triggering sequence: ‘create fd -> data
changes (via file-related operation requests) -> load rebalance
-> migration filedata fd -> load changes (by either requests or
configs) -> load rebalance again -> migration fd’s linkdata’.
Such a deep imbalance failure can only be activated under
specific execution dependencies where the execution inter-
val between two rebalancing processes is sufficiently short,
and both the file data and its linked data are migrated in
the correct execution sequence. Other methods often fail to
detect this failure because they cannot effectively track such
complex execution dependencies. Fortunately, Themis em-
ploys load variance-guided fuzzing that effectively explores
the input execution dependencies by consistently expanding
the load variances among nodes, thereby frequently activat-
ing the load rebalancing mechanism. As a result, Themis is
more likely to manipulate the datafile and linkfile within the
same cache_list, successfully triggering and identifying this
imbalance failure.

6.1.2 Historical imbalance Evaluation. We also evalu-
ated Themis and other tools against 53 historical imbalance
failures that we had previously analyzed. Specifically, we
configured the four target DFSes with their historical ver-
sions and ran each tool to test each system over 24 hours.
Themis successfully detected 48 of the 53 historical imbal-
ance failures, Fixreq, Fixconf , Alternate and Concurrent only
detected 9, 11, 16, 21, and 23 imbalance failures, respectively,
as shown in the table 4. Compared to these methods, Themis
detects 109% - 433% more historical imbalances.

Of the five imbalance failures that Themis could not detect,
two (CephFS #41935 [58] and HDFS #4261 [16]) only occur on
the Windows OS, where Themis has not been implemented.
The remaining three failures (CephFS #55568 [12], GlusterFS
#1699 [4] and HDFS #11741 [8]) not only require specific

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

Table 4. Historical imbalance failures reproduced by Themis
and other tools.

Tools HDFS CephFS GlusterFS LeoFS Total
Themis 16/18 14/16 11/12 7/7 48/53
Fixreq 3/18 3/16 2/12 1/7 9/53
Fixconf 4/18 3/16 2/12 2/7 11/53

Alternate 6/18 4/16 4/12 2/7 16/53
Concurrent 8/18 6/16 5/12 2/7 21/53

request and configuration inputs but also depend on particu-
lar hardware failures, such as compatibility issues between
HDDs and SSDs or failures in encryption hardware. These
hardware-related failures are not currently addressed by
Themis. These five imbalance failures fall outside the scope
of this paper and are currently not supported by Themis.

6.2 Effectiveness on Code Coverage
Since code coverage is fundamental to error detection, achiev-
ing higher coverage increases the likelihood of uncovering
errors. We also evaluated Themis’s ability to achieve code
coverage in the DFS under test. We established a 10-node net-
work for each target DFS and compared Themis with other
state-of-the-art methods in the same experimental setup. Ac-
cording to the empirical study of abstract fuzzing [51], code,
block, and branch coverage are highly correlated. Therefore,
we just collected the branch coverage for each tool in 24
hours as the evaluation metric. The statistics are shown in
Table 5. For CephFS and GlusterFS, which are written in
C++, we used gcov [15] for coverage collection. Since Le-
oFS is implemented in Erlang, we used ExIntegration [66] to
collect coverage. For HDFS implemented in Java, we used Ja-
CoCo [32]. In conclusion, Themis always outperforms other
methods on all four DFSes under test. Compared to meth-
ods Fixreq, Fixconf , Alternate and Concurrent, Themis covers
18%, 21%, 13%, and 10% more code branches on average. The
statistics adequately answer RQ2.

Table 5. Branch coverage on four target DFSes in 24 hours.
Themis always outperforms other methods on all DFSes.

Method Fixreq Fixconf Alternate Concurrent Themis
HDFS 34,065 32,913 35,296 36,448 39,872
GlusterFS 42,163 41,072 43,815 44,597 49,320
LeoFS 9,413 9,204 10,026 10,318 11,529
CephFS 55,926 54,212 57,042 58,206 64,052

Compared to Fixreq and Fixconf , Themis consistently out-
performs them on all four DFSes, covering 18% and 21%more
branches on average. The primary reason is that Fixreq and
Fixconf are limited to exploring one type of input space (ei-
ther client requests or system configurations), thus missing
the code logic that involves interactions between these two
type of inputs. Themis also achieves better performance than

Alternate on all targets, covering an additional 13% branches.
This is because alternating exploration of two input spaces
neglects many potential operation combinations, leading to
less efficient testing. Even when compared to Concurrent,
which theoretically can explore any combination of request
and configuration inputs, Themis always performs better
and covers 15,204 more branches. The main advantage of
Themis over Concurrent is that while Concurrent explores in-
put combinations randomly, Themis leverages runtime load
variance feedback to guide the generation of high-quality
test cases, resulting in more effective testing.
To track the trends of coverage growth over time, we

recorded the branch coverage every minute over 24 hours,
as shown in Figure 12. The data shows that Themis’s branch
coverage grows significantly during the first 4 hours on all
four target DFSes. After approximately 12 hours, the cover-
age of Themis gradually converges (only less than 1% branch
coverage improvement is observed). In comparison, the code
coverage for Fixreq, Fixconf , Alternate, and Concurrent experi-
ences a sharp increase within the first 60-180 minutes of test-
ing. However, beyond this initial burst, the test case inputs
from these methods struggle to achieve additional coverage
compared to their early performance. Throughout the test-
ing period, Themis consistently outperforms the other four
methods in terms of code coverage across all target DFSes,
thanks to its load variance-guided test case generation for
exploring more code logic.

6.3 Effectiveness of Load Variances Model
To evaluate the effectiveness of the Load Variance Model, we
conducted an experiment comparing Themis with 𝑇ℎ𝑒𝑚𝑖𝑠− ,
a version of Themis that disables the load variance model
and generates operation sequences randomly. We collected
the branch coverage and the number of imbalance failures
detected by both versions in 24 hours on all four DFSes.
As shown in Table 6, with the help of the load variance

model, Themis can detect 10 imbalance failures in 24 hours,
while 𝑇ℎ𝑒𝑚𝑖𝑠− only detects 5 of them. Specifically, com-
pared with𝑇ℎ𝑒𝑚𝑖𝑠− , Themis always achieved higher branch
coverage on all four target DFSes. In total, Themis covers
16,249 more code branches, achieving an improvement of
11% branch coverage. Thus, we can conclude that the load
variance model helps achieve better performance on both
code coverage and imbalance detection. It significantly im-
proves testing performance, which adequately answers RQ3.

6.4 Accuracy of Themis
To evaluate the impact of the variance threshold value 𝑡

on accuracy and false positives, we conducted experiments
running Themis with various 𝑡 value setups, ranging from
5% to 35% of the average load across distributed nodes. We
collected all the imbalance failures reported by Themis over
a 24-hour period across all four target DFSes. Subsequently,

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0 240 480 720 960 1,200 1,440
0
1
2
3
4
5

·104

Time [min]

Co
ve
re
d
D
el
ay

Bl
oc
ks

(b) GlusterFS

Themis
𝐹𝑖𝑥𝑐𝑜𝑛𝑓
𝐹𝑖𝑥𝑟𝑒𝑞

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

0 240 480 720 960 1,200 1,440
0

0.2
0.4
0.6
0.8
1

1.2 ·104

Time [min]

Co
ve
re
d
D
el
ay

Bl
oc
ks

(a) LeoFS

Themis
𝐹𝑖𝑥𝑐𝑜𝑛𝑓
𝐹𝑖𝑥𝑟𝑒𝑞

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

0 240 480 720 960 1,200 1,440
0
1
2
3
4
5
6
7 ·104

Time [min]

Co
ve
re
d
D
el
ay

Bl
oc
ks

(c) CephFS

Themis
𝐹𝑖𝑥𝑐𝑜𝑛𝑓
𝐹𝑖𝑥𝑟𝑒𝑞

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

0 240 480 720 960 1,200 1,440
0

0.5
1

1.5
2

2.5
3

3.5
4

·104

Time [min]

Co
ve
re
d
D
el
ay

Bl
oc
ks

(d) HDFS

Themis
𝐹𝑖𝑥𝑐𝑜𝑛𝑓
𝐹𝑖𝑥𝑟𝑒𝑞

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Figure 12. Coverage trends evaluated for Themis, 𝐹𝑖𝑥𝑐𝑜𝑛𝑓 , 𝐹𝑖𝑥𝑟𝑒𝑞 , 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 , and 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Compared with them, Themis
with the load variance model shows better branch coverage all the time on all the target DFSes.

Table 6. Comparison of𝑇ℎ𝑒𝑚𝑖𝑠− and Themis on four DFSes
under test in 24 hours. Themis with load variance model
detects 50% more failures and covers 11% more branches.

Number of Failures Code Coverage
𝑇ℎ𝑒𝑚𝑖𝑠− Themis 𝑇ℎ𝑒𝑚𝑖𝑠− Themis

HDFS 1 2 36,401 39,872
GlusterFS 2 4 44,586 49,320
LeoFS 2 3 10,207 11,529
CephFS 0 1 57,330 64,052
Improvement - +50% - +11%

we manually analyzed the false positives among the reported
imbalance failures.

Table 7. The False Positives and True Positives of Themis
on various threshold 𝑡 value setups.

Threshold 𝑡 5% 10% 15% 20% 25% 30% 35%
False Positives 11 7 3 1 0 0 0
True Positives 10 10 10 10 10 9 8

As shown in Table 7, the number of false positives re-
ported by Themis decreases significantly as the threshold 𝑡
value increases, dropping from 11 to 0. However, once the
value of 𝑡 exceeds 25%, Themis begins to miss some true
positives, with the number increasing from 0 to 2. These
findings indicate that while a higher 𝑡 value effectively re-
duces false positives, setting it too high may result in missed
true positives, which adequately answers RQ4. Based on
our experimental results, a threshold 𝑡 of 25% represents an
optimal balance, eliminating all false positives across the
four target DFSes without missing any true positives.

7 Discussion
More bug types support. Currently, Themis supports im-
balance failure detection by calculating and checking the load
variance among the distributed nodes in real time. Themis
has already been adapted to four widely used DFSes and
has found 10 new imbalance failures. However, there are
still some other types of bugs, e.g., fail-slow [23, 43] bugs,
metadata inconsistency bugs [65], etc., hidden in DFSes.

Take metadata inconsistency bugs, for example, in a DFS,
metadata plays a crucial role in recording and managing file
structures and data properties. Inconsistent metadata in dis-
tributed systems can lead to unrecoverable conflicts, result-
ing in severe consequences that significantly disrupt system
operations. We can adapt Themis by checking whether the
metadata information of distributed nodes is constantly con-
sistent. However, the structure and semantics of metadata
information (e.g., structures, authority, etc.) are complex and
various in different DFSes, which makes it hard to propose
a general anomaly detector to precisely identify metadata
inconsistency bugs. For example, glusterFS uses a distributed
hash table [17] for managing metadata while CephFS uses
a distributed metadata server cluster based on a dynamic
subtree partitioning [14]. To address it, a scalable and precise
anomaly detector for metadata inconsistency bugs needs to
be explored in future research.

Weighting factors of load variance. Themis represents
load variance as the sum of CPU variance, network variance,
and storage variance with the same weighting factor, 1/3.
However, these three types of variances may have varying
impacts on testing performance. Their impacts may differ
across different types of distributed systems. For distributed
computing systems, the CPU variance may have a higher
impact, and for distributed storage systems, the storage vari-
ance is probably more important than other variance types.
We did a preliminary experiment by increasing the weight of
storage load variance and found that the speed of triggering
storage imbalances(#1, #2, #5, #6, #8, and #9) was accelerated,
as shown in Table 8. A more in-depth exploration of how
to assign weights to these variances when testing different
systems needs to be conducted in the future.

Table 8. The average time used by Themis to trigger imbal-
anced storage failures on various weight factors.

Weighing Factor of Storage Load 1/6 1/3 1/2 2/3 1/1
Average Time to Trigger Imbalances (min) 498 372 359 326 302

Sensitivity to threshold 𝑡 : The effectiveness of Themis
is highly sensitive to the threshold 𝑡 . According to our eval-
uation in Section 6.4, a threshold of 25% is optimal, whereas
20% yields false positives and 30% results in false negatives.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

To address this, we propose two potential alternative ap-
proaches for future development: (1) Dynamic Adjustment
of threshold 𝑡 : When testing a DFS with Themis, we could
initiate the imbalance detector with a lower 𝑡 value (e.g.,
20%) and incrementally increase it upon encountering false
positives. This approach allows for adaptive thresholding
based on real-time testing feedback. (2) Incorporating ma-
chine learning technology: Instead of using a fixed threshold,
we could train an AI model with practical load data from
real-world DFSes to determine when the system enters load
imbalance states.
Imbalance false positive: Currently, Themis uses load

variance with a fixed threshold to identify imbalance states.
However, in some special scenarios, this imbalance detec-
tor may produce false positives. For instance, if all clients
are only reading a single file, the load will be concentrated
on the replicas of that file, leaving other nodes idle. In this
case, the detector might incorrectly identify this as an im-
balance failure. However, during the initialization process,
Themis randomly generates a large number of files. Addi-
tionally, during the testing process, for each opt in the test
case, Themis randomly generates the FileName’ and NodeId’,
preventing such rare occurrences (where all clients read a
single file) from happening during our 24-hour experiment.
In the future, we plan to improve our imbalance detector via
dynamic threshold adjustment or AI model to address this
issue, as discussed above.

.

8 Related Work
File System Testing. In the field of testing DFSes, vari-
ous file load generation tools have been developed to assess
and test system performance and resilience. Tools such as
SmallFile [18] and Filebench [2] are proposed for simulating
distributed workloads on multiple hosts, offering insights
into the robustness and efficiency of DFSes. For traditional
File System testing, fuzzing tools such as Syzkaller [22], and
kAFL [53], are developed to generate system call sequences
based on predefined grammar rules and feedback from run-
time code coverage. However, these tools primarily focus
on file-related operations and ignore system configuration,
making them less effective for detecting imbalance failures
in DFSes. Two input spaces testing tools, such as Janus [62]
and Hydra [39], initially create a random file image and then
apply coverage-guided fuzzing to generate system calls for
this image. They alternately explore the two input spaces.
However, this method fails to explore the potential execu-
tion dependencies between request and configuration inputs,
leading to ineffectiveness in detecting imbalance failures.
Distributed System Testing. Some tools utilize fault

injection technology to identify and address potential sys-
tem failures by deliberately injecting faults or errors. Dis-
tributed system fuzzing tools, such as CrashFuzz [19] and

Mallory [45], manipulate cluster faults, including killing
nodes and adding nodes, similar to configuration opera-
tions included in Themis. Specifically, CrashFuzz employs
coverage-guided feedback to optimize fault injection loca-
tions and expose crash recovery bugs in distributed cloud
systems. Mallory applies runtime timeline-driven testing and
timeline abstraction for adaptively injecting cluster faults.
However, they only explore the cluster faults input genera-
tion with either fixed or random workload inputs, which is
ineffective in detecting imbalance failures.

9 Conclusion
In this paper, we propose Themis, a testing framework for
automatically detecting imbalance failures in DFSes. Themis
first models both request and configuration inputs and con-
verts them into an operation sequence. Then, Themis pro-
poses a load variance-guided fuzzing to effectively explore
the sequence input space and constantly generate high-quality
test cases to make nodes loaded as differently as possible.
We implemented and evaluated Themis on four widely used
DFSes: HDFS, GlusterFS, LeoFS, and CephFS. Themis covers
10% - 21% more code compared with other state-of-the-art
methods. Themis successfully detected 10 new imbalance
failures. Our future work will focus on supporting more bug
types and exploring better alternative approaches for fixed
threshold 𝑡 .

10 Acknowledgments
We would like to thank our shepherd, Martin Kleppmann,
and the anonymous EuroSys reviewers for valuable feedback
and input on this paper. This research is partly sponsored
by the National Key Research and Development Project (No.
2022YFB3104000), NSFC Program (No. 62302256, 92167101,
62021002).

References
[1] Mahdi S Almhanna, Tariq A Murshedi, Firas S Al-Turaihi, Rafah M

Almuttairi, and Rajeev Wankar. Dynamic weight assignment with
least connection approach for enhanced load balancing in distributed
systems. 2023.

[2] Distributed SystemAnalysis. Distributedmetadata-intensive workload
generator for POSIX-like filesystems. https://github.com/distributed-
system-analysis/smallfile, 2024. Accessed at January 1, 2024.

[3] GlusterFS Balancer. https://staged-gluster-docs.readthedocs.io/en/
release3.7.0beta1/Features/rebalance/, 2023.

[4] Bockeman. One brick offline with signal:11 received during rebalance
healing process. https://github.com/gluster/glusterfs/issues/1699, 2020.
Accessed at March 27, 2024.

[5] Dhruba Borthakur. Apache Hadoop filesystem and its usage in
Facebook. https://profile.iiita.ac.in/bibhas.ghoshal/Cloud_and_Edge_
Computing/hdfs_iit.pdf, 2010. Accessed at March 27, 2024.

[6] Edward Bortnikov. Yahoo’s infrastructure harnesses Hadoop dis-
tributed file system (HDFS) for ultra-scalable storage). https://
developer.yahoo.com/blogs/138739227316, 2016. Accessed at March
27, 2024.

[7] Chen. Force-migration.t execute failed. https://github.com/gluster/
glusterfs/issues/3513, 2022. Accessed at March 27, 2024.

https://github.com/distributed-system-analysis/smallfile
https://github.com/distributed-system-analysis/smallfile
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/rebalance/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/rebalance/
https://github.com/gluster/glusterfs/issues/1699
https://profile.iiita.ac.in/bibhas.ghoshal/Cloud_and_Edge_Computing/hdfs_iit.pdf
https://profile.iiita.ac.in/bibhas.ghoshal/Cloud_and_Edge_Computing/hdfs_iit.pdf
https://developer.yahoo.com/blogs/138739227316
https://developer.yahoo.com/blogs/138739227316
https://github.com/gluster/glusterfs/issues/3513
https://github.com/gluster/glusterfs/issues/3513

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[8] Wei-Chiu Chuang. Long running balancer may fail due to expired
DataEncryptionKey. https://issues.apache.org/jira/browse/HDFS-
11741, 2017. Accessed at March 27, 2024.

[9] Hsueh-Yi Chung, Che-Wei Chang, Hung-Chang Hsiao, and Yu-Chang
Chao. The load rebalancing problem in distributed file systems. In 2012
IEEE International Conference on Cluster Computing, pages 117–125.
IEEE, 2012.

[10] Loic Dachary. PG autoscaler tuning => catastrophic ceph cluster crash.
https://tracker.ceph.com/issues/64333, 2021. Accessed at March 27,
2024.

[11] Anthony D’Atri. Why we chose Ceph to build block stor-
age). https://www.digitalocean.com/blog/why-we-chose-ceph-to-
build-block-storage, 2024. Accessed at March 27, 2024.

[12] Tatjana Dehler. CephPGImbalance alert inaccuracies, causing im-
balanced storage load). https://tracker.ceph.com/issues/55568, 2021.
Accessed at March 27, 2024.

[13] Shyam C Deshmukh and Sudarshan S Deshmukh. A survey: Load
balancing for distributed file system. International Journal of Computer
Applications, 111(5):25–29, 2015.

[14] CephFS Doc. Dynamic subtree partitioning with balancer on spe-
cific ranks. https://docs.ceph.com/en/reef/cephfs/multimds/, 2024.
Accessed at January 1, 2024.

[15] Gcov documentation. A test coverage program. https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html, 2024. Accessed at January 1, 2024.

[16] Junping Du. Timeouts in load-balancing process within MiniDFS-
Cluster NodeGroup. https://issues.apache.org/jira/browse/HDFS-4261,
2017. Accessed at March 27, 2024.

[17] Damon Earp. Heuristics in Distributing Data and Parity with Distributed
Hash Tables. PhD thesis, Auburn University, 2021.

[18] Filebench. File system and storage benchmark that uses a custom
language to generate a large variety of workloads. https://github.com/
filebench/filebench, 2024. Accessed at January 1, 2024.

[19] Yu Gao, Wensheng Dou, Dong Wang, Wenhan Feng, Jun Wei, Hua
Zhong, and Tao Huang. Coverage guided fault injection for cloud
systems. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 2211–2223. IEEE, 2023.

[20] Gluster. Gluster filesystem : Build your distributed storage in minutes.
https://github.com/gluster/glusterfs, 2024. Accessed at January 1, 2024.

[21] Google. American fuzzy lop. https://github.com/google/AFL, 2023.
Accessed at January 1, 2024.

[22] Google. syzkaller is an unsupervised coverage-guided kernel fuzzer.
https://github.com/google/syzkaller, 2023. Accessed at October 23,
2023.

[23] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, et al. Fail-slow at scale: Ev-
idence of hardware performance faults in large production systems.
ACM Transactions on Storage (TOS), 14(3):1–26, 2018.

[24] Apache Haddop. HDFS Disk Balancer. https://hadoop.apache.org/
docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSDiskbalancer.
html, 2024. Accessed at March 27, 2024.

[25] Azure Service Health. Final root cause analysis and improve-
ment areas: Nov 18 Azure storage service interruption. https:
//azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-
improvement-areas-nov-18-azure-storage-service-interruption/,
2024. Accessed at January 1, 2024.

[26] Taufik Hidayat, Yasep Azzery, and Rahutomo Mahardiko. Load balanc-
ing network by using round robin algorithm: a systematic literature
review. Jurnal Online Informatika, 4(2):85–89, 2019.

[27] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols,
Mahadev Satyanarayanan, Robert N Sidebotham, and Michael J West.
Scale and performance in a distributed file system. ACM Transactions
on Computer Systems (TOCS), 6(1):51–81, 1988.

[28] Hung-Chang Hsiao, Hsueh-Yi Chung, Haiying Shen, and Yu-Chang
Chao. Load rebalancing for distributed file systems in clouds. IEEE
transactions on parallel and distributed systems, 24(5):951–962, 2012.

[29] Dan Huang, Dezhi Han, Jun Wang, Jiangling Yin, Xunchao Chen,
Xuhong Zhang, Jian Zhou, and Mao Ye. Achieving load balance for
parallel data access on distributed file systems. IEEE Transactions on
Computers, 67(3):388–402, 2017.

[30] Hyperscalers. The hyperscalers LeoFS storage appliance).
https://www.hyperscalers.com/LeoFS-file-system-market-proven-
software-storage-hardware-x86-AI-Telecom-media-internet-
POSIX-servers-Ip-networks-architecture, 2024. Accessed at March 27,
2024.

[31] Dell EMC Isilon. Create, manage and deliver next-generation digi-
tal media content. https://www.dell.com/en-hk/dt/solutions/media-
entertainment.htm, 2024. Accessed at January 1, 2024.

[32] JaCoCo. Jacoco - java code coverage library. https://www.jacoco.org/
jacoco/trunk/index.html, 2024. Accessed at January 1, 2024.

[33] Tao Jie. Datanodes usage is imbalanced if number of nodes per rack
is not equal. https://issues.apache.org/jira/browse/HDFS-13279, 2017.
Accessed at March 27, 2024.

[34] Jkroonza. Massive latency spikes (resulting in trashing and requiring a
force-remount to resolve). https://github.com/gluster/glusterfs/issues/
3356, 2020. Accessed at March 27, 2024.

[35] Abhay Kaviya. Keeping your Cisco DNA center healthy).
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/Cloud-
Services-Platform/csp_5000/sae/release_notes/sae-sol-release-
notes-2-2.pdf, 2024. Accessed at March 27, 2024.

[36] kemptechnologies. DNS, load balancing and DDOS attacks. https:
//kemptechnologies.com/blog/load-balancing-and-ddos-attacks, 2024.
Accessed at January 1, 2024.

[37] The Linux Kernel. FUSE. https://www.kernel.org/doc/html/next/
filesystems/fuse.html, 2024. Accessed at January 1, 2024.

[38] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 147–161, 2019.

[39] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 147–161, 2019.

[40] Abhishek Lekshmanan. CephFS at CERN in view of disaster re-
covery). https://fosdem.org/2024/schedule/event/fosdem-2024-3298-
cephfs-at-cern-in-view-of-disaster-recovery/, 2024. Accessed at
March 27, 2024.

[41] LeoProject. LeoFS - a storage system for a data lake and the web.
https://github.com/leo-project/leofs, 2024. Accessed at January 1,
2024.

[42] Eliezer Levy and Abraham Silberschatz. Distributed file systems:
Concepts and examples. ACM Computing Surveys (CSUR), 22(4):321–
374, 1990.

[43] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu,
Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu
Li, et al. Perseus: A fail-slow detection framework for cloud storage
systems. In 21st USENIX Conference on File and Storage Technologies
(FAST 23), pages 49–64, 2023.

[44] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11):2312–2331, 2019.

[45] Ruijie Meng, George Pîrlea, Abhik Roychoudhury, and Ilya Sergey.
Greybox fuzzing of distributed systems. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’23, pages 1615–1629, New York, NY, USA, 2023. Association for
Computing Machinery.

https://issues.apache.org/jira/browse/HDFS-11741
https://issues.apache.org/jira/browse/HDFS-11741
https://tracker.ceph.com/issues/64333
https://www.digitalocean.com/blog/why-we-chose-ceph-to-build-block-storage
https://www.digitalocean.com/blog/why-we-chose-ceph-to-build-block-storage
https://tracker.ceph.com/issues/55568
https://docs.ceph.com/en/reef/cephfs/multimds/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://issues.apache.org/jira/browse/HDFS-4261
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/gluster/glusterfs
https://github.com/google/AFL
https://github.com/google/syzkaller
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSDiskbalancer.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSDiskbalancer.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSDiskbalancer.html
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption/
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption/
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption/
https://www.hyperscalers.com/LeoFS-file-system-market-proven-software-storage-hardware-x86-AI-Telecom-media-internet-POSIX-servers-Ip-networks-architecture
https://www.hyperscalers.com/LeoFS-file-system-market-proven-software-storage-hardware-x86-AI-Telecom-media-internet-POSIX-servers-Ip-networks-architecture
https://www.hyperscalers.com/LeoFS-file-system-market-proven-software-storage-hardware-x86-AI-Telecom-media-internet-POSIX-servers-Ip-networks-architecture
https://www.dell.com/en-hk/dt/solutions/media-entertainment.htm
https://www.dell.com/en-hk/dt/solutions/media-entertainment.htm
https://www.jacoco.org/jacoco/trunk/index.html
https://www.jacoco.org/jacoco/trunk/index.html
https://issues.apache.org/jira/browse/HDFS-13279
https://github.com/gluster/glusterfs/issues/3356
https://github.com/gluster/glusterfs/issues/3356
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/Cloud-Services-Platform/csp_5000/sae/release_notes/sae-sol-release-notes-2-2.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/Cloud-Services-Platform/csp_5000/sae/release_notes/sae-sol-release-notes-2-2.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/Cloud-Services-Platform/csp_5000/sae/release_notes/sae-sol-release-notes-2-2.pdf
https://kemptechnologies.com/blog/load-balancing-and-ddos-attacks
https://kemptechnologies.com/blog/load-balancing-and-ddos-attacks
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://fosdem.org/2024/schedule/event/fosdem-2024-3298-cephfs-at-cern-in-view-of-disaster-recovery/
https://fosdem.org/2024/schedule/event/fosdem-2024-3298-cephfs-at-cern-in-view-of-disaster-recovery/
https://github.com/leo-project/leofs

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Zhen Yan, Qing Liao, and Yu Jiang

[46] Dirk Merkel et al. Docker: lightweight Linux containers for consistent
development and deployment. Linux j, 239(2):2, 2014.

[47] Atin Mukherjee. DHT-rebalance: Rebalance hangs on distribute vol-
ume when glusterd is stopped on peer node). https://bugzilla.redhat.
com/show_bug.cgi?id=1245142, 2020. Accessed at March 27, 2024.

[48] NewDund. Delete a storage node would cause data loss. https://github.
com/leo-project/leofs/issues/1115, 2018. Accessed at March 27, 2024.

[49] NetApp ONTAP. ONTAP: Data management software for a better
hybrid cloud experience. https://www.netapp.com/data-management/
ontap-data-management-software/, 2024. Accessed at January 1, 2024.

[50] Red Hat Customer Portal. Red hat gluster storage. https://access.
redhat.com/products/red-hat-storage, 2024. Accessed at March 27,
2024.

[51] Christopher Salls, Aravind Machiry, Adam Doupe, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Exploring abstraction
functions in fuzzing. In 2020 IEEE Conference on Communications and
Network Security (CNS), pages 1–9. IEEE, 2020.

[52] IBM Storage Scale. Accelerate AI with a global data platform and break
through data barriers. https://www.ibm.com/products/storage-scale,
2024. Accessed at January 1, 2024.

[53] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted feedback
fuzzing for OS kernels. In 26th USENIX Security Symposium (USENIX
Security 17), pages 167–182, Vancouver, BC, August 2017. USENIX
Association.

[54] Deepak C Shadrach, Kiran S Balagani, and Vir V Phoha. A weighted
metric based adaptive algorithm for web server load balancing. In 2009
Third International Symposium on Intelligent Information Technology
Application, volume 1, pages 449–452. IEEE, 2009.

[55] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop distributed file system. In 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST), pages
1–10. IEEE, 2010.

[56] Ravideep Singh, Pradeep Kumar Gupta, Punit Gupta, Reza Malekian,
Bodhaswar T Maharaj, Darius Andriukaitis, Algimantas Valinevicius,
Dijana Capeska Bogatinoska, and Aleksandar Karadimce. Load balanc-
ing of distributed servers in distributed file systems. In ICT Innovations
2015: Emerging Technologies for Better Living 7, pages 29–37. Springer,
2016.

[57] Leonid Usov. Inconsistent usage of the return codes in the mds code
base. https://tracker.ceph.com/issues/64611, 2021. Accessed at March
27, 2024.

[58] KennethWaegeman. Cephmdss keep on crashing within the rebalance
process. https://tracker.ceph.com/issues/41935, 2021. Accessed at
March 27, 2024.

[59] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307–320, 2006.

[60] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn.
Crush: Controlled, scalable, decentralized placement of replicated data.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
pages 122–es, 2006.

[61] Udi Wieder et al. Hashing, load balancing and multiple choice. Foun-
dations and Trends® in Theoretical Computer Science, 12(3–4):275–379,
2017.

[62] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing file systems via two-dimensional input space
exploration. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 818–834. IEEE, 2019.

[63] Xuehan Xu. IO hangs when issuing balanced/localized reads to replica
crimson osds while the pg is still peering. https://tracker.ceph.com/
issues/65806, 2021. Accessed at March 27, 2024.

[64] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin
Wu, and Charles Zhang. Fuzzing SMT solvers via two-dimensional
input space exploration. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 322–
335, 2021.

[65] Tsozen Yeh and Chiahung Sun. Enhancing the reliability of cloud
data through identifying data inconsistency between cloud systems.
Information Systems Frontiers, pages 1–9, 2023.

[66] Yeshan333. A library for run-time system code line-level coverage
analysis. you can use it to evaluate the intergration test coverage. https:
//github.com/yeshan333/ex_integration_coveralls, 2024. Accessed at
January 1, 2024.

[67] Jianwei zhang. Imbalance load caused by effects of hdd/ssd on op
latency and bandwidth when use mclock_scheduler. https://tracker.
ceph.com/issues/63014, 2021. Accessed at March 27, 2024.

[68] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
a survey for roadmap. ACM Computing Surveys (CSUR), 54(11s):1–36,
2022.

https://bugzilla.redhat.com/show_bug.cgi?id=1245142
https://bugzilla.redhat.com/show_bug.cgi?id=1245142
https://github.com/leo-project/leofs/issues/1115
https://github.com/leo-project/leofs/issues/1115
https://www.netapp.com/data-management/ontap-data-management-software/
https://www.netapp.com/data-management/ontap-data-management-software/
https://access.redhat.com/products/red-hat-storage
https://access.redhat.com/products/red-hat-storage
https://www.ibm.com/products/storage-scale
https://tracker.ceph.com/issues/64611
https://tracker.ceph.com/issues/41935
https://tracker.ceph.com/issues/65806
https://tracker.ceph.com/issues/65806
https://github.com/yeshan333/ex_integration_coveralls
https://github.com/yeshan333/ex_integration_coveralls
https://tracker.ceph.com/issues/63014
https://tracker.ceph.com/issues/63014

	Abstract
	1 Introduction
	2 Background
	2.1 Load Balancing Mechanism in DFS
	2.2 Definition of Imbalance Failures

	3 Motivation Study
	3.1 Symptoms of Imbalance Failures
	3.2 Triggering of Imbalance Failures
	3.3 A Motivation Example
	3.4 Limitation of Existing Methods

	4 Themis Design
	4.1 Themis Workflow
	4.2 Test Case Generator
	4.3 Imbalance Detector

	5 Implementation
	6 Evaluation
	6.1 Imbalance failures in real-world DFSes.
	6.2 Effectiveness on Code Coverage
	6.3 Effectiveness of Load Variances Model
	6.4 Accuracy of Themis

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

