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Abstract
Atomic Data Definition Language (Atomic DDL) is funda-
mental in DBMSs, ensuring that schema modifications are
executed completely or not at all, preserving database integrity.
Despite their critical importance, bugs persist in the Atomic
DDL, leading to severe consequences such as data corruption
and system inconsistencies. However, there is a limited under-
standing of the characteristics and root causes of these bugs.
Furthermore, existing testing methods often fail to effectively
identify Atomic DDL bugs, particularly under conditions of
high concurrency and unexpected system failures.

This paper presents a comprehensive study of 207 Atomic
DDL bugs across three widely used DBMSs. It reveals that
Atomic DDL bugs primarily manifest as incorrect results,
post-recovery data inconsistency, and system unavailability,
which are mainly triggered by metadata conflicts between
DDL statements. Based on these findings, we developed DD-
LUMOS, a testing tool that detects Atomic DDL bugs with
metadata conflict-guided DDL synthesis and graph-based
consistency analysis. We applied DDLUMOS to six popular
DBMSs (e.g., PostgreSQL and MySQL) and found 73 previ-
ously unknown Atomic DDL bugs. DBMS vendors responded
promptly, fixing 14 issues, highlighting the effectiveness of
DDLUMOS in improving the reliability of DBMSs.

1 Introduction

Atomic Data Definition Language (Atomic DDL) is founda-
tional in Database Management Systems (DBMSs), ensur-
ing that schema changes (e.g., creating, altering tables) are
executed entirely or not at all, thereby preserving database
integrity [22, 23]. Traditional DDLs modify the data structure
immediately without rollback mechanisms, so any interrup-
tion or failure can leave the DBMS in an inconsistent state.

To address this flaw, modern DBMSs such as MySQL and
PostgreSQL introduce Atomic DDL mechanism, ensuring
that schema modifications either fully succeed or leave the
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DBMS in its original state, thus preventing partial updates
that could cause inconsistencies or corruption.

Figure 1: An Atomic DDL bug in MySQL8.0.

The implementation of Atomic DDL is complex due to
the involvement of multiple components(e.g., rollback mech-
anisms, metadata synchronization, and concurrency control),
all of which must work together to ensure atomicity and con-
sistency during schema changes. Consequently, implemen-
tation errors in the Atomic DDL are difficult to avoid. We
define Atomic DDL bugs (ADBs) as issues that arise during
the execution of Atomic DDL operations, which can lead to
partial updates, data corruption, or inconsistencies within the
DBMSs. For example, Figure 1 illustrates an Atomic DDL
bug in MySQL 8.0, which is caused by the implementation
errors in rollback mechanisms. The ALTER TABLE statement
tries to drop column c1 and add a new column c3 on table
t1. However, it fails due to the foreign key constraint. There-
fore, table t1 would still have one column c1. However, the
ALTER TABLE statement is not correctly rolled back, resulting
in the t1 table having two columns (i.e., c1 and c3), which
is inconsistent with the expected state. ADBs have distinct
characteristics that make them particularly problematic:

(1)Widespread Impact: ADBs have a widespread impact
due to their role in maintaining the consistency and integrity
of the database schema. When these bugs occur, they can prop-
agate inconsistencies across multiple layers of the DBMS. In
a typical scenario, a partially executed CREATE TABLE opera-
tion caused schema discrepancies that disrupted not only the
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current statement but also subsequent DDL or DML opera-
tions. For instance, among the recently reported 119 Atomic
DDL bugs in MariaDB, 48% of them affected subsequent
operations beyond the initial DDL statement, leading to cas-
cading failures in query execution and schema management.

(2)High Severity: ADBs pose significant threats to DBMS
stability, often leading to severe consequences such as system
crashes, data corruption, and even permanent data loss. For
example, among the recent 50 CVEs related to Atomic DDLs
in MySQL [30], 29 CVEs scored over 7.0. Among them, 28%
ADBs caused system crashes, while 33% ADBs resulted in
data corruption or data loss. In 15% of cases, the damage was
irreversible, causing prolonged downtime and necessitating
database restoration from backups.

(3)Complex and Hard to Detect: The complexity of ADBs
lies in the intricate interactions between different schema ele-
ments during DDL operations. Additionally, many ADBs can
only be triggered under specific conditions (e.g., specific se-
quences of DDL operations), which are not easily replicated
during standard testing. This complexity makes them par-
ticularly challenging to isolate and resolve. Moreover, these
bugs are difficult to detect because they might not cause im-
mediate or obvious failures; instead, they may lead to latent
inconsistencies that only become apparent under certain query
patterns or after further schema modifications.

Despite the substantial damage ADBs can cause, there is
a lack of testing methods for ADBs. Current DBMS testing
approaches, such as fuzzing and random query generation,
primarily target functional correctness [35–37], performance
bugs [15], and memory safety [16,39,46]. They mainly focus
on generating complex SQL syntax structures or sequences
of SQL operations to trigger more behaviors in DBMS com-
ponents. However, due to the limited understanding of the
specific manifestations and trigger conditions of ADBs, exist-
ing works struggle to identify them.

To understand and detect ADBs, we conducted a compre-
hensive study of 207 ADBs across three widely used DBMSs,
namely PostgreSQL, MySQL, and MariaDB. Our research
focused on identifying the manifestations of ADBs, the root
causes of the ADBs, and the conditions that trigger these bugs.
Our investigation revealed that approximately 44% of ADB
lead to incorrect results, 32% cause post-recovery data incon-
sistency, and 24% result in system unavailability. We found
that about 32%, 22%, 18%, and 22% of ADBs are caused
by the implementation errors in rollback mechanisms, meta-
data synchronization, concurrency control subsystem, and
error handling mechanisms, respectively. More importantly,
we found that 94% of ADBs are triggered by the metadata
conflicts between DDL statements.

Building on these findings, we developed DDLUMOS, a
testing tool that detects ADBs with metadata conflict-guided
DDL synthesis and graph-based consistency analysis. DD-
LUMOS was applied to six DBMSs, uncovering 73 ADBs.
DBMS vendors responded promptly, fixing 14 bugs. Mean-

while, DDLUMOS can rediscover 94.7% studied bugs in one
week. Moreover, we compare DDLUMOS with state-of-the-
art DBMS testing tools. The 48-hour results show that DD-
LUMOS detects 27, 31, 32, and 26 more bugs than SQLancer,
SQLsmith, SQUIRREL, and TXCHECK, respectively. In sum-
mary, this paper makes following contributions:

1. We conduct a comprehensive analysis of 207 ADB
across three widely used DBMSs, revealing that ADBs
manifest as incorrect results, post-recovery data incon-
sistency, and system unavailability.

2. We identify the root cause and trigger conditions that
lead to ADBs, particularly arising from the metadata
conflicts of DDL operations. Based on the findings, we
developed DDLUMOS to detect the ADBs.

3. DDLUMOS uncovered 73 previously unknown ADBs in
six popular DBMSs. 20 bugs have been fixed, demon-
strating the effectiveness of the tool in improving the
reliability and consistency of the DBMS.

2 Preliminaries of Atomic DDL

Definitions. Database Management Systems (DBMSs) are
software that allows users to define, create, maintain, and
control access to databases [1]. Structured Query Language
(SQL) is a standard language for interacting with DBMS [41],
used to create, modify, and query relational databases. Data
Definition Language (DDL) is a subset of SQL that is used
to define and manage the structure of database objects like
tables and indexes. It plays a key role in schema design and
maintenance. For example, the CREATE TABLE statement
in DDL is used to define a table and its columns, specifying
data types and constraints Atomic DDL arises from the risk of
partial updates during schema modifications, which can cause
data corruption and system inconsistencies. Traditional DDL
operations may fail midway, leaving the database in an in-
consistent state. Atomic DDL addresses this by ensuring that
schema changes either fully succeed or fail without residual
effects, preserving database stability and reliability.

There are two main implementations for Atomic DDL:
Atomic DDL Statement, where individual DDL statements are
treated as atomic transactions by the DBMS, ensuring either
full success or full rollback (e.g., MySQL); and Atomic DDL
Transaction, which allows grouping a series of DDL state-
ments into a single atomic transaction, enabling multiple DDL
statements to commit or rollback together (e.g., PostgreSQL).

Key Features. Atomic DDLs are designed to ensure that
schema changes are executed in a reliable, consistent, and
robust manner. They have the following features:

Comprehensive Rollback Mechanism. Atomic DDL en-
sures that any changes made during a schema modification
are either fully applied or fully rolled back. This all-or-nothing
approach prevents partial updates that could otherwise leave
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the database in an inconsistent state. For instance, if a ta-
ble alteration operation fails midway due to a system error,
Atomic DDL automatically rolls back the changes, restoring
the DBMS to its original state before the operation began.
This comprehensive rollback mechanism is crucial for safe-
guarding data integrity and consistency, especially in complex
production environments.

Concurrency Control. In environments where multiple
users may attempt to modify the schema simultaneously,
Atomic DDL plays a critical role in managing concurrency.
It uses locking mechanisms to ensure that only one opera-
tion can alter a specific part of the schema at any given time,
preventing conflicts and potential corruption. This control is
vital for avoiding race conditions and ensuring that all schema
changes are applied in a controlled and predictable manner.

Failure Handling and Recovery. One of the key strengths
of Atomic DDL is its robust failure handling and recovery
mechanism. In case of failure, it ensures no partial changes
remain by using detailed logging and transactional controls to
track schema modifications. This enables precise rollbacks or
retries, protecting the database from corruption while stream-
lining the recovery process, reducing downtime, and ensuring
operational continuity.

3 Methodology

To better understand the characteristics of Atomic DDL
Bugs (ADBs), we investigate ADBs across three widely-
used DBMSs: PostgreSQL, MySQL, and MariaDB from
these DBMSs’ issue tracker systems and commit histo-
ries [2, 3, 6, 7, 11]. The number of ADB issues we collected is
summarized in Table 1.

Table 1: The numbers of collected ADBs in selected DBMSs.
DBMSs PostgreSQL MySQL MariaDB Total

Studied Issues 351 301 2103 2755
Unique Bugs 38 50 119 207

These DBMSs, developed over long periods (e.g., 27 years
for MySQL), often contain a large number of issues (e.g., over
109k issues in MySQL). Manually inspecting all these issues
to identify ADBs is time-consuming and challenging. There-
fore, we apply filtering rules to identify relevant issues in the
recent 10 years. Since DBMS developers typically do not la-
bel issues as related to ADBs, we use keywords like “atomic”,
“DDL”, “CREATE”, “Atomic DDL”, and their variations to re-
trieve potentially relevant issues. We then manually review the
bug descriptions and developer comments, excluding those
that do not involve Atomic DDL mechanisms. As a result,
we find 2755 related issues. Then, we filter these issues into
two steps. First, we exclude bugs labeled as “duplicate” to
refine our dataset. Second, we manually reproduce each bug
by extracting the provided SQL statements and transaction

sequences, ensuring that only distinct issues are included in
our study. Through this process, we identified 38, 50, and 119
ADBs in PostgreSQL, MySQL, and MariaDB, respectively.

Threats to Validity. Similar to other studies, our research
has several limitations that should be considered.

Invisibility of high-severity vulnerabilities. High-severity
vulnerabilities, such as those leading to data breaches or unau-
thorized access, are often not disclosed publicly by security
teams. For example, severe security issues in MySQL and
PostgreSQL are typically reported directly to their security
teams and are not made available in public bug trackers. Con-
sequently, our study may miss some of the most critical vulner-
abilities, potentially limiting the completeness of our findings.
However, the focus on transaction-related bugs still provides
valuable insights into detecting atomicity issues.

Representativeness of selected DBMSs. Our study focused
on three popular relational DBMSs: PostgreSQL, MySQL,
and MariaDB. While these systems represent a significant
portion of the market, our findings may not fully apply to other
databases, such as NoSQL or graph databases, with different
transaction models and atomicity guarantees. Nevertheless,
the insights gained could still provide useful guidance for
understanding atomicity in various DBMS.

4 General Findings of ADBs

In this Section, we analyze 207 collected unique ADBs to
identify their common characteristics, focusing on the mani-
festations, root cause, and trigger conditions of ADBs.

4.1 Manifestations of ADBs
To understand the potential damage of ADBs, we examined

the manifestations of the collected bugs by manually review-
ing the bug descriptions and reproducing them. Regarding the
manifestations of ADBs, we have the following findings:

Finding 1. Among the studied bugs, about 44% (91/207)
of them manifest as incorrect results, about 32% (66/207)
of them manifest as post-recovery data inconsistencies, and
about 24% (50/207) of them manifest as system unavailability.

Incorrect Result. Our investigation indicates that approxi-
mately 44% of the ADBs result in incorrect outcomes, under-
mining the accuracy and reliability of data returned to users.
These incorrect results contain various forms, such as schema
errors, metadata mismatches, trigger errors, function errors,
and constraint violations. Such manifestations arise when a
DDL operation (e.g., ALTER TABLE or CREATE INDEX) aborts
but fails to roll back all of its catalog mutations, leaving the
database in a partially updated state. As a result, query results
may be incorrect due to a misalignment between the database
schema and the intended structure. For instance, the ALTER
TABLE statement in Figure 1 fails to execute but still modifies
the metadata of table t1, resulting in the incorrect result.
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Post-Recovery Data Inconsistency. Post-recovery data in-
consistency is a prominent issue in ADB, potentially leading
to long-term corruption or loss of critical information, occur-
ring in 32% (66/207) studied cases. This problem typically
arises during system recovery when a DDL operation is inter-
rupted by a fault (e.g., power outage), and the DBMS attempts
to restore the previous state upon restart. If the atomicity of
the DDL operation is not properly maintained, the recovery
process may fail to fully restore the schema, leading to the
loss of recently added or modified schema objects. Figure 2
illustrates an example of post-recovery data inconsistency in
MariaDB. In this case, table t1 is modified through several
DDLs, such as adding and dropping columns, when the server
process is unexpectedly terminated. Upon restart, MariaDB
shows that table t1 does not exist, indicating data loss.

Figure 2: A post-recovery data inconsistency in MariaDB.

System Unavailability. The complete system unavailabil-
ity is a severe manifestation of ADBs, causing significant
downtime and affecting the accessibility of the DBMS, ac-
counting for 24% (50/207) studied cases. This includes issues
such as system crashes, assertion failures, memory errors, and
system hangs, where the entire system becomes unresponsive
or fails to recover, causing prolonged downtime and poten-
tial data loss. This typically occurs when the DBMS engine
encounters an unhandled exception or fatal error during the
execution of a DDL operation. The instability introduced by
these bugs makes them particularly dangerous, as they can
compromise the availability and reliability of DBMSs.

4.2 Root Cause of ADBs

We manually checked each bug report and further identified
several underlying causes that directly contribute to the mani-
festations described earlier. We discovered that all the ADBs
are caused by the implementation errors of Atomic DDL,
which are inherently complex due to the intricacies involved
in ensuring atomicity, consistency, and rollback mechanisms
during schema modifications. We categorize the root causes
into four categories, and we have the following findings:

Finding 2. Among the studied bugs, four main causes of
ADBs were identified, with the following distribution: incom-
plete rollback mechanisms accounted for 32%, improper syn-
chronization for 22%, inadequately implemented concurrency
control for 18%, and incorrect error handling for 22%.

The four categories collectively account for 94% of the stud-
ied ADBs. Figure 3 illustrates how frequently each root cause
appears in ADBs manifesting as incorrect results, data loss, or
system crashes. Inappropriate metadata synchronization is the
most common trigger for incorrect results, while inadequate
rollback mechanisms frequently lead to data loss, and faulty
error handling is often responsible for system crashes. Besides
them, other ADBs (6%) are caused by implementation errors
in various auxiliary mechanisms, such as improper handling
of system-level configurations, and rare edge cases in DBMS
extensions or plugins.

Figure 3: Statistic of bugs and root causes.

Incomplete Rollback Mechanisms. The implementation
error in the rollback mechanisms is a prevalent root cause
for ADBs, responsible for 65 bugs, including 31 incorrect
results and 31 post-recovery data inconsistencies. These
bugs arise when a failed Atomic DDL operation leaves
the schema in an inconsistent state due to incomplete roll-
backs. For example, in MDEV-25506 of MariaDB, the server
is forcibly crashed while executing CREATE TABLE IF NOT
EXISTS tt11 AS SELECT... statement. After crash recov-
ery, both DROP TABLE tt11 statement and a new CREATE
TABLE tt11 statement fail to execute successfully with error
messages. The drop statement returns “Unknown table tt11”
while the create statement complains that the "tablespace tt11
already exists". The main reason is that InnoDB discovers
both tt11.frm and tt11.ibd on disk, yet the internal data dic-
tionary believes the table is already being dropped and raises
an error that test.tt11 does not exist [24]. The root cause of
the bug is a flaw in the rollback mechanism of Atomic DDL
recovery: the DDL log rolled back the dictionary-level cre-
ate operation but failed to purge the tablespace, leaving the
recovery state inconsistent.

Improper Metadata Synchronization. The implemen-
tation errors in synchronization between schema metadata
and physical data structures cause 47 ADBs, including 26
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incorrect result cases. This issue arises when metadata is up-
dated to reflect a schema change, but the corresponding data
structures remain unchanged due to an interruption in Atomic
DDL operations. For example, in bug#18570 of PostgreSQL,
when an DROP EVENT TRIGGER statement appears to succeed
in detecting the trigger, while the event trigger remains ac-
tive in memory. After the command, catalog queries such as
information_schema.triggers show no trigger remains,
yet every subsequent DDL statement still invokes the trigger’s
function; meanwhile, attempting to drop that function fails
because the system claims the (supposedly deleted) trigger
depends on it [33]. The mismatch between system catalogs
and the in-memory trigger cache creates a “ghost trigger”
that blocks normal maintenance until the function is forcibly
dropped, breaking Atomic DDL semantics.

Inadequately Implemented Concurrency Control. The
implementation errors in the concurrency control subsystem
represent another major root cause, accounting for 37 ADBs.
These issues typically arise when multiple DDL operations or
concurrent transactions contend for the same resources, such
as locks on tables or indexes. For example, in BUG#116502
of MySQL, during an online build of a unique index that
includes a NULL-able column, MySQL ’s Atomic DDL mis-
handles a concurrent sequence of DELETE → ROLLBACK com-
bined with an INSERT. The engine incorrectly treats rows con-
taining NULL as duplicates, so the rollback cannot re-insert
the original row, and the entire DDL aborts—violating its
all-or-nothing guarantee [28].

Faulty Error Handling. Faulty error handling during DDL
operations is another root cause for ADBs, accounting for
18% of incorrect result cases and 46% of system unavail-
ability. This issue occurs when the DBMS fails to properly
handle errors or exceptions that arise during DDL opera-
tions. For instance, in MDEV-13205 of MariaDB, an unex-
pected error happens during the executing the ALTER TABLE
statements to add unique key and foreign key [25]. The
ALTER TABLE t2 ADD UNIQUE(c) is aborted due to a du-
plicate key error, but the DBMS fails to remove the partially
created index stub from the data dictionary. Because that or-
phaned metadata is left intact, executing ALTER TABLE t3
ADD FOREIGN KEY (c) REFERENCES t2(c) statement will
consult the corrupted data dictionary, trigger the assertion
!dict_index_is_online_ddl(index), and finally crash the server.

4.3 Trigger Conditions of ADBs
Following the identification of root causes, we analyze the

specific conditions that trigger ADBs.

Finding 3. Most ADBs (approximately 93%) are triggered in
scenarios involving data conflicts between DDL statements,
where multiple DDL statements operate or interact with the
same metadata elements in the test case.

We define metadata conflict points as the specific loca-

Figure 4: An example of metadata conflict points.

tions in test cases where multiple DDL statements operate
or interact with the same metadata elements, such as a ta-
ble, column, index, or constraint. In other words, the conflict
points reflect the data dependency between different state-
ments, which can help trigger more code behaviors of Atomic
DDL for detecting ADBs. Figure 4 illustrates an example
of metadata conflict points. The two CREATE TABLE state-
ments establishes two tables(t1 and t2) with three columns
and one column, respectively. The subsequent ALTER TABLE
statement adds two indexes on table t1, which will change the
three metadata elements t1, t1.c1, and t1.c2. Here, we iden-
tify t1, t1.c1, and t1.c2 as the 3 metadata conflict points in
the test cases. The second CREATE TABLE statement does not
make any metadata conflict points due to it does not change
any existing metadata elements.

In our study, 193 (93% of 207) studied bugs contain meta-
data conflict points, and 174 (84% of 207) cases contain over
4 metadata conflict points. Among the 193 studied bugs con-
taining metadata conflict points, 94% (181/193) were directly
triggered by metadata conflict points with the corresponding
statements. The remaining 6% (12/193) were not directly
triggered by conflict points, but the bug-triggering statements
have dependency relationships with those conflict points. Our
investigation results demonstrate that metadata conflict points
are essential to trigger ADBs.

Finding 4. Incorrect result, post-recovery data inconsistency,
and system unavailability have different trigger scenarios and
test oracle.

In our study, incorrect results and system unavailability
can occur during DDL execution. Incorrect results are iden-
tified by comparing the execution output and metadata. For
example, the ALTER TABLE statement in Figure 1 should fail
without modifying any metadata, which was confirmed by
detecting unexpected changes in metadata. System unavail-
ability is detected by checking the server’s response after
executing the test cases. If the server disconnects or becomes
unresponsive, it is confirmed as a bug. In contrast to incorrect
results and system unavailability, post-recovery data inconsis-
tency occurs when the server is restarted mid-Atomic DDL
execution. If the recovery metadata differs from the expected
state after rollback, developers confirm it as a bug.

4.4 Limitations of Existing Methods
According to the conditions outlined in Section 4.3, detecting
ADBs requires generating DDL statements that involve more
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metadata conflict points. Moreover, these test cases must be
examined in various scenarios to detect the three manifes-
tations: incorrect results, system crashes, and post-recovery
data inconsistency. However, existing DBMS testing tools are
limited in both aspects.

First, most existing tools focus on generating DQL (Data
Query Language) statements, with minimal attention paid to
DDLs. Even when DDLs are included, they are generated with
few metadata conflict points. For example, SQLsmith [39]
and EET [14] focus on generating SELECT queries, and the
DDLs they produce are typically simple, making it difficult
to simulate the complex interactions between different DDL
operations. Similarly, SQLancer [37] generates equivalent
queries to detect logic bugs by transforming SQL expressions,
which will overlook potential conflicts between DDLs.

Moreover, existing testing tools struggle to detect ADB
manifestations, particularly those resulting in inconsisten-
cies. For instance, when a DDL operation is interrupted mid-
execution, the DBMS may enter an inconsistent state with
only partial changes applied—a scenario that current tools fail
to detect. Furthermore, these tools also struggle to identify
data inconsistency after recovery, as this requires precise track-
ing of Atomic DDL execution and metadata modifications,
capabilities that are often lacking in existing approaches.

Following the findings, we design DDLUMOS which tar-
gets ADBs with metadata conflict-guided DDL synthesis and
graph-based consistency analysis. The main idea is to analyze
DDL dependencies to generate more metadata conflict points,
while also designing detection methods for three manifesta-
tions. Specifically, DDLUMOS generates more metadata con-
flict points by tracking schema elements and guiding test case
generation through a metadata table. On the other hand, it con-
structs a metadata graph to analyze schema inconsistencies
and identify ADBs based on predefined detection scenarios.

5 Design of DDLUMOS

Figure 5 illustrates the workflow of DDLUMOS, which con-
sists of two key modules: an Test Case Generator for synthe-
sizing high-quality DDL sequences and a Metadata Consis-
tency Analyzer for detecting ADBs. The process follows four
main steps: In Step 1 , DDLUMOS initializes a metadata table
to record schema elements used during test case generation,
as well as the metadata conflict points associated with each
DDL operation. In Step 2 , DDLUMOS alternates between
generating DDL statements and other SQL statements. Af-
ter each DDL operation, DDLUMOS analyzes the resulting
metadata conflict points and updates the metadata table ac-
cordingly, guiding subsequent DDL generation to maximize
conflict scenarios. In Step 3 , DDLUMOS constructs a meta-
data graph for the generated test cases and sends them to the
target DBMS. The metadata graph captures the relationships
between schema elements before and after DDLs, providing
a structural foundation for analyzing schema consistency and

correctness. In Step 4 , DDLUMOS uses the metadata graph
to detect ADBs by comparing the execution results with pre-
defined detection scenarios for three bug manifestations.

Figure 5: The workflow of DDLUMOS. It includes two main
components: (1) Test Case Generator for generating test cases
with metadata conflict guided DDL synthesis. (2) Metadata
Consistency Analyzer for detecting atomic DDL bugs with
graph-based consistency analysis.

5.1 Metadata Conflict-Guided DDL Synthesis
Metadata Conflict-Guided DDL Synthesis generates test cases
that maximize metadata conflict points to trigger ADBs effec-
tively. This approach consists of two components: Conflict
Point Tracking and Test Case Synthesis, which work together
to trigger deep behaviors of Atomic DDL.

Conflict Point Tracking. Based on the findings in Sec-
tion 4.3, incorporating metadata conflict points into DDL
test cases significantly increases the likelihood of exposing
ADBs. To achieve this, DDLUMOS continuously collects and
updates Metadata Information during test case generation,
using these details to guide the synthesis of subsequent DDL
operations. Specifically, DDLUMOS maintains a metadata
table that records critical information about schema elements
relevant to conflict scenarios, including the DDL identifier
(e.g., operation type), table name, column, index, and con-
straint data. After each DDL statement executes, DDLUMOS
updates the corresponding entries in the metadata table based
on the statement type (create, alter, or drop) and the targeted
objects (tables, columns, indexes, or constraints).

For example, as shown in Figure 6, when processing the 5th
ALTER TABLE statement, DDLUMOS identifies the affected
table (i.e., t2, t1) in the metadata table and increments its
“conflict point” field by the value introduced by that operation
(e.g., t1(1)). Likewise, if new columns or indexes are added
or removed(e.g., 6th statement), DDLUMOS revises the cor-
responding fields to reflect the latest state and constraints.
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Figure 6: An example of metadata information collection.

This metadata-driven update process accurately captures how
the schema evolves over time and provides precise conflict
guidance for generating subsequent test cases.

Test Case Synthesis. By tracking conflict points in the
metadata table, DDLUMOS synthesizes test cases that strategi-
cally exploit these conflict points to maximize the likelihood
of uncovering atomic DDL bugs. During test-case genera-
tion, DDLUMOS interweaves DDL statements with DML
(e.g., INSERT, UPDATE) and DQL (e.g., SELECT) statements,
creating comprehensive and high-coverage input sequences.
DDLUMOS generates statements of each test case iteratively:
First, it determines the statement type. Second, it builds the
skeleton of the statement based on its type and then populates
objects into the skeleton with the metadata table.

Algorithm 1: Test Case Synthesis with Metadata Table
Input :L: The length of test cases

MT : The metadata table
Output :T : The test cases

1 T = initalTestCase ();
2 while L > 0 do
3 Me,Cp = getMetadataAndConlictPoint(MT );
4 Stype = pickStatementType(T );
5 if Stype = DDL then
6 Mu = sortMetadataWithConflictPoint(Me);
7 S = synthesizeDDL(Mu,Cp);
8 end
9 else

10 S = synthesizeDMLorDQL(Me);
11 end
12 MT = updateMetadataTable(MT,S);
13 T = addToTestCase(T,S);
14 L = L−1;
15 end

Algorithm 1 details the process of test case synthesis with
the metadata table. DDLUMOS first initializes an empty test
case(T ) and then iterates to synthesize the statement until the
desired length of the test case (L) is reached (Line 1-2). The

length of the test case(L) is critical for the performance of DD-
LUMOS. We will give the specific length of the test case(L) in
Section 6. In each iteration, DDLUMOS first retrieves the cur-
rent metadata state (Me) and conflict point information (Cp)
from the metadata table (MT ) (Line 3). Next, it determines
the type of the next SQL statement to be synthesized (Stype)
(Line 4). Specifically, DDLUMOS uses a predefined ratio
(80% for DDL, 20% for other types in our implementation) to
determine whether to generate DDL statements. If true, DD-
LUMOS then randomly selects the least frequently used DDL
statement types (e.g., ALTER TABLE, CREATE INDEX)
to synthesize, ensuring diversity in the generated statements.
Otherwise, DDLUMOS similarly randomly chooses from the
available types of non-DDL statements, maintaining variabil-
ity in the types of statements generated. If the statement type is
DDL, DDLUMOS sorts the existing metadata by conflict point
frequency and synthesizes the DDL with stored metadata(Mu)
and corresponding conflict points(Lines 5-8). Otherwise, if
the selected statement type is DML or DQL, DDLUMOS uses
the existing metadata(Me) to synthesize to ensure semantic
correctness (Lines 9-11). The implementation details of the
DDL synthesis process can be found in Section 6. Once the
statement (S) is generated, DDLUMOS updates the metadata
table (MT ) to reflect changes introduced by the new statement
and adds it to the test case (T ) (Lines 12-13).

5.2 Graph-Based Consistency Analysis

After generating test cases using Metadata Conflict Guided
DDL Synthesis, DDLUMOS distributes the test cases across
multiple client threads, while controlling concurrency based
on the sequence of these statements (Details can be found
in Section 6). Besides, DDLUMOS employs Graph-Based
Consistency Analysis to verify the correctness of test case
execution results. This analysis involves two critical steps.
First, for a test case, DDLUMOS constructs a metadata graph
that represents the schema elements and their relationships be-
fore and after executing each DDL statement. Then, based on
the metadata graph and DDL execution scenario, DDLUMOS
analyzes the metadata state resulting from the DDL opera-
tions. It compares the expected metadata derived from the
graph with the actual metadata in the database after execution.
Any discrepancies between the expected and actual metadata
indicate a potential atomic DDL bug.

Metadata Graph Construction. For each test case, DD-
LUMOS constructs a metadata graph that represents the meta-
data state of the DBMS both before and after executing each
SQL statement in the test cases. Unlike a full dataset dump,
this metadata graph focuses on essential metadata information,
which can be influenced by DDL operations, including tables,
columns, constraints, triggers, row counts, indexes, views, as
well as their relationships. Each element of the metadata in-
formation is modeled as a node in the graph, while edges
represent dependencies or hierarchical relationships.
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Figure 7: An example of metadata graph construction.

For instance, Figure 7 demonstrates the construction pro-
cess of the metadata data graph with a test case in MySQL.
The left side of the figure shows the SQL statements exe-
cuted sequentially in the order(e.g.,(1)->(2)->(3)->...).
The right side illustrates the effects of these statements on
the graph structure (such as the data structure, dependencies,
etc.). The numbers(e.g., (1), (2)) on the arrows indicate which
SQL statement generated each corresponding effect.

For statement (1), DDLUMOS first creates a node for ta-
ble t1 along with child nodes for each column (c0 and c1),
connecting the parent table node to its columns. In addition,
DDLUMOS initializes a rows node that records the row count
of t1. When statement (2) inserts records into t1, DDLU-
MOS updates the rows node accordingly. Similarly, statement
(3) adds another table node (t2) and its corresponding col-
umn nodes (c3 and c4). Attributes such as data types, con-
straint types, and dependency properties are also stored within
nodes and edges, ensuring comprehensive tracking of schema
changes. For example, when statement (4) creates index i1 on
c0 of t1, DDLUMOS adds an i1 node to the metadata graph
and draws a direct edge from the existing c0 node to this new
i1 node. When statements (4), (5), and (7) further alter the
metadata of t1 and t2, DDLUMOS adds or updates the cor-
responding nodes and edges to capture the new information
and relationships and reflect these changes in the metadata
graph. Throughout the entire test execution process, the meta-
data graph is dynamically updated to provide an accurate and
consistent representation of the schema’s state at each stage.

Metadata Consistency Analysis. After constructing the
metadata graph, DDLUMOS evaluates the correctness of DDL
operations by comparing it with the actual metadata state after
each operation. Specifically, the metadata information(e.g.,
schema information, tables, columns, row counts, triggers,
and indexes) stored in the metadata graph should align pre-
cisely with the metadata in the real databases. For each DDL
statement, DDLUMOS identifies affected metadata objects
and checks for inconsistencies between the metadata graph
and their actual counterparts in the DBMS. Discrepancies are
flagged as potential bugs.

For example, the sixth ALTER TABLE statement in Fig-
ure 7,modifies table t2 along with columns c5 and c6. DD-
LUMOS first determines that this operation could affect the
metadata for t2, c5, and c6, and updates the metadata graph
accordingly. More concretely, upon executing the sixth state-

ment, the metadata graph adds two child nodes c5 and c6 un-
der the node t2, including their data types. Once the database
finishes processing this statement, DDLUMOS retrieves the
relevant metadata from the graph (namely the node informa-
tion for t2, c5, and c6), and compares it with the actual
metadata stored in the DBMS. Any mismatch discovered in
this process is reported as a potential bug.

By comparing the metadata graph with the actual metadata
stored in the database, DDLUMOS can evaluate the correct-
ness of DDL operations. However, as highlighted in Sec-
tion 4.1, ADBs manifest in three distinct forms: incorrect
results, system unavailability, and post-recovery data incon-
sistencies, each arising from different triggering scenarios.
To comprehensively detect ADBs, DDLUMOS extends its
graph-based consistency analysis to incorporate the detection
scenarios described in 4.3.

Algorithm 2: Detect ADBs with Consistency Analysis
Input :T : The test case to be executed

K: The kill signal to simulate the crash
G: Initial metadata graph

Output :The ADBs detected by DDLUMOS
1 S← splitToStatements(T )
2 foreach s ∈ S do
3 G← constructGraph(G,s)
4 M← executeToGetMetadata(s)
5 if isSimulateCrash(K) = false then
6 if connectionCheck () = false then
7 return System Unavailability
8 end
9 if !ConsistencyAnalysis(M,G) then

10 return Incorrect Result
11 end
12 end

// asynchronously trigger crash
13 spawn(AsyncCrashRecovery(K,G))
14 end

15 procedure AsyncCrashRecovery(K,G):
16 sendKillSignal(K)
17 Mn← RebootandGetMetadata()
18 if !ConsistencyAnalysis(Mn,G) then
19 return Post-Recovery Data Inconsistency
20 end

Algorithm 2 details the process of identifying ADBs with
these three manifestations. Given a test case generated with
metadata conflict-guided DDL synthesis, DDLUMOS first
splits it into individual SQL statements (Line 1). For every
statement, DDLUMOS constructs and updates the metadata
graph to represent the expected metadata state after the exe-
cution. DDLUMOS will also send the statement for execution
and get real metadata information from the DBMS (Lines 3-
4). Following the SQL execution, DDLUMOS systematically
evaluates the three types of Atomic DDL bugs: system un-

8



availability, incorrect results, and post-recovery data inconsis-
tencies. To detect system unavailability, DDLUMOS performs
a connection check to assess the server’s responsiveness. If
the system becomes unresponsive during execution, DDLU-
MOS identifies this as a system unavailability issue (Lines
6-8). For detecting incorrect results, DDLUMOS compares
the actual metadata state (M) retrieved from the database with
the expected metadata graph (G) following the consistency
analysis. Any discrepancies between the actual metadata and
the expected graph indicate an incorrect result (Lines 9-11).
To identify post-recovery data inconsistencies, DDLUMOS
asynchronously simulates a server crash by sending a kill
signal to abruptly terminate the database process. After re-
booting the server, DDLUMOS retrieves the post-recovery
metadata and compares it with the metadata graph. Any mis-
matches between the recovered metadata and the expected
state are flagged as post-recovery data inconsistencies, high-
lighting failures in the database’s recovery mechanism (Lines
13-20). Note that the process of killing the server to simulate
the crash is independent and asynchronous from the process
of executing the SQL statements and identifying the system
unavailability and incorrect results.

6 Implementation

Based on our approach, we realized DDLUMOS. The overall
codebase consists of 10k lines of C++ code, 4k lines of Bison
and Flex code, and 1k lines of Python code. Then, we ex-
plain some other implementation details, which we consider
significant for the outcome.

Effort to Adaption. Adapting DDLUMOS to a new DBMS
requires minimal effort and involves two primary steps. First,
we need to write the metadata information query statements
retrieve schema elements such as tables, columns, indexes,
and constraints. This step typically requires no more than 10
lines of SQL, tailored to the specific metadata structures of
the DBMS under test. Second, we find the SQL grammar file
(e.g., Yacc files) of the target DBMS for grammar adaption.
DDLUMOS can leverage these grammar files to automati-
cally adapt to the SQL operators of the target DBMS with a
grammar adaptor(implemented with python and bison code).

Length of Test Case Setting. The length of test cases gen-
erated by DDLUMOS is critical to the testing performance.
Overly long test cases will increase the storage and compu-
tational burden of maintaining and analyzing the metadata
graph, thereby reducing testing efficiency. Conversely, overly
short test cases may fail to adequately trigger the deeper logic
associated with Atomic DDL operations. We analyze the test
cases of 207 studied bugs and we observed that 98% of them
contained no more than 15 SQL statements. Consequently,
we set the length of test cases to 15 SQL statements in our
testing framework to balance efficiency and effectiveness.

Details of DDL Synthesis. Synthesizing DDLs with
the picked statement type and metadata table contains

two steps. (1)DDLUMOS first constructs a DDL skele-
ton based on the chosen statement type (e.g., ALTER
TABLE [table_name] ADD COLUMN [column1 datatype],
ADD COLUMN [column2 datatype]...). The clause of
this skeleton is randomly generated(e.g., ADD COLUMN
[column1 datatype]. To increase potential conflict points,
each skeleton contains at least two objects (named metadata
elements such as table_name). (2)DDLUMOS populates
the skeleton objects (e.g., table_name) with entries (e.g.,
t1, t1.c1) from the metadata table, which tracks existing
metadata elements along with their corresponding conflict
point counts. During the population, entries with fewer
conflict points are selected more frequently, and these chosen
entries must conform to the relevant data type semantics. If
DDLUMOS cannot find suitable entries in the metadata table,
it generates new entries to fill the skeleton objects.

Distributing Test Cases with Multiple Clients. As the
study shows, about 18% of ADBs arise from those imple-
mentation errors, and they still manifest as incorrect results,
post-recovery data inconsistency, and system unavailability.
To cover the codes of the concurrency control mechanism,
DDLUMOS constructs concurrent scenarios by leveraging
multiple clients to distribute SQL statements, while control-
ling concurrency based on the sequencing of these statements.
Specifically, DDLUMOS tags every SQL statement with a
sequence identifier, then launches N client worker threads
(typically 2–5) and assigns the statements to them in that pre-
defined order. Note that each client issues its own statements
sequentially so that DDLUMOS can reconstruct an accurate
metadata graph of the execution. To trigger more behaviors
of DBMS’s concurrency control mechanism, DDLUMOS oc-
casionally sends a subsequent statement before the completed
execution of the previous one, thereby intentionally triggering
concurrency control behaviors to detect ADBs in them.

7 Evaluation

To evaluate the effectiveness of DDLUMOS, we conduct ex-
periments to address the following research questions:

• RQ1: Is DDLUMOS effective in finding ADBs in real-
world DBMSs?

• RQ2: How does DDLUMOS’s performance compared
with state-of-the-art methods?

• RQ3: How many bugs collected in the study can be
rediscovered by DDLUMOS?

7.1 Evalution Setup
Tested DBMSs. To evaluate the generality and efficiency
of DDLUMOS, we select six popular open-source and well-
tested DBMSs, namely MySQL [29,43], MariaDB [4,26], Per-
cona [5], PolarDB [32], GreatSQL [10], and PostgreSQL [27,
34]. These DBMSs are also widely used in industry.
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Table 2: DDLUMOS discovered 73 bugs in six DBMSs within two weeks. (MySQL: 14, MariaDB: 15, Percona: 14, PolarDB:
11, GreatSQL: 15, PostgreSQL: 4). [IRM: Incomplete Rollback Mechanisms, IMSYN: Improper Metadata Synchronization,
IICC: Inadequately Implemented Concurrency Control, FEH: Faulty Error Handling, Others: Other Root Causes for Bugs.

DBMS Bug Type and Number Bug Status Root Cause

MySQL Incorrect Result(7) Confirmed(7), Fixed (1) IRM(2), IMSYN(1), IICC(1), FEH(1), Others(2)
MySQL System Unavailability(4) Confirmed(4), Fixed(1) FEH(3), IICC(1)
MySQL Post-Recovery Data Inconsistency(3) Confirmed(3) IRM(1), IMSYN(1), IICC(1)
MariaDB Incorrect Result(8) Confirmed(8), Fixed(1) IRM(3), IMSYN(2), FEH(2), Others(1)
MariaDB System Unavailability(3) Confirmed(3), Fixed(1) FEH(1), IICC(1), IRM(1),
MariaDB Post-Recovery Data Inconsistency(4) Confirmed(4) IMSYN(2), IRM(1), FEH(1)
Percona Incorrect Result(4) Confirmed(4), Fixed(1) IRM(1), IMSYN(2), FTH(1)
Percona System Unavailability(4) Confirmed(4) Others(2), FEH(1), IICC(1)
Percona Post-Recovery Data Inconsistency(6) Confirmed(6), Fixed(2) IMSYN(3), IRM(2), FEH(1)
PolarDB Incorrect Result(4) Confirmed(4) IICC(1), FEH(1), IRM(2),
PolarDB System Unavailability(4) Confirmed(4), Fixed(1) FEH(3), Others(1)
PolarDB Post-Recovery Data Inconsistency(3) Confirmed(3), Fixed(1) IRM(3)
GreatSQL Incorrect Result(7) Confirmed(7) IMSYN(3), IRM(3), IICC(1)
GreatSQL System Unavailability(3) Confirmed(3), Fixed(1) FEH(1), IICC(2)
GreatSQL Post-Recovery Data Inconsistency(5) Confirmed(5), Fixed(1) IRM(1), IICC(2), FEH(1), Others(1)
PostgreSQL Incorrect Result(1) Confirmed(1) IMSYN(1)
PostgreSQL System Unavailability(2) Confirmed(2), Fixed(2) FEH(2)
PostgreSQL Post-Recovery Data Inconsistency(1) Confirmed(1), Fixed(1) IRM(1)

Total 73 ADBs 73 confirmed, 14 fixed

Basic Setup. The experiments were conducted on a ma-
chine running 64-bit Ubuntu 20.04 with an AMD EPYC 7742
Processor @ 2.25 GHz, 128 cores, and 504 GiB of main mem-
ory. All DBMSs were tested using docker containers that were
downloaded directly from their websites, each with 5 CPU
cores and 50 GiB of RAM.

Compared Techniques. We compare DDLUMOS
with four state-of-the-art DBMS testing tools, including
SQLancer [37], SQLsmith [39], SQUIRREL [46], and
TXCHECK [13], which are widely used in industry and detect
amounts of bugs SQLancer and TXCHECK detect the logic
and transactional bugs, respectively, while SQLsmith and
SQUIRREL focus on detecting crashes in DBMSs.

7.2 ADBs in Real-World DBMS

We apply DDLUMOS to six DBMS under test for atomic DDL
bug detection evaluation. DDLUMOS successfully detected
73 ADBs in two weeks. Table 2 shows DDLUMOS discovered
14, 15, 14, 11, 15, and 4 ADBs in MySQL, MariaDB, Percona,
PolarDB, GreatSQL, and PostgreSQL, respectively. 14 ADBs
of them have been fixed due to the high severity. As described
in Section 4.1, the 73 ADBs contain three types, 31, 20, and 22
bugs corresponding to incorrect results, system unavailability,
and post-recovery data inconsistency, respectively.

Root Cause and Severity. We analyze the root causes of
discovered bugs based on the response of the vendor. The right
part of Table 2 shows the statistics of ADBs’ root causes in six
DBMSs. Specifically, DDLUMOS detected 21, 15, 11, and 19
ADBs caused by incomplete rollback mechanisms, improper
metadata synchronization, inadequately implemented concur-
rency control, and faulty error handling, respectively. Besides,
7 bugs are caused by other root causes (e.g., untracked schema
element orphaning, errors in parsing DDLs).

Feedback from DBMS Developers. We have actively re-
ported all 73 bugs to the corresponding DBMS vendors and
received their confirmation feedback. At the time of the paper
writing, 73 ADBs have already been confirmed, and 14 ADBs
have been fixed. Besides, 9 bugs have been assigned with
CVE IDs due to their severity. More importantly, the detected
bugs have garnered the attention of the DBMS developers.
For example, when we were reporting bugs to PolarDB, the
developers responded for them immediately.

Case Studies. We give the following case studies to demon-
strate the effectiveness of DDLUMOS.

Case Study 1: No trigger exists after CREATE OR RE-
PLACE TRiGGER in MySQL. Figure 8 illustrates a case of
incorrect result in MySQL. This bug occurs when attempting
to create a trigger on one table (t1) and then replace it with
another table (t2) using the CREATE OR REPLACE TRIGGER
statement. Instead of successfully replacing the original trig-
ger on t1 with a new trigger on table t2, an error is thrown
and both triggers disappear finally in DBMS. The root cause
is the implementation errors in metadata synchronization,
where the new trigger can not be saved correctly due to the
metadata inconsistency and return error messages.

Figure 8: A case of incorrect result in MySQL.

Case Study 2: Tablespace id Confilt and Data Loss upon
Crash Recovery. Figure 9 illustrates a case of post-recovery
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data inconsistency in GreatSQL. This bug occurs when at-
tempting to execute an ALTER TABLE statement to modify a
table (t0) by changing its storage engine. During the exe-
cution of this statement, the server is forcibly killed. Upon
restarting the server, an error is thrown, indicating a tablespace
mismatch. Additionally, table t0 is found to be empty after
the restart, resulting in data loss. The root cause lies in the
implementation errors in rollback mechanisms. The modifica-
tion to table t0 affects the underlying tablespace information,
which does not properly rollback after the crash. As a result,
after the server recovery, the data in table t0 is lost.

Figure 9: A post-recovery inconsistency case in GreatSQL.

7.3 Comparison with State of the Art
To evaluate the effectiveness of our approach, we com-
pared DDLUMOS with four state-of-the-art DBMS testing
tools: SQUIRREL, SQLancer, SQLsmith, and TXCHECK, all
of which are widely recognized in the industry. The evaluation
focused on three key metrics: (i) the number of code branches
covered in DDL operation modules, (ii) the average number of
metadata conflict points generated per DDL statement within
48 hours, and (iii) the number of unique ADBs identified by
each tool during the same 48-hour period. For a fair com-
parison, after each testing session, we collected all generated
queries and reran them to unify branch measurements. Each
experiments were run for 5 times.

Table 3: Number of related branches covered by each tool.
DBMS SQLancer SQLsmith SQUIRREL TXCHECK DDLUMOS

MySQL 1083 401 954 571 3184
MariaDB 1,206 593 1103 452 2994
Percona 1,120 374 853 501 3201
PolarDB 1075 524 812 532 2814

GreatSQL 938 412 1063 447 2597
PostgreSQL 2041 953 1443 1202 3405

Total 7463 3257 6228 3705 18195
Variance 2304 8049 15293 9984 8852

Related Code Branches. Tables 3 show the average num-
ber of covered code branches in DDL operations modules by
those DBMS testing tools in 48 hours within 5 runs. The re-
sults indicate that DDLUMOS outperformed other DBMS test-
ing tools in triggering DDL behaviors. Specifically, DDLU-
MOS covered 10732, 14938, 11976, and 14490 more branches

in Atomic DDL modules than SQUIRREL, SQLancer, SQL-
smith, and, TXCHECK, respectively. The variance shows that
different tools exhibit variations during testing.

Average Metadata Conflict Points. Table 4 shows that
DDLUMOS generates more metadata conflict points for each
DDL statement on average than other tools within 5 runs.
Specifically, each DDL statement generated by DDLUMOS
contains an average of 1.24 metadata conflict points, which is
0.93, 1.21, 0.17, and 0.76 more than the average metadata con-
flict points for each DDL statement generated by SQUIRREL,
SQLancer, SQLsmith, and TXCHECK, respectively.

The improvement achieved by DDLUMOS is primarily due
to its metadata conflict-guided DDL synthesis. This approach
enables DDLUMOS to systematically generate test cases that
specifically stress the atomicity of DDL operations by creat-
ing scenarios that involve metadata conflicts. These targeted
test cases not only enhance coverage but also uncover deep
logical flaws in the DBMS’s handling of concurrent and inter-
rupted DDL operations. In contrast, other tools lack special-
ized mechanisms for generating Atomic DDL scenarios. For
example, SQLancer primarily generates random DDL opera-
tions without focusing on metadata conflicts, which limits its
effectiveness in testing atomicity. Similarly, SQUIRREL and
SQLsmith prioritize syntax correctness over conflict-driven
test case design, resulting in lower coverage of Atomic DDL
components in DBMSs.

Table 4: Number of average metadata conflict points per DDL.
DBMS SQLancer SQLsmith SQUIRREL TXCHECK DDLUMOS

MySQL 0.33 0.03 0.15 0.43 1.28
MariaDB 0.27 0.03 0.17 0.46 1.31
Percona 0.29 0.02 0.16 0.44 1.26
PolarDB 0.29 0.04 0.17 0.5 1.25

GreatSQL 0.34 0.04 0.22 0.48 1.18
PostgreSQL 0.28 0.03 0.23 0.39 1.16

Average 0.3 0.03 0.18 0.45 1.24
Variances 0.00067 0.00047 0.0092 0.00127 0.00283

Triggered ADBs. Table 5 displays the average number of
bugs detected by each tool in 48 hours within 5 runs. It shows
that DDLUMOS outperformed the other tools, uncovering 27,
31, 32, and 26 more bugs compared to SQLancer, SQLsmith,
SQUIRREL, and TXCHECK, respectively.

Table 5: Number of bugs detected by each tool in 48 hours.
DBMS SQLancer SQLsmith SQUIRREL TXCHECK DDLUMOS

MySQL 2 1 2 3 8
MariaDB 1 0 0 1 9
Percona 2 1 1 2 5
PolarDB 2 2 0 1 4

GreatSQL 1 1 1 2 8
PostgreSQL 1 0 0 1 2

Total 9 5 4 10 36
Variances 2 0.8 0.4 2 6

11



To better understand the relationships between the bugs
detected by the different tools, we analyzed their bug reports.
Figure 10 illustrates the overlap between bugs detected by
DDLUMOS and the other tools. DDLUMOS uniquely iden-
tified 36 bugs, demonstrating its ability to uncover a broad
range of ADBs. Among these, 2 bugs and 3 bugs are over-
lapped with SQLancer and TXCHECK, respectively, while
no overlap was observed with SQLsmith or SQUIRREL. The
overlapping bugs detected by DDLUMOS, SQLancer, and
TXCHECK were primarily related to simple schema modi-
fications involving basic DDL operations, which both tools
focus on. However, DDLUMOS significantly outperformed
SQLancer in detecting bugs involving concurrent schema
modifications and recovery scenarios, as SQLancer does not
target these conditions.

Figure 10: Venn diagram for bugs found by different tools.

The bugs detected by DDLUMOS and SQLsmith were en-
tirely orthogonal. SQLsmith primarily focuses on generating
complex SELECT statements to detect crash bugs, producing
limited DDL statements that do not involve metadata modi-
fications. In contrast, DDLUMOS targets metadata conflicts,
incomplete rollbacks, and concurrency issues during DDL
operations, making it uniquely suited for detecting ADBs.
Similarly, the bugs detected by DDLUMOS and SQUIRREL
were also orthogonal. SQUIRREL explores a broader range of
DBMS behaviors with coverage guidance to detect memory
safety bugs and crashes. The four bugs detected by SQUIRREL
are unrelated to DDL statements.

7.4 Rediscovery of Surveyed ADBs
To further evaluate the effectiveness of DDLUMOS, we ex-
amined whether DDLUMOS could rediscover 207 known
Atomic DDL bugs previously collected in our research. Our
goal was to evaluate whether DDLUMOS could systematically
rediscover these ADBs in realistic settings. Specifically, we
applied DDLUMOS to the versions of PostgreSQL, MySQL,
and MariaDB corresponding to each bug report in the dataset.
For each DBMS version, DDLUMOS ran for one week to
detect ADBs. Whenever a bug was detected, we compared its
triggers and observed symptoms with those in the surveyed
dataset. A bug was considered rediscovered if it manifested in
the same way as originally reported, such as incorrect results,
system crashes, or data loss.

Figure 11 presents the cumulative number of Atomic DDL
bugs rediscovered by DDLUMOS in PostgreSQL, MySQL,
and MariaDB in one week. Within the first two days of test-

Figure 11: Number of rediscovered bugs in one week.

ing, DDLUMOS successfully rediscovered 86.5% of the bugs
(179/207), demonstrating its efficiency in quickly exposing
a significant portion of critical DDL-related issues. By ex-
tending the test period to one week, DDLUMOS increased
the total number of rediscovered bugs to 196, representing
approximately 94.7% of the 207 reported Atomic DDL bugs.
This includes 34 out of 38 bugs in PostgreSQL, 48 out of 50
bugs in MySQL, and 114 out of 119 bugs in MariaDB.

The high rediscovery rate primarily stems from two key
design features in DDLUMOS. First, its Metadata Conflict
Guided DDL Synthesis systematically constructs test scenar-
ios that faithfully reflect real-world DBMS usage, such as
concurrent schema modifications and transaction rollbacks.
As a result, DDLUMOS rapidly surfaces problems that can
lead to data corruption, server crashes, or anomalies during
recovery. Second, the Graph-Based Metadata Consistency
Analysis enhances DDLUMOS’s effectiveness by identifying
subtle inconsistencies in the database schema and system
that may not be immediately obvious. Through a graph-based
representation of schema states, DDLUMOS can efficiently
explore diverse execution paths and detect bugs that would
remain hidden under conventional testing.

8 Discussion

Missed Rediscoveries. Despite the bugs being rediscovered,
there are still 11 bugs that did not resurface in the one-week
experiments. A closer inspection revealed two main reasons
for these missed rediscovered. First, 8 out of the 11 unredis-
covered bugs relied on specialized plugins or configuration
features. Since DDLUMOS does not modify system envi-
ronments during testing (e.g., it does not install plugins or
enable specific configurations), the required conditions for
these bugs to occur were not present. These environment-
dependent issues represent a small fraction (8 out of 207) of
the total. Second, 3 bugs required specific execution paths that
DDLUMOS’s current generation strategy did not systemati-
cally explore within one week. When the testing period was
extended to two weeks, DDLUMOS was able to rediscover
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these three bugs, demonstrating its ability to detect rare or
timing-sensitive defects when given sufficient time.

Extend Existing DBMS Testing Tools with DDLUMOS.
While DDLUMOS primarily focuses on detecting atomic DDL
bugs, its metadata conflict tracking and DDL synthesis pat-
terns can also aid in discovering other types of DBMS bugs.
First, DDLUMOS can be integrated into existing grammar-
based DBMS testing frameworks to enhance their bug detec-
tion capabilities. For example, grammar-based tools typically
focus on generating syntactically correct SQL queries, but
they may not always consider how DDL operations interact
with schema elements. By incorporating DDLUMOS, these ex-
isting frameworks can trigger scenarios that may expose rare
or hard-to-find bugs in DBMS schema handling. Furthermore,
DDLUMOS can be used in conjunction with other DBMS
testing tools, such as those focused on transaction-level bugs
or logical errors, to cover a broader range of potential issues.

9 Related Work

DBMS Testing. DBMS testing has evolved significantly over
the years, with efforts primarily focusing on crash bug detec-
tion [12,16, 39,46], correctness verification [14,17, 35,37, 40,
45], and performance evaluation [15, 18].

Crash bug testing aims to identify scenarios where the
DBMS may fail or crash under specific conditions. Tools like
SQLsmith [39] generate a variety of SQL queries to stress test
the DBMS, revealing potential crash points. SQUIRREL [46]
and RATEL [42] introduce coverage-feedback into the query
mutation to cover more branches. LEGO [16] enhances code
coverage with sequence-oriented SQL mutation. LEGO [16]
proposes sequence-oriented mutation to improve the code
coverage by combining different SQL Type Sequences of the
statements. Griffin [9] designs grammar-free mutation meth-
ods to detecting crash bugs in DBMS. Correctness verification
is another crucial aspect of DBMS testing, focused on ensur-
ing the accuracy of query execution. Techniques such as meta-
morphic testing [14,17,35–37] and differential testing [40,45]
have gained widespread adoption. For example, SQLancer
uses oracles [35,37,37] to detect logic bugs by comparing the
outcomes of different queries that should theoretically yield
the same result. Additionally, RAGS [40] and Grand [45]
utilize differential testing to uncover logic discrepancies by
comparing the results of similar queries across different exe-
cution paths. Performance evaluation tests how efficiently a
DBMS handles diverse workloads. Tools like APOLLO [15]
conduct performance regression testing to identify degrada-
tion over time. Meanwhile, AMOEBA [18] assesses the per-
formance consistency of semantically equivalent queries to
uncover unexpected performance bottlenecks. Puppy [44] de-
tects performance degradation bugs with limited-optimization
plan construction.

While these approaches have significantly advanced DBMS
testing, they primarily focus on query execution and general

DBMS stability, often overlooking the specific challenges
associated with Data Definition Language (DDL) operations.
With the growing complexity of DDL operations, particularly
in high-concurrency environments, there is an urgent need
for testing frameworks that focus specifically on ensuring
atomicity and consistency in these operations.

Atomicity Bug Detection. Atomicity bugs pose signifi-
cant challenges to DBMS reliability. These bugs occur when
a sequence of SQL operations, expected to be atomic, fails
to execute completely, leaving the DBMS in an inconsis-
tent state. Existing work related to atomicity has largely
focused on transaction management [8, 13, 19–21, 31, 38].
For example, techniques like transactional memory test-
ing [19,21] and atomicity violation detection in multithreaded
programs [20, 31, 38] can also be applied to detect atomicity
issues. In the context of DDL operations, Atomic DDL bugs
are often triggered by metadata conflicts, insufficient rollback
mechanisms, and concurrency issues. Tools specifically de-
signed to detect such Atomic DDL bugs are still scarce. While
some research has explored the use of fuzzing techniques to
generate DDL operations for testing purposes [8, 13], these
efforts are still in their infancy and lack the sophistication
needed to fully capture the complex interactions that can lead
to atomicity violations in real-world DBMSs.

DDLUMOS addresses this gap by focusing specifically on
detecting atomicity bugs in DDL operations. By generating
DDL sequences that intentionally create metadata conflicts
and simulating high-concurrency environments, DDLUMOS
is able to uncover vulnerabilities that are typically missed by
conventional testing approaches. This focus on DDL atom-
icity represents a significant advancement in DBMS testing,
providing a new avenue to improve the reliability of schema
modifications in modern databases.

10 Conclusion

In this paper, we have presented an in-depth analysis of 207
ADBs across three widely used industry DBMSs. Our investi-
gation reveals that ADBs primarily manifest as incorrect re-
sults, data loss during recovery, and system crashes, which are
mainly triggered by the metadata conflicts between DDL state-
ments. To address these issues, we developed DDLUMOS, a
testing tool that detects ADBs with metadata conflict-based
DDL generation. By employing DDLUMOS across widely
used DBMSs (e.g., MySQL and MariaDB), we discovered 73
previously unknown bugs, all of which have been confirmed.
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