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Modern file systems have become increasingly feature-rich and highly complex, making crash consistency
increasingly difficult to perform correctly. Thoroughly testing file systems for crash consistency bugs, however,
is difficult to achieve good results due to insufficient state exploration, a lack of guidance for test case generation,
and missing support for modern file system features.

In this paper, we present a new approach towards testing file system consistency: systematic file system
persistent state exploration. In contrast to previous efforts, our design addresses these shortcomings through
testing the crash consistency property of file systems systematically using the following procedures. Initially,
we use system call generation and execution feedback from fuzzers to generate workloads that stress the file
system code. During this process, we systematically explore all possible persistent states of the underlying file
system for the given workload, and subsequently use them as file system image inputs for the crash recovery
routines to produce a corresponding file system state. After the file system finishes processing an image input,
we deploy an efficient file system checker to compare the contents of the image to that of a correct image and
determine whether the image is inconsistent, consequently determining whether we has triggered a crash
consistency bug in the underlying file system.

We implement a prototype tool SnapCC and deployed it for testing multiple mainstream file systems on
Linux. We compared its effectiveness along with other relevant tools Hydra and B3, where our results show
that SnapCC achieves 16% to 44% better coverage over Hydra, and finds 15 new consistency bugs, whereas B3
and Hydra finds 2 and 6, over a period of 2 weeks, further demonstrating SnapCC’s effectiveness in discovering
file system consistency bugs. To demonstrate our approach’s adaptability, we also tested SnapCC on 5 other
file systems, upon which 7 additional bugs were found.

CCS Concepts: • Security and privacy → File system security; Operating systems security; Database
and storage security; Software and application security; • Computer systems organization → Dependable
and fault-tolerant systems and networks.
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1 Introduction
File systems, unlike many ephemeral programs, need to explicitly write data onto blocks on non-
volatile storage devices for it to persist across power cycles. In an optimal setting, file systems need
not handle cases where a drive or partition for a given file system is inconsistent, where data on disk
is not in a valid state. However, in reality, accidents such as power interruptions, drive failures, and
possibly human errors happen, such that they can significantly interrupt the persistence operations
of a file system. Therefore, file system designs need to accommodate for circumstances where data
persistence operations may fail midway, leaving an inconsistent file system on disk, thus requiring
certain procedures to recover the data on disk into a valid state for further operations to proceed.

File system designs have developed ideas and methodologies, including log structured file systems,
to combat such problems. However, as modern file systems have evolved significantly over their
predecessors, where they adopt many new features (e.g. Linux’s BTRFS [27] and FreeBSD’s OpenZFS
incorporate advanced features such as compression, encryption, snapshots, etc.), the addition of such
features significantly increases the complexity involved with these file systems when implementing
persistence operations and consequent crash recovery procedures. This significantly increases the
difficulty involved in designing robust crash recovery procedures for modern file systems, where
insufficient examination and testing may lead to critical data-losing bugs living in shipped software.

In general, testing is an effective means of rooting out concrete bugs in program code. Specifically
for testing file systems for crash consistency bugs, the procedure mainly consists of the following
steps: 1) a block device with a file system is mounted as the target; 2) the tester procures a file
system invocation list containing calls to read and write from the target file system; 3) the tester
invokes the relevant invocations on the mounted file system; 4) the subsequent file system is
checked for any errors. Previous research, such as B3 [22] and Hydra [15], tackle the issue of testing
file systems for consistency bugs. B3’s approach enumerates all possible combinations of POSIX
file system operations with a length less or equal to 3 on a target file system, and injects a fault
after an appending persistence operation (usually a sync() call) to trigger possible crash consistency
bugs. Hydra uses fuzzing as a means to explore a greater input space by using feedback-guidance
to generate test cases of file system invocations,

While their approaches have found concrete crash consistency bugs, their main focus is on
POSIX-compliant file system operations while performing sequence-wise fault injection. With
modern file systems, we find that file system crash consistency bugs can also occur during design-
specific operations, and their interactions with POSIX file system operations, such as experiencing
a fault during snapshot creation, etc. To effectively find such instances of crash consistency bugs
through testing, we need effective means of test case generation and crash consistency bug detection.
Specifically, the proposed test case generation methods need to create diverse on-disk file system
images produced by triggering an abundance of file-system-specific operations that effectively
explore the feature space of the file systems. Additionally, the crash consistency bug detection
mechanisms need to effectively find all correct states of the file system as testing oracles to determine
exceptional states as potential bugs.

Consequently, to test file systems for crash consistency bugs with better effectiveness, file
system crash consistency checkers need to address the following challenges. First, generating file
system invocations to trigger diverse functionalities in the file systems is difficult to accomplish,
considering the different interfaces and semantics of such invocations between different file systems.
Additionally, file systems tend to write data to the disk asynchronously, thus making it significantly
difficult to capture all possible on-disk states generated through executing a file system invocation
sequence to use as test cases. Finally, detecting crash consistency bugs post-execution is difficult as
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file systems are diverse in their interpretations and implementations of crash consistency, whereas
manual inspection is undesirable as the number of test cases executed is huge.

We observe that in reality, both systematically exploring possible on-disk states for each invo-
cation sequence and automatically finding possible valid states are two sides of the same coin:
persistence operations consist of multiple write operations to the block device for updating the
relevant metadata and data blocks, thus through enumerating through all states of the underlying
storage device during the execution of an invocation sequence, we are in essence finding all possible
states that the device is in under any failure, while finding the valid states can be achieved in
identifying safe states after every persistence point, such as executing sync(), as safely unmounting
the corresponding block device results in a consistent file system structure. Furthermore, to address
the invocation sequence generation and mutation problem, we can borrow established methods
from kernel fuzzing though utilizing expert written system call specifications for kernel fuzzers, such
as Syzkaller [32], and prioritizing file system modification operations, including file-system-specific
operations.

Using these observations, we propose SnapCC, a file system crash consistency bug detection tool
that performs systematic file system state exploration to greatly increase the effectiveness in rooting
out crash consistency bugs. SnapCC uses kernel fuzzing methods to generate invocations to file
systems, prioritizing file-system-specific operations, while designs custom modules and routines to
generate test cases and find valid states from the execution of invocations, and consecutively uses
such to find and detect crash consistency bugs. Specifically, to effectively detect consistency bugs in
file systems, SnapCC mainly utilizes a specification-based invocation sequence generator/mutator,
an Automatic Valid State Finder to generate test oracles, a Systematic On-Disk State Explorer
to produce all possible on-disk states for a given file system invocation sequence, and finally a
Consistency Verifier to identify instances where the file system exhibits an inconsistency bug.
SnapCC leverages existing specifications for file-system-relevant system calls for effective input
generation and mutation, which are extracted from Syzkaller and further improved with more
file-system-specific system calls. For systematic exploration of possible crash states and automated
testing oracle generation, SnapCC leverages snapshots to rapidly iterate through persistent states
during an invocation process. To identify valid persistence states, SnapCC first identifies persistent
points within the invocation, and acquires a snapshot of such a valid state after safely unmounting
after each persistence point. For systematic exploration, SnapCC hooks QEMU’s block device
driver to identify each write operation initiated by the file system. When such a write operation
commences, SnapCC takes a snapshot of the block device backing file during and after the write
operation. After concluding an invocation sequence, SnapCC mounts each snapshot of the block
device during execution, and compares its state to the set of valid states. If no match is found, then
SnapCC reports such a case as a crash consistency bug.

We implemented SnapCC and evaluated its effectiveness with B3 (implemented as two tools
ACE+CrashMonkey [23]) and Hydra as comparison tools. Our results on Linux file systems BTRFS,
F2FS, and ext4 show that SnapCC achieves a 16% to 44% improvement in coverage over Hydra. For
bug finding capabilities, we first used a baseline dataset consisting of the historical crash consistency
bugs found by B3 and Hydra to test SnapCC’s bug finding proficiency, where it successfully found
all bugs in the dataset. On BTRFS, F2FS and ext4, SnapCC found 15 new consistency bugs over a
period of 14 days, where B3 found 2 and Hydra found 6. SnapCC’s adaptability to new file systems
can be demonstrated by its test run on the file systems UFS, XFS, BCacheFS and OpenZFS, where it
also found 7 new crash consistency bugs. We also examined the overhead of SnapCC’s systematic
state exploration capabilities, which show that SnapCC’s execution time is at most 2× than that
of Hydra, which is acceptable considering SnapCC’s greater effectiveness in uncovering crash
consistency bugs. Additionally, our ablation tests also show that, using the same set of POSIX
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file system operations, SnapCC still achieves a 22% increase in code coverage over B3 and Hydra,
demonstrating the effectiveness of SnapCC’s approach in finding cases of crash consistency bugs
in ordinary POSIX operations.

In conclusion, our main contributions in this paper are given as follows:
• We identify that modern file system have implementation-specific features and functionalities

that impact crash consistency correctness, thus requiring more systematic and versatile crash
consistency testing methods to generate more effective file system invocation sequences,
identify more unique file system on-disk states as the test cases, and automated valid state
finding for multiple file systems.

• We propose SnapCC, a file system consistency testing tool that addresses the aforementioned
issues with effective, specification-driven invocation sequence generation and mutation,
systematic file system on-disk state exploration for test case generation, automated valid-state-
iteration-based testing oracle generation, and crash consistency bug detection mechanisms.

• We evaluated SnapCC against previous research works Hydra and B3 on Linux file systems
BTRFS, F2FS and ext4. Our tests show that SnapCC achieves a 16% to 44% improvement
in coverage compared to Hydra, and additionally SnapCC found 15 new bugs in various
file systems over the course of 14 days, whereas B3 and Hydra found 2 and 6, respectively.
Furthermore, our analysis of SnapCC’s execution overhead show that SnapCC’s execution
throughput is comparable to state-of-the-art file system fuzzing techniques, and our ablation
tests show that SnapCC still achieves a 22% increase in code coverage over B3 and Hydra
even when using only POSIX-compliant file system invocations. Adaptation tests also extend
SnapCC’s scope to four other file systems, where SnapCC found 7 new crash consistency
bugs.

2 Background
2.1 File System Crash Consistency
File system crash consistency is the ability of a file system to keep its internal data structures
and corresponding user data valid during unexpected failures such as power outages. In the early
days of computing, file systems required simple consistency checking measures, as all system
calls were executed sequentially, including disk I/O, thus file systems is in constant consistency
with its backing store. However, as the performance of computers grew exponentially, the speed
disparity between memory and persistent storage grew significantly, necessitating separation of
the in-memory file system data structures and the on-disk file system contents. Immediate changes
to the file system’s data structures remained in memory for efficiencies, where explicit persistence
calls (sync(), fsync(), etc. in POSIX) or kernel maintenance threads will flush the dirty contents,
i.e. those that have diverged from disk contents, into the backing store to persist the modified
data. In the event of a persistence operation failure due to power failures, device malfunctions,
operating system crashes, etc., the file system should recover from such failures to a valid state, i.e.
a state where the internal data structures and data of the file system are coherent, without lost or
corrupted data. This requires meticulous attention to the design and implementation of persistence
and recovery routines, where a single error can lead to disastrous results.

Modern file systems have introduced many quality-of-life feature enhancements, such as volume
and subvolume management, snapshots, file and data de-duplication, etc., which, while presenting
the end user with a rich feature set, impose significant difficulties for designing correct crash recov-
ery routines. Intuitively speaking, the more complex that the file system’s functionalities become,
the more convoluted and error-prone that writing crash recovery routines become, potentially
having more bugs within its code.
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There is much work in both academia and industry that strives to pin-point and consequently
eradicate consistency bugs from file systems, both from a constructive design perspective and
post-implementation testing perspective. For the former, many file systems use techniques such as
journaling or transaction-based operations which both allow the file system to undo unfinished
operations during the recovery from a crash, therefore maintaining the file system’s consistency.
However, practical testing tools that find consistency bugs within file systems demonstrate that
bugs within the file systems’ implementations may still result in inconsistent states after crashes.

Currently, state-of-the-art file system consistency dynamic testing tools include B3 and Hydra. B3
is a black-box approach that tackles the state exploration problem through exhaustively searching
through possible combinations of POSIX file system operations with a length less or equal to
three. It then executes each found sequence on a file system image with a persistence system
call sync() appended to initiate the file system persistence operation. After sync() returns on each
execution, B3 simulates a crash at a random time point. It then remounts the file system image and
compares the contents to the expected results when a program calls sync(). In its implementation,
B3 consists of two tools, namely ACE and CrashMonkey, where the former tools is tasked with
generating all possible calls, whereas the latter executes the generated traces, simulates crashes,
and triggers consistency validation routines. Hydra is a fuzzing framework proposed by Kim et
al. [16] which integrates many file system bug finding capabilities, including consistency checking.
In contrast to B3, Hydra does not aim to exhaustively check all possible combinations with a
length upper bound; rather it explores an infinite input space through randomized input generation
and mutation techniques. Hydra also sports a full fuzzing feedback loop, allowing it to preserve
interesting inputs for further mutation and testing. Hydra’s consistency checking component,
SymC3, is an emulation-based tool that simulates the file system operations for a given invocation
sequence. It produces valid states for an invocation sequence and compares the file system image
after remounting and allowing the file system to recover after a simulated crash.

2.2 Fuzzing
Fuzzing is a popular and effective dynamic testing technique that has been applied to testing various
types of software with success. In principle, fuzzing repeatedly tests a program through feeding its
generated or mutated inputs and observing for any exceptional behavior. Many state-of-the-art
fuzzers (fuzzing tools) use greybox feedback to assist input generation and mutation.

Kernel fuzzing adapts fuzzing to testing operating system kernels for bugs. The kernel under
test runs in a virtualized environment, where an agent program, which delivers fuzzer-generated
inputs into the kernel. Current state-of-the-art kernel fuzzers feed input data to the kernel through
invoking various system calls. The specific system calls to call and their respective arguments are
called a system call sequence. To generate such inputs, kernel fuzzers generally use system call
specifications to generate new calls and mutate existing system call sequences.

Syzkaller, a state-of-the-art kernel fuzzer, utilizes a plethora of system call descriptions written by
kernel experts to generate a wide assortment of system call sequences. The descriptions consist of
concrete system call declarations, relevant data types and their aliases, input or output directions for
arguments, as well as constants, such as flags. For certain system calls that take certain arguments
or exhibit extraordinary behavior when used with a certain argument, Syzkaller uses system call
specializations to specify these special system calls. We show some sample specifications in Listing 1.
In the listing, the first line shows a declaration of a resource type, which represents entities passed
in and out of system call invocations, and the subsequent lines show specifications for specific
system calls. For instance, the second and third lines are for the generic open() and mount() system
calls, whereas the last line is for a specialized ioctl() system call, i.e. an ioctl() call that describes an
invocation to the F2FS file system for defragmentation operations.
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1 resource fd[int32 ]: -1

2 mount(src ptr[in , blockdev_filename], dst ptr[in, filename], type ptr[in, string[

filesystem ]], flags flags[mount_flags], data ptr[in, string , opt])

3 open(file ptr[in , filename], flags flags[open_flags], mode flags[open_mode ]) fd

4 ioctl$F2FS_IOC_DEFRAGMENT(fd fd, cmd const[F2FS_IOC_DEFRAGMENT], arg ptr[inout ,

f2fs_defragment ])

Listing 1. Sample Syzkaller system call specifications, including definitions for resources (Line 1), declarations

for regular system calls (Lines 2 and 3), and specialized system calls that specify a specific function segment

of a general system call (Line 4).

Kernel fuzzers can also partially support file system testing, as the file operations on file systems
are conducted through system calls to the kernel. However, compared to specific file system
fuzzers such as Hydra, kernel fuzzers are not designed specifically for syntactically-correct and
semantically-rich file system invocation sequence generation, and have insufficient checkers for
identifying different types of errors outside of memory violations in file systems.

3 Motivation
While previous works such as B3 and Hydra utilize testing to find concrete consistency bugs, their
main focus is detection through POSIX-standard file system invocations and their corresponding
functionalities However, modern file systems have outgrown their primitive roots, and require
additional testing capabilities to find bugs in these file-system-specific code.

While B3 reduces the input space in order to exhaustively search for combinations of file system
operations that may produce consistency bugs, the limit on the number of file system operations
prohibit its capabilities from finding consistency bugs that require more complex file system
invocation sequences from being found, especially considering the complexity of guiding file
systems into states corresponding with implementation-specific functionalities. Additionally, B3’s
consistency testing produces considerable false positives, as its consistency oracle only produces
a subset of the possible valid states that a file system image can be in, therefore B3 frequently
flags a consistency bug when the image is actually consistent. Furthermore, B3 is a black-box tool,
thus it does not leverage feedback to further test file systems for consistency bugs. Finally, B3
does not support invoking file-system-specific operations, and retrofitting it with such support, in
combination with these issues, will result in severely degraded effectiveness.

On the other hand, while Hydra improves upon B3 in many aspects, there are still areas in the file
system’s functionality that it does not cover. First, while Hydra can explore a more high-dimensional
input space than B3, it retains its focus on POSIX file system operations, and requires extensive
modifications to accommodate code to generate file-system-specific operations for each intended
target file system. Additionally, Hydra’s approach to simulating faults is similar to that of B3, which
only triggers after the execution of an invocation sequence, but does not consider the variety of
on-disk states that the file systems’ underlying persistence operations may produce. Furthermore,
while Hydra’s SymC3, the verifier that produces all possible valid states, has its implementation
constructed manually, with code for further adaptation to different file systems, thus requiring
intensive domain knowledge and manual efforts, also with the risk of introducing bugs into the
verification process.

To test modern file systems for crash consistency bugs with consideration to implementation-
specific features, and more thorough bug detection, we need to address the following challenges.
First, to generate diverse payloads to test the file system, we need to systematically explore potential
on-disk states for a given invocation sequence during execution, which is difficult to achieve due
to the varied interfaces and semantics of different file systems, whereas retrofitting existing tools
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with such functionalities require significant expert knowledge of the individual file systems and
extensive manual effort. Second, as file systems write data to the disk asynchronously, it is difficult
to interpret the different on-disk states of the executed invocation sequences, hence hindering
the test case generation of on-disk file system images. Previous works including B3 and Hydra
take a randomized approach towards finding these states, but this approach misses many more
possibilities that can trigger crash consistency bugs. Finally, designing testing oracles to detect crash
consistency bugs post-execution is no trivial job, as we need to consider all possible valid on-disk
states that the file system may be in, which depends on both the specific file system invocations
performed and implementation-specific details.

We make some observations that help us address the aforementioned challenges:
First, userspace programs interact with files through system calls, including POSIX-defined file

system APIs, such as creat(), chmod(), ftruncate(), etc., whereas modern file systems additionally
support more sophisticated functionalities, generally through the use of ioctl() with a request
parameter that defines the actual operation. While pure file system testing tools generally use only
POSIX invocations, specification-based input generation kernel fuzzers such as Syzkaller leverage
system call descriptions written by file-system-domain experts, including a wealth of specifications
to interact with the specific file system’s implementation-specific functionalities. Therefore, utilizing
such information will assist testing tools in triggering more non-POSIX functionalities more
effectively.

sync()mkdir() creat() unlink() ...

Superblock

Block Dirty
Block

Block

In-Memory
File System

Data Structures

Block Dirty
Block

Dirty
Block

...

① In-Memory
modifica�ons

On-Disk File
System Layout

Block Device I/O Buffer
Dirty

Block 1
Dirty

Block 2
...

② Write Back
Dirty Contents

Superblock Block ...

③ Queue block
writes

④ Blocks wri�en
back to disk

Fig. 1. File system persistence internals in OS file systems. Generally, modifications to the file system are

only kept in memory initially, whereas synchronization operations or a routine operation flushes the dirty,
or modified, blocks to disk. During this process, any failure that results in its interruption may result in

inconsistency issues, as metadata or data itself has not been fully written back.

Additionally, we observe that persistence operations of file systems are conducted through a
series of writes only after persistence operations are invoked, therefore the space of file system
on-disk states can be systematically explored. We demonstrate this in Figure 1, where the effects
of file system operations such as mkdir(), creat() and unlink() only affect the in-memory data
structures of file systems, where the backing store block device is unaffected. Only when an explicit
persistence operation is invoked, such as calling the sync() system call or a kernel worker thread
flushes the data to disk, is the data written back. The persistence operations consist of multiple
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write operations to update the metadata and contents of files, as well as the file system’s own
data organizations. Therefore, the problem of traversing the state space of possible on-disk states
from a file system invocation sequence can be converted into enumerating all possible states of the
persistent storage during the invocation.

Furthermore, we assert that the consistency of file system is held true across persistence opera-
tions. This assertion will fail only in the presence of semantic errors or memory bugs, which are
topics orthogonal to consistency bugs. Therefore, determining consistent states that the file system
can recover to during a crash can be resolved specifically by appending persistence operations di-
rectly after every file-system-modifying operation, then safely unmounting the file system, forcing
the operating system to flush all dirty pages to storage immediately. We then collect all such states
that originate after each modification operation, and thus obtain a set of valid states to recover to
for the file system.

4 Design
We now introduce the design of our approach in the form of SnapCC, a file system crash consistency
bug fuzzer. The overall architecture of SnapCC is shown in Figure 2. As shown in the diagram, the
runtime organization of SnapCC uses a feedback-guided fuzzing loop, with on-disk state generation
based on an Invocation Sequence Generator/Mutator (§4.1) and a Systematic On-Disk State Explorer
(§4.2), while the specific testing oracle is generated through an Automated Valid State Finder (§4.3)
, and finally the Consistency Verifier checks the all found on-disk states with the set of valid states
as testing oracles (§4.4).

The overall workflow is given as follows. At the start of each iteration, SnapCC first produces a
file system invocation sequence, either through seed sequence mutation or through generating a
new sequence using specification-based generation methods. The generated file system invocation
sequence is then used by the Systematic On-Disk State Explorer to generate all possible on-disk
states after a fault, which make up the set of input payloads to be tested on the file system. The
same sequence is also sent to the Systematic On-Disk State Explorer, which run the sequence to
produce a set of valid system states as the testing oracle. Subsequently, these sets of states are then
verified by the Consistency Verifier, which mounts all possible file system states, waits for the file
system to recover to a fixed state, and then attempts to find a match to one of the valid file system
states, upon which if no match is found, then SnapCC determines that a crash consistency bug has
been found. The following sections will discuss the designs of SnapCC’s components in detail.

4.1 File System Invocation Sequence Generation
To generate diverse on-disk states through triggering file system persistence operations, we need
to generate syntactically correct and semantically rich file system invocation sequences. File
system invocation sequences consist of a file-system-relevant system call sequence and an base file
system image. Upon each iteration during testing, SnapCC generates such a system call sequence
and file system image to manipulate the underlying target file system into activating different
persistence operations under different contexts. As aforementioned, SnapCC can either mutate an
existing file system invocation sequence, or generate a new invocation sequence through system
call descriptions. The generation process is outlined in Figure 3. The following sections cover
the generation process of both file system images and system call sequences during either seed
mutation or input generation:

File System Invocation Generation: For generation from scratch, SnapCC finds a base file-
system-relevant system call to generate, which is directed towards the target file system’s directory
or files, and sequentially finds dependent system calls through argument dependencies or system
call relations, all expert-written system call specifications. Specifically for file-system-specific
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System Call
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Fig. 2. Workflow Diagram of SnapCC. The corresponding sections that detail the inner workings of each

component are labeled accordingly. SnapCC generates test cases, as file system on-disk states, to test the

whether the file system’s crash recovery process can preserve consistency. These on-disk states are created

through systematically exploring all possible states (§4.2) triggered through executing the generated file

system invocation sequence (§4.1). SnapCC additionally finds all valid states as the testing oracle (§4.3) to

verify the set of found states against (§4.4)

Seed Pool

Exis�ng Sequence

Genera�onMuta�on
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System Call
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File System
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System Call
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System Call
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open(file ptr[in, filename], 
      flags flags[open_flags], 
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Fig. 3. SnapCC’s sequence generation process. When SnapCC requires a new sequence, a random number

generator (RNG in the figure) determines whether to generate a new input from the system call specifications

or to mutate an existing input in the seed pool. For the former, SnapCC selects the target system calls from the

specifications, instantiates the calls with arguments and dependencies, and produces a system call sequence,

which is paired with a generated file system image and emitted for execution. For the latter, SnapCC retrieves

the next seed to be tested, mutates the system call sequence, including argument mutation and insertion or

deletion of system calls, then emits the resulting sequence.
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functionalities, SnapCC also emphasizes calls to trigger these functions, which usually take the
form of ioctl() system calls with specific arguments. For instance, for BTRFS to trigger a snapshot
creation operation, the fuzzer prepends a system call to ioctl() with BTRFS_IOC_SNAP_CREATE as
its command argument.

When producing a sequence through seed mutation, SnapCC first retrieves a seed from the pool,
then performs random operations, such as randomly appending a new system call with arguments
generated in regards to the previous resource restraints, and/or mutates certain parameters of
existing calls in the sequence. Additionally, the mutation process can also choose to truncate a seed
sequence, where the image contents are updated to the results of the existing invocations, where
the invocations are then removed and regenerated. The process of generating a new input based
on either specification-based generation or seed mutation is demonstrated in Figure 3.

Image Generation: SnapCC generates new valid file system images through the use of disk
maintenance tools bundled with common Linux distributions to avoid generating new images with
allocated files or data, and that all on-disk data can be created with valid, canonical file system
operations. When input mutation is selected, we use an intermediary on-disk state that corresponds
to the starting state of the sequence.

4.2 Systematic On-Disk State Explorer
With the file system invocation sequence generated, we wish to generate test cases of file system
images that extensively represent the on-disk states where faults may happen, and thus thoroughly
test the file systems’ consistency maintenance and recovery routines, and therefore expose any
bugs through the results of the recovery process. To do so, we use a Systematic On-Disk State
Explorer to enumerate all possible states that the underlying file system image can be in after a
fault during the execution of the file system invocation sequence.

Our observation is that for file systems, a persistence operation to disk involves multiple block
device write operations, with each operation organized as a write sequence of blocks, allowing us to
fully reach the on-disk file system states by iterating through each modification operation. To do so
that allows for versatility across different file systems, we hook and intercept the underlying write
operation routine in the guest machine’s block device driver. Thus when the block device receives a
block-device-level write command, we take two snapshots of the file system image, one during the
write, and another after the write operation has finished. The snapshots taken during the execution
of an invocation sequence emulate a crash at the specific time of the snapshot, specifically at the
end of a persistence operation and in the middle of a write operation.

After executing the entire sequence, we are presented with the possible on-disk states of the file
system during the execution. The file system on-disk states are the test cases that are then sent to
the Consistency Verifier for verification of crash consistency. This process is depicted in Figure 4a.

4.3 Automatic Valid State Finder
As the valid states that the file system can be in depends on the actual invocations executed on
the file system, we need to adaptively identify all possible valid states for a given sequence such
that we can identify invalid, and thus inconsistent states. In parallel to finding all possible on-disk
states, SnapCC uses the generated file system invocation sequence and determines which consistent
states that the file system can be in after a recovery from a crash. Since all persistence operations,
when completed, should maintain a file system’s consistency property, we find all write-related
operations to the file system as possible persistence operation triggers. Using this as a basis, we
perform the following operations the invocation sequence to produce a set of valid states.
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Fig. 4. Snapshot-driven exploration of either possible or valid on-disk file system states. Figure 4a shows

SnapCC’s process in determining the set of possible file system on-disk states, while Figure 4b shows how

SnapCC finds all valid states of the file system image. Both methods take advantage of snapshotting for fast

iteration of different on-disk states.

4.3.1 Persistence Operation Sequence Separation. First, we append each file system modification
invocation with a sync() system call. These invocations may include data modifying operations,
such as write(), or purely metadata manipulation operations, such as some chmod(). Then, we
consider all such sub-sequences that start with consecutive non-modifying operations, such as
read(), then subsequently one modification operation, then consecutive synchronization operations,
such as sync() and fsync(). For instance, in the sequence consisting of open(), mkdir(), creat(), fsync(),
rename(), stat(), ioctl(), sync(), we first append sync() to all file-system-modifying operations; then,
we separate the sequence according to persistence operations; we emerge with the following
sequence: (open(), mkdir(), sync()), (creat(), sync()), (fsync()), (rename(), sync()), (stat(), ioctl(), sync()).
We denote such sequences as Persistence Operation Sequences. These sequences, after executed, can
represent valid states, as their contents have been explicitly persisted to the backing store block
device. When executed in order and fully committed to disk, these persistence operation sequences
will produce the valid states that the file system can be in during the original system call sequence’s
execution.

4.3.2 Enumerating All Possible Valid States. Through the process of finding all persistence operation
sequences above, we obtain valid file system states for a given invocation sequence. First, we mount
the original sequence’s initial file system image, and produce all persistence operation sequences
from the given system call sequence. Then, we sequentially execute each persistence operation
sequence in order. After each run, we safely unmount the file system image and take a snapshot
of the resulting file system image. The set of snapshots taken during this process, as they are all
valid states for the target file system, and we have exhaustively produced all possible states, is
considered the overall set of valid states for a given file system invocation sequence. After this, it
is provided to the Consistency Verifier for finding crash consistency bugs during this run. This
process is depicted in Figure 4b.

4.4 Consistency Verifier
To verify if on-disk states produced by the file system invocation sequence’s execution can expose
a crash consistency bug in the file system, SnapCC employs a consistency verifier to perform such
validation operations.

First, the Verifier uses a fresh snapshot of the operating system and attaches each on-disk state.
Then, it performs a file-system-specific consistency checker run, such as running fsck.ext4. This is
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required as some file systems, such as OpenZFS, explicitly state that consistency is not guaranteed
in the event of a failure, thus requiring the execution of its scrubbing utility.

After the file system has finished recovering, we mount the on-disk state. We then mount all valid
states in order and compare the contents of the disk in both disk images. The comparison involves
the following items: directory tree traversal, individual file metadata comparison, and file contents
comparison. To accelerate the comparison process, we compare the hash of files’ contents using the
cryptographically secure SHA-256 hashing algorithm. Additionally, we also use file system utilities
to aid in the detection of inconsistencies to avoid missing design-specific consistency requirements.

If the Verifier finds no discrepancies, then we determine that the file system has recovered to
a valid state; otherwise, we determine that a consistency bug has been found. We then perform
further manual analysis to identify the root cause of such consistency bugs.

4.5 Fuzzing Loop
We organize the aforementioned components into a file system consistency fuzzing tool with an
execution loop detailed as follows. For file system invocation sequence generation, we borrow
components from popular kernel fuzzers, such as Syzkaller, including system call specifications
and input executor programs. To generate and utilize on-disk states efficiently, we use a centralized
file system image pool, and attach images to the running system on demand. This allows reduces
the need for data transfers on invocation sequences during each execution cycle.

After generating the invocation sequence, we hook the virtual machine’s block device drivers
to intercept write operations to the target image. The invocation sequence is then executed, with
an umount() call appended to trigger any remaining persistence operations. During this process,
any write commands to the block device are intercepted and handled as described in the previous
sections to produce test cases. Additionally, valid state generation and verification is performed as
mentioned above. To encourage more diverse invocation sequence generation, we utilize kernel
code coverage on only the affected file system modules as guidance, and preserve the invocations
and the corresponding sequence for further generation attempts.

5 Implementation
We implemented SnapCC with borrowed components from Syzkaller, including system call specifica-
tions, seed storage, virtual machine management and execution feedback collection and processing.
The core components of SnapCC, as described in the previous section, are written from scratch.
The implementation details regarding SnapCC’s design towards performing efficient crash state
iteration are discussed in the following sections.

5.1 Copy-on-Write Based State Iteration
Thoroughly iterating through all possible states can be a performance challenge for SnapCC, for
if the implementation used plain block operations to make a copy of all images produced, the
runtime overhead would be too costly to perform dynamic testing. As aforementioned, we use
snapshots that, instead of copying an entire file upon updates, require only that the modified pieces
be recorded.

To facilitate efficient file system image snapshots for systematic state exploration for enumerating
potential on-disk states and finding valid states to recover to, we employ Copy-on-Write mechanisms
provided by QEMU’s qcow2 image format in conjunction with BTRFS’s subvolume snapshot
functionalities. Briefly put, using QEMU’s qcow2 format, which inserts a mapping in between the
actual file system image and the virtual machine, allows for modifications to a block device to
reside only on the qcow2 file, without any modifications to the original image. BTRFS’s subvolume
snapshot functionalities allow fast access to previous snapshots of the same file. Combining the
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two techniques allows for efficient access to all possible states of file system images during testing
for consistency bugs.
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Fig. 5. SnapCC uses QEMU’s qcow2 in conjunction with BTRFS snapshots to efficiently produce iterations of

a file system invocation sequence.

The overall diagram is shown in Figure 5. Specifically, during state exploration for either identi-
fying all possible crash points or finding all valid consistent states, we mount the initial file system
image with a qcow2 layer file on top to hold the modified data information and place it within
a BTRFS subvolume. SnapCC then hooks QEMU’s qcow2 block device driver’s write operations
to perform snapshotting operations on demand. The block device is then attached to the virtual
machine instance, which mounts it accordingly through the agent program. After preparations
are complete, SnapCC initiates a test run, which instructs the agent program to invoke the system
calls as described in the invocation sequence. For iterating through all possible crash points, each
write operation signals SnapCC to trigger a snapshot invocation to record such states efficiently.
For finding all valid consistent states, the agent program safely unmounting the image at the end
of each persistent operation sequence triggers an immediate snapshot invocation from SnapCC.

After executing the invocation sequences, SnapCC can subsequently retrieve the desired file
system images by layering the qcow2 layer file stored in the corresponding subvolume snapshot
and the base image.

5.2 Runtime Image Snapshot Caching
Producing and handling such an amount of snapshots during runtime takes its toll in runtime
overheads. Appending synchronization operations after file system modifying operations alone
constitutes a significant increase in runtime, due to the I/O operations involved with file system
data persistence and snapshotting. This operation will need to run for each testing iteration, and
thus will hamper the execution throughput, and, consequently, testing effectiveness.

To mitigate this issue, we use the following intuition: we can cache the relevant qcow2 image
files to avoid repeated computation on the same data. During fuzzing, many of the inputs executed
are seeds from a previous run mutated in a few spots, such as an appended system call or modified
arguments. Therefore, we observe that by caching the obtained file system images during previous
executions, we can greatly reduce the computation required to execute a single invocation sequence.

Therefore, SnapCC utilizes image snapshot caching within its seed pool and utilizes the cached
image states to reduce overheads. Specifically, when SnapCC generates a new invocation sequence
from scratch, the valid state file system images and the possible bug point images are saved together
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with the seed, with each image pointing to the persistence operation that produced it. Utilizing
the Copy-on-Write features introduced in the previous section, SnapCC’s caching is extremely
lightweight and runtime efficient, generally only having to process a fraction of the data of the
original image. During execution, SnapCC is able to reuse snapshots starting from the first system
call consecutively until the first mutated input. Furthermore, executing mutated inputs can be
performed by starting with the immediate previous snapshot to the first mutated input and resuming
execution from the next consecutive system call succeeding the persistence operation that produced
the snapshot.

Therefore, a combination of Copy-on-Write snapshotting and image caching is in place to greatly
relieve SnapCC of the potential overheads from the designed techniques.

6 Evaluation
To evaluate the effectiveness of our approach, we designed experiments to evaluate the bug finding
capabilities and runtime performance of SnapCC pitched against the state-of-the-art consistency
testers B3 and Hydra. As SnapCC’s many components are borrowed from Syzkaller, we include
Syzkaller in our experiments as a baseline subject. To thoroughly assess SnapCC’s effectiveness,
we propose the following research questions to guide our evaluations.

• RQ1: Does SnapCC explore more file-system-relevant code than the state-of-the-art?
• RQ2: Is SnapCC capable of finding consistency bugs in real-world scenarios?
• RQ3: How significant is the overhead of SnapCC by systematically enumerating potential

on-disk states?
These research questions address the real-world performance of our approach, component-wise

effectiveness and efficiency, as well as runtime optimization evaluation, which is sufficient to
demonstrate the effectiveness of our approach.

6.1 Experiment Setup
We evaluate SnapCC’s testing effectiveness against B3 (implemented as ACE and CrashMonkey)
and Hydra. We also bring Syzkaller into our tests as a baseline. As SnapCC supports invoking
ioctl() calls, which exceed the scope of B3 and Hydra, we also prepared SnapCC-, which is SnapCC
with ioctl() generation and mutation capabilities disabled. To ensure fairness, we add the system
call descriptions previously extended for SnapCC to Syzkaller. The machine used during the
experiments is equipped with an AMD Ryzen 7 5800X processor, 32GiB of RAM, and running Arch
Linux with kernel version 6.3. The kernel which hosted the file systems under test is Linux 6.2. We
enabled the following file systems during kernel pre-compilation configuration: BTRFS, F2FS, and
ext4. The kernel is also built with KASAN and KCOV enabled, for detection of memory address
violations and retrieving coverage information. The coverage experiments were conducted over 24
hours, with data points sampled per each 30 minutes. Each real-world bug-finding experiment was
conducted over the course of 14 days, totaling 336 hours per experiment. For experiments with B3,
as it runs in a manner similar to batch programs rather than interactively, we executed B3 until its
completion. Each real-world experiment instance contains five identical trials to reduce statistical
errors. The results have been tested using the Mann-Whitney U Test to demonstrate statistical
significance between different data groups, where any non-significant data points will be declared
accordingly.

6.2 File System Module Code Coverage
We address RQ1 by measuring code coverage for file system modules in the Linux kernel by
SnapCC, in comparison to Hydra and B3, where the latter is executed after generating all possible
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Fig. 6. Coverage of SnapCC, Hydra, B3 and Syzkaller on Linux file systems BTRFS, F2FS and ext4 over 24

hours.

workloads, and Syzkaller, as a baseline fuzzer. For SnapCC and Hydra, the coverage statistics are
collected over the entire fuzzing campaign, whereas for B3, We collect coverage either up until 24
hours, as the other fuzzers are, or when it completes its execution. The coverage growth results are
shown in Figure 6. As is evident from the graph, SnapCC’s coverage steadily grows to overtake B3’s
and Hydra’s coverage statistics. Eventually, SnapCC achieves a increase over Hydra of 30%, 16%
and 44% improvement in BTRFS, F2FS and ext4, respectively. Syzkaller on the other hand, remains
relatively constant, as it is not well-suited towards generating system call sequences and images
that effectively explore the state space. We believe that SnapCC’s growth characteristics are due to
the following reasons: first, SnapCC, like Syzkaller, runs the target OS in a virtualized environment,
whereas Hydra uses LibOS; second, the state space that SnapCC can explore is broader due to
the system call specifications provided, while Hydra mainly uses POSIX-compliant file system
invocations. We will further discuss the relevant execution throughput statistics in the subsequent
sections.

To address the concern that coverage improvement is the sole result of the inclusion of ioctl()
system call specifications into the generation process, we perform an ablation test, one which
compares SnapCC-’s coverage on the same dataset to that of B3 and Hydra. thus giving the tools
equal footing on restricted interaction with the target file system only through POSIX compliant
system calls. SnapCC-’s coverage statistics, along with those of Hydra and B3, are shown in Figure 7.
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Fig. 7. Coverage of SnapCC-, Hydra, B3 on Linux file systems BTRFS, F2FS and ext4 over 24 hours.

We can observe from the figure that while SnapCC-’s coverage falls behind B3 and Hydra initially,
it gradually overtakes them, as does the original version of SnapCC. The difference is the amount
of coverage improvement. Without ioctl() calls, we see that SnapCC- overtakes B3 and Hydra, but
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at the end of 24 hours, yields improvements of 17%, 4%, and 21% compared to Hydra in BTRFS, F2FS,
and ext4, shy of what the original version of SnapCC achieves. Our analysis of the its coverage
shows that for the file systems, removing ioctl() impacts BTRFS the most, as many of its features
that can only be reached by triggering the kernel function btrfs_ioctl(), which has been covered by
SnapCC, are now unreachable. Regardless, we find that our systematic on-disk state exploration
technique still allows SnapCC to cover more recovery and consistency checking code in the file
system, and in turn have more chances in detecting bugs in its consistency checking and repairing
code.

Therefore, SnapCC’s better coverage statistics than the competition allows us to positively
answer RQ1.

6.3 Consistency Bug Detection
To address RQ2, we first compile a dataset consisting of all historical crash consistency bugs found
by B3 and Hydra, and test if SnapCC is able to find the relevant bugs. Then, we experiment with
running SnapCC, SnapCC-, Hydra and B3 using real-world settings on Linux kernel version 6.2 to
try uncovering consistency bugs within its file system implementations.

6.3.1 Historical Bug Dataset. We first collected 26 historical bugs found by B3 and 32 found by
Hydra, constructed equivalent runtime environments and executed SnapCC for equivalent runtime
environments to that of Hydra and B3. For the 26 historical bugs found by B3, SnapCC found 25,
with the sole outlier being one requiring dropcaches, for which SnapCC currently lacks support.
This result demonstrates that SnapCC is at least as effective in finding historical crash consistency
bugs as B3 and Hydra.

6.3.2 Real-World Bug Detection Comparison. The statistics of the new consistency bugs, and in
addition all new auxiliary bugs (including memory violations and kernel-defined bugs) found
during the testing campaign are shown in Table 1. All bugs listed in the table have been responsibly
reported according to common practice to the various kernel and file system maintainers for further
analysis and patching.

As is evident in the table, SnapCC demonstrated excellent results in discovering new consistency
bugs in real-world scenarios on recent versions of the Linux kernel, finding a total of 15 consistency
bugs across widely-used file systems including BTRFS, F2FS, and ext4. In comparison, Hydra was
able to detect 6 of the consistency bugs, while B3’s performance is limited to only detecting 2
consistency bugs. SnapCC- found only 8 of the crash consistency bugs, based on our analysis, is
mainly due to it not being able to trigger file-system-implementation-specific functionalities, and
therefore cannot generate on-disk states as diverse as SnapCC, but is still better than Hydra and
B3, demonstrating the effectiveness of systematically finding on-disk states as test cases to the file
system. This clearly demonstrates that, as a whole, SnapCC’s consistency bug detection capabilities
are state-of-the-art.

The bugs found by SnapCC have all been confirmed by the relevant maintainers. Currently,
7 of them have been fixed, with the patches merged upstream to the Linux kernel, 6 have been
confirmed, but due to reasons such as requiring a substantial re-work of their file system internals,
are still under discussion of how the bugs should be fixed. The remaining 2 have been confirmed
by the BTRFS maintainers, but they explained that these bugs won’t require a fix, as the relevant
modules are undergoing a complete rewrite and refactor.

To further assess the influence of using ioctl() system calls in SnapCC, we also tested SnapCC-’s
bug finding effectiveness at the same time. Our results show that it only finds 4 of the 15 new
bugs found by SnapCC’s original version. Our analysis shows that the remaining bugs found by
SnapCC requires the use of ioctl() to trigger a file-system-specific operation, such as rebalancing,
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snapshotting, or subvolume maintenance, or other ioctl()-enabled states, to enter an on-disk state
that, when checked and fixed by the file system’s checker, still produces a resulting file system
image with inconsistencies.

Table 1. List of new bugs found by Syzkaller, SnapCC, SnapCC-, Hydra and B3 classified by bug type.

Bug Type FS Syzkaller SnapCC Hydra B3 SnapCC-

Consistency
BTRFS 0 9 3 1 4
ext4 0 4 2 1 2
F2FS 0 2 1 0 2
BTRFS 1 2 4 0 2

Memory Error ext4 0 2 3 0 1
F2FS 1 1 2 0 0

Kernel Bug BTRFS 1 2 2 0 1
ext4 1 1 0 0 1

Total Consistency 0 15 6 2 8

While finding memory violation bugs and kernel bugs (triggered using the BUG_ON() macro)
are not the target bug type, as KASAN is enabled and kernel bugs appear when triggered, we
nonetheless collect and display the new bugs found as well in the table. In this case, Hydra performs
better than SnapCC, whereas B3 is incapable of triggering any such bugs. We believe the reason
for this is due to Hydra, which tests multiple properties of file systems rather than consistency
bugs alone, employs many techniques that would not be applicable to our scenario, such as image
mutation. Interestingly, Syzkaller’s effectiveness here is less pronounced than SnapCC’s, mainly
due to its design not being able to effectively trigger the multitude of crash states, thus it does not
trigger bugs located within the file system checking and recovery routines well.

We further analyzed the characteristics of the newly found consistency bugs to identify probable
reasons as to why the tools performed in this manner.

As B3 limits the number of file system invocations that it generates and performs the lowest of
the three comparison tools, we first wish to establish an understanding regarding the distribution
of the lengths of the new bug’s reproducing system calls and how it may affect the performance of
the tools. The relevant results, along with the number of new bugs of the specific lengths that each
individual tool was able to trigger, are shown in Figure 8.

As shown in the graph, we observe that the majority of new bugs found require a substantial
number of system calls in order to trigger, which is unfortunate for B3, as it can only generate
length-bounded file system invocations, thus explaining its relatively unimpressive results. Hydra
and SnapCC can generate longer system call sequences, as a result of employing fuzzing and thus
explore an infinite input space.

However, we see that SnapCC triggers significantly more bugs through the use of 16 or more
system calls than the comparison tools. Our preliminary analysis shows that these calls consist
of significant numbers of ioctl() calls to invoke advanced functionalities in file systems, which
is a task that Hydra performs less than optimal. To determine the root cause of this difference
in performance, we analyzed the composition of specialized ioctl() calls in the bug reproducer
programs of the newly found consistency bugs. The results are shown in Figure 9.

As shown in the graph, the newly discovered bugs require some usage of file system specific
invocations, such as BTRFS in the chart, where some bugs already require manipulating snapshots
or subvolumes, demonstrating the effectiveness of utilizing domain expert written specifications.
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ord. represents ordinary POSIX file system invocations; snap. referse to snapshot-relevant operations, enc.

represents encryption/decryption related block operations, and vol. represent volume relevant operations.

However, there should be more influences towards the performance differences. To verify whether
Hydra and B3 are capable of detecting the bugs that SnapCC uniquely found during this experiment,
we let Hydra and B3’s CrashMonkey run the reproducer programs of SnapCC’s uniquely found
bugs and attempt to trigger them through their own fault injection mechanisms. As their fault
injection processes are randomized, we repeat the experiments for 50 times. The success rates
are shown in Table 2. As demonstrated in the table, B3’s CrashMonkey can find one such bug in
BTRFS, while Hydra can find 2, where they are from BTRFS and ext4, respectively. However, their
reproduction rates are relatively low, which is a result of randomly picking crashing points. In
contrast, SnapCC traverses all possible on-disk states and verifies the states, allowing testers to
concretely find consistency bugs.
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Table 2. Bug reproduction rates of Hydra and B3 on SnapCC’s uniquely found consistency bugs.

File System SnapCC Unique Hydra B3
Bugs Total Once Rate Once Rate

BTRFS 6 1 6% 1 2%
ext4 2 1 2% 0 0%
F2FS 1 0 0% 0 0%

6.3.3 Adaptability. Apart from the comparison file systems, we also wish to evaluate how SnapCC
can adapt to other real-world file systems. Therefore, we added support for Linux’s UFS, XFS,
BCacheFS and OpenZFS file systems. The time required for us to support these file systems took us
15 minutes, 10 minutes, 1.5 hours, and 2 hours, respectively. The efficiency at which we adapted to
these file systems demonstrate SnapCC’s versatility, as most of its components are generalized
across different file system implementations, and our use of file-system-specific checking tools
have also removed the burden of customized consistency checking implementations.

We also conducted an experiment on these file systems to examine SnapCC’s capabilities in
finding consistency bugs. Our testing run of 72 hours yielded a total of 7 bugs in these file systems,
specifically 1, 0, 5, 1, for UFS, XFS, BCacheFS, and OpenZFS, respectively. The bugs have also been
reported and confirmed, where BCacheFS’s bugs have all received confirmation that they will be
fixed.

6.3.4 Consistency Bug Case Study. We use a crash consistency bug found in BCacheFS to demon-
strate how SnapCC was able to detect file-system-implementation-specific crash consistency bugs.
The bug itself is caused by the following file system invocations:

mkdir("d1"); mkdir("d2");
ioctl@BCH_IOCTL_SUBVOLUME_CREATE(“d1”);
fd1=open(“./d1/f1”); fd2=open(“./d2/f2”);
rename(“./d1”, “./d2/rd1”);
write(fd1, ...); write(fd2, ...); unlink(“./d2/rd1/f1”);
ioctl@BCH_IOCTL_SUBVOLUME_DESTROY(“./d2/rd1”);
sync();

During the synchronization process, when SnapCC intercepts a persistence operation to obtain
an on-disk image and mounts the file system in Linux, the file system encounters a lingering inode
problem, where ./d2/rd1/f1’s inode persists while the subvolume is destroyed when it should have
been removed with the last three operations. This is due to a bug in BCacheFS’s fsck_write_inode()
function, which erroneously writes the inode back into the fixed file system. SnapCC found this bug
by generating an invocations sequence containing ioctl() calls that trigger BCacheFS’s snapshot
creation and destruction operations, systematically finding all possible on-disk states and finding
the correct file system image, and automatically determining valid states based on this sequence
for validation. The bug has been fixed in patches for Linux’s 6.12-rc2.

Both B3 and Hydra cannot find this bug, as they cannot generate invocations to ioctl(), which
invoke subvolume creation and deletion. Even if they have been retrofitted with ioctl() generation
capabilities, it is difficult to discover this bug due to the amount of operations committed during this
process for fault injection, and the valid states that need to be detected automatically for detecting
this bug.
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6.3.5 Summary. SnapCC’s improvement is the contribution of many factors combined, including
a more effective input generation and mutation mechanism, as well as systematically enumerating
all possible on-disk states during an invocation sequence’s execution. Therefore, we have answered
RQ2 that SnapCC is indeed capable of finding consistency bugs in real-world scenarios with
state-of-the-art effectiveness.

6.4 Systematic On-Disk State Explorer Overhead
To assess the impact of systematically enumerating each possible on-disk state during SnapCC’s
execution process, we compare the execution time of SnapCC’s On-Disk States Explorer against
Hydra’s comparable fault injection mechanisms. Instead of executing the entire fuzzing loop, we
take the seeds cumulated over SnapCC’s real-world experiments and run them separately. During
their executions, we measure the elapsed time for SnapCC and Hydra to finish finding possible
on-disk states or conducting fault injections. The data is grouped according to the length of the
invocation sequence. The average results are shown in Table 3.

Table 3. Overhead Comparison Between SnapCC and Hydra’s fault injection process.

Fuzzer Elapsed Time per Sequence (ms)
1-3 4-7 8-15 16+

SnapCC 52.3 88.7 102.5 137.6
Hydra 27.6 47.2 68.5 91.2

The results show that while SnapCC exhibits a higher overall overhead, SnapCC compensates
by being more effective in rooting our consistency bugs during each execution iteration, which
is evident in the statistics found in the previous section. Therefore, we can answer RQ2 that
while SnapCC’s overhead is higher than Hydra’s, SnapCC delivers more testing effectiveness per
execution through systematic traversal of possible on-disk states.

7 Discussion
7.1 Manual efforts involved
We have greatly reduced the manual labor involved in testing file system consistency bugs with
SnapCC. Specifically, the only places requiring such labor is listed below. When one wishes to
test file systems for consistency errors, the manual process they need to go through is to prepare
kernel compilation parameters to include relevant modules and debug options. Further possible
human intervention is writing new system call specifications for newly added file systems. Other
operations, such as initiating the test process, result processing and bug reporting, like other state-
of-the-art tools, can be initiated either manually or through pre-written scripts, thus alleviating the
burden to an extent.

7.2 File system image manipulation
Intuitively, during input mutation, mutating the file system image along with the system call
sequence may yield more bugs, as the input space can be explored more easily. Currently, our
approach does not manipulate the initial file system images randomly, but rather relies on resulting
images from system call executions as new images for further execution. Our belief is that consis-
tency needs to be guaranteed initially for the test to be valid and bugs be sound. However, this can
potentially lower our performance, whereas in contrast, Hydra manipulates the image directly in
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conjunction with generating invocation sequences. Further work for SnapCC may revolve around
designing efficient image manipulation methods to accelerate the fuzzing process.

7.3 Soundness and Completeness
There exists the possibility of initially detecting false positives or false negatives in crash consistency
bugs, due to there existing potential interfering threads in the system that cause noise in the file
system, such as concurrent processes that perform indexing, etc. These events result in false
positives and negatives, as they affect the persistence operations of the file system, and produce
different on-disk states and valid states for testing and validation. SnapCC has mechanisms to
mitigate this issue, which performs a deflaking process, where it re-runs the entire process of
finding valid on-disk states and valid file system states repeatedly for a fixed number of times
(usually 5). This process itself under most circumstances can eliminate the effects of such events
and remove false positives and negatives.

Additionally, journaling and transactional file systems may have intermediate states that differ
from a sequential file operation view. Our approach is based on the abstractions afforded to us
by the file system interfaces, and we do not make any assumptions on the valid state beneath the
abstractions and into the file-system-specific implementations. If the file system has implementation-
specific logic that results in states differing from other file systems, the set of valid states will
contain this state for crash consistency verification, as it is present after a write operation combined
with a persistence operation, and thus captured by SnapCC’s mechanisms.

8 Related Work
8.1 Fuzzing
General purpose fuzzing has the attracted the most attention from either fields due to it being
the most applicable technique to most types of software testing, while new techniques such as
mutation operators, scheduling algorithms and feedback indicators can be tested and refined.

One of the most widely-used general-purpose fuzzers is AFL [17], which pioneered many tech-
nical ideas that have affected the design of fuzzers, such as edge-based coverage feedback, fork-
server-based rapid testing, etc. AFL++ [9] is a popular state-of-the-art fuzzer based on AFL that has
incorporated many ideas and techniques from academia, such as REDQUEEN [1], AFLFast [2], etc.

libFuzzer [26] is another popular fuzzer that is also very effective in testing a wide variety of
software applications. In contrast to AFL, libFuzzer requires the program-under-test to provide a
LLVMFuzzerTestOneInput() interface, which allows libFuzzer to input test data into the program-
under-test, thus rendering its fuzzing effectiveness highly dependent on the quality and scope of the
fuzzing interface functions. FuzzGen [13] and IntelliGen [35] have been proposed to automatically
or semi-automatically synthesize fuzzing driver programs, i.e. programs that take inputs generated
from fuzzers and direct them to relevant library functions, to assist with fuzzing such targets.

There is also a branch of fuzzing that utilizes hybrid execution with symbolic execution and
SAT/SMT solvers to increase code coverage and find more difficult-to-trigger bugs. One prominent
example is QSYM [34], which utilizes a concolic executor to help fuzzers through predicates they
have difficulty solving. Another example is Angora [6], which uses dynamic taint analysis coupled
with a gradient descent solver to increase code coverage.

Many works also focus on scheduling seed between different fuzzers as a means to enforce
cooperation between different fuzzers, such as EnFuzz [7]. Seed scheduling also shows promise in
increasing fuzzing performance, such as Mopt [19], which has been integrated into AFL++.
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8.2 Kernel & File System Testing
Syzkaller is a kernel fuzzer that has been the inspiration for many. HEALER [31] is a Syzkaller-
inspired kernel fuzzer, where it learns the relations between system calls to produce inputs with
higher quality. Moonshine [25] is another fuzzer based on Syzkaller that distills a program’s system
call traces to obtain a high quality inital seed. Other types of kernel fuzzers include kAFL [28],
a kernel fuzzer that utilizes hardware features to accelerate fuzzing, TriforceAFL [12], which
augments AFL with full-system fuzzing capabilities, etc. Embedded kernels have also attracted the
attention of fuzzing testers, including Gustave [8] and Tardis [29].

File system testing mainly involves testing for three classes of bugs: memory errors, semantic
bugs, and consistency bugs. Kernel fuzzers such as Syzkaller and file system fuzzers such as Hydra
can detect memory errors efficiently using tools such as KASAN [11]. Semantic bugs can be found
either through static analysis [21], dynamic testing, or formal verification [24, 30, 33]. Apart from
these, xfstests [20] is a unit test suite that examines file systems for common errors. Generating
workloads is crucially important for uncovering potential bugs, such as Chen et al.’s work [5]. Also,
work surrounding formal specifications and verifications in consistency checking is also active,
such as Bornholt et al’s work [3]. File system consistency checkers are also actively researched, such
as Gatla et al.’s [10] and Menezes Carreira et al.’s work [4]. Persistent memory crash consistency is
also important, such as Chipmunk [18].

8.3 Consistency Checking
Jiang et al.’s[14] main focus is developing automated consistency oracles for user space applications.
While in principle, the approach may be similar conceptually, file systems require special attention
to operating system-level abstractions, such as inode consistency. Therefore, we use a block-level
mechanism to capture all possible persistent states, and use inode-level comparisons on file contents,
metadata, and directory structure to verify the consistency.

9 Conclusion
In this paper, we present SnapCC, a new approach towards effective file system consistency testing.
In contrast to previous works, SnapCC proposes the use of systematic state exploration to further
uncover consistency errors within modern file systems. Through the design and implementation
of a system-call-based File System Invocation Sequence Generator, a Systematic On-Disk State
Explorer, and an Automatic Valid State Finder, SnapCC systematically finds all possible on-disk
states during the execution of a file system invocation sequence and automatically determines all
valid file system states. Through comparing the entries of the two sets and identifying any condition
that is not valid, SnapCC effectively finds consistency bugs in file systems. SnapCC’s capabilities are
demonstrated through our evaluations, where it shows a 16% to 44% increase in coverage statistics
over Hydra, in addition to the 15 new crash-consistency bugs found in widely-used file systems
BTRFS, F2FS, and ext4. We also found 7 new crash consistency bugs in other Linux file systems
UFS, XFS, BCacheFS, and OpenZFS, showing SnapCC’s adaptability to file systems. Additionally,
we established that SnapCC’s effectiveness is due to both invocation sequence generation and
systematic on-disk state exploration, being able to trigger more states in the file system’s code.
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