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Performance is crucial for database management systems (DBMSs), and they are always designed to handle
ever-changing workloads efficiently. However, the complexity of the cost-based optimizer (CBO) and its
interactions can introduce implementation errors, leading to data-sensitive performance anomalies. These
anomalies may cause significant performance degradation compared to the expected design under certain
datasets. To diagnose performance issues, DBMS developers often rely on intuitions or compare execution
times to a baseline DBMS. These approaches overlook the impact of datasets on performance. As a result, only
a subset of performance issues is identified and resolved.

In this paper, we propose Hulk to automatically explore these data-sensitive performance anomalies via
data-driven analysis. The key idea is to identify performance anomalies as the dataset evolves. Specifically,
Hulk estimates a reasonable response time range for each data volume to pinpoint performance cliffs. Then
performance cliffs are checked for deviations from expected performance by finding a reasonable plan that
aligns with performance expectations. We evaluateHulk on six widely-used DBMSs, namelyMySQL, MariaDB,
Percona, TiDB, PostgreSQL, and AntDB. Hulk totally reports 135 anomalies, with 129 have been confirmed as
new bugs, including 14 CVEs. Among them, 94 are data-sensitive performance anomalies.
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1 Introduction
Database management systems (DBMSs) are the infrastructure for efficient management of data [1,
43]. DBMSs are constantly striving for better performance, which is reflected in the time it takes to
fetch, analyze, and update data [13, 29]. Generally, data-intensive applications often operate under
shifting workloads, where data may change or accumulate over time [19]. This requires DBMSs to
be resilient to data changes to maintain smooth operation.
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Unfortunately, due to the complexity in implementing an optimizer and the system scale, a
DBMS may not always perform as expected under certain data conditions. To achieve the efficient
processing of diverse datasets, a DBMS typically uses the optimizer [26, 29]. It transforms a query
into a plan, which outlines a sequence of execution steps to access data[41]. Most current DBMSs
use a cost-based optimizer (CBO) [33]. For each SQL query, it first generates amounts of alternative
plans, then estimates the cost of each plan and selects the optimal one for execution (e.g., whose
time cost is the lowest). A CBO typically consists of three components: cardinality estimation (CE),
cost model (CM), and plan enumeration (PE). The components rely on many complex algorithms in
their functioning, which are closely linked to the dataset. Specifically, CE uses statistics of data to
calculate the cardinalities for each operation in the plan. CM maps the current state of the DBMS
and estimated cardinalities to the cost of executing a plan. PE selects the optimal plan with the
lowest cost for execution in the DBMS.

CREATE TABLE t0 (v0 INT,  
v1 VARCHAR(100), 
v2 DECIMAL ZEROFILL, ...
PRIMARY KEY(v0)
); 

CREATE TABLE t1(v0 
VARCHAR, v1 BIGINT,
...
FOREIGN KEY (v0) t0
 (v1),... );

INSERT INTO t0 values 
(random_number,random_s
tring, random_float
...
);

INSERT 
INTO t1 values( random_str
ing, random_number, 
...
);

SELECT t0.v0 FROM t0 WHERE 
t0.v1 IN 
(SELECT t1.v0 FROM t1 
WHERE  (t1.v1 NOT IN  
(SELECT t1.v1 FROM t1 
WHERE t1.v1 == 192...)  and 
t1.v0=`#`)
) ; 
-- execution time

   0.57s

SELECT t0.v0 FROM t0 WHERE 
t0.v1 IN 
(SELECT t1.v0 FROM t1 
WHERE  (t1.v1 NOT IN  
(SELECT t1.v1 FROM t1 
WHERE t1.v1 == 192...)  and 
t1.v0=`#`)
) ; 
-- execution time 

   13.03s

INSERT INTO t0 values 
(random_number,random_s
tring, random_float
...
);

INSERT 
INTO t1 values( random_str
ing, random_number, 
...
);

(1) Create random tables
 t0 and t1

(2) Insert random rows
(t0:7000 rows t1: 1700 rows)

(3) Select the results
(execution time: 0.57s)

(4) Insert 5 rows  in  t0 and t1
(t0:7005 rows, t1:1705 rows)

(5) Select with the same query
(execution time: 13.03s)

Fig. 1. A data-sensitive performance anomaly found in Percona. When executing one query with 7000 rows

in t0 and 1700 rows in t1, Percona takes about 0.57s. However, after inserting 5 rows in table t0 and t1,
respectively, Percona takes about 13.03s to execute the same query. It causes 2185% performance degradation.

The optimization process of a DBMS is greatly affected by the data stored in it, making its
performance more susceptible to changes in data volumes. Any implementation errors may cause
performance to fluctuate abnormally when the dataset changes. For example, when the dataset
changes, even small estimation errors in CE will enlarge along with other factors such as data
distribution, and propagate into CM and PE [54]. Consequently, these errors may lead to performance
cliffs (i.e., a significant performance degradation such as a sudden increase in response time). Even
with the most popular DBMSs like MySQL, response times can fluctuate significantly with small
changes in the dataset[40]. These performance anomalies arise from the creation of highly expensive
plans, which we refer to as data-sensitive performance anomalies. Figure 1 illustrates a data-
sensitive performance anomaly in Percona, which results in a 21-fold performance degradation
with only inserting 5 rows in two tables, respectively. The process unfolds in five steps. First, it
creates two tables and inserts some random rows in step 1 and step 2 , table t0 contains 7000
rows, and table t1 contains 1700 rows. Then, Percona executes the query with the inserted rows
and takes 0.57 seconds to return the results in 3 . However, after inserting 5 rows in table t0 and t1
in step 4 , Percona takes about 13.03s to execute the same query in step 5 . This issue arises due to
the implementation errors in the PE, which does not choose the optimal plan to execute in step 5 .
Data-sensitive performance anomalies can lead to severe damage. They can cause significant

performance degradation compared to the expected design. These anomalies not only degrade
user experience through frustrating delays and unreliability in system interactions but also impede
productivity by decelerating data processing and analysis workflows, ultimately leading to eco-
nomic losses. For example, e-commerce platforms are a significant application scenario for DBMSs,
typically processing over 10,000 transactions per second to ensure sales volume and revenue during
shopping festivals (e.g., Black Friday [15]). However, the data-sensitive performance anomalies may
inflate response latency by more than an order of magnitude, which may cause the entire platform
system to be paralyzed or even out of service, potentially leading to significant economic losses.
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However, conventional techniques test DBMS performance with fixed datasets, potentially
ignoring data-sensitive performance anomalies. Specifically, conventional methods (e.g., system
validation tests) compare the response time for predefined queries and data with empirical values
as the baseline. Latest fuzzers like Amoeba [37] and APOLLO [30], also compare the response time
of a query either with the time for a semantically equivalent query or in a previous version of the
target DBMS with the fixed data. Consequently, they can hardly detect data-sensitive performance
anomalies. Additionally, CERT 1 [11] tests cardinality estimation to find performance anomalies.
However, it still cannot detect data-sensitive performance anomalies due to the fixed dataset.

To efficiently detect data-sensitive performance anomalies caused by optimizers, the intuition is
to execute queries with a changed dataset and check whether the DBMS generates a significantly
costly plan. However, it is challenging to determinewhether the generated plan has low performance
for each combination of data and query because it requires accurately estimating cardinality and
building the cost model for different datasets. It can be a costly and complex process, which is
almost equivalent to implementing a perfect optimizer [33].
In this paper, we propose a data-driven analysis approach to find data-sensitive performance

anomalies in DBMS. It identifies performance anomalies by sampling the historical performance
of the tested DBMS alongside a comparable DBMS to estimate a threshold range, without necessarily
aiming for an ideal DBMS. The approach has two stages: 1 First, it synthesizes data-sensitive queries
from metadata derived from randomly generated tables. After that, it executes queries in the target
DBMS and a comparable DBMS with increased data volume. For each volume, it estimates the range
of reasonable response times to capture performance cliffs. If the actual response time falls outside
this range, a performance cliff is detected and a potential data-sensitive anomaly is identified. 2
Second, the performance cliff detected in the first stage is validated as a performance anomaly
by checking if there is a significant difference in the uniform cost of plans and if the comparable
DBMS can supply a better plan. The availability of a better plan confirms the performance cliff as a
data-sensitive performance anomaly.
We implemented the approach in Hulk and evaluated it on six widely-used DBMSs: MySQL,

MariaDB, Percona, TiDB, AntDB, and PostgreSQL. Hulk reports a total of 135 anomalies, with 129
anomalies have been confirmed as new bugs, including 14 CVEs assigned. Among them, 94 are
confirmed as data-sensitive performance anomalies, and 35 are confirmed as crash bugs. In addition,
we compare Hulk with the state-of-the-art DBMS validation tools in industry, including both
DBMS performance testing tool APOLLO [30] and SQLancer𝐶𝐸𝑅𝑇 [11], as well as DBMS fuzzing
tools Sqirrel [60]. The 24-hour result shows that Hulk covered 17%, 21%, and 6% more branches,
and found 50, 52, and 58 more bugs than APOLLO, SQLancer 𝐶𝐸𝑅𝑇 , and Sqirrel, respectively.
Particularly, Hulk found 37 and 35 more performance anomalies than APOLLO and SQLancer 𝐶𝐸𝑅𝑇
in 24 hours. In summary, our paper makes the following contributions:

• We find the data sensitive performance anomalies of DBMSs are common and can do great
damage to modern data-intensive applications, but the state-of-the-art testing techniques
pay little attention to the problem.
• We propose data-driven analysis to detect data sensitive performance anomalies, consisting of
data-sensitive query synthesis and sampling-based performance estimation. It first estimates
a range of reasonable response times for growth data volume to capture the performance cliff,
and then validates the performance anomaly by plan cost comparison.
• We implement our approach in Hulk and detect 135 anomalies in six widely-used DBMSs.
Among them, 129 are confirmed as new bugs, including 14 CVEs assigned. Among them, 94
data-sensitive performance anomalies and 35 are crash bugs.

1It is implemented in SQLancer and will be referred to as SQLancer𝐶𝐸𝑅𝑇 hereafter.
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2 Data-Sensitive Performance Anomaly
Basic Concepts. Database Management Systems (DBMS) are software systems designed to store,
retrieve, query, and manage data. Structured Query Language (SQL) is a declarative query language
that mediates information exchange between users and the DBMS. Specifically, users describe their
demands with it in a query. A clause is a built-in function that processes the database table and
gives intermediate results. A query is a request to retrieve or update information (e.g., adding or
removing data) from a database, which may contain one or several clauses. DBMSs transform the
query into a plan, which is a sequence of operations that the DBMS needs to follow to execute.
Response time can be used to measure the performance of a DBMS, which is the time interval
between when the DBMS receives a query and when the DBMS returns the result of the query.
Definition and Severity. A data-sensitive performance anomaly refers to the performance

dramatic fluctuation of a SQL query when there are only small changes in the amount of data.
DBMSs are designed to access and manage huge amounts of data. They are the infrastructure of
data-intensive applications, and their performance directly affects the overall efficiency of these
applications. As the scenarios of these applications are enriched and the frequency of use increases,
they tend to accumulate a large amount of data. To keep them running smoothly despite the growth
in data volume, a fundamental requirement of DBMS design is to maintain stable performance as the
dataset changes. Unfortunately, due to the complexity of the optimizer, data-sensitive performance
anomalies may occur when the data set changes. These anomalies typically manifest as sudden and
unpredictable changes in the DBMS’s performance, especially as the volume of data escalates.

Data-sensitive anomalies pose serious risks as they present significant obstacles to maintaining
efficient and reliable DBMSs. First, they can cause significant performance degradation compared
to the expected design. The example in Figure 1 that the performance anomaly in Percona resulted
in 2185% performance degradation with 5 rows increase. The performance degradation leads to
slower data processing, potential system failures, and a worse experience for users. Second, they
are widely prevalent across various DBMSs. As databases grow in size and complexity, the variety
of data and the complexity of queries that operate on this data also increase. This complexity makes
it challenging to predict how different data types and structures will interact with the database’s
query-processing algorithms. Thirdly, detecting these anomalies can be particularly difficult. They
often only appear under certain conditions, such as specific data sizes or types that might not be
covered by standard testing procedures. This makes them hard to spot and fix.

Root Cause.Data-sensitive performance anomalies mainly arise from implementation errors due
to the complexity of the optimizer and its interactions with other components. Almost all current
DBMSs adopt CBO for performance improvement [33]. It transforms a query into a minimal-cost
execution plan by estimating the cost (i.e., cardinality) of the operation and using complicated
strategies to find a join order. CBO normally has three components, namely CE, CM, and PE [34].
During the optimization, CE uses statistics of data to estimate the number of tuples (i.e., cardinalities)
for each basic SQL operation. CM is a complex function that maps the current DBMS state and
estimated cardinalities to the plan cost. PE calculates the cost of each execution plan based on CE
and CM and selects the optimal plan with the lowest cost for query execution.

The data-sensitive performance anomalies may be caused by errors in any component of CBO and
its interactions. First, the accuracy of CE is affected by the dataset and the complexity of the query.
As the volume grows, CE will approximate the distribution of data. Besides, a multi-join query
may be related to multiple tables. The correlations between columns of different tables increase
the difficulty in estimating the cardinality of a join operator. For a complex query with multiple
clauses, the estimated deviation propagates and amplifies from the leaves of the plan to the root.
Second, CM will also be affected by the data and the state of the database. Any error in CE will also
propagate to CM. Finally, finding the optimal solution has proven to be NP-complete [25]. When the
volume of data grows, PE sometimes has to adopt heuristic algorithms (e.g., the genetic algorithm
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in PostgreSQL) to sacrifice accuracy to satisfy a reasonable optimization time. The operations of
the chosen plan will be sent to the executor for execution.

Besides, CBO is a pivotal element within the DBMS, intricately connected with multiple system
components to ensure optimal query execution. By collaborating with the query parser, statistics,
metadata, and the execution engine, CBO tailors plans to the database’s current state and workload
characteristics. Therefore, the optimization process is highly influenced by factors such as data
distribution, column correlation, join relationships, and search principles. Any error in the process
can lead to unreasonable plans, reflected as data-sensitive performance anomalies.
Motivating Example. Figure 2 shows a real data-sensitive performance anomaly found in

MySQL, which can cause severe performance degradation. In the beginning, the database has three
tables, namely Staff, Lawyer, and Salary. They have 1000, 50000, and 1000 records, respectively.
When executing the query “SELECT * FROM Staff, Lawyer, Salary WHERE Staff.v0=Lawyer.v0 and
Lawyer.v2=Salary.v2”, MySQL takes about 1.75 seconds. However, when inserting 10 rows into
table Staff (the green region), MySQL takes about 67.43 seconds.With a 0.1% increase in the

amount of data, the response time increases by 3753%. After we reported this anomaly to
the developers and got their confirmation, they expressed surprise: “We never expected that such a
small change in data volume could cause such serious performance issues.”
To investigate the cause of the significant performance degradation, we extract the execution

plan of this query with EXPLAIN ANALYZE commands in MySQL. As Figure 2 shows, when executing
the query with original data, MySQL first employs the hash join between table Staff and Lawyer
with the condition “Staff.v0 = Lawyer.v1”. The size of the hash join is 1000*50000, and the results
will be filtered into a temp table with 1000 records. Then the second hash join will be performed on
the temp table and table Salary. The size of the second hash join is 1000*1000. Consequently, the
total number of rows scanned is 1000*50000+1000*1000 = 60,000,000.
After inserting 10 rows into table Staff, MySQL changes the plan. It first employs a hash join

between table Staff and Salary with no filter condition. The operation produces a temp table
with size 1010*1000. And then MySQL calculates hash join between the temp table and Salary.
The size of the second hash join is 1010*1000*50000. Therefore, the total number of rows scanned
is 1010*1000 + 1010*1000*50000 = 50,501,010,000, which is 842 times more than the original one.
Consequently, MySQL takes 38 times longer after the rows are inserted. As a comparison, we also

Staff

v0 v1 v2
1 str1 str1
... ... ...

1000 str1000 str1000
... ... ...

1010 str1010 str1010

Lawyer

v0 v1 v2
1 str1 str1
... ... ...

50000 str50000 str50000

Staff Lawyer

Table1.v0=Table2.v0 

1000  Salary
 

Table2.v2=Table3.v2 
1000 × 1000

Salary

No Fliter

1010
×

1000 
Lawyer

1010 × 1000 × 50000

1.75s

67.43s

Lawyer 1010  Salary 1.97s
Salary

v0 v1 v2
1 str1 str1
... ... ...

1000 str1000 str1000

TimeFirst Hash Join Second Hash Join

Table1.v0=Table2.v0

1000 × 50000

1010 × 1000

 
Table2.v2=Table3.v2 

1010 × 1000

Tables

Staff
Inserted

rows

Staff
Inserted

rows

Table1.v0=Table2.v0 and
Table.v2=Table3.v2

1010 × 50000

Fig. 2. A data-sensitive performance anomaly in MySQL. When executing one query with 1000 records in

Staff, MySQL takes about 1.75s. However, when inserting 10 rows into Staff, MySQL takes about 67.43s.

With a 0.1% increase in the amount of data, the response time increases by 3753%.
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feed the same query to MariaDB. It always executes the first plan, regardless of whether the 10
rows are inserted. As a result, it spends 1.97s after inserting the rows.

The root cause of the anomaly is that when the number of records in the ‘Staff’ table increases
to 1010, MySQL’s CE incorrectly estimates that the temporary result of ‘Staff’ joining ‘Lawyer’
will exceed the temporary join_buffer_size, due to an error in the estimation algorithm. Therefore,
it first performs a hash join on two small tables, which causes performance degradation. As the
example shows, these problems are related to changes in the amount of data. They can be very
harmful, as small changes in the amount of data can cause serious performance damage. However,
current DBMS performance tests still lack the means to detect them.

Challenges. The ideal way to identify data-sensitive performance anomalies in the CBO of DBMS
is to execute queries with changed data and check whether the DBMS generates a significantly
costly plan. We can consider a query to be anomalous if the optimizer selected a poor plan and its
actual performance diverges significantly from the calculated value. However, determining whether
each plan is optimal for each combination of data and query is challenging. Calculating the desired
performance requires estimating cardinality and building the cost model for different data volumes.
It can be a costly and complex process, which is almost equivalent to implementing a perfect
DBMS. These may result in significant challenges. To avoid these difficulties, a possible approach is
using a comparable DBMS to run the query and compare its response time with the time of the
tested DBMS. However, directly comparing the response time will result in a large number of false
positives due to differences in DBMS states, design preferences, and environments. Additionally, it can
be difficult to define what constitutes a “significant” divergence.

Basic Idea of Hulk. The basic idea of Hulk is to first find the performance cliff by comparing
the response time trends with the various datasets in two comparable DBMSs, and subsequently
finding a better query plan within one DBMS to demonstrate that the plan chosen by the other
is indeed costly. Comparable DBMSs are DBMSs that are homologous and have similar syntax,
system design, and performance goals. For example, MariaDB and MySQL are such a pair, with
similar system design and performance goals, and have a similar trend of response time for queries
to the data size. The detailed method for finding a comparable DBMS will be discussed in Section 4.
However, we still can not directly compare the execution time of the query in two comparable

DBMSs to identify the performance anomaly, due to the underlying performance differences that
arise from different diverse optimizer implementations, live tuning capabilities, buffer cache state,
and other factors. Instead, Hulk compares the response time increasing trend between two DBMSs
to identify performance cliff. Since the comparable DBMSs strive to find the best execution plan, and
when the performance of one DBMS increases steadily while the other suddenly skyrockets, it always
indicates the presence of a performance cliff. Subsequently, Hulk will check if comparable DBMSs
can offer a better execution plan, to verify whether it has generated an unreasonable plan.

3 Design of Hulk
Figure 3 illustrates Hulk’s approach step by step. In Step 1 , Hulk creates hundreds of tables in
a new database. The tables are populated with records of different magnitude orders (1 to 1000
random distribution). Specifically, to trigger complex behaviors of the DBMS, the tables contain
different features (such as index and foreign key). In Step 2 , Hulk randomly selects several tables
from the database and collects the metadata of the selected tables to synthesize a data-sensitive
query. The query contains multiple clauses which are sensitive to the data in the selected tables. In
Step 3 , Hulk randomly selects a table from the selected tables used in the last step and inserts
various amounts of rows to change the data volume. In Step 4 , Hulk sends the data-sensitive
query to comparable DBMSs for execution. Step 3 to 4 are repeatedly performed for sampling
until the amount of data volume grows to a predefined value. In Step 5 , Hulk analyzes the
trends of increasing response time as the data volume grows. In the meantime, it estimates the
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v0 v1

1 7

2 8

v0

1

2

       Randomly
generate tables
and data rows   

    Syhtheisze  query
with metadata from

DBMS   

select t1.v0,t2.t0 from
t1, t2, (select * from
t1 as t3 ) where
t1.v0=t2.v0 and
t3.v1=t2.v0

v0 v1

1 7

2 8

... ...

     Insert new
rows to change

the data volume  

        Execute the SQL and
repeat step        for sampling 

       Validate and report  anomaly
with plan cost comparison 

DB1

DB2

    Identify the performance 
anomaly with dynamic 
growth trend forecast

3
61 2 3 4 5

Fig. 3. Overview of Hulk. Hulk first randomly generates tables and initial data rows. Then it synthesizes the

data-sensitive queries with metadata from DBMS. The query generated will be executed several times by two

comparable DBMSs with growth data volumes (Steps 1–4, Section 3.1). During execution, Hulk identifies the

potential performance anomalies by sampling the response time for each data volume and estimates the

threshold for the next one. Finally, Hulk calculates and compares the plan cost of two DBMSs to validate the

anomaly. Anomalies that pass the validation will be reported with the plan-level cause (Steps 5–6, Section 3.2).

threshold of response time for the same data volume in each DBMS. If the response time exceeds
the estimated threshold, Hulk detects a performance cliff and considers it as a potential data-
sensitive performance anomaly. In Step 6 , Hulk first reproduces and analyzes the execution
procedure to calculate the plan costs. Then, Hulk compares the two plan costs of the real execution
plans. Once the cause of the performance cliff is due to the differences in the execution plan, then
Hulk will report this potential anomaly. For the next iteration, Hulk will go back to Step 2 .

3.1 Data-SensitiveQuery Synthesis
3.1.1 Definition. To better describe the data-sensitive method, we give the following definitions:
Data-sensitive clause: a clause whose processing strategy is dependent on the characteristics of

the data. For example, consider the JOIN clause in “SELECT * from A JOIN B”. The specific JOIN
strategy (e.g., hash join, nested loop join, merge join) is dependent on the data in tables A and B.
Therefore, the JOIN clause is a data-sensitive clause.

Data-sensitive query: a SQL statement that contains data-sensitive clauses. The execution plan of
the query may be influenced by the stored data in the DBMS. Given the SQL query in Figure 2 as
an example, the SELECT statement contains a WHERE clause. When more data is inserted into table
Staff, the query execution plan changes because MySQL optimizer estimates that table Staff joins
Salary with few results. With more data-sensitive clauses (e.g., “ORDER BY c0", “LIKE", “LEFT
JOIN", “WHERE”), the query optimizer is more susceptible to changes in the data when building the
plan. In other words, the data sensitivity of the query is higher when its clause number is higher.
With a low clause number, data-sensitive performance anomalies may be hard to find. However,
a too-high clause number affects the efficiency of the testing since it takes more time to execute
longer queries. How to find a suitable clause number will be discussed in Section 5.5 empirically.

Homomorphic data: the data with the same schema. Homomorphism ensures that all the charac-
teristics of the data (such as foreign key relationships) are consistent except for the data volume.
Homomorphic data is used for cross-validation of performance issues between two databases.

3.1.2 Query Synthesis Design. Figure 4 shows the design for generating semantically correct data-
sensitive queries and homomorphic data for different DBMSs shown in steps 1 to 4 . It contains
three main components, namely Homomorphic Data Augmentor, Metadata Synchronizer, and
Data-Sensitive Query Synthesizer. Metadata is the intermediate for data and query generation. It
records the schema of tables, columns, and indexes that exist in DBMSs. Metadata Synchronizer
collects metadata and synchronizes it to other components when receiving requests.
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Data-Sensitive
Query

Data-Sensitive 
Query Synthesizer

Metadata  
Synchronizer

Homomorphic  
Data Generator

DBMSs

Metadata
Information

Sync

Sync

Sync

Metadata  Metadata 

Insert Data
Statements

Execution result Execution Result

Fig. 4. The flow of query synthesis and data augmentation. Hulk uses the Metadata Synchronizer to obtain

the most up-to-date metadata information of DBMSs. Homomorphic Data Augmentor and Data-Sensitive

Query Synthesizer synchronize the metadata to alternatively generate queries and data.

Data Augmentation. To provide the raw material for data-related clauses and continuously
generate data to influence the execution plan of the data-sensitive query, Hulk is designed with
Homomorphic Data Augmentor. The component creates an amount of initial complex tables and
continuously inserts lots of data during the performance testing.
Data augmentation has three steps: (1) Table generation. Hulk first creates amounts of tables

randomly, with a random number (distributed in 10-1000) and type of columns. (2) Constraint
augmentation. Index and foreign keys are two major constraints added. Hulk will iteratively scan
all tables to randomly add these constraints. To ensure the correctness of foreign keys,Hulkwill get
all the information (e.g., the data type of each column) of each table and randomly choose a same-
data-type column to construct the foreign key constraints. (3) Data insertion. Hulk periodically
inserts data into existing tables while adhering to the constraints. To ensure complexity, Hulk has
fully modeled the SQL grammar, enabling the random selection of various data type objects. The
semantic correctness of the SQL statements that insert the data is ensured by the synchronized
metadata information from DBMS. In each data insertion loop, with the metadata information, it
inserts semantic-correct data (e.g., the data type should match in the target table) into the database.
It will continue this process until the requested amount of data has been fully inserted.
Query Synthesis. After generating amounts of initial tables and data records in the database,

Hulk then synthesizes data-sensitive queries that contain amounts of data-related clauses with
Data-Sensitive Query Synthesizer, to trigger more optimizer behaviors during the DBMS testing.
Algorithm 1 shows the detailed steps to synthesize data-sensitive queries with chosen tables

based on metadata information. Hulk first selects several tables from databases and randomly
constructs an AST for a query. The AST has data nodes that indicate data characteristics (e.g.,
table name) and structure nodes that indicate the syntactic structure (e.g., SELECT and FROM). The
AST first generates data nodes and structure nodes randomly with the average value of the clause
number and the number of chosen tables (Lines 2-3). Then, it scans each node in the AST with
depth-first traversal. For each first traversal node, if it is the predecessor of a data node, Hulk
will instantiate the sub-data tree containing data nodes with the function instantiateSubNodes
(Lines 5-6). Specifically, to instantiate the successor nodes of n0, Hulk first checks the types of each
successor node (i.e., m0) of n0. If m0 is a structure node, it does not need to be populated with data
(Line 11). If m0 is a data node, Hulk first finds the associated data nodes of m0, and then instantiates
these data nodes with the table and column metadata (Lines 12-14). If m0 is the predecessor of
subclause nodes, Hulk will recursively call InstantiateSubNodes to instantiate the subclause
nodes (Lines 15-16). After populating all data nodes, Hulk converts the AST to a SQL statement.
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Algorithm 1: Data-sensitive query synthesis
Input :𝑇 : Tables that are used to generate queries,

𝑀 : Metadata information of the tables,
𝐶: average data-sensitive clause number

Output :Data-sensitive SQL query statement 𝑠0
1 begin

2 Tables← chooseTables (T);
3 QueryTree← randomSynthsizeAST (Tables.𝑙𝑒𝑛, 𝐶);
4 foreach 𝑛0 ∈ dfsTreeNodes(QueryTree) do

5 if isPreDataNode(𝑛0) then
6 instantiateSubNodes(𝑛0,QueryTree);

7 𝑠0 ← convertToStatement(QueryTree);
8 return 𝑠0;
9 Function instantiateSubNodes(𝑛0,QueryTree):
10 foreach𝑚0 ∈ successorNodes(𝑛0,QueryTree) do

11 if 𝑚0 .𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑜𝑑𝑒𝑠 then continue ;
12 else if 𝑚0 .𝑡𝑦𝑝𝑒 = 𝑑𝑎𝑡𝑎𝑁𝑜𝑑𝑒𝑠 then

13 𝑠𝑢𝑏_𝑛𝑜𝑑𝑒𝑠 = getSubDataNodes(𝑚0);
14 instantiateNodes(𝑠𝑢𝑏_𝑛𝑜𝑑𝑒 , 𝑡0, 𝑐𝑜𝑙𝑠);
15 else if 𝑚0 .𝑡𝑦𝑝𝑒 = 𝑆𝑢𝑏𝐶𝑙𝑎𝑢𝑠𝑒𝑁𝑜𝑑𝑒𝑠 then

16 instantiateSubNodes(𝑚0, QueryTree);

17 End Function

3.2 Performance Anomaly Analysis
This module consists of performance cliff identification and performance anomaly validation.

Performance Cliff Identification. In the continuously repeating Step 3 to 4 , Hulk samples
the response time of the two comparable DBMSs being tested under increasing data volumes.
By comparing the samples on two comparable DBMSs, based on one of them, Hulk estimates a
reasonable response time range for each newly increased data volume on the comparable DBMS.
Any test case outside this range is considered a performance cliff.

Algorithm 2 shows the detailed procedures to identify the data-sensitive performance anomalies
with sampling-based response time estimation. Suppose 𝐴𝑖 represents the response time with
different data volumes for DBMS 𝛼 , and 𝐵𝑖 represents the response time for DBMS 𝛽 , Hulk first
samples the Euclidean distance 𝑑𝑖 (i=0...n-1) between two points on two curves with the same
horizontal coordinates. Then, Hulk estimates the reasonable response time region of the current
data volume with sampled Euclidean distance 𝑑𝑖 (i=0...n-1) and response time 𝐴𝑖 and 𝐵𝑖 (i=0...n-1).
As Section 2 shows, the growth curves of the response time of comparable DBMS are similar to the
data volume growth, otherwise, it may be a performance cliff of DBMS. According to the central
limit theorem [32, 39, 48], the Euclidean distances 𝑑𝑖 between two points on two curves should
conform to Gaussian distribution, as the number of samples for data volume increases. Specifically,
the central limit theorem (CLT) states that if a series of variables in a distribution is identical and
independent, the variables will tend to follow a normal distribution between the sample mean. The
Euclidean distance between response times of the same data can be considered as identically and
independently distributed (IID) samples.
(1) Identity: the response times of comparable DBMSs should demonstrate a consistently in-

creasing trend, indicating that the Euclidean distance 𝑑𝑖 between response times for the
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same dataset should have comparable values, thereby fulfilling the criteria for identity in the
Euclidean distance 𝑑𝑖 satisfying the identity.

(2) Independence: the comparable DBMSs have similar system designs and run in the same
environment, thus the operating system and the hardware should have a similar influence
on them. Therefore, with different data sets, the Euclidean distance 𝑑𝑖 between the response
time of comparable DBMSs for the same data volume should be approximately independent.

Algorithm 2: Estimate response time with sampling
Input :𝐴𝑖 (𝑖 = 0, 1...𝑛): the sequence of response

times for DBMS 𝛼 ,
𝐵𝑖 (𝑖 = 0, 1...𝑛): the sequence of response
times for DBMS 𝛽

1 begin

2 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← vector();
3 foreach 𝐵𝑖 ∈ 𝐵1 ...𝐵𝑛 do

4 𝑑𝑖 = 𝐴𝑖 - 𝐵𝑖 ;
5 push(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑑𝑖);
6 𝜇𝑖 = means(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒);
7 𝜎𝑖 = standardDeviation(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒);
8 𝐸′

𝑏𝑖+1 ∈ estimateValue(𝐴𝑖+1, 𝜇𝑖 , 𝜎𝑖);
9 if 𝐵𝑖+1 ∉ 𝐸′

𝑏𝑖
then reportAnomaly() ;

Therefore, the sampled variables can be considered as identically and independently, and should
be approximately Gauss Distribution. Based on the central limit theorem, the estimated thresholds
for normal Euclidean distance values are 95.4% and 99.7% [20] for two and three standard deviations
of the expected sampled data, respectively. We prefer to use two standard deviations to avoid
missing potential performance anomalies and the excess (i.e., anomalies that are wrongly indicated)
will be filtered through the later anomaly validation process with plan cost comparison. Therefore,
if the 𝑑𝑖 does not fall within two standard deviations of the expected sampled Euclidean distances
float, it could be a performance outlier with an accuracy of 95.4%. Following the above analysis,
Hulk first calculates the mean 𝜇 and the standard deviation 𝜎 of sequence 𝑑𝑖 (i=1...n-1). Then, Hulk
get the valid estimation region 𝐸′

𝑏𝑛
with the standard deviation (𝜎), the mean (𝜇), and the response

time of corresponding data volume in the other DBMS (𝐴𝑛):

𝐸′
𝑏𝑛
∈ [𝐴𝑛 + 𝜇𝑛−1 − 2 ∗ 𝜎𝑛−1, 𝐴𝑛 + 𝜇𝑛−1 + 2 ∗ 𝜎𝑛−1]

If the response time 𝐵𝑛 of DBMS 𝛽 does not in the region of 𝐸′
𝑏𝑛
, Hulk detects a performance cliff

and thinks it is a potential data-sensitive performance anomaly in DBMS 𝛼 or DBMS 𝛽 .
Figure 5 shows an example of how Hulk identified the data-sensitive performance cliff(potential

performance anomaly) in DBMS. In iteration 𝑛, the Euclidean distance 𝑑𝑖 (𝑖 = 1...𝑛 − 1) is first
calculated. Based on 𝑑𝑖 (𝑖 = 1...𝑛 − 1), Hulk calculates the valid region (i.e., 𝐸′

𝑏𝑛
) of the response

time for DBMS 𝛽 , which is represented as the shaded region in the figure. When the response
time 𝐵𝑛 falls outside the expected performance range 𝐸′

𝑏𝑛
, Hulk thinks it a potential data-sensitive

performance anomaly exists in DBMS 𝛽 or DBMS 𝛼 .
Performance Anomaly Validation. Based on the sampling-based dynamic threshold esti-

mation, Hulk can discover data-sensitive performance cliffs effectively. However, it is still very
difficult to report these performance cliffs to DBMSs vendors for confirmation. The main reason is
that some of the performance cliffs may not be performance bugs in DBMSs. As Section 2 describes,
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Fig. 5. An example shows the process of identifying data-sensitive performance anomalies. The curves depict

the trend of the response time of DBMS 𝛼 and 𝛽 as the volume of data increases. 𝑑𝑖 represents the Euclidean

distance between the sampling points on the two curves. The shaded area indicates the reasonable response

time range. 𝐵𝑛 is beyond this range, it signifies a performance cliff. Therefore, DBMS 𝛽 is considered to have

a potential data-sensitive performance anomaly.

different DBMSs strive to find the least costly plan for each query [54], if the performance cliff is
caused by the generation of significantly expensive plans, Hulk reports it as an anomaly.
Hulk automatically validates the cliffs as anomalies with the plan cost comparison. It checks

if there is a significant difference in the uniform cost of plans and if the comparable DBMS can
supply a better plan. The availability of a better plan confirms the existence of performance issue.
Hulk first extracts the PoC (Proof-of-Concept) by reducing the test cases to statements relevant to
the anomaly. Then Hulk automatically cleans the databases and re-sent the PoC and dataset to
two DBMSs for validation. Specifically, Hulk adds keywords (e.g., “Explain Analyze” for MySQL)
on the PoC to get the execution plans from both DBMS. Next Hulk calculates the uniform “plan
cost” to eliminate the impact of the operating environment. If the comparison of plan costs reveals
a problem, Hulk will save the PoC, data set, and execution plan in the two DBMSs to form a report.
Or else, the PoC and data set will be removed.

Plan cost calculation. A basic idea for validating is to extract and compare the plan optimized from
the query by two DBMSs. Directly comparing plans of two DBMSs for exact consistency does not
indicate that one of them has problems, as different DBMSs may have different design preferences.
Besides, we found that there was a discrepancy between the planned estimated data volume and
the actual data volume produced in each operation of the plan. For example, the CE of MySQL’s
CBO is biased to assume that when two tables are hashed together, only 10% of the rows satisfy the
filtering conditions. This may deviate significantly from the actual execution results. Therefore, it
is difficult to make a correct judgment by directly using the costs estimated in the plan. To address
the challenge, Hulk first extracts the real execution process of the plan, and then uses the real
data volume to calculate a plan cost time with the uniform cost model. The unit of “plan cost” is
the cost associated with each operation performed by the query execution engine. Each operation
within a query plan, such as table scans, joins, or aggregations, is associated with a specific cost.
The specific cost of each operation consists of I/O cost and CPU tuple cost, followed by almost all
major DBMS (PostgreSQL, MySQL, etc.). For example, PostgreSQL calculates the cost of the “scan
table operator“ with “cost = (disk pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost)”.

If the difference in “plan cost” exhibits a decision margin, then it implies that there might be an
optimization problem of the target DBMSs. The decision margin is critical for performance anomaly
detection. A small decision margin will cause a lot of false positives, but a too large decision margin
will also miss many true anomalies. We will give the specific decision margin in Section 4. In
general, a plan indicates the operation to be executed, and its execution time is proportional to the
number of times this operation is executed. For 𝑖𝑡ℎ operation 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 , suppose 𝑛𝑢𝑚𝑖 represents

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA096. Publication date: July 2025.



ISSTA096:12 Zhiyong Wu, Jie Liang, Jingzhou Fu, Mingzhe Wang, and Yu Jiang

SELECT first_name, SUM(amount) AS total FROM staff INNER JOIN payment ON  
staff.id =  payment .id AND date LIKE '2005 -08' GROUP BY first_name, last_name

-> Table scan on <temporary>  (rows=2)
 -> Aggregate using temporary table (rows=2)
  -> Nested loop inner join (staff.id = payment.id) (rows=5687)
   -> Table scan on staff  (rows=2)
   -> Filter: (payment.date like '2005-08%')  (rows=2844)
    -> Index lookup on payment using idx (id=staff.id) (rows=8024) Ex

ec
ut
io
n

Query

Plan

Fig. 6. An example to calculate the “plan cost”. Hulk obtains the execution plan for the query, extracts the

number of rows for each operation, and then calculates the plan cost.

the number of 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 executed, the time cost to finish 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 is 𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 (𝑛𝑢𝑚𝑖 ). The plan
cost is calculated by the following formula:

𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 =
𝑚∑︁
𝑖=1

𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 (𝑛𝑢𝑚𝑖 )

For example, Figure 6 shows the process to calculate the “plan cost” of a query. The top part of
the figure shows the plan to execute the query in MySQL. The operations performed by the plan are
described in order from bottom to top. The value of rows indicates the number of rows generated by
the plan. The table in Figure 6 shows the operation and its cost. With the predefined cost function
and the formula, the “plan cost” of the SQL statements can be calculated as: 𝑓𝑖𝑛𝑑𝑒𝑥_𝑙𝑜𝑜𝑘𝑢𝑝 (8024) +
𝑓𝑓 𝑖𝑙𝑡𝑒𝑟 (8024) + 𝑓𝑡𝑎𝑏𝑙𝑒_𝑠𝑐𝑎𝑛 (2) + 𝑓𝑛𝑒𝑠𝑡𝑒𝑑_𝑗𝑜𝑖𝑛 (2, 2844) + 𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (2) + 𝑓𝑡𝑎𝑏𝑙𝑒_𝑠𝑐𝑎𝑛 (2).
Plan cost comparison and anomaly report. After calculating the “plan cost” for the final data-

sensitive query, Hulk then compares the “plan cost” of execution on both DBMSs. If the difference
in the cost for two DBMSs exhibits a significantly large, then we consider the anomaly to be caused
by the logic of CBO, and therefore it needs to be further reported and repaired. For one anomaly,
the report consists of the query (i.e., the SELECT statement), dataset (i.e., the volume and schema
reflected in the CREATE and INSERT statements), reasonable response time region, the problematic
plan generated by the target DBMS, and a plan with a reasonable response time.

4 Implementation
This section explains other implementation details, which we consider significant for Hulk.
Finding Comparable DBMS. The critical step of Hulk in practice is to find a comparable DBMS

against which the DBMS under test can be evaluated. As mentioned in Section 2, the comparable
DBMS should have similar syntax, system design, and performance objectives. First, we can select
comparable DBMSs by identifying those that have branched from the same origin. For example,
MySQL and MariaDB are derived from the MySQL branch [3]. We observe that almost all commonly
used DBMSs in the industry can find their homologous DBMS that are derived from the same
source branch. They can be used as references to each other for evaluating query plans generated
by the optimizer. Table 1 presents the part of comaprale DBMSs for PostgreSQL, MySQL, and SQLite
families collected from the DBMS Ranking Website [28].
In situations where it is challenging to find DBMSs from the same branch, Hulk can opt for

different versions of a single DBMS as the comparable DBMS. For example, we have utilized Hulk
to test TiDB 7.1.0-7.1.5 and discovered 16 performance bugs.
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Table 1. Part of the category and comparable DBMSs

Category Comparable DBMS
MySQL Series MySQL, MariaDB, PolarDB, Percona
PostgreSQL Series PostgreSQL, AntDB, Citus, GaussDB
SQLite Series SQLite, Comdb2, SQLCipher

Decision Margin Setting. As Section 3.2 mentions, the decision margin plays a vital role
in performance anomaly validation. Hulk set the decision margin based on the statistics and
communication with the DBMS developers. In practice, when the decision margin is 1.5, Hulk
totally reports anomalies with 27% false positives. However, when the decision margin is 2, the
false positive rate reduces to 6%. Hulk finally set the decision margin with 2 in implementation.
SQL Grammar Scope. To improve the ease of adaptation to new DBMSs, we implement the

abstract syntax tree (AST) model for synthesizing data-sensitive queries based on the SQL-2003
standard [27]. However, different DBMSs still have unique features in terms of data types and
functions. Currently, Hulk supports all the data types and functions for major-popular series of
DBMSs, including MySQL series [18], PostgreSQL series [6], SQLite series [7]. Hulk can generate
semantically correct SQL statements by switching the data types and functions of the AST model.

Effort of Adaptation. The effort of adapting Hulk to a new DBMS could be little. We just need
to write metadata information query statements and customize the data types and functions for the
DBMS under test. Generally, a metadata information query for a DBMS has no more than ten lines
of SQL statements. Since Hulk has supported the data types and functions for popular DBMSs,
the basic data types and functions can be directly used for new DBMSs such as INT, VARCHAR,
STRING, DATE, TIMESTAMP, TIME, and FLOAT. Consequently, only a few dialect-related data
types and functions need to be implemented for a new DBMS.

5 Evaluation
We evaluate Hulk in terms of its ability to discover the data-sensitive performance anomalies,
as well as its efficiency in generating the data-sensitive queries and analyzing the performance
anomalies. Our evaluation aims to answer the following questions:
• RQ1: Can Hulk discover the data-sensitive performance anomalies?
• RQ2: How does Hulk perform compared to other related DBMS testing techniques?
• RQ3: How effective of the workloads generated by Hulk?
• RQ4: How important is the data-sensitivity of queries in finding performance anomalies?

5.1 Evaluation Setup
Tested DBMSs. To evaluate the generality and efficiency of Hulk, we select six popular open-
source DBMSs, namely MySQL [4, 55], MariaDB [2, 12], Percona [16], TiDB [24, 42], AntDB [8, 9],
and PostgreSQL [5, 38], which are widely used in industry.
Compared Techniques.We tried our best to compare Hulk with open-source DBMS perfor-

mance testing tools. Since only APOLLO [30] and SQLancer 𝐶𝐸𝑅𝑇 [11] are open-source tools, as a
remedy, we still compared Hulk with other state-of-the-art SQL fuzzer (Sqirrel [60]) to evaluate
the capability to explore the state space on DBMSs.

Basic Setup. We perform the experiments on a machine running 64-bit Ubuntu 20.04 with 128
cores (AMD EPYC 7742 Processor @ 2.25 GHz) and 488 GiB of main memory. All DBMS tested
are run in docker containers and can be downloaded directly from their website. For quantitative
comparisons, we run the docker containers for each DBMS experiment(including DBMS server
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and Hulk) with 5 CPU cores and 32 GiB of main memory. To detect real-world data-sensitive
performance anomalies, we perform testing of Hulk on all six DBMSs for two weeks continuously.

5.2 Performance Anomaly Detection
Overall Result. Hulk has found a total of 129 previously unknown bugs, confirmed by the
developer, on six well-tested DBMSs. Among them, 94 anomalies are data-sensitive performance
anomalies, and 35 anomalies cause the DBMS crash.

Table 2. Hulk discovered 129 bugs in six DBMSs, including 94 data-sensitive performance anomalies.

DBMS Bug Type Bug Status and Number Position

MySQL Performance confirmed(26),fixed (10) regexp(2), dd(2), cache(4), info_schema(4), performance_schema(2),
join_optimizer(4),storage(5), range_optimizer(3)

MySQL Crash confirmed(11), fixed(8) gis(1), libmysqld(1), join_optimizer(2), storage(6), scripts(1),
MariaDB Performance confirmed(29), fixed(7) sql(17), storage(5), libmysqld(1), strings(3),
MariaDB Crash confirmed(13), fixed(9) storage(6), mysys(1), scripts(1), sql(5)
Percona Performance confirmed(11), fixed(6) cache(1), dd(1), info_schema(2), join_optimizer(3), locks(1),

range_optimizer(2), memeory(1)
Percona Crash confirmed(3), fixed(1) storage(1), strings(1), binlog(1)
TiDB Performance confirmed (16), fixed(4) lock(2), server(3), planner(5), statistic(2), meta(4)
TiDB Crash confirmed(4), fixed(1) meta(1), server(1), store(2),
AntDB Performance confirmed(4), fixed(0) rewrite(1), optimizer(3)
AntDB Crash confirmed(2), fixed(2) rewrite(1), storage(1)
PostgreSQL Performance confirmed(8), fixed(2) statistics(1), optimizer(1), rewrite(2)
PostgreSQL Crash confirmed(2), fixed(2) storage(1), item(1)

Total 129 bugs, 14 CVEs, 94 performance bugs and 35 crash bugs

Statistics. Table 2 shows the statistics of data-sensitive performance anomalies reported by
Hulk for each DBMS. Specifically, Hulk detected a total of 94 data-sensitive anomalies, including
26, 29, 11, 16, 4, and 8 performance anomalies in MySQL, MariaDB, Percona, TiDB, AntDB, and
PostgreSQL, respectively. Among them, 29 performance anomalies have been fixed. The results
reflect that data-sensitive performance is prevalent in these popular DBMSs. With data-sensitive
query synthesis and sampling-based performance estimation, Hulk is able to detect them. Note
that in addition to performance anomalies, Hulk also finds 35 previously unknown crash bugs in
the tested DBMS, 23 of them have been fixed, including 14 that have been assigned CVE IDs. They
are founded because Hulk generates a large number of tables, data, and data-sensitive queries to
simulate various complex scenarios of the DBMS. Thus Hulk covers deep behaviors of the DBMSs
and triggers these crashes.

Table 3. Number of data-sensitive performance bugs related to the CE, CM, and PE Component.

Component MySQL MariaDB Percona TiDB AntDB PostgreSQL

CE related 13 13 4 6 2 3
CM related 3 4 1 2 1 2
PE related 10 12 6 8 1 3

Classification. Table 3 shows the classification of the 94 confirmed data-sensitive performance
anomalies, organized by the components where errors occur. We can see that 41, 13, and 40
performance anomalies are due to the implementation errors in CE, CM, PE, and others, respectively.
For instance, the motivation example in Section 2 shows a bug caused by the implementation

error in CE. Specifically, when the number of records in the Staff table increases to 1010, MySQL
incorrectly estimates that the temporary result of Staff joining Lawyer will exceed the temporary
join_buffer_size. Therefore, it first performs a hash join on two small tables, which causes a
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3753% increase in the response time to a 0.1% increase in the amount of data. Other works can not
detect these anomalies because they can only be triggered by increasing data volume. Additionally,
approaches like APOLLO and Amoeba both lack the processes. Particularly, the crash bugs are
mainly represented as memory safety errors such as stack overflow, which are caused by the
incorrect use of memory operations. They are detected because the data-sensitive queries help
Hulk trigger behaviors of the CBO that are never covered by other tools.

Table 4. Number of performance degradation at each grade

DBMS 1x-10x 11x-20x 21x-30x ≥ 30x

MySQL 11 8 4 3
MariaDB 15 8 3 3
Percona 3 4 3 1
TiDB 7 6 1 2
AntDB 2 1 1 0

PostgreSQL 4 3 1 0

Total 42 30 13 9

Impact for Performance Anomalies. Table 4 summarizes the impact of the discovered data-sensitive
performance anomalies. It shows the number of performance degradation at different grades. We
can see that the performance anomalies detected byHulk cause serious impacts on the performance
of DBMS. Specifically, compared to the estimated response time, 42, 30, 13, and 9 anomalies exhibit
speed decreases of 1x-10x, 11x-20x, 21x-30x, and over 30x, respectively. According to the developers’
responses to the reported anomalies, they indicated that in real-world application scenarios. Besides,
21 of the detected bugs have been hidden in the DBMSs for over 5 years. In particular, one of the
detected bugs was imported 9 years ago, as the paper was written. These performance anomalies
may cause serious financial losses.
Anomaly Case Study.We present a performance anomaly caused by the incorrect use of the

temporary table in optimization. The performance anomaly has serious implications and can result
in performance degradation of about 100 times.
Schema and Data of the Anomaly. Figure 7 shows the CREATE statements to create two tables

related to the performance anomalies. Table t0 contains two columns c0 and c1, where c0 is the
primary key and c1 is created with an index constraint. Table t1 contains three columns c0, c1, and
c2, where c0 is the primary key. c1 and c2 are also created with index constraints. The bottom half
of the figure shows the statements that insert 600 random rows into t0 as well as the statements to
incrementally insert random data into t1.

CREATE TABLE `t1` (
`c0` int(11) AUTO_INCREMENT,
`c1` int(11) DEFAULT NULL,
`c2` datetime DEFAULT NULL,
 PRIMARY KEY (`c0`)
) ;
CREATE INDEX i1 ON t1(c1);
CREATE INDEX i2 ON t1(c2);

INSERT INTO t0(c1) values (random_string); -- 600 rows
INSERT INTO t1(c1, c2) values (random_int,random_date);
--1000-55000 rows

Create Tables:
CREATE TABLE `t0` (
`c0` int(11) AUTO_INCREMENT, 
`c1` varchar(25) DEFAULT 
NULL,

 PRIMARY KEY (`c0`)
);
CREATE INDEX i0 ON t0(c1);

Insert Records:

Fig. 7. The CREATE statements and INSERT statements to trigger a performance anomaly in MariaDB. Table

t0 contains two columns, namely c0 and c1. Table t1 contains three columns, namely c0, c1, and c2.
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Data-Sensitive Query to Trigger The Anomaly. Figure 8 shows the data-sensitive query and
corresponding execution plan in MariaDB and MySQL for different data volumes. The query looks
for rows with the same primary key in t0 and t1, and then joins them in descending order. In
particular, table t0 is generated using the SELECT subquery. When the amount of data volume in
table t1 does not exceed 300,000, MariaDB uses the “Using filesort” method to fully scan the table
t1. MariaDB takes 0.104 seconds to execute the query, which is similar to MySQL. However, when
the amount of data volume increases to 550,000, MariaDB creates a temporary table in addition to
the “Using filesort” method in Plan2. Additional operations may introduce significant overhead to
fully scan table t1 with plan2. This causes MariaDB take 9.874 seconds to execute Plan2, while
MySQL takes only 0.124 seconds to execute Plan1 on the same amount of data volume.
Root Cause. The response time delay is caused by changes in the execution plan, not the envi-

ronment. Thus we thought this was a performance anomaly and reported it to the developers of
MariaDB. They analyzed it and found that the performance anomaly was introduced to MariaDB
in version 10.6. The root cause of the bug lies in a coding mistake within the CE component of
MariaDB’s CBO, specifically found in the optimization logic for temporary tables. Other methods
may have difficulty detecting data-sensitive performance anomalies, which are only triggered when
a certain amount of data is reached.

The SQL Query:
SELECT c2,c1 FROM t1 JOIN (SELECT c0,c1 FROM t0) AS t0 WHERE t0.c0=t1.c0 ORDER BY c2 DESC;
Execution Plan with 300000 rows in t0. -- 0.104s (mariadb) Plan1

Execution Plan with 550000 rows in t0. -- 9.874s(mariadb) Plan2
+---+-------------+-----+--------+----------------+---------+-----+--------+-----+---------------------------------+
|id | select_type | ... | type   | posssible_keys | key     | ... | rows   | ... | Extra                           |
|---|-------------|-----|--------|----------------|---------|-----|--------|-----|---------------------------------|
| 1 | SIMPLE      | ... | ALL    | PRIMARY        | NULL    | ... | 550000 | ... | Using temporary, Using filesort |
| 1 | SIMPLE      | ... | eq_ref | PRIMARY        | PRIMARY | ... | ...    | ... | Usingindex                      |
+---+-------------+-----+--------+----------------+---------+-----+--------+-----+---------------------------------+

+---+-------------+-----+--------+----------------+---------+-----+--------+-----+----------------+
|id | select_type | ... | type   | posssible_keys | key     | ... | rows   | ... | Extra          |
|---|-------------|-----|--------|----------------|---------|-----|--------|-----|----------------|
| 1 | SIMPLE      | ... | ALL    | PRIMARY        | NULL    | ... | 300000 | ... | Using filesort |
| 1 | SIMPLE      | ... | eq_ref | PRIMARY        | PRIMARY | ... | ...    | ... | Usingindex     |
+---+-------------+-----+--------+----------------+---------+-----+--------+-----+----------------+

Fig. 8. The query to trigger a performance anomaly in MariaDB. The execution plan with 300,000 rows takes

0.104s. When the volume of data grows to 500,000 rows, the changed plan takes 9.874 seconds, while MySQL

takes only 0.124 seconds to execute the query under the same data volume.

5.3 Comparison With Other Techniques
We run Hulk, APOLLO, SQLancer 𝐶𝐸𝑅𝑇 , and Sqirrel on six selected DBMSs for 24 hours. Table 5
shows the number of confirmed performance anomalies, crashes, and covered branches.

From the table, we can see that Hulk discovers more performance anomalies than APOLLO and
SQLancer 𝐶𝐸𝑅𝑇 . Specifically, compared to APOLLO and SQLancer 𝐶𝐸𝑅𝑇 , Hulk totally detects 37
and 35 more confirmed performance anomalies. Notice that the 2 anomalies found by APOLLO are
not among the 42 bugs found by Hulk. In other words, these two bugs are regression performance
anomalies but may not be sensitive to the volume of data. The results suggest that data-sensitive
performance anomalies are more likely to arise in DBMSs than regression performance anomalies,
but they are hard to find without Hulk’s approach. Specifically, Hulk generates amounts of data-
sensitive queries containing complex clauses. As the volume of data increases, these data-sensitive
queries can trigger deep code in the DBMS optimizer. In addition, Hulk estimates reasonable
performance from the sampled historical data to identify anomalies. Consequently, Hulk detects
more performance anomalies compared to APOLLO.
Moreover, we also find that Hulk performs well in detecting crash bugs. Specifically, Hulk

detects 10 more crash bugs when compared to Sqirrel. This can be explained by the design
of data-sensitive query synthesis. Hulk generates amounts of complex queries that contain 40
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Table 5. Number of confirmed performance anomalies and crashes, and covered branches on six DBMSs

Performance Bugs Crashes Branches

APOLLO 5 6 281,056
SQLancer 7 3 273,467
Sqirrel 0 9 312,713
Hulk 42 19 331,909

data-sensitive clauses on average (which will be discussed in Section 5.5). These data-sensitive
queries trigger more complex behaviors of CBO in DBMSs with the growing data volume. It could
be seen from the branches covered by each tool in 24 hours. The third column in Table 5 shows
the number of branches covered for APOLLO, SQLancer 𝐶𝐸𝑅𝑇 , Sqirrel, and Hulk. We can see
that Hulk covers 17%, 21%, and 6% more branches than APOLLO, SQLancer 𝐶𝐸𝑅𝑇 , and Sqirrel,
respectively. The improvement of branches proves that the data-sensitive query generated by Hulk
can trigger more behaviors of DBMSs compared to other tools. Therefore, Hulk detects more crash
bugs compared to other tools.

5.4 Analysis of Hulk’s Workloads
To investigate the effectiveness of the data and queries generated by Hulk, we statistics the data
volume of the triggered performance anomalies and randomly select 10,000 generated queries
during testing to analyze the clause categories of the queries.
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Fig. 9. Clause number of each type in generated queries.

Clauses Category.We extract clauses of each query and analyze the category of the clauses
based on the SQL standard [51]. Figure 9 shows the number of each type of clause contained in all
analyzed queries. We can see that the data-sensitive SQL queries generated by Hulk cover all the
clause types of MySQL (e.g. EXISTS, CAST, and EXCEPT). Specifically, 10,000 data-sensitive queries
contain 21 kinds of clauses and each kind of clause is covered 20,909 times on average. It shows
that the queries generated by Hulk have complex combinations and deep clause nesting. These
combined and nested clauses make the execution of plans corresponding to these queries vary
significantly when the volume of data changes.

Data Volume.We collect the test cases when the data-sensitive performance anomaly happened,
and analyze the data volume of these test cases generated by Hulk. Table 6 shows the proportion of
different-grade data volumes when the performance degradation happened. We can see that the data
volume of tables has an influence in triggering performance anomalies. Most performance anomalies
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Table 6. The proportion of data volume for performance bugs.

Data Volume 1-1000 1000-10000 10000-10000 >100000

Proportion 5% 23% 20% 52%

require certain data volumes to be triggered. Specifically, only 20% performance anomalies happen
with fewer than 1,000 records in the table. About 52% and 23% of the performance anomalies are
triggered with 1,000-10,000, and 10,000-100,000 records in the table, respectively. We also find that
excessive data volume is also not always conducive to detecting performance anomalies. Specifically,
only 5% of performance anomalies are triggered when the data volume is over 100,000 records.

5.5 Importance of Data-Sensitivity
Section 3.1 highlights that a SQL query’s data sensitivity increases as the number of data-sensitive
clauses it contains increases. To investigate the impact of data sensitivity for detecting performance
anomalies, we conducted an experiment that involved running Hulk on 5 different DBMSs with
data-sensitive query synthesis settings that varied average clause number (5, 10, 20, 30, 40, 50,
100). To accommodate the majority of queries generated by popular DBMS fuzzers like Sqirrel
and SQLancer, we set the minimum average clause number for evaluation to 5. We then analyzed
the number of performance bugs, crashes, and branches found by Hulk across different settings.

Table 7 presents the number of bugs detected byHulkwhen using data-sensitive query synthesis
settings with varying clause numbers. The results demonstrate that the data-sensitivity of a query
has a significant impact on Hulk’s ability to detect anomalies. As the number of clauses in a query
increases up to a certain point (i.e., when the clause number is less than 50), we observe an increase
in the number of performance bugs and crash bugs detected by Hulk. This is because a query with
more data-sensitive clauses can cover more DBMS states, which is necessary for finding anomalies.
Additionally, the fourth column of Table 7 shows the number of covered branches, which also
increases as the clause number increases. This indicates that Hulk can find more bugs when the
data-sensitivity of the query is higher.

Table 7. The number of bugs found by Hulk on various clause numbers in six DBMSs for 24 hours.

Clause Number 5 10 20 30 40 50 100

Performance Bugs 9 19 27 35 42 39 32
Crashes 3 7 11 17 22 21 18
Branches 181,412 191,321 197,230 203,321 211,991 210,879 199,164

However, we also found that increasing the number of clauses in a SQL query does not always
lead to better anomaly detection. Specifically, when the clause number reached 100, Hulk detected
fewer bugs compared to when the clause number was 40. This is because DBMSs take more time
to execute longer queries, which can reduce the efficiency of Hulk. For example, Hulk tested a
total of 1,054k SQL queries when the clause number was 40, but only tested 813k queries when the
clause number was 100. As a result, Hulk covered fewer branches and detected fewer performance
bugs and crash bugs when the clause number was 100.
Overall, these results indicate that data sensitivity in queries is important for Hulk to detect

performance anomalies, which adequately answers RQ4. Based on experimental results, there is
an optimal range for the number of clauses that maximizes Hulk’s efficiency in detecting errors.
Consequently, we set the average number of clauses to 40 and generate queries with the number
of clauses normally distributed around this value in practice. This setting helps to balance the
trade-off between the efficiency of Hulk and the ability to detect a wide range of anomalies.
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6 Discussion
Realism of Hulk’s Query andWorkloads. Using the queries with more clauses can increase the
possibility of triggering data-sensitive performance anomalies. A query with more data-sensitive
clauses can cover more DBMS states, which helps find these anomalies. Nevertheless, these anom-
alies may also occur with fewer clauses and real-life workloads. Among the 94 bugs detected by
Hulk, 58 cases could be reproduced using queries comprising fewer than 10 clauses and typical
workloads after reducing the test cases. These queries are all confirmed by DBMS developers, and
they thought these queries may exist in real workload and cause serious performance degradation.

The statistics also show that the 74 queries that triggered the anomalies contain no more than 20
clauses. For example, the SQL query “SELECT c2,c1 FROM t1 JOIN (SELECT c0, c1 FROM t0) AS t0
WHERE t0.c0=t1.c0 ORDER BY c2 DESC;” triggers a performance anomaly in MariaDB and only
has 7 clauses. As a comparison, TPC-H is a test suite that consists of common queries, and 23% of
them contain over 30 clauses. Moreover, although some SQL queries have over 30 clauses, they are
still being confirmed by the developers.

Generability of Hulk. Hulk detects the data-sensitive performance anomalies by estimating
the threshold of response time for specific data volume based on the response time trends compar-
ison. In our implementation, Hulk uses differential analysis because it is difficult to predict the
trend of query response time as data volume increases due to the diversity of DBMS states and
the complexity of queries. We use comparable DBMSs as the target and referenced DBMS in the
differential analysis. For example, we performed MySQL-MariaDB, MySQL-Percona, MySQL-TiDB,
MariaDB-Percona, AntDB-PostgreSQL testing combinations in our experiments (Section 5.2) be-
cause they have similar optimizer design and derived from the same source branch. In practice,
most DBMSs have their homologous DBMS for differential analysis. Even without homologous
DBMSs, Hulk can also be applied to the different versions of a single DBMS. For example, we used
Hulk to test TiDB 7.1.0-7.1.5 and also detected 16 data-sensitive performance bugs.
Influence of Optimizer Parameters. DBMS Optimizer parameters can greatly affect perfor-

mance and may also cause critical performance issues. In our experiment, we use default optimizer
parameters of all DBMSs to ensure a fair comparison and detect many data-sensitive performance
anomalies. However, finding the performances related to optimizer parameters is still important.
Our paper focuses on the data-sensitive performance anomalies and provides an oracle to find them
by analyzing query plans to data variations. No matter whether it is a change in data volume or a
change in optimizer parameters that causes performance anomalies, the plan-guided oracle could
be used to determine both of them. Moreover, since the two types of anomalies are orthogonal, we
can even change both the data and parameters to find more bugs for a given workload in the future.

7 Related Work
DBMS Fuzzing. Fuzzing is one of the most popular testing techniques and it is natural to adapt
fuzzing to the testing of DBMSs. Generally, current DBMS fuzzers are used to detect crash bugs,
memory safety bugs with AddressSanitizer [50], or logic bugs with the test oracle [36, 47]. SQL-
smith [49] generates queries based on predefined rules in target DBMSs to detect crash bugs. It
adapts very well to PostgreSQL and finds many bugs in it. However, it will require additional human
efforts when testing other DBMSs. SQLancer [47] detects logic bugs of DBMSs by generating queries
to fetch an existing row from databases. If the DBMS fails to fetch that, the likely cause is a logic
bug. Its following works [45, 46] also utilize the similar idea by generating semantically equiva-
lent queries and comparing the results. Sqirrel [60], Ratel [52], Unicorn [57], and Griffin [21]
introduce coverage-feedback into the query mutation to cover more branches, and they use the
AddressSanitizer [50] to detect the memory safety bugs. Lego [35] proposes sequence-oriented
fuzzing to improve the code coverage by combining different SQL Type Sequences of the statements.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA096. Publication date: July 2025.



ISSTA096:20 Zhiyong Wu, Jie Liang, Jingzhou Fu, Mingzhe Wang, and Yu Jiang

Different from them, Hulk aims at data-sensitive performance anomalies. First, Hulk contin-
ually increases the data volume to trigger these performance anomalies. Second, Hulk not only
generates queries based on rules and metadata to ensure semantic correctness but also uses them to
equip queries with more data-sensitive clauses. Finally, Hulk utilizes sampling-based performance
estimation to identify data-sensitive performance anomalies.
Performance Testing. The traditional approach to detecting performance anomalies is using

predefined test suites (i.e. workloads) and checking whether the result exceeds the baseline obtained
from experience or empirical experiments [44, 56, 58, 59]. Specifically, APOLLO [30] detects perfor-
mance regression bugs by differential testing. It uses the response time in the older version of the
target DBMS as a baseline. Amoeba [37] sets the baseline as the execution of equivalent queries on
the target DBMSs. CERT [11] identifies performance issues stemming from unexpectedly estimated
cardinalities, which indicate the projected number of rows returned by a query. It transforms a
query into a more constrained form, where the estimated cardinality should ideally be no greater
than that of the original query. Any violation suggests a potential performance concern.
Differently, Hulk focuses on performance anomalies related to the optimizer and variation of

data volume. It changes the data volume on each query and checks whether the growth in data
causes abnormal behaviors in the target comparable DBMSs. After identifying the performance
cliffs, it validates the performance anomaly with the plan cost comparison.
Data Generation in DBMS. Generating a sufficient number of diverse data is a prerequisite

for evaluating the performance of the DBMS. Conventional works generate data with varying
distributions and intra- and inter-table correlations [17, 22, 23]. They focus on generating large
databases as a benchmark and performing analyses and testing on them. Later works begin to
consider more the relationship between query and data. QAGen [14] proposes query-aware data
generation. Specifically, given the schema and a query, QAGen extends symbolic execution to
generate data which guarantees that the query can get the desired query results. ADUSA [31] also
uses a query-aware approach but targets generating a large set of small databases for exhaustively
testing a DBMS. Domino [10] introduces a method for automatically generating data to detect
schema faults that violate integrity constraints. Touchstone [53] achieves a query-aware parallel
data generation that bounds usage to memory to improve the performance.
Hulk differs from these works in generating both data and query. It first generates initial data

based on the schema. Then, it utilizes the schema to synthesize queries that contain entities that are
sensitive to data and find data-sensitive performance anomalies. For each query, Hulk increases the
amount of data volume and checks the response time. By aligning data and queries more closely,
Hulk could find data-sensitive performance anomalies that might be ignored by other methods.

8 Conclusion
We propose Hulk to detect data-sensitive performance anomalies. We find that various data
distributions are important for performance testing, however, current works usually test DBMSs in a
fixed data volume, whichmight ignore the anomalies associated with the data volume. Consequently,
we design a data-driven analysis approach to address the test oracle problem. Hulk reports 135
anomalies in six widely-used DBMSs. Among them, 129 have been confirmed.

Data Availability
The artifact of Hulk is available at https://anonymous.4open.science/r/Hulk-C0B0.
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