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Abstract
To ensure high reliability and availability, distributed sys-

tems are designed to be resilient to various faults in complex
environments. Fault injection techniques are commonly used
to test whether a distributed system can correctly handle differ-
ent potential faults. However, existing fault injection testing
is typically performed under a fixed default configuration,
overlooking the impact of varying configurations (which can
differ in real-world applications) on testing execution paths.
This results in many vulnerabilities being overlooked.

In this work, we introduce CAFault (Configuration Aware
Fault), a general testing framework for enhancing existing
fault injection techniques via abundant fault-dependent config-
urations. Considering the vast combinatorial search space be-
tween fault inputs and configuration inputs, CAFault first con-
structs a fault-dependent model (FDModel) to prune the test
input space and generate high-quality configurations. Second,
to effectively explore the fault input space under each con-
figuration, CAFault introduces fault-handling guided fuzzing,
which constantly detects bugs hidden in deep paths. We imple-
mented and evaluated CAFault on four widely used distributed
systems, including HDFS, ZooKeeper, MySQL-Cluster, and
IPFS. Compared with the state-of-the-art fault injection tools
CrashFuzz, Mallory, and Chronos, CAFault covers 31.5%,
29.3%, and 81.5% more fault tolerance logic. Furthermore,
CAFault has detected 16 serious previously unknown bugs.

1 Introduction

In a distributed environment, various faults can occur, such as
network delays, packet loss, hardware failures, etc. To handle
these faults and enhance system availability, distributed sys-
tems are designed with different kinds of fault tolerance mech-
anisms, such as replication [9], consensus protocols [11], and
failover strategies [47]. In a practical distributed system, fault
tolerance mechanisms guarantee one of the most fundamen-
tal properties called availability [5], ensuring that distributed
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systems can continuously provide functional services without
interruption, even when faults occur.

Due to the complexity of fault tolerance mechanisms in
distributed systems, it is challenging to avoid incorrect han-
dling or implementation bugs in these fault tolerance logics.
These bugs are referred to as fault handling bugs. Since
fault tolerance mechanisms play a critical role in distributed
systems, such bugs can have severe consequences, leading
to service unavailability, data loss, and even compromising
system security. To detect these bugs, several fault injection
tools [6,17,46,56,59] have been developed to simulate and in-
ject various faults into systems. These tools have successfully
uncovered numerous bugs to date.

However, existing fault injection tools typically test dis-
tributed systems in fixed default configurations, ignoring how
different configurations can impact the execution of fault toler-
ance mechanisms. In real-world applications, configurations
can vary significantly, and existing tools overlook many exe-
cution paths, missing hidden bugs that might arise under dif-
ferent configurations. For example, in MySQL-Cluster [12],
the default configuration for the data consensus mechanism is
set to ‘RAFT’ [53], which ensures consistency across nodes.
However, MySQL-Cluster also offers different consensus op-
tions, such as ‘Paxos’ [27] and ‘Quorum-based’ [35] mech-
anisms. The choice of consensus configuration can signifi-
cantly impact the fault tolerance logic, such as how the system
handles network partitions, node failures, and data consistency
during recovery, potentially leading to different behaviors and
vulnerabilities depending on the selected configuration.

To improve fault handling bug detection in distributed sys-
tems, an intuitive approach is to conduct fault injection testing
under different configurations. However, since distributed sys-
tems typically have numerous configuration parameters, the
configuration input space is often large [68], denoted as M.
Similarly, the fault injection parameters, such as the time, lo-
cation, and sequence length of the fault, create a vast input
space [22], denoted as N. Consequently, exploring the combi-
nation of these two input spaces results in a total search space
of M ∗N, which is significantly enormous.
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To effectively explore such a huge input space, there are
two main challenges: (1) The first challenge is automati-
cally analyzing the implicit dependencies between fault and
configuration inputs to prune the configuration input space
M. Many configuration items in distributed systems, such as
log level settings, are unrelated to fault handling and can be
excluded from testing. However, the vast number of configu-
ration options and their complex semantics make it difficult
to automatically identify these dependencies. Existing config-
uration testing tools [41, 42, 61, 65] rely on manual modeling
to construct dependencies between configuration and work-
load inputs, which is labor-intensive and lacks scalability. (2)
The second challenge lies in optimizing and pruning the
exploration of the fault injection input space N. In each con-
figuration input, fault injection can occur at any time and at
any execution location, making the exploration space N infi-
nite. Existing state-of-the-art (SOTA) fault injection tools typ-
ically use code coverage [17] or runtime behavior-guided [46]
fuzzing strategies to explore fault input generation. However,
these methods are time-consuming and tend to explore code
unrelated to fault-handling logic, which result in ignoring
bugs hidden in deep paths, leading to ineffective testing.

To address these challenges, we propose CAFault, a com-
prehensive testing framework aimed at detecting fault han-
dling bugs in distributed systems across different configura-
tion setups. First, CAFault introduces an FDModel that auto-
matically identifies implicit dependencies between fault and
configuration inputs, helping to prune and optimize the config-
uration input space. FDModel monitors the runtime behavior
of the distributed system under test, observing which config-
uration items influence fault handling logic and how faults
impact the system status. By tracking coverage changes and
correlating them with configuration changes, the FDModel is
dynamically constructed and updated throughout the testing
process. Second, to effectively explore the fault input space
and uncover bugs hidden in deep paths for each configura-
tion input, CAFault employs a fault-handling guided fuzzing
strategy. It performs static analysis to identify fault-handling
code in the system and then leverages coverage data from
this identified code to guide fault input generation during
fuzzing. In this way, CAFault continuously conducts efficient
fault injection testing with abundant fault-dependent configu-
rations, effectively exercising fault tolerance mechanisms and
detecting bugs in distributed systems.

We implemented CAFault and evaluated its effectiveness
on four widely-used distributed systems: ZooKeeper [36],
MySQL-Cluster [12], Hadoop Distributed File System
(HDFS) [4], and IPFS [32]. In comparison to other state-
of-art fault injection tools, e.g., CrashFuzz [17], Mallory [46],
and Chronos [6], CAFault excelled in exposing more bugs
and covering 31.5%, 29.3%, and 81.5% more fault tolerance
logic, respectively. CAFault found 16 bugs in total, with 4
in ZooKeeper, 6 in MySQL-Cluster, 3 in HDFS, and 3 in
IPFS. We also enhanced existing fault injection tools with

the FDModel in CAFault. The results show that FDModel
significantly improves testing performance, detects 6 more
bugs, and covers 25% more fault tolerance logic on average.

In summary, we make three key contributions:
• We propose the FDModel that automatically analyzes im-

plicit dependencies between fault and configuration inputs.
Enhanced with this model, the performance of existing fault
injection techniques has been significantly improved.

• We introduce fault-handling guided fuzzing to prune fault
input space and effectively exercise fault tolerance mecha-
nisms in distributed systems.

• We implement and evaluate CAFault on four widely used
distributed systems. We will open-source CAFault1.

2 Background of Fault Tolerance Mechanism
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Fault-Dependent
Configuration

Load Balancer
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Replication
Strategy
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Recovery
Strategy

Consistency 
Algorithm

… …

Figure 1: Typical fault tolerance mechanisms in Distributed
Systems, that are affected by various configuration setups.

Fault tolerance mechanisms in distributed systems are es-
sential for ensuring the reliability and availability of services
in the presence of failures. Due to the complexity of dis-
tributed interactions, distributed systems are inherently more
vulnerable to faults than standalone systems, with potential
failures including network issues, hardware malfunctions, or
software bugs. Fault tolerance mechanisms aim to detect,
tolerate, and recover from these failures to ensure continu-
ous operation. As shown in Figure 1, Mainstream fault toler-
ance techniques primarily include redundancy, checkpointing,
recovery, and consistency strategies [38]. Replication strat-
egy [26] involves adding extra resources to improve system
reliability and fault tolerance, including hardware (e.g., re-
dundant servers), data (e.g., replication across nodes), and
computational replication (e.g., task replication or load bal-
ancing). Checkpointing [14] is a technique where the system
periodically saves its state to allow recovery to a known good
state after a failure. Recovery mechanism [60] can be cold re-
covery, where the system restarts from the last checkpoint and
reloads data, or hot recovery, where the system resumes from
a more recent state to minimize downtime and data loss. Con-
sistency algorithms [19], such as Paxos and Raft, ensure that
distributed systems maintain data consistency across nodes

1CAFault:https://anonymous.4open.science/r/CAFault-43A8/
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despite faults, addressing issues like network partitions and
concurrent updates that could cause data inconsistencies.

Fault-Dependent Configuration: System configuration is
crucial to ensure that a distributed system operates reliably
and efficiently under varying conditions [68]. It provides the
flexibility for the system to adapt to different requirements. In
distributed systems, configuration inputs are the parameters
or settings that define how the system behaves [62]. These
inputs can be divided into two main types: (1) General con-
figurations, such as network settings and resource allocation,
which are not related to fault tolerance mechanisms. (2) Fault-
dependent configurations, which determine how the system
responds to failures. These include settings like whether a ser-
vice should be replicated, the frequency of recovery triggers,
and thresholds for fault detection. The fault tolerance behav-
ior of the system can vary significantly depending on these
configurations, as they control critical aspects like timeout
intervals, redundancy levels, and recovery strategies. For ex-
ample, in a high-replication configuration, the fault handling
logic may prioritize data consistency and integrity, triggering
immediate recovery processes to synchronize all replicas. In
contrast, a low-replication configuration might focus on mini-
mizing downtime, quickly recovering a failed node without
waiting for full synchronization across replicas [69]. There-
fore, fault-dependent configuration inputs have a significant
impact on fault injection testing. Unfortunately, existing fault
injection tools overlook this aspect.

3 Motivation Example

Some bugs in fault tolerance mechanisms are difficult to de-
tect because they can only be triggered under specific config-
uration settings, yet they can lead to severe consequences in
distributed systems. One such example is a fault-handling bug
in HDFS [8], caused by incorrect type sorting, specifically
the failure to properly handle null values. This bug leads to
HDFS node crashes, resulting in service unavailability for
all applications relying on the system. Figure 2 illustrates
the key steps to trigger this bug, while Figure 3 presents the
core code snippet of it. In an HDFS cluster, the NameNode
manages nodes, while the DataNode stores data. Once the
HDFS cluster loads the configuration, the NameNode sets
up the LoadBalancer (‘balance.start=true’ means that load
balancing is enabled automatically) and heartbeat mechanism
based on the configuration settings. When a DataNode fails to
respond to heartbeat packets due to various faults (e.g., persis-
tent network issues), the NameNode considers the DataNode
to be offline. As a result, the LoadBalancer detects a storage
imbalance and initiates the load reallocation process. The
DataNodeManager then sorts the DataNodes based on their
actual load. Since ‘read.considerStorageType’ is set to True,
the DataNodeManager first sorts the DataNodes according to
their storage types. However, if the previously offline DataN-
ode has just restarted and reconnected, and at that moment

the DataNodeManager is fetching its storage type, and the ini-
tialization thread responsible for that storage type has not yet
completed, a null value will be returned. Subsequently, this
bug is triggered because the default Comparator.comparing
(line 5) cannot handle comparisons involving null values,
causing the NameNode to crash. This fault handling bug is
fixed by overriding the comparator and adding handling for
null value comparisons, as shown in lines 6-14.

Configuration
Loader

6.sort

sortLoad
Block

Heartbeat
response

NameNode

DataNode

Heartbeat
Request

Data Storage

null typeX3. check

DataNodeManger.java

LoadBalancer

2. setup

2. setup

Load
Monitor

offline

• dfs.datanode.balance.start = true (default false)
• namenode.read.considerStorageType = true (default false)
• … …

Key Configuration Items

1. load

Node
Restart

calculate

4. imbalanced

5. Load
Reallocation

Compare
StorageType

Figure 2: The HDFS-17098 breaks down the NameNode in
HDFS, resulting in service unavailable.

1 private Consumer<...> sortLoadBlock() {
2 Consumer<...> loadSort = null;
3 if (readConsiderStorageType) {
4 Comparator<DatanodeInfoWithStorage> comp =
5 - Comparator.comparing(getStorageType);
6 + Comparator.comparing(getStorageType,
7 + (s1, s2) -> {
8 + if (s1 == null) {
9 + return (s2 == null) ? 0 : -1;

10 + } else if (s2 == null) {
11 + return 1;
12 + } else {
13 + return s2.compareTo(s1);
14 }});
15 loadSort=list.Collections.sort(list, comp);
16 }
17 }

Figure 3: The core code snippet of HDFS-17098. Missing
Null Type handling in‘sortLoadBlock()’.

Fault tolerance mechanisms are commonly used in dis-
tributed systems, and bugs in their implementation are in-
evitable. Bugs in one node may affect the whole distributed
system, thus causing severe consequences such as service
hangs or node crashes. We can draw three important lessons
from this case: 1) The execution logic of fault tolerance mech-
anisms is influenced by configuration inputs, a factor that
existing fault injection tools often overlook. To address this,
we propose CAFault, which focuses on enhancing these tools
with high-quality configurations. 2) The dependency between
configuration items and fault inputs is implicit. In this case,
the activation of ‘balance.start’ and ‘considerStorageType’
affects the fault handling logic during the node reconnection
process, yet they do not appear to have a direct dependency
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relationship. If we naively enumerate and explore all combi-
nations of configurations and fault inputs, it would lead to an
explosion of the input space. To solve this problem, CAFault
dynamically learns, optimizes, and refines the implicit depen-
dencies between configurations and fault inputs by leveraging
the runtime information of the distributed system under test.
3) Some fault handling bugs are hidden in deep paths, and
triggering them requires a combination of multiple faults. In
this case, triggering this bug requires at least one network
failure causing a heartbeat timeout, which triggers the load
balancing process, as well as a node failure, followed by the
successful automatic restart of the node at the right moment.
To handle this issue, CAFault employs fault-handling guided
fuzzing, dynamically selecting high-quality fault combina-
tions to explore as much fault tolerance logic as possible.

4 CAFault Design

Design goal: A practical configuration-aware fault injection
framework should have the following properties.

• General: CAFault is designed to find fault handling bugs for
most practical distributed systems, from distributed file sys-
tems, e.g., HDFS [3], to distributed configuration services,
e.g., ZooKeeper [36]. From distributed database systems,
e.g., MySQL-Cluster [12], to decentralized file systems,
e.g., IPFS [32]. The tool can be deployed to different dis-
tributed systems with minor adjustments.

• Automatic: The entire testing process is automated, requir-
ing minimal or no manual effort.

• Efficient: CAFault is able to constantly exercise the fault
tolerance mechanisms and effectively detect more bugs in
real-world distributed systems compared to SOTA tools.

4.1 CAFault Workflow

Implicit Dependency Construction

Anomaly
Monitor

Error-Handling Guided Fuzzing

Configuration c’

Distributed System under Test

FDmodel

2. load

Fault F’Fault F’Fault f’

4. inject

Runtime
Coverage

5. collect

6. update

report

1. mutate 3. traverse

7. select

fSeq’=[f1,f2,…, fn]

Fault Sequence Fuzzer

Configuration
Input Set C

Fault Input
Set F

Fault Input
Candidate F’

10.monitor

Fault Logic
Identifier

Fault-handling
coverage

11. filter

12.guide

8. generate

9. execute

Figure 4: The workflow of CAFault. It includes two main
phases: (1) Implicit Dependency Construction and (2) Fault-
Handling Guided Fuzzing.

Figure 4 illustrates the workflow of CAFault, which con-
sists of two main phases. The first phase focuses on the
construction of the FDModel (fault-dependent model): (1)
CAFault selects a configuration from the Configuration Input
Set (initially containing the system’s default configurations)
and performs random mutations to generate a new configura-
tion, c′. (2) The distributed system under test then loads the
configuration c′. (3) CAFault iterates through each fault oper-
ation in the Fault Input Set (including IO timeout, node crash,
etc.). (4) CAFault sequentially injects each fault input F into
the system. (5) For each executed fault input F , correspond-
ing coverage information is collected. (6) Based on real-time
coverage changes, the FDModel is dynamically updated and
refined. In this phase, if c′ leads to new coverage improve-
ments in the fault tolerance mechanisms, it is regarded as a
high-quality fault-dependent configuration and added to Set C
for further exploration. Note that this phase does not require
precise attribution of coverage data to individual fault opera-
tions, only whether the coverage change needs to be observed.
Finally, based on c′, CAFault proceeds to the second phase.

The second phase is the fuzzing test process, consisting of
the following steps: (7) CAFault uses the FDModel to select
fault operations that are dependent on configuration c′, creat-
ing the fault candidate set F ′. (8) The Fault Sequence Fuzzer
mutates and generates fault operation sequences f Seq′ based
on the set F ′. (9) CAFault then injects and executes f Seq′ in
the distributed system under test. (10) Subsequently, CAFault
monitors the runtime states of the system in real-time. (11)
Finally, the Fault Logic Identifier analyzes the runtime states,
filtering out fault-handling coverage information. Simultane-
ously, the Anomaly Monitor identifies if there are unexpected
errors. The bugs are reported once they are detected. (12)
Fault sequences that lead to new fault-handling coverage or
expose new bugs are prioritized by the Fuzzer to guide the gen-
eration of subsequent fault sequences. Importantly, CAFault
treats each fault sequence as a single fuzzing unit, collecting
feedback at the sequence level rather than for individual faults.
As a result, it does not require attributing precise feedback to
each fault; instead, it evaluates the overall effectiveness of the
entire sequence in exercising fault-handling logic. CAFault
proceeds to the next fuzzing iteration (from step 8 to step 12)
of the testing process until coverage converges (where newly
generated fault sequences no longer yield additional fault-
handling code coverage). Afterward, CAFault returns to the
first phase, continuously alternating between exploring con-
figuration inputs and generating fault inputs, until termination.

4.2 FDModel Updating

Both configuration inputs and fault inputs influence the execu-
tion logic of a distributed system’s fault tolerance mechanisms.
However, their dependency relationships are often implicit
and difficult to uncover directly. CAFault leverages dynamic
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runtime information to continuously learn these implicit de-
pendencies, enabling the ongoing updating and optimization
of the FDModel. A heuristic insight of this step is that, under
the same fault input fi, if changing a configuration item item j
triggers a change in the execution coverage data, then we con-
sider there to be an implicit execution dependency between
item item j and fault fi.

Definition of Implicit Dependency: Implicit dependency
refers to long and complex control-flow and data-flow relation-
ships between configuration items and fault-handling logic
that are difficult to detect. First, we formally define the process
of testing a distributed system as φ= {C,F,Cov}. Specifically,
C = {c1,c2,c3, . . . ,cn} represents the set of configuration in-
puts to be loaded into the system. F = { f1, f2, f3, ..., fm} rep-
resents the set of fault inputs to be injected into the system
under test. Cov= {cov1,1, . . . ,covi, j, . . . ,covn,m} represent the
coverage data, and covi, j means represents the coverage data
generated by executing configuration ci and fault input f j.
For each c in C, c = {item1, item2, item3, . . . , iteml} repre-
sents the actual settings of all items in c. Let diff (ci,cj) =
{item1, item2, . . . , itemk} represent the differences between
configuration ci and configuration c j, where the values of
these k items are different. ∀ fi ∈ F , if diff (ca,cb) = {item j}
and cova,i ̸= covb,i, then we define that item item j has an im-
plicit execution dependency with fault fi, denoted as d(item j , fi).

Fault-Dependency Model Updating 

Configuration
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Figure 5: The process of Fault-Dependency Model updating.
CAFault continuously learns implicit dependencies and re-
fines the FDModel by analyzing coverage differences.

Figure 5 provides a detailed overview of the FModel
update process. CAFault first dequeues a configuration c
from the Configuration Input Set C. Then, an item muta-
tor is employed to randomly mutate k items (k ≥ 1 and
k ≤ number of all items) based on the selected configuration,
generating a new configuration c′. We assume that there are
k items {item1, item2, . . . , itemk} that are mutated and dif-
fer between c and c′. CAFault loads configuration c, and
then injects each fault f from the Fault Input Set F respec-
tively, recording the corresponding coverage in fault tolerance
mechanisms (will be introduced in section 4.3), denoted as
Cov = {covi,1,covi,2, . . . ,covi,m}. Next, CAFault reloads c′

and repeats the previous step, obtaining the coverage informa-
tion Cov′ = {cov′i,1,cov′i,2, . . . ,cov′i,m}. Then CAFault utilizes
a Coverage Comparer to calculate the coverage difference be-

tween Cov and Cov′. As shown in Figure 5, if covi,2 ̸= cov′i,2,
it means that changing these k items under the fault input f2
affects the fault tolerance execution logic of the system under
test. Therefore, these k items {item1, item2, . . . , itemk} may
have an implicit execution dependency with fault f2, resulting
in a candidate dependency d. Considering that not every item
in these k items will affect the execution logic of f2, in order
to precisely analyze the dependency between these k items
and f2, we use a binary search-based minimization algorithm
to try to extract the smallest subset of items that can trigger the
coverage difference. Finally, CAFault applies the minimized
dependency d to update the FDModel.

Item Mutation: when mutating configuration items in
distributed systems, we apply different strategies based on
the type of the item. For boolean configuration items, we
mutate their values by performing a logical NOT operation.
For enum-type items, we randomly select one value from the
available options. For numeric configuration items, we mutate
them by adding or subtracting a random value, ensuring that
the new value remains within a valid range. For string-type
items, we mutate them according to their semantics. If the
item represents a time value, we generate a random time in
the correct format. For items representing IP addresses or file
paths, we skip mutation operations, as arbitrary modifications
to these values could disrupt the network topology and prevent
the distributed system from functioning properly.

Algorithm 1: Binary Search-based Minimization.
Input : f : fault input

d: dependency require to be minimized
1 fn binaryMinize(d, f ):
2 cov′ = execute (d, f ) ;
3 if cov′==cov then
4 d.removeAll () ;
5 end
6 else
7 left = 0, right = len(d) - 1 ;
8 mid = (left + right) // 2 ;
9 if left < right then

10 le f titem = d[left:mid] ;
11 rightitem = d[mid:right] ;
12 dmin.add (binaryMinize(le f titem, f ));
13 dmin.add (binaryMinize(le f titem, f ));
14 end
15 end

Binary Search-based Minimization: Algorithm 1 illus-
trates the procedure for candidate dependency minimization.
The inputs to the minimization algorithm consist of fault in-
jection f and the set of fault-dependent configuration items
d to be minimized. The function ‘execute(d, f)’ refers to the
process of executing fault injection f on the configuration c
with only the items in set d mutated, while the other items
remain unchanged. Coverage is used to determine whether
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each change in configuration items leads to a change in cover-
age. Specifically, the algorithm first splits the candidate item
set into two parts: le f titem and rightitem. It then recursively
explores each subset of items (Lines 7-14). If the coverage
produced by executing a particular item set is the same as the
coverage of the original configuration c, it is considered that
all items in that set have no execution dependency on fault f ,
and these items are removed (Lines 3-5).

4.3 Fault-Handling Guided Fuzzing
The fault injection input space remains vast for each specific
configuration. A commonly used method, such as CrashFuzz,
uses code coverage-guided fuzzing to explore fault input gen-
eration. However, an increase in code coverage does not nec-
essarily equate to an increase in fault tolerance logic coverage,
leading to the exploration of many non-fault-handling code
paths. An intuitive insight of CAFault is to directly use code
in fault tolerance mechanisms as feedback to guide the ex-
ploration of fault injection generation. To achieve this, we
first need to automatically extract the code related to fault
tolerance mechanisms from the coverage data.

Fault Tolerance Logic
Identification

Source Code

static Scan

Call Traces

track

Fault-Handling Guided
Sequence Input Exploration

filter out

Exception Handling
Code Blocks

static Analyze

Fault-Handling
Logic Codes
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select

fSeq Pool

𝑓𝑆𝑒𝑞 = [𝑓! , f" , … , 𝑓#]

dequeue

𝑓𝑆𝑒𝑞‘ = [𝑓! ’, f"‘, … , 𝑓#’]
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Coverage
Analyzer

FDmodel

Find new bugs or
contribute to new
fault-handling
code coverage

identify

Figure 6: The process of Fault-handling code guided fuzzing.
CAFault first constructs a fault-handling code identifier and
then dynamically analyzes coverage based on it.

Figure 6 provides a detailed overview of the fault-handling
guided fault input exploration process. Before testing begins,
CAFault performs static analysis to identify and mark the
code related to fault tolerance mechanisms, outputting the
fault-handling code. During the testing process, CAFault first
uses the FDModel along with the current configuration c of
the system under test to select fault operations related to it,
placing them into a candidate set F ′. Then the fSeq pool is fil-
tered to remove those sequences that include a fault f which
does not belong to F ′. During coverage analysis, CAFault
calculates the fault-handling coverage based on the code sec-
tions marked by the Fault Mechanism Logic Identifier, using
it as feedback to guide the fuzzing process. Once the fault-
handling coverage converges, it indicates that the fault explo-

ration for the current configuration c is complete. CAFault
then switches back to the first phase, generating and loading
a new high-quality configuration.

Fault Tolerance Logic Identifier. Considering that in most
distributed systems, their fault tolerance mechanisms typically
involve the capture and handling of various exceptions, the
first step is to statically scan the source code of the system un-
der test to identify all exception-handling code blocks. In Java
language, this step is achieved by recognizing ‘try’, ‘catch’,
and ‘finally’ blocks. In C++ language, this is done by identify-
ing ‘try’, ‘catch’, and ‘throw’ statements. In Go language, this
is achieved by identifying ‘defer’, ‘panic’, and ‘recover’ state-
ments. Subsequently, for each exception handling code block,
CAFault performs static analysis of its call traces. By tracking
these call traces, CAFault identifies and marks codes related
to the fault tolerance mechanism, generating a fault-handling
code set for subsequent coverage analysis.

Algorithm 2: Fault-Handling Guided Fuzzing.
Input :DSUT : Distributed System under Test

c: current configuration loaded in the DSUT
Output :B: fault handling bugs

1 DSUT .load (c);
2 B={} f seqPool={};
3 CovAnalyzer = setupCoverAnalyzer();
4 f seqPool.enqueue (randomInit ())
5 while true do
6 f Seq = f seqPool.dequeue() ;
7 f Seq

′
= mutate( f Seq) ;

8 CAFault.inject( f Seq
′
);

9 async:
10 Cover = DSUT.execute( f Seq

′
) ;

11 Cover f ault = idenitfy(Cover) ;
12 end async
13 Bugnew = checkAnomaly();
14 Bn.append(newBugs);
15 if (Cover f ault .isNew ()) or (Bugnew != NULL) then
16 f seqPool.enqueue( f Seq

′
);

17 end
18 end

Fault Sequence Exploration: Algorithm 2 illustrates the
fault-handling guided fuzzing process. Before the fuzzing pro-
cess begins, CAFault first sets up the Distributed System Un-
der Test (DSUT) and loads the configuration c. Then, CAFault
initializes a coverage analyzer to collect and calculate fault-
handling coverage in real time. Next, CAFault initializes the
fault sequence pool f SeqPool. If this is the first time enter-
ing the fuzzing phase, CAFault randomly selects some faults
from the candidate set F ′ as the initial fault sequence. If it is
not the first time entering the fuzzing phase, CAFault loads
the fault sequences from the previous fuzzing phase’s fSe-
qPool, as shown in Lines 1-4. Then, the fuzzing process starts.
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In each fuzzing iteration, CAFault first dequeues a fault se-
quence f Seq from the pool and applies mutation strategies
commonly used in existing fault injection tools to mutate it
into a new sequence f Seq

′
. The mutated fault sequence f Seq

′

is then injected into the DSUT by CAFault (Lines 6-8). The
f Seq is executed asynchronously by the DSUT, and its fault-
handling coverage information is analyzed in real time, as
shown in Lines 9-12. Meanwhile, an anomaly detector moni-
tors the system’s runtime status and reports any new bugs if
a fault-handling bug is detected (Lines 13-14). If the f Seq′

contributes new fault-handling coverage or leads to the dis-
covery of new bugs, it is regarded as an interesting seed and is
stored back in the fSeqPool to guide the next fuzzing iteration.
In this way, CAFault continuously generates fault sequences,
exploring as much fault tolerance logic as possible.

5 Implementation

We implemented CAFault in the four widely used distributed
systems: HDFS, ZooKeeper, MySQL, and IPFS. The reasons
we choose them are listed below:

System Popularity: HDFS, a core component of the Apache
Hadoop project, is one of the most widely used distributed file
systems for data storage [48]. MySQL Cluster is a scalable,
real-time, ACID-compliant transactional database, favored for
its low cost and multi-master architecture [40]. ZooKeeper
is a popular distributed coordination service, enabling pro-
cesses to synchronize through a shared namespace with high
throughput and low latency [36]. IPFS is a widely used peer-
to-peer file-sharing and distributed storage system that enables
content addressing and efficient data retrieval [2].

Platform Diversity: These distributed systems come from
different organizations and are implemented in different pro-
gramming languages. HDFS and ZooKeeper are developed
by Apache Software Foundation in Java language. MySQL-
Cluster is developed by MySQL AB in C++ language. IPFS is
developed by IPFS Org in the Go language. Implementation
and evaluation of these distributed systems can demonstrate
that CAFault is a cross-platform and language-independent
testing framework with high generality.

Figure 7 presents the components of CAFault, which can
be divided into three core parts. The first part is the Con-
figuration Generator, which is implemented for synthesizing
high-quality configurations that impact fault tolerance mecha-
nisms in distributed systems under test. The second part is the
Fault Injector, which effectively explores fault inputs under
each fault-dependent configuration setup. The third part is the
Interaction Adaptor, designed to interact with the target sys-
tem, including standardizing the configuration input format
of the distributed systems under test, sending workloads to
them, and detecting anomalies within the systems. The rest
of the section describes notable implementation details.

Coverage Collector: To collect runtime code coverage
information, language-specific instrumentation tools are re-

Target Systems

Fault Injector

Fault Sequence Mutator

Error-Handling Identifier

Interaction Adaptor
Config Formator

Configuration Generator

Dependency Learner

Fault-Dependency Model

Config Item Synthesizer

Coverage Collector

CAFault Components

IPFSHadoop ZooKeeper

Anomaly DetectorWorkload Loader

Figure 7: Components of CAFault, including Configuration
Generator, Fault Injector, and Interaction Adaptor.

quired for the distributed systems under test. For Java pro-
grams, we use Javacoco [33]. For C/C++ programs, we use
gcov [18]. For Go programs, we use gtest [20].

Workload Loader: In distributed system testing, workload
refers to the set of tasks, requests, or operations sent to the
system to simulate real-world usage. For HDFS, the workload
is derived from Intel HiBench [29], a widely used benchmark
suite for testing big data processing systems. For MySQL
Cluster, the workload is generated using SQLancer [58], a pop-
ular SQL generator for testing the robustness and correctness
of database systems. For ZooKeeper, the workload is loaded
from Apache JMeter [25], a commonly used functional testing
tool for performance and stress testing distributed systems,
including ZooKeeper. For IPFS, we use ipfs-benchmark [31]
to simulate multiple client requests and generate workloads.

Configuration Parameter Mutator: CAFault considers
all exposed configuration items of each target system and mu-
tates them using type-aware strategies (e.g., boolean negation,
enum substitution, numeric shifting), consistent with existing
configuration fuzzing tools such as ECFuzz [41]. The detailed
mutation strategy is introduced in Section 4.2.

Fault Type and Detector: Due to the diversity of fault
tolerance mechanisms in distributed systems, there are many
types of fault handling bugs. Currently, CAFault adopts a set
of commonly used faults, including delay, crash, restart, and
packet loss, which is consistent with those used by SOTA
fault injection tools (i.e., Chronos, Mallory, and CrashFuzz).
We also integrate several mainstream bug detectors: For crash
recovery bugs [16], we use the detector from CrashFuzz. For
timeout bugs [10], we leverage the monitor from Chronos. For
other common bugs (including memory vulnerability, incon-
sistency, etc.), we use three detectors (i.e., AddressSanitizer,
log checker, and consistency checker) from Mallory.

Bug Reproducing and Analyzing: When reproducing
bugs in distributed systems, especially those involving non-
determinism, we follow the strategy adopted by previous fault
injection tools such as Phoenix [45]. Specifically, when a
bug is detected, we precisely log the execution context of
each injected fault, including the fault type, injection timing,
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Table 1: 16 new fault handling bugs detected by the tools within 48 hours. CAFault found all 16 bugs, including 3 in HDFS, 6
in MySQL-Cluster, 4 in ZooKeeper, and 3 in IPFS. In comparison, other SOTA tools detected fewer bugs: CrashFuzz found 3
bugs, Mallory found 4 bugs, and Chronos found 1 bug, respectively.

# Platform Version The Root Cause Analysis Identifier
1 HDFS 3.4.1 NameNode in Quorum-based Mode breaks down due to NullPointer in NameNodeRpcServer after multiple request timeout. HDFS-202410312
2 HDFS 3.4.1 DataNode fails to recover caused by incorrect connect retries in the node restart process when using default configuration. HDFS-202410318
3 HDFS 3.4.1 File fetching repeatedly hangs due to NullPointerException in BlockPlacementPolicy when setting dfs.replication=1 HDFS-202410319
4 MySQL-Cluster 8.4 Data loss in NDBD and failure to recover caused by incorrect index deletion when setting HAProxy.balance=roundrobin. MySQL-S1825461
5 MySQL-Cluster 8.4 Bufferoverflow in sql_opt_exec_shared due to incorrect handling in data resynchronization when setting sync_binlog=0. MySQL-S1825462
6 MySQL-Cluster 8.4 NDBD fails to recover caused by SEGV in Item_subselect which crashes the server node when using default configuration. MySQL-S1827319
7 MySQL-Cluster 8.4 Continuous data write timeouts due to incorrect thread allocation in perfschema/pfs.cc When setting RedoBufferSize 1MB. MySQL-S1827320
8 MySQL-Cluster 8.4 Data inconsistency among ndbds caused by incorrect STATUS in ndb_mgmd restarting when setting NoOfReplicas to 10. MySQL-S1827321
9 MySQL-Cluster 8.4 SQL Query hangs and fails to recover due to wrong connection retry in conn_handler when using default configuration. MySQL-S1830147
10 ZooKeeper 3.9 Leader node disconnects other nodes and fails to recover when meeting network faults in fast leader election mode. ZooKeeper-2024532
11 ZooKeeper 3.9 Data corruption: Zookeeper client erroneously handling absolute path changes when resetting ZOOCFG.dataDir ZooKeeper-2024550
12 ZooKeeper 3.9 NullPointerException in inputStream field crashes nodes and stops them restarting when using default configuration. ZooKeeper-2024551
13 ZooKeeper 3.9 Request timeout due to missing ZooDefs.OpCode in RequestMetricsCollector when setting tickTime to 100 ZooKeeper-2024547
14 IPFS 0.33 Inconsistent repo size caused by incorrect calculation of resyncing repository when setting a small ipfs.cache. IPFS-10252
15 IPFS 0.33 Resources accessing hangs incorrect IPNS address resolution after nodes restart when using the FUSE mounting mode. IPFS-10573
16 IPFS 0.33 Kubo daemon crashes and fails to recover caused by incorrect pointer access under the default recovery configuration. IPFS-10217

and executed code location at the time of injection. During
the reproduction phase, we strictly replay these faults with
the same context to maximize consistency with the original
execution. To further mitigate the effects of non-determinism,
we re-execute the fault sequence multiple times.

Adaptation to New Distributed Systems: The effort of
adapting CAFault to other DFSes could be small. Modules in
CAFault are well-encapsulated and loosely coupled. Hence,
when adapting CAFault to a new distributed system under test,
developers only need to implement three interfaces related
to a specific target system. (1) The first interface is ‘con-
fig.format()’, which converts the configuration input format
of the target system to CAFault’s standard format (XML [37])
and vice versa. Currently, we support several mainstream
configuration file formats, such as JSON [44], YAML [1],
INI [15], and TOML [63]. If the distributed system uses one
of these common file formats, no adaptation is needed. Oth-
erwise, it is necessary to manually implement this format
interface, though this situation is rare. (2) The second inter-
face is ‘Workloading()’, which is used to load the workload
required for testing the distributed system under test. Fortu-
nately, most commonly used distributed systems have their
own workload generation tools for testing and evaluation. As
previously mentioned, we can directly integrate and use these
existing workloads through this interface. (3) The third inter-
face is ‘statusMonitor()’, which is responsible for monitoring
key statuses and identifying bugs in the distributed system.

6 Evaluation

To evaluate the effectiveness of CAFault, we compared it
with three SOTA fault injection tools: CrashFuzz, Mallory,
and Chronos on four widely used distributed systems. These
tools were chosen because they represent recent advances
published in top-tier conferences. Each of them has been eval-

uated against a wide range of prior fault injection tools (e.g.,
Jepsen [34], ChaosMonkey [50], etc.) and has demonstrated
superior performance in terms of bug detection and code cov-
erage. We ran each distributed system in a cluster of 20 virtual
nodes isolated by Docker [13]. Each Docker has a 2.25 GHz
6-core CPU, 16 GB of RAM, and a 480 GB SATA SSD. They
all connect to each other with a 10 Gbps network bandwidth
setup. They ran Ubuntu 20.04.2 with Linux kernel version
4.4.0. All Docker containers run in a physical machine, which
is a 64-bit machine with 128 CPU cores (AMD EPYC 7742
64-Core Processor), and 512 GB main memory. All the exper-
iments are conducted several times with the same workloads,
and the average values are used in this paper. We designed
experiments to address the following research questions:

• RQ1: Is CAFault effective in finding fault handling bugs
of real-world distributed systems?

• RQ2: Can CAFault cover more fault tolerance logic in
distributed systems compared to other SOTA tools?

• RQ3: How effectively does the Fault-Dependency
Model enhance testing performance?

• RQ4: To what extent does fault-handling guided fuzzing
improve the performance of testing?

• RQ5: What is the accuracy of CAFault?

6.1 Bugs in Real-World Distributed Systems
We applied CAFault to the latest versions of four distributed
systems (HDFS 3.4.1, MySQL-Cluster v8.4, ZooKeeper v3.9,
and IPFS v0.33) to evaluate fault handling bug detection. For
comparison, we also ran CrashFuzz, Mallory, and Chronos on
the same target systems using the same experimental setup.
Furthermore, since these existing tools only perform test-
ing on the fixed and default configurations of the distributed
systems under test, to provide a fair comparison and vali-
date whether FDModel can enhance the testing performance
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of existing fault injection techniques, we also integrate FD-
Model into these tools, which we refer to as CrashFuzz+,
Mallory+, and Chronos+. Specifically, we first loaded fault-
dependent configurations from the FDModel generated by
CAFault. Then, we applied the existing fault injection tech-
niques (i.e., CrashFuzz, Mallory, and Chronos) to each con-
figuration to explore the fault input space. Once the fault
injection test coverage converged for the current configura-
tion, we moved to the next configuration (as described in
Section 4.1). Each experiment is conducted for 48 hours. In
total, CAFault identified 16 fault handling bugs on four target
distributed systems with 3 in HDFS, 6 in MySQL-Cluster, 4
in ZooKeeper, and 3 in IPFS. The detailed information on
these fault handling bugs is presented in Table 1.

As shown in Table 1, all 16 identified fault handling bugs
have been confirmed and fixed by the corresponding vendors.
Among these, except for 5 that were found solely through the
default configuration of the system under test, the majority
of the bugs (11/16) required testing under various configu-
ration item settings with corresponding fault injection to be
triggered. Specifically, most of the fault handling bugs (8/16)
caused server nodes to crash, and due to errors in the fault
tolerance mechanism, these distributed nodes were unable
to recover automatically. Three bugs were caused by errors
during the data synchronization process, resulting in data
inconsistency across distributed nodes and even the loss of
critical data. The remaining 5 bugs caused the distributed
services to hang for an extended period, affecting system
availability. Some of these fault handling bugs can lead to
serious consequences. Take bugs #1, #4 and #10, and #16
for example, these bugs could allow attackers to deliberately
crash or hang specific target nodes, disrupting their ability to
handle requests or impeding the data synchronization process
through the execution of specific fault operations. Such mali-
cious activities could directly result in the loss of critical data
or cause the outage of essential cloud services and ultimately
lead to significant economic losses.

Table 2: Bugs found by CAFault and other SOTA methods.
Existing fault injection tools detect no more than 5 bugs, while
CAFault detects 16 unknown bugs.

Tool Name Number Bugs ID #
CAFault 16 #1 - 16
CrashFuzz 3 #2, 6, 12
CrashFuzz+ 9 #2, 3, 5, 6, 8, 11-14
Mallory 4 #2, 6, 12, 16
Mallory+ 12 #2, 3-9, 11-14, 16
Chronos 1 #9
Chronos+ 5 #3, 7, 9, 13, 15

Comparison with existing methods: In our 48-hour ex-
periments, CrashFuzz only found 3 bugs, including bugs #2,
#6, and #12. Mallory has successfully found 4 bugs, including
bugs #2, #6, #12, and #16. Chronos only found 1 bug (#9).

However, the remaining 11 bugs were not detected by these
tools because these fault-handling bugs require specific fault-
dependent configurations to be triggered. Therefore, with
the enhancement of FDModel, CrashFuzz+, Mallory+, and
Chronos+ successfully detected 8 additional bugs. However, 3
bugs (#1, #4, and #10) were still not detected. This is because
they are hidden not only in various specific fault-dependent
configurations but also in deep execution paths. Triggering
them requires conducting multiple fault interactions across
different phases first. With the help of the fault-handling
guided fuzzing strategy, CAFault successfully explored the
fault tolerance logic hidden in deep paths and detected all
16 bugs, proving the effectiveness of CAFault in detecting
fault handling bugs in real-world distributed systems, which
adequately answers RQ1. Compared with other SOTA tools,
CAFault found all the bugs that other tools found.

6.1.1 Case Study

Now we use one case to illustrate how the fault handling bugs
detected by CAFault affect the whole distributed system, and
how CAFault detects them. This case is the bug #1 listed in
Table 1. This bug is a severe node crash, and attackers may
utilize it to cause arbitrary distributed nodes to break down
by conducting a certain delay strategy. It is caused by an im-
plementation bug that incorrectly manipulates a NullPointer.
It is found in version 3.4.1 of HDFS. It can only be triggered
when running NameNode in Quorum mode. The code snippet
in Figure 8 describes the detailed information.

1 private void tryReconnect() {
2 Preconditions.checkState(proxy == null);
3 proxy = createProxy();
4 ...
5 if (quorumEnabled) {
6 address = getConnect(NodeID, server);
7 + Preconditions.checkArgument(detailedConnetTime

!= null, "Quorum mode enabled, detailed connect
time metric +should not be null!");

8 detailedConnetTime.add(proxy, address);
9 }

10 updateProcessingDetails(Timing.LOCKWAIT, now -
startNanos);

11 }

Figure 8: A NullPointer bug that crashes HDFS NameNode.

Root Cause: In HDFS, NameNode is designed for man-
aging the filesystem metadata and keeping track of the lo-
cations of blocks across the cluster. The NameNode can be
configured to run in various modes. To support the HDFS
High Availability (HA) feature, the Quorum Journal Manager
(QJM) is introduced to share edit logs between the Active and
Standby NameNodes [24]. As shown in Figure 8, when heart-
beat checks between distributed NameNode nodes fail due
to various faults (e.g., network delays), the ‘tryReconnect()’
function is called to attempt re-establishing the NameNode
quorum. In most cases, this code runs normally. However,
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when another reconnect thread for the current NameNode
is being re-spawned (due to multiple reconnect attempts ex-
ceeding the max_try setting), the ‘detailedConnectTime’ in
that thread might not have been properly re-initialized yet. If
the ‘tryReconnect()’ function is called in the current thread
before this re-initialization, it triggers a null pointer issue,
causing the node to crash and preventing it from recovering
automatically. The developer has fixed this fault handling bug
by adding a NullPointer checker (lines 7).

This crash bug was introduced when the quorum mode
was added in HDFS v2.0.1. However, it remained hidden in
the daily usage of HDFS until it was detected for the first
time by CAFault. This is mainly because most of the previ-
ous fault injection testing tools were only run under HDFS’s
default configuration (i.e., Standalone Mode), which failed
to trigger this bug. Additionally, even though existing tools
(CrashFuzz+, Mallory+, and Chronos+) were enhanced with
our FDModel, they still did not detect it during our 48-hour
experiment. This is because the bug is hidden deep within
the fault interaction path: in addition to needing to run in
quorum mode, it also requires that at least two connections
on the NameNode be in a disconnected state, with one con-
nection exceeding the maximum retry limit, while another
connection attempts to reconnect at the same time. Such a
scenario is quite rare. Fortunately, with the fault-handling
guided fuzzing strategy, CAFault generates a wide range of
fault inputs, enabling it to explore various fault-handling logic
in the distributed system. This ultimately triggers the fault
handling bug hidden in the deep path.

6.2 Fault Tolerance Logic Coverage

To evaluate the effectiveness of CAFault in covering fault
tolerance logic in distributed systems, we set up a network for
each target system and compared CAFault with other SOTA
tools under the same experimental conditions. We measured
the coverage of fault-handling code (which represents the
fault tolerance mechanisms in the distributed systems under
test, as detailed in Section 4.3) over a 48-hour testing period.
The statistics are shown in Table 3. A 48-hour duration is
commonly used in prior fault injection studies, offering a fair
basis for comparison. Moreover, for most tools, code cover-
age tends to converge within this timeframe, with negligible
gains observed beyond that point, as shown in Figure 9. In
conclusion, CAFault consistently outperforms other SOTA
tools across all four target distributed systems. Compared to
CrashFuzz, Mallory, and Chronos, CAFault covers 31.5%,
29.3%, and 81.5% more fault-handling code, respectively, on
average. The statistics adequately answer RQ2

Compared to their original versions (CrashFuzz, Mallory,
and Chronos), the FDModel enhanced tools (CrashFuzz+,
Mallory+, and Chronos+) consistently achieve better cover-
age across all four target systems. Overall, with the help of
FDModel, they improved fault tolerance logic coverage by

Table 3: fault-handling code coverage on four target systems
in 48 hours. CAFault covers 81.52%, 31.55%, and 29.31%
more fault tolerance logics compared with other SOTA tools.

HDFS MySQL-Cluster ZooKeeper IPFS Improvement
CrashFuzz 9965 14624 4869 2393 -
CrashFuzz+ 13550 17982 6221 2969 ↑ 27.69%
Mallory 10058 14951 5132 2361 -
Mallory+ 13012 18975 6065 2885 ↑ 24.16%
Chronos 7776 10583 3656 1564 -
Chronos+ 9650 12953 4412 1962 ↑ 23.15%
CAFault 13684 19162 6254 3097 ↑ 29.31% - 81.52%

27.69%, 24.16%, and 23.15%, respectively. The key reason
for this improvement is that FDModel generates various high-
quality, fault-dependent configuration inputs, which enrich
the testing scenarios of existing fault injection tools and en-
hance testing efficiency. Among these existing fault injection
tools, Chronos achieves the lowest coverage. This is because
Chronos primarily focuses on timeout-related mechanisms
in the distributed system under test, neglecting other fault-
handling logic, such as crash recovery or failover, which re-
sults in lower fault-handling code coverage. In comparison
to the FDModel enhanced tools (CrashFuzz+, Mallory+, and
Chronos+), CAFault consistently outperforms them across all
four target systems. The main reason is that, with the help of
fault-handling guided fuzzing,CAFault effectively explores
the fault input space for each configuration, thus improving
the efficiency of testing fault tolerance mechanisms.

To track the trends of coverage growth over time, we record
the fault-handling code coverage every minute over 24 hours,
as shown in figure 9. The data shows that the coverage of
existing fault injection tools grows significantly during the
first 300 minutes on all four target DFSes. The data shows that
existing fault injection tools experience significant coverage
growth within the first 5 hours across all four target distributed
systems. After approximately 10 hours, their coverage gradu-
ally converges (only less than 1% branch coverage improve-
ment is observed). In contrast, CAFault exhibits a gradual and
steady increase in coverage over the 48-hour testing period,
surpassing other state-of-the-art tools after around 8 hours.
Specifically, during the first 8 hours, CAFault’s test coverage
is lower than that of these SOTA tools. This is mainly because
CAFault continuously analyzes runtime coverage data dur-
ing testing, particularly in the early phase, and updates the
FDModel accordingly, which introduces some overhead. Ad-
ditionally, the system under test incurs extra overhead when
loading and running the high-quality configurations gener-
ated by CAFault. However, once the FDModel is completed
(around 8 hours), CAFault’s test coverage steadily surpasses
that of other SOTA tools and remains consistently higher.

6.3 Effectiveness of Fault-Dependent Model
To evaluate the effectiveness of the FDModel, we also con-
ducted the experiment that compares CAFault with CAFault−,
a version of CAFault that disables the FDModel and randomly
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Figure 9: Coverage trends evaluated for CAFault, CrashFuzz, Mallory, and Chronos. Compared with them, CAFault with
FDModel and the fault-handling guided fuzzing shows better fault tolerance logic coverage on all the target distributed systems.

generates configuration inputs instead. We collected the fault-
handling code coverage and the number of bugs in 48 hours
on all four target distributed systems.

Table 4: Comparison of CAFault− and CAFault on four target
systems in 48 hours. CAFault with FDModel detects 128.5%
more bugs and covers 29.19% more fault-handling codes.

Number of Bugs Fault Handling Coverage
CAFault− CAFault CAFault− CAFault

HDFS 1 3 10443 13684
MySQL-Cluster 4 6 14996 19162
ZooKeeper 1 4 4902 6254
IPFS 1 3 2376 3097
Improvement - ↑ 128.5% - ↑ 29.19%

As shown in Table 5, with the help of FDModel, CAFault
detects all 16 bugs within 48 hours, whereas CAFault−

only detects 7 of them. Specifically, compared to CAFault−,
CAFault consistently achieves higher fault-handling code
coverage across all four target distributed systems. In total,
CAFault covers 9480 more fault-handling codes, resulting in
a 29.19% improvement in fault tolerance logic coverage. This
demonstrates that the FDModel significantly enhances both
fault-handling code coverage and bug detection.

Take Bug #1 listed in Table 1 as an example. CAFault
successfully detected this deep fault-handling bug within 48
hours, whereas CAFault− failed to do so. The key reason lies
in the execution dependency between specific configuration
and fault inputs required to trigger the bug – specifically, run-
ning in quorum mode while experiencing frequent network de-
lays and reconnect attempts. Without the configuration-fault
dependency information provided by the FDModel, CAFault−

can only randomly generate combinations of configurations
and fault inputs. Given the vast input space, it becomes highly
unlikely for CAFault− to reach the precise conditions needed
to expose this bug within the testing time window. Thus,
we can conclude that FDModel effectively improves testing
performance, which adequately answers RQ3.

6.4 Effectiveness of Fault-Handling Feedback

To evaluate the effectiveness of the fault-handling guided
fuzzing strategy, we also conducted an experiment that com-
pares CAFault with CAFaultr, a version of CAFault that ran-
domly injects faults, and CAFaultc, a version of CAFault that
utilizes traditional code coverage guided fuzzing. We col-

lected the fault-handling code coverage and the number of
bugs in 48 hours on all four distributed systems.

Table 5: Comparison of CAFaultr, CAFaultc and CAFault.
CAFault with fault-handling guided fuzzing detects 33.3%-
77.8% more bugs and covers 11.46%-18.04% more fault tol-
erance Mechanism codes.

Number of Bugs Fault Handling Coverage
CAFaultr CAFaultc CAFault CAFaultr CAFaultc CAFault

HDFS 2 2 3 11607 12316 13684
MySQL-Cluster 3 5 6 15958 17183 19162
ZooKeeper 2 2 4 5402 5657 6254
IPFS 2 3 3 2615 2749 3097

As shown in Table 5, with the help of the fault-handling
guided fuzzing algorithm, CAFault detects all 16 bugs within
48 hours, while CAFaultr and CAFaultc detect only 9 and
12 bugs, respectively. Moreover, compared to these methods,
CAFault consistently achieves higher fault tolerance logic
coverage across all four target distributed systems, covering
18.04% and 11.46% more fault-handling codes in total. Be-
sides, we also use Bug #1 in Table 1 as an illustrative example.
Only CAFault successfully detected it, while CAFaultr and
CAFaultc failed. This is mainly because the bug is deeply hid-
den and requires the execution of multiple complex exception-
handling steps – specifically, a rare scenario involving si-
multaneous reconnect attempts under multiple disconnected
NameNode connections. With the help of the fault-handling
guided fuzzing strategy, CAFault efficiently explores fault-
handling logic and ultimately triggers this bug. Therefore,
we can conclude that fault-handling guided fuzzing signifi-
cantly improves both fault tolerance logic coverage and bug
detection, leading to a substantial enhancement in testing per-
formance. This effectively addresses RQ4.

6.5 Accuracy of CAFault
Due to CAFault’s alternating two-phase design, where the first
phase uses a fixed set of fault operations to infer configuration-
fault dependencies, some dependencies may be missed, partic-
ularly when certain configuration items only influence fault-
handling behavior under complex fault combinations. To as-
sess potential false negatives, we collected 10 historical bugs
from the four target distributed systems, each of which was
originally triggered under non-default configurations and spe-
cific fault conditions. We configured the systems to the corre-
sponding historical versions and executed CAFault on each
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for 48 hours. As shown in Table 6, CAFault successfully re-
produced 9 out of the 10 bugs. The one missed case involved a
configuration that only exhibited dependency behavior when
subjected to a specific combination of multiple faults, a type
of complex dependency that CAFault’s current design does
not yet support. Addressing such complex multifault depen-
dencies to improve FDModel deserves future exploration.

Table 6: Historical bugs reproduced by CAFault.

HDFS MySQL-Cluster ZooKeeper IPFS Total
2/2 3/4 2/2 2/2 9/10

Considering that FDModel’s dynamic dependency analysis
is time-consuming, each test requires launching a cluster, run-
ning workloads, injecting faults, and cleaning up, efficiency
becomes a key concern. A straightforward alternative is to
use static analysis to pre-establish configuration-fault depen-
dencies. Specifically, we first construct the Abstract Syntax
Tree (AST) of the system’s source code and analyze the reach-
ability between nodes where configuration items are accessed
and where fault-handling logic resides. If an execution path
connects these two nodes, it is considered that an implicit
dependency exists between them, thereby forming a coarse-
grained FDModel. We then manually evaluated the accuracy
of this static approach. However, it produced a high false
positive rate of approximately 67%, mainly due to the ex-
tensive use of multithreading and asynchronous execution in
distributed systems, which static analysis struggles to handle
effectively. Thus, we use the dynamic analysis approach to
construct the FDModel to avoid such false positives.

7 Discussion

Limitation of FDModel. Exploring both the fault and config-
uration input space inevitably introduces additional compu-
tational complexity. CAFault addresses this by dynamically
learning the dependencies between fault inputs and config-
uration items using runtime coverage feedback to build an
FDModel, which helps prune the vast input space. With the
help of FDModel, CAFault successfully covers 29.19% more
fault-handling codes and detects 128.5% more bugs in fault
tolerance mechanisms. However, this dynamic learning pro-
cess introduces runtime overhead, slowing down the initial
testing speed, as observed in the coverage trends in Figure 9.

To mitigate this, future work may incorporate static anal-
ysis to quickly construct an initial FDModel by examining
the reachability between configuration item nodes and fault-
handling code in the source code. While static analysis is
efficient, it often introduces a significant number of false pos-
itives. Based on our preliminary evaluation, approximately
67% of the inferred dependencies were incorrect, primarily
because static analysis cannot accurately capture dynamic
execution contexts such as multi-threading and asynchronous

events common in distributed systems. How to effectively
utilize CAFault’s dynamic analysis to refine the initial model
and reduce false dependencies remains an important direc-
tion for future research. Similarly, leveraging SMT solvers
to infer configuration-fault dependencies is also a potential
direction. If configuration parameters and control-flow paths
can be symbolically represented, SMT solvers could help pre-
compute feasible dependency paths, accelerating FDModel
construction. While challenges remain in modeling accuracy
and scalability for large codebases of distributed systems,
integrating SMT into CAFault deserves future exploration.

Speculate on potential bugs. Given the vast configuration
input space, being able to speculate on the potential range
of undiscovered faults in unexplored configurations can help
effectively prune the search space. While it is difficult to pre-
cisely quantify these faults, informed estimation is possible.
A natural assumption is that fault-handling bugs are roughly
evenly distributed across the fault-handling code. Based on
this, we can estimate the bug exposure potential of an unex-
plored configuration by analyzing how much unique fault-
handling logic it is expected to cover. This can be achieved
through static or dynamic profiling of the fault-handling code
paths activated by each configuration. Configurations likely
to trigger more diverse fault-handling behaviors can then be
prioritized during testing. We leave the design of such esti-
mation models and prioritization strategies as an important
direction for future work.

More bug types support. Currently, CAFault focuses on
detecting bugs related to fault tolerance mechanisms, such as
crash recovery failures and timeouts, by generating abundant
high-quality configurations. However, distributed systems are
also prone to many other types of bugs, such as fail-slow [23,
43, 54], race condition [55] bugs, load imbalance bug [7], etc.
These tools share a common limitation: they typically test
only the default configuration, missing many bugs.

Take load imbalance bugs as an example. These faults occur
in distributed systems when uneven workload or data distribu-
tion degrades performance, wastes resources, and undermines
reliability.. Themis [7] detects them by calculating the load
differences between distributed nodes as an evaluation metric.
A key insight of CAFault is its ability to generate high-quality
configurations related to target bugs, thereby enriching the
test scenarios of existing testing tools and improving their
test coverage and bug detection capabilities. This approach
is orthogonal to the above work. CAFault can first filter out
configuration items related to system load, mutate them to
generate high-quality configurations, and then use these load-
dependent configurations to detect imbalance bugs effectively.

However, different from the fault handling bugs (e.g., crash,
recover fail, or hang), which have precise and deterministic
definitions, load imbalance bugs are harder to define accu-
rately. ‘Imbalance’ is a qualitative rather than a quantitative
concept, making it difficult to establish a precise definition of
what constitutes an imbalance status. As a result, testing for
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imbalance bugs often leads to false positives. To address this
issue, a reliable and precise oracle for load imbalance bugs
needs to be explored in future research.

8 Related Work

Fault injection technology: Fault injection is a widely-used
technique for identifying and mitigating potential system
failures by intentionally introducing faults or errors into a
system [64]. In distributed system testing, there are three
main types of fault injection [28]: (1) Implementation-level
model checking: Typical tools such as MODIST [66] and
SAMC [39] model fault operations (e.g., network delays, disk
failures) and abstract system states (e.g., data storage, replica-
tion). They then simulate failures and enumerate sequences
of nondeterministic events to detect bugs. However, these ap-
proaches suffer from the state space explosion problem, mak-
ing it difficult to explore the vast and complex state spaces in
real-world distributed systems. (2) Run-time fault injection:
Techniques like chaos engineering inject random faults into
a live system. Chaos Monkey [50] and Simian Army [51]
from Netflix first simulate network faults in complex cloud
environments. Alibaba’s ChaosBlade [30] extends support to
more fault injections, such as network disruptions and CPU
scheduling issues, for comprehensive distributed system test-
ing. Jepsen [34] tests distributed data management systems by
performing fault injections using manually written test cases.
However, these methods often lack fine-grained control and
fail to account for the runtime context. (3) Compile-time fault
injection [21, 49]: injecting predefined faults into the source
code and testing how the system handles them during execu-
tion. CrashFuzz [17] utilizes code coverage guided fuzzing
to dynamically optimizes the generation of fault injection
inputs for cloud system testing. Mallory [46] constructs a
"happen-before" graph to describe the causal relationships
between behaviors, and then guides the generation of fuzz
fault inputs based on key behavioral states. Chronos [6] pro-
poses deep-priority guided fuzzing to explore fault inputs and
detects timeout bugs hidden in deep paths. However, existing
fault injection techniques overlook the impact of different
configuration inputs on fault tolerance testing in distributed
systems, leading to missed some bugs.

Configuration Testing technology: Configuration testing
detects bugs in the configuration handling logic of distributed
systems by generating a large number of high-quality configu-
ration inputs [67]. Typical tools such as TEA-Cloud [52] and
ChatT [57] focus on testing the system’s configuration logic
for computational resources, including the number of physical
machines, CPU usage, network bandwidth, and disk storage
capacity. They generate configuration files that cover various
computational resource configurations through manually de-
fined generation rules and evaluate system performance under
different configurations to uncover potential bugs. Ctests [61]
models the dependencies between configurations manually

and generates multiple different configuration combinations
for testing inputs based on this model using mutation tech-
niques. ConfTest [42] analyzes the system’s configuration
options, syntax, and semantic constraints to create a detailed
configuration model to identify configuration-related logical
errors. ECFuzz [41] employs a multi-dimensional configu-
ration generation strategy that formulates diverse mutation
strategies based on parameter dependencies, and in each test
round, selects and combines multiple parameters from the can-
didate set. However, existing configuration testing primarily
models the dependencies between configuration and work-
load inputs, neglecting the relationship between configuration
and fault inputs. Additionally, their modeling approach relies
on manual effort, with accuracy depending on the domain
knowledge of the modelers, making it both resource-intensive
and time-consuming.

Main Difference: Different from the above work, CAFault
focuses on enhancing existing fault injection techniques via
abundant fault-dependent configurations to detect more fault
handling bugs, thereby improving the resilience and stability
of the system. To prune the input space and generate high-
quality configurations, CAFault harnesses an FDModel to
describe the implicit dependencies between configuration
and fault inputs, dynamically optimizing and updating the
model based on the runtime state of the system under test. To
effectively explore fault injection inputs for each configura-
tion setup, CAFault employs fault-handling guided fuzzing
to continuously exercise the fault tolerance mechanisms in
distributed systems. Moreover, due to the scalability of the
testing framework, CAFault can be quickly adapted to test
other distributed systems.

9 Conclusion

In this paper, we propose CAFault, a general testing frame-
work for enhancing existing fault injection techniques with
abundant fault-dependent configurations. CAFault first in-
troduces the FDModel to construct implicit dependencies
between fault and configuration inputs for pruning the test
input space. Then, CAFault harnesses a fault-handling guided
fuzzing strategy to effectively explore the fault input space
under each high-quality configuration input. We implemented
and evaluated CAFault on four widely used distributed sys-
tems. Compared with the SOTA tools, crashFuzz, Mallory,
and CAFault, CAFault covers 31.5%, 29.3%, and 81.5% more
fault tolerance logic. Our future work will consider enhancing
CAFault by supporting more types of bug.
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