Enhancing ROS System Fuzzing through Callback Tracing

Yuheng Shen Jianzhong Liu Yiru Xu
Tsinghua University Tsinghua University Tsinghua University
Beijing, China Beijing, China Beijing, China
shenyh20@mails.tsinghua.edu.cn liujz21@mails.tsinghua.edu.cn xuyr21@mails.tsinghua.edu.cn
Hao Sun Mingzhe Wang Nan Guan
ETH Zurich Tsinghua University City University of Hong Kong
Zurich, Switzerland Beijing, China HongKong, China
hao.sun@inf.ethz.ch wmzhere@gmail.com nanguan@cityu.edu.hk
Heyuan Shi* Yu Jiang’
Central South University Tsinghua University

Changsha, China
hey.shi@foxmail.com

ABSTRACT

The Robot Operating System 2 (ROS) is the de-facto standard for
robotic software development, with a wide application in diverse
safety-critical domains. There are many efforts in testing that seek
to deliver a more secure ROS codebase. However, existing testing
methods are often inadequate to capture the complex and stateful
behaviors inherent to ROS deployments, resulting in limited test-
ing effectiveness. In this paper, we propose R2D2, a ROS system
fuzzer that leverages ROS’s runtime states as guidance to increase
fuzzing effectiveness and efficiency. Unlike traditional fuzzers, R2D2
employs a systematic instrumentation strategy that captures the
system’s runtime behaviors and profiles the current system state in
real-time. This approach provides a more in-depth understanding
of system behaviors, thereby facilitating a more insightful explo-
ration of ROS’s extensive state space. For evaluation, we applied it
to four well-known ROS applications. Our evaluation shows that
R2D2 achieves an improvement of 3.91X and 2.56X in code coverage
compared to state-of-the-art ROS fuzzers, including Ros2Fuzz and
RoboFuzz, while also uncovering 39 previously unknown vulnera-
bilities, with 6 fixed in both ROS runtime and ROS applications. For
its runtime overhead, R2D2 maintains an average execution and
memory usage overhead with 10.4% and 1.0% in respect, making
R2D2 effective in ROS testing.

CCS CONCEPTS

« Computer systems organization — Robotics; « Software and
its engineering — Software testing and debugging.

“Heyuan Shi and Yu Jiang are correspondence authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09...$15.00
https://doi.org/10.1145/3650212.3652111

Beijing, China
jlangyu198964@126.com

KEYWORDS
Fuzz Testing, ROS, Bug Detection

ACM Reference Format:

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan,
Heyuan Shi, and Yu Jiang. 2024. Enhancing ROS System Fuzzing through
Callback Tracing. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA °24), September 16—20,
2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3650212.3652111

1 INTRODUCTION

The increasing integration of robotics in daily life has positioned
ROS (Robot Operating System 2) as the primary framework for
robotics application development. With ROS-based systems becom-
ing increasingly prevalent, ensuring their security and robustness
is of paramount importance. For example, a study uncovered 13
highly critical vulnerabilities within 6 DDS implementations used
by ROS [6]. These bugs can lead to Denial of Service (DoS) attacks
and make thousands of devices worldwide vulnerable, including
robots owned by NASA, Siemens, and Huawei. Therefore, it is es-
sential to proactively identify and address these vulnerabilities to
ensure the robustness, security, and overall performance of ROS-
based system, reducing the risk of catastrophic crashes.

Several works have been aimed at ensuring the reliability and
security of ROS. For instance, Ros2Trace [5] uses manually instru-
mented tracers to conduct performance profiling of the ROS system.
Fuzz testing (fuzzing) [1, 4, 22, 23, 32, 35, 36, 40], especially code
coverage-guided fuzzing, has emerged as a promising approach for
uncovering bugs in ROS systems. This method involves generating
random inputs for a target program and focusing on those that lead
to new code coverage, a strategy proven highly effective in various
contexts. Google’s oss-fuzz, for instance, has identified over 36,000
bugs in more than 1,000 open-source projects using this approach.
Several studies attempt to apply fuzzing for bug detection in ROS.
Ros2Fuzz [13], adapts the AFL [20] to testing certain ROS interfaces.
However, this may fall short of providing comprehensive fuzzing
for the entire ROS system. There are works attempting to fuzz the
entire ROS system. Rozz [39], proposes to use the multi-dimensional

https://orcid.org/0000-0002-2667-5431
https://orcid.org/0000-0003-3612-4315
https://orcid.org/0000-0002-9386-1453
https://orcid.org/0000-0003-2095-092X
https://orcid.org/0000-0002-2153-6766
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0002-9040-7247
https://orcid.org/0000-0003-0955-503X
https://doi.org/10.1145/3650212.3652111
https://doi.org/10.1145/3650212.3652111
https://doi.org/10.1145/3650212.3652111

ISSTA °24, September 16-20, 2024, Vienna, Austria

input generation approach combined with distributed code cover-
age collection methodology to detect memory-related bugs in ROS
applications. RoboFuzz [15] extracts real-world physical properties
from the target ROS system to identify correctness bugs; combined
with the code coverage, these oracles are further used to guide the
fuzzing process.

Motivation: Nevertheless, relying primarily on code coverage
proves inadequate for ROS testing. ROS is a distributed system
where nodes communicate through message passing, each hosting
multiple callbacks responding to diverse messages or events. A sig-
nificant portion of logic and state transitions in ROS occurs within
these callbacks, handling everything from sensor data processing
to actuator control. While code coverage measures the extent of
executed code, it may overlook the quality or context of execu-
tion in ROS. Different sequences of message handling may execute
the same set of callbacks but in different orders or under different
system states, leading to diverse behaviors and potential vulnerabil-
ities not evident through code coverage alone. Given a scenario in
a robotic arm where the same set of movement instructions (thus
the same code coverage) can lead to drastically different physical
outcomes based on the order and timing of callbacks, which code
coverage would not capture.

To address this limitation, we propose utilizing the callback
trace to guide the ROS system fuzzing. The callback trace, repre-
senting the temporal sequence of callback interactions, provides
a more detailed insight into aspects such as callback execution
durations and message throughput. Unlike code coverage, which
may exhibit little variety across different inputs, the callback trace
serves as a more accurate indicator of the system’s internal state
transitions. Leveraging the callback trace during fuzzing provides
a deeper understanding of the system’s state transitions, enabling
the discovery of inputs that trigger more system behaviors and
improving fuzzing performance.

Challenge: The introduction of callback trace involves two
key challenges: capturing and understanding state transitions in
ROS’s volatile and asynchronous environment and generating high-
quality payloads informed by these state changes. First, accurately
profiling the ROS system’s state transitions demands a method to
capture and analyze its interactions in real-time, which is a task
made difficult by ROS’s volatile, asynchronous nature and varied
application components. Existing methods for automatically acquir-
ing such state information from ROS are insufficient because they
are not tailored to handle this variety and either require manual
specifications or cannot provide such information in real-time. Also,
due to ROS’s distributed nature, information like message handling
or callback scheduling is processed across different system compo-
nents, and collecting such information requires an in-depth under-
standing of the ROS architecture. Thus, an automatic approach is
needed to accurately profile the system interactions during testing,
thereby reflecting the states of ROS.

Second, improving the exploration of system states and achieving
effective fuzzing requires an approach that leverages state changes
to generate high-quality payloads. However, ROS has extensive
input space, as it is deployed in diverse environments that need
to respond to various sensor data, control commands, and user
configurations. Previous fuzzing approaches mainly rely on code
coverage or manually derived oracles to guide the input generation.

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

Such an approach may fail in capturing the multifaceted behaviors
of the entire system, such as variations in execution duration and
scheduling order, thereby failing to explore ROS system’s state
space efficiently. Consequently, it is essential to analyze the col-
lected interaction behaviors as guidance and generate high-quality
payloads to better explore complex behaviors within ROS, thereby
uncovering issues that might have been overlooked before.

Solution: To address the challenges above, we propose R2D2, a
callback trace-guided fuzzer for the entire ROS system. R2D2 per-
forms fuzzing through the following procedures. First, to better un-
derstand the system’s behavior R2D2 instruments customized tracer
within the different components of ROS runtime to gather execution
interactions systematically. Then, R2D2 profiles the callback trace
based on collected interactions, containing the callback execution
duration, executor scheduling operations, and message throughput,
to indicate the state transitions of ROS. Furthermore, to generate
high-quality payloads, R2D2 analyzes the callback trace during test-
ing to identify inputs that trigger new system states and guide the
generation of high-quality inputs. This feedback-based test case
generation approach generates higher-quality inputs, boosting the
efficiency of fuzzing the ROS system.

We evaluate R2D2 on four ROS applications. In detail, R2D2
found a total of 39 bugs in both ROS runtime and applications, with
6 fixed. Also, compared to existing fuzzing approaches, Ros2Fuzz
and RoboFuzz, R2D2 achieves an average 3.91x and 2.56x on cover-
age improvement in respect. Furthermore, we implemented R2D2-,
which is R2D2 without the callback trace guidance, where R2D2
demonstrates an average of 0.27x coverage improvement. For the
instrumentation overhead, compared to Ros2Trace and the vanilla
ROS system, R2D2 has an average of 10.4% and 1.0% overhead in
terms of the execution latency and memory consumption.

Contribution: This paper makes the following contributions:

e We propose R2D2, a callback trace-guided fuzzer, leverag-
ing ROS’s runtime state to guide the fuzzing process. This
method aids in generating high-quality inputs and enables
an effective exploration of ROS’s extensive state space.

e We present a real-time system behavior collection and profile
strategy. This strategy facilitates efficient monitoring and
analysis of ROS’s runtime states, based on which, R2D2 can
generate more in-depth test cases.

e For evaluation, R2D2 can detect 39 bugs, with 6 fixed, achiev-
ing a higher code coverage compared to state-of-the-art ROS
fuzzers, while maintaining a low monitoring overhead.

2 BACKGROUND AND RELATED WORKS

2.1 Robot Operating System 2

The Robot Operating System 2 (ROS) is an open-source software
stack that has become the de facto standard for developing various
robotic systems. Figure 1 demonstrates the overall architecture of
the ROS system. In detail, the ROS system mainly comprises two
parts: the ROS application and the ROS runtime, and the ROS system
can be deployed across a range of operating systems, including
Linux, MacOS, and various RTOS.

The ROS runtime serves as the backbone, providing fundamen-
tal ROS functionalities, such as message passing and callback sched-
uling. The ROS runtime is a multi-layer structure, with different

Enhancing ROS System Fuzzing through Callback Tracing

components at each layer. The top layer of ROS runtime encom-
passes multiple client library implementations, including RCLCPP,
RCLPY, and RCLJAVA. These libraries offer different API implemen-
tations in various languages to facilitate higher-level application
developments. Below the top layer is the ROS Client Library (RCL),
providing standard interfaces for the above API implementations.
Furthermore, to ensure compatibility with different Data Distribu-
tion Service (DDS) implementations at the bottom layer, RCL relies
on the ROS Middleware Interface (RMW) as an intermediary bridge.
This compatibility enables efficient communication between dis-
tributed components. The various DDS implementations, such as
FastRTPS, CycloneDDS, and eProsima, provide ROS with different
message handling and QoS (Quality of Service) mechanisms.

ROS 2 Applications
i Node | :F"I_\I_o_d_eu_i i Node !
/[Publisher | 1| Subscriber |} /[Subscriber |
1| Callback Callback '- Callback |1
‘ ! \[Publisher : i
i 3 I i_Callback |} i 3 !
h Client |, — , Client]
' .| Service |; I
+ L Callback Callback Callback |,
ROS 2 Runtime
RCLCPP [rcLPY | [rcLiAVA]
[ROS2 Client Library (RCL) | [ROS2 Middleware (RMW) |
FastRTPS l CycloneDDS I l eProsima I
Linux / Windows / MacOS / RTOS

Figure 1: The Architecture of the ROS system.

The ROS application is designed to perform specific tasks.
Typically, each application consists of multiple nodes, each with
different callbacks that communicate with one another through
topics and services. In detail, the node is responsible for a single,
modular purpose. Meanwhile, the callback within it is a function
invoked in response to specific events, such as receiving a message
or a service request. Managed by the executor within RCLCPP,
these callbacks are scheduled for execution to meet real-time re-
quirements of ROS. Also, the executor ensures that these callbacks
interact coherently with various messaging events, including top-
ics and services. Concretely, the execution of ROS involving the
executor scheduling serails of callbacks to execute on the incoming
of different messages, and the temporal order of the above execu-
tion can be referred to as the callback trace. Understanding this
callback trace is of critical importance, as it can reflect the system’s
runtime behaviors and states.

2.2 ROS Testing

The robustness and security of ROS have gained more and more
attention due to its mission-critical use cases. Consequently, various
methodologies have been employed to benchmark the performance
and identify potential vulnerabilities for ROS.

ISSTA °24, September 16-20, 2024, Vienna, Austria

In detail, performance benchmarking tools [2, 12, 19, 21, 33] aim
to collect runtime metrics of ROS, evaluating key performance indi-
cators such as resource consumption, message throughput, and ex-
ecution latency to manually identify runtime issues, such as perfor-
mance bottlenecks or timing anomalies. For example, Ros2Trace [2]
utilizes the Linux Trace Toolkit Next Generation (LTTng) [8] to
insert tracers at different points in the ROS runtime, enabling a
comprehensive runtime behavior collection and later an in-depth
performance profiling. The performance_test [33] measures the
performance of a ROS system by setting up different pub/sub con-
figurations, to profile performance metrics, including latency, CPU
usage, and resident memory.

Moreover, several testing tools have been developed to ensure
ROS’s security. Specifically, fuzz testing (fuzzing) [3, 7, 10, 11, 16,
24, 27, 28, 31, 37, 38, 40-42], has been particularly effective in bug
detection. It generates random test cases for the System Under Test
(SUT) and monitors any erroneous behaviors. To achieve a higher
coverage and test the SUT more thoroughly, many fuzzers adopt
the coverage-guided fuzzing technique. By giving those seeds that
trigger new coverage a higher chance of mutation the fuzzer can
increase the probability of finding new paths. Notable coverage-
guided fuzzers like AFL [20] and Syzkaller [34] have identified nu-
merous vulnerabilities across various programs. Given the effective-
ness of fuzzing, many research efforts in recent years have sought
to apply fuzzing techniques to test ROS. For instance, Ros2Fuzz [13]
is built upon AFL; it extracts specific ROS interfaces from the target
component to generate a driver that emulates a publisher or client,
sending payloads to the targeted component. However, Ros2Fuzz
only testing user-specified interface, can hardly effectively test the
ROS runtime. There has been research toward testing the entire
ROS system. Rozz [39] and RoboFuzz [15] have been developed
explicitly for testing the ROS system. Rozz collects and merges the
coverage from different ROS components to guide the fuzzing pro-
cess, thereby better exploring ROS’s code space. RoboFuzz manually
summarizes real-world physical laws and documented specifica-
tions from the target ROS application as testing oracles, thereby
detecting potential behavioral anomalies. However, these works
primarily use code coverage or manually summarized specifications
from target applications or runtime components, whereas they can
hardly understand the comprehensive and detailed behaviors and
states within the entire ROS system, resulting in a relatively limited
fuzzing performance.

3 MOTIVATION

In this work, we focus on detecting memory-related and concurrency-
related bugs throughout the entire ROS system, including the ROS
runtime and ROS applications. However, as a system designed to
cater to specific tasks, ROS tends to operate along predetermined
control pathways, in responding to different income events, i.e.,
they have little coverage variety. Therefore, the code coverage may
be insufficient to reflect the system’s state, and the unawareness of
the system state during testing can lead to potentially insufficient
fuzzing performance.

We use Figure 2, a system hang bug [29] for a detailed illustra-
tion. This bug is triggered when a ROS application starts a talker
thread and a listener thread, and the talker thread is designed to

ISSTA °24, September 16-20, 2024, Vienna, Austria

Threads Execution Sequence I

Lock

(LpMutex) Insert Timer TimerInsert Unlock
--
l ? Failed lnelayed l
,,
qu Tvahcr Priority T T
[EEti | Lock Remove Timer Unlock

(HpMutex)

Figure 2: Execution sequence of a system hang bug in ROS.

publish a message every second. During execution, the publish
frequency varies irregularly and causes unexpected system delays.
The inconsistency is because threads in ROS have mutex classes
(low-priority mutex LpMutex and high-priority mutex HpMutex),
which share the same wait_mutex_ for the timer callback insertion,
where the timer callback is used to schedule different callbacks’
execution. When the wait_mutex_ is locked by thread A, a low-
priority mutex, it could be taken by a thread with a higher-priority
mutex, like thread B. This led to thread A failing to insert the timer
on time, thereby causing inconsistent timing behavior.

This bug is located in the executor’s scheduling logic, an easy-to-
cover and commonly executed code path in ROS. However, previous
fuzzing approaches use code coverage or manually derived oracles.
They may find it difficult to trigger such bugs, as the guidance
strategies they adapted are not able to perceive such a system’s
internal state changes, such as the irregular callback latency, and
thus, it is hard to generate payloads that cover such an erroneous
state. Moreover, despite existing benchmarking tools like Ros2Trace
being capable of collecting the system’s internal behaviors, such
as the callback duration and message throughput, they are only
limited to data collection and lack real-time analysis capabilities,
making them insufficient for testing the ROS system. Hence, to
boost fuzzing performance and better capture the state changes
within ROS, we can use a callback trace, which consists of the
temporal sequence of the system’s interactions, such as callback
execution durations, executor scheduling, and message passing, as
a reflection of the system states. We can guide the generation of
high-quality payloads through real-time profiling and analysis of
the callback trace, facilitating a more comprehensive exploration of
the ROS’s state space. To conduct the callback trace guided fuzzing
for ROS system, we need to address the following two challenges.

Collecting artifacts that reflect state information. This
requires monitoring and interpreting complex interactions such
as callback registration, callback execution, and message passing
within the system. This is difficult to perform, since ROS exhibits
complex and asynchronous temporal behaviors at runtime. Notably,
it needs to accommodate various use cases, each has its unique
component composition, such as different callbacks’ namespace
and connectivity. Additionally, ROS separates its functionalities
into different components, so that information like message han-
dling or callback scheduling is processed across different system
layers. As we can refer from the motivating example to profile
such an erroneous state, we need to capture information, including
the execution of different callbacks, the executor’s scheduling be-
havior, and the message throughput. Also, such information may
hide in different ROS components, for example, the execution of
the callback can be found at the RCL and RCLCPP layer, whereas

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

the message throughput can be found at the DDS layer. Thereby,
acquiring such information from different applications is complex,
since it requires a comprehensive understanding of the ROS system.
To overcome this challenge, a systematic and automatic approach is
needed that can not only accurately capture the desired execution
interaction in real-time, but also adapt to the intricate and asyn-
chronous within ROS, providing a comprehensive understanding
of the system state.

Leverage callback traces to guide input generation. This
requires analyzing the current callback trace, to identify if the cur-
rent input triggers any new state transition. Essentially, ROS is a
system characterized by an extensive input space such as various
sensor data, control commands, and user configurations. Therefore,
we need to generate high-quality input to conduct efficient testing.
As we can see from the example, despite the various input vectors
and configurations ROS has, this bug can only be triggered when
using the service as the input vector, and the publishing frequency
should be one message pre-second. Previous approaches mostly use
code coverage or target application’s specification as guidance, this
information may provide less deep insight in understanding the
ROS system states, leading to generating less high-quality inputs
and rendering a limited fuzzing performance. Therefore, it is es-
sential to harness the collected interaction behaviors and leverage
them as guidance to generate high-quality input, which can better
explore the complex behaviors within ROS, allowing for a more
comprehensive and efficient exploration of the system.

4 DESIGN

To address the above challenges, we propose R2D2. It leverages
real-time behavior profiling to construct the callback trace as the
state identifier, which is later used as guidance for the generation
of high-quality inputs to better explore the ROS state space and
improve the bug detection capabilities. In contrast with established
tools, R2D2 removes code coverage guidance completely for a more
effective callback trace guidance mechanism.

Callback Trace Collection

Instrumentation ROS System Runtime Tracing
Registration ® Under Test Callback Trace
Tracer Profile
. %
Runtime System ® | Runtime
Tracer Execution - Collection

—_© 1# ®
|
Guided Generation

Callback Trace

IGuided Payload| New State | [Callback Runtime
Synthesis Identification Registration Execution

Callback Trace Guided Generation

Figure 3: Overall Workflow of R2D2.

The overall architecture of R2D2 is depicted in Figure 3. As
demonstrated in the figure, R2D2 contains two phases: the callback
trace collection phase and the callback trace guided generation

Enhancing ROS System Fuzzing through Callback Tracing

phase. During the collection phase, R2D2 uses customized tracers
to instrument the ROS runtime, capturing essential system behav-
iors such as callback execution, executor scheduling, and message
passing. Within each fuzzing loop, the instrumented tracers log
real-time execution behaviors. R2D2 subsequently aggregates and
profiles the recorded information into the callback trace. Later, dur-
ing the generation phase, by utilizing this trace as the system state
indicator, R2D2 identifies and prioritizes payloads that induce new
system states, thereby refining the future payload synthesis. This it-
erative approach enables R2D2 to continually generate high-quality
inputs, optimizing the ROS state space exploration and improving
its overall fuzzing efficiency.

4.1 Runtime Callback Trace Collection

Perceiving the system states during testing requires accurately ac-
quiring the execution behaviors and effectively processing these be-
haviors into the callback trace. However, different ROS applications
possess unique system configurations, with each having its own
set of callbacks and distinct patterns of inter-callback connections
These components exhibit complex asynchronous temporal behav-
iors during execution, making isolating pertinent information for
analysis challenging. Therefore, we introduce a multi-layered tracer
instrumentation strategy for capturing precise runtime behaviors.
Furthermore, we propose to profile the tracer-collected data into
the callback trace, facilitating a more comprehensive analysis of
the system’s runtime state during testing.

4.1.1 Runtime Temporal Behaviors Tracing. As elaborated
in Section 2, ROS incorporates a multi-layer architecture to pro-
vide basic functionalities for higher-level applications; this involves
components such as the RCL and language-specific libraries like
RCLCPP. Therefore, to comprehensively capture ROS’s execution
behaviors, we instrument different tracers within the RCL and
RCLCPP layers. Figure 4 illustrates the instrumentation process.
Specifically, we deploy two types of tracers: registration tracers
(green section) and runtime tracers (yellow section). Registration
tracers focus on capturing callback registration events, while run-
time tracers are designed to monitor the initiation and termination
points of callback execution. Also, we utilize different buffers to
retrieve the collected data in real-time. The implementation detail
can refer to Section 4.3.

RCL handlers, Buffer size,
Pub/Sub time

Runtime Execution RCLCPP handlers,
Buffer Invoke/start/end time

callback sched rcl handle callback
Callbacks [| RCLCPP RCL
rclcpp callback reg rcl callback reg

Callback Registration RCLCPP handlers, RCL
Buffer handlers, Callback type

RCL handlers,
Callback name

Figure 4: Diagram of the instrumentation process.

Registration Tracer. Registration tracer is invoked by different
callback registration events, and it is designed to extract a variety

ISSTA °24, September 16-20, 2024, Vienna, Austria

of callback attributes, including the callback’s namespace, allocated
address in different layers (i.e., different handlers), and its specific
types (i.e., subscription, timer, and service). In concrete, the ROS
system, especially the RCLCPP and RCL layer, undertakes the re-
sponsibility of registering these callbacks by associating them with
callback names and allocating corresponding addresses (handler)
at multiple layers, namely the RCLCPP handler and RCL handler.
To facilitate the capture of the information mentioned above, we
capture the callback registration event in both the RCLCPP and
RCL layer, and we instrument the RCLCPP and RCL layers with two
tracers: rclcpp_callback_init() and rcl_callback_init().

When ROS applications start, it registers different callbacks,
this is intercepted by the rclcp_callback_init() tracer, which
records pertinent details such as the RCLCPP handler, RCL han-
dler, and the types of the callback—whether it is a subscription,
timer, or service. This registration activity is further propagated to
the RCL layer, where the rcl_callback_init() tracer logs addi-
tional attributes, including the callback name and the RCL handler.
Furthermore, the registration tracer writes the collected data into
the callback registration buffer, and R2D2 reads the buffer during
testing, facilitating the construction of the callback trace.

Runtime Tracer. On the other hand, the runtime tracer is de-
signed to monitor the system’s execution behaviors. The essence of
the execution of the ROS system lies in the executor’s role in sched-
uling the execution of callbacks in response to different events, most
commonly the recipient of messages. As a result, runtime tracers
primarily focus on the monitor callbacks’ scheduling behaviors and
messages’ publish/subscribe behaviors.

To capture the above behaviors, we employ different tracers, in-
cluding executor_execute(), callback_start(), and callback
_end() that record various metrics, including the RCLCPP han-
dler of the targeting callback, the timestamp of its scheduling time,
starting time, and the ending time. Additionally, we utilize the
rcl_take() tracer to capture the detailed information of message
passing. This tracer is designed to log communicating information,
including the RCL handlers, the size of the incoming message buffer,
and the timestamps associated with the publishing and subscribing
activities. Upon the completion of the execution phase, the runtime
tracer commits the aggregated data to the runtime execution buffers,
and R2D2 retrieves this data to construct the precise callback trace.
The collected information facilitates R2D2 with a comprehensive
perspective on both the ROS applications and ROS runtime. By
understanding this crucial information, R2D2 can effectively depict
the target system’s structure and behavior, ultimately facilitating
the construction of the callback trace.

4.1.2 Callback Trace Profile. Once we collect the registration
information and runtime behaviors, we can then construct the
callback trace. The overview description of the callback trace is
delineated in Figure 5.

Initially, the raw registration data is processed to form Callback-
Info structures. These structures contain the callback identifier (ID)
and corresponding handlers (address) at different layers, includ-
ing the RCLCPP handler and the RCL handler. The callback ID is
generated through a hashing function that considers the callback
name and type, serving as a unique identifier for differentiating
among various callbacks. Subsequently, based on the runtime data

ISSTA °24, September 16-20, 2024, Vienna, Austria

Callback Registration Info

Callbackinfo
Callback ID: Hash (Callback name, Callback type)
Callback Handlers: Union (Rclcpp handler, Rcl handler)

Runtime Execution Info

Callback Latency
Callback ID = Callbackinfo.find (Rclcpp handler)
Execution Latency = Duration (Start time, End time)
Scheduling Latency = Duration (Invoke time, Start time)
Message Latency
Callback ID = Callbackinfo.find (rcl handler)
Throughput = Buffer size / Duration (Pub time, Sub time)

Callback Trace Info

Callback Trace
CallTrace = Vector<Callback Letency>
MsgTrace = Vector<Message Latency>

Figure 5: Description of the callback trace.

within each fuzzing loop, we focus on calculating two key latency
metrics: the callback latency and the message latency. The callback
latency includes the callback ID, execution latency, and scheduling
latency. The latencies for each callback are determined according
to the obtained handler, in conjunction with the logged timestamps
for invocation (when the executor signals readiness for execution),
start, and end of execution. Similarly, message latency is deter-
mined by considering the callback ID, message buffer size, and
timestamps of message publishing and subscribing, which allows
us to calculate the transfer throughput. Finally, we amalgamate
the callback latency and message latency metrics to construct the
callback trace. This trace is represented as two distinct vectors: one
for callback latency and another for message latency. Also, during
the execution, the executor may schedule a callback to execute
multiple times, hence, the callback latency and message latency can
contain repeated elements.

4.2 Callback Trace Guided Generation

Once we profile the callback trace, we can leverage it to guide future
input generation. To generate high-quality payloads, we need to
accurately acquire the input specifications from the target ROS ap-
plication and efficiently analyze the profiled callback trace, identify
any potential state transitions, and utilize the above information to
facilitate the payload synthesis.

4.2.1 State Identification. As mentioned above, the derived call-
back trace encapsulates various performance metrics, including the
execution sequence of callbacks and messages and their associated
latencies and throughput. After acquiring the current callback trace,
we conduct an initial analysis to compute the aggregate latency
for each callback and the mean latency for each message within
the trace. Concretely, to perceive the state changes, we maintain
two global structures: the callback graph and the global callback
latency. The callback graph represents the temporal sequence of
callback invocations, while the global callback latency contains the
overall callback latency and message throughput, representing the
average performance for each encountered callback and message.

Specifically, we identify new system states based on the follow-
ing indicators: (1) Whether the callback trace introduces a new

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

sequence of execution, offering insights into previously unexplored
interactions. (2) Whether there is a significant deviation in the la-
tency of a specific callback from the established average benchmark
value. (3) Whether the throughput of a specific message is con-
siderably below the average benchmark. To establish the average
benchmark value, we profile the latency for each input for certain
times, i.e., we randomly generate input to the system, collect the
callback trace, and utilize statistical methods to identify appropri-
ate values. We reason that overhigh or overlow benchmark values
will result in either (1) deficiency in state exploring or (2) a large
number of trivial state changes being found. The above two scenar-
ios may affect the overall state identification, but it has a limited
effect on the overall fuzzing performance, we further discuss this
on Section 6.

Current Callback Letancy
<Cq(t1+tg), Co(tp), C3(t3)>
<M (tg+tg), Ma(tp), M3(t3)>

Current Callback Trace
<Cy(tg), Ca(t2), Ca(ta), C3(t3)>
<M1 (ta), Ma(t2), Ma(ta), M3(t3)>

Process

Callback Latency
Check Check
Global Callback Graph Global Callback Latency

<C1(Ta), C2(Tp), C3(T¢)>
<M1(Ta), M(Tp), M3(T¢)>

> St

Figure 6: Diagram of the new state identification process.

To better illustrate our methodology, Figure 6 includes the pro-
cess of identifying a new system state. In detail, the callback trace
analysis is conducted after the execution of each payload. First, we
check whether the current callback trace contains any new exe-
cution sequence representing a new edge in the global callback
graph. If the current callback trace introduces a new execution
order, we add corresponding edges to the callback graph. Then, we
check whether the latency associated with a particular callback
significantly exceeds the established benchmark. Particularly, from
the current callback trace, we first calculate the current callback
latency, including the message latency and the callback latency. We
compare it with the global callback latency, to check if we find a
new callback or if the current latencies for the message and the
callback have a significant deviation from our benchmark. If we find
that, we will update the global callback latency correspondingly.
Each new state serves as a guide for generating subsequent inputs,
thereby enriching the exploration of the system’s state space.

4.2.2 Guided Payload Synthesis. To more efficiently explore
the state space of ROS, generating payloads conforming to ROS’s
interface specifications is crucial. However, ROS has multiple dimen-
sional input vectors with highly structured interfaces, including
topic messages and service requests with different data types and
formats. To address this, we extract complex interface specifications
and subsequently conduct the guided payload generation.
Initially, R2D2 conducts a dry run, which only boosts the system
without sending any input, to extract all interface specifications
from the ROS system. This includes a comprehensive list of inter-
faces—topics and services along with their associated data files,
message types, and formats. Then, during the fuzzing phase, R2D2
examines the current payload pool, if the pool is empty, R2D2 se-
lects an interface randomly from the extracted specifications and
generates payloads accordingly; else, R2D2 selects a payload that

Enhancing ROS System Fuzzing through Callback Tracing

previously triggered new state for mutation. The mutation is con-
ducted recursively based on data files from the interface specifi-
cation. These prepared payloads are then sent to the ROS system
for execution. After execution, R2D2 checks if the payload induces
any system crashes or new system states. If a new state or crash
is triggered, the payload is preserved in the pool for future itera-
tions. Through this iterative process, R2D2 continually produces
high-quality payloads, enabling more comprehensive and deep ex-
ploration of the ROS system’s state space.

4.3 Implementation

We implement R2D2 using Rust for the core fuzzing framework
and C++ for the tracers. R2D2 can fuzz test the ROS runtime and is
adapted to ROS applications, including Turtlesim [9], TurtleBot3
[30], Navigator2 [26], and Autoware [14]. The overview of R2D2’s
architecture is presented in Figure 7.

Applications

ATURTIIEBOT 3] AUTOWARE. N /—‘\V

Instrumented Tracer|

#iBox Turtle

| Shared Memory |
~
R2D2 Components U
I Interface Extractor I I Process Monitor ” System Logger I
I Payload Pool I IFeedback Controllor” Payload Generator I

Figure 7: Diagram of the R2D2 implementation.

First, We extend the capabilities of Ros2Trace to profile the call-
back trace. In detail, we manually add more tracepoints at the
RCLCPP and RCL layer to capture a more comprehensive runtime
behavior, such as different callback registrations and message trans-
missions. Also, we extended the capabilities of original tracers to
collect more comprehensive runtime data, such as message buffer
sizes and publish/subscribe timestamps. Furthermore, we utilize
shared memory to write out collected data in real-time. We instru-
ment the shared memory initialization tracer during the initializa-
tion of the RCL layer, which will allocate distinct shared memory
buffers to record different structure information like callback exe-
cution and message passing. Moreover, to accommodate for ROS’s
asynchronous nature and the abundance of information produced
during its runtime, each shared memory object is a circular buffer
guarded with a mutex lock for thread- and memory-safety.

To conduct fuzzing, R2D2 employs an interface extractor to ac-
quire all interface specifications. This allows R2D2 to be aware of
the input vectors that the target ROS system can accept, allowing
to generate more comprehensive test payloads. By utilizing this
information, the payload generator can craft payloads for the SUT,
while the instrumented tracer records runtime data in preallocated
shared memory regions. The feedback collector then profiles this
data into callback traces, which are used to identify new system
states and guide further input generation. If R2D2 identifies a pay-
load that triggers new system states, it then adds the payload to

ISSTA °24, September 16-20, 2024, Vienna, Austria

the payload pool for further mutation. The process monitor checks
the runtime status of the entire ROS system; it watches for any
unexpected exit codes from the system; in this way, R2D2 can de-
tect program crashes, memory corruption, and concurrency issues
within the target ROS system. Finally, R2D2 maintains logs of all
fuzzing-related activities, including crash logs and system stats.

5 EVALUATION

We list the following research questions to help us understand
R2D2’s performance and effectiveness.

e RQ1: Is R2D2 able to uncover new bugs in ROS?

e RQ2:Is R2D2’s callback trace guidance mechanism effective
in conducting a more in-depth testing, compared with other
fuzzing methods?

e RQ3: What is the performance overhead of R2D2’s instru-
mentation strategy?

5.1 Evaluation Setup

We conduct our evaluation of R2D2 on four widely-used ROS ap-
plications: Navigator2, TurtleBot3, Turtlesim, and Autoware. We
choose ROS humble [18] and rolling [25] as the target runtime ver-
sion, as humble is the most stable and widely used ROS version,
while rolling is the latest release version at the time of writing. To
answer RQ1, we compile the ROS runtime and ROS applications
using Clang with ASAN and TSAN enabled. To answer RQ2, and
provide a comprehensive coverage comparison, we select RoboFuzz
and Ros2Fuzz as baseline fuzzers, which are the state-of-the-art
and open-sourced ROS fuzzers, and choose Navigator2, TurtleBot3,
and Turtlesim as the coverage comparison target. To ensure a fair
comparison, we instrument both the ROS runtime and applica-
tions with SanitizerCoverage, allowing us to collect coverage data
from all activated components across the entire ROS system. To
determine the benchmark values, we conducted a sampling over an
empirical period of 2 hours. To further show the effectiveness of
the callback trace guidance, we implement R2D2-, which is R2D2
minus the callback trace guidance, and compare the amount of the
bugs detected and the statistics of code coverage between R2D2
and R2D2-. To answer RQ3, we compile three different ROS run-
times: one with R2D2’s instrumentation, another instrumented with
Ros2Trace, and a third version with all tracers removed. We utilize
the performance_test component to measure the statistics for
runtime latency and memory usage overhead.

We perform our evaluation on a server with a 64-core AMD EPYC
7742 CPU (2.25GHz) and running Ubuntu 22.04. Since ROS systems
often require a graphical user interface, we employ the X virtual
frame buffer (Xvfb) for testing in the absence of a connected display,
a common practice in graphical application testing. All experiments
are conducted on the same hardware for 24 hours and repeated five
times, following the fuzzing evaluation best practice [17].

5.2 Bug Detection Capabilities

To answer RQ1 and evaluate R2D2’s bug detection capabilities in
the ROS system, we collected and analyzed the crashes reported by
R2D2. In detail, R2D2 found 39 previously unknown bugs, as listed
in Table 1.

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 1: Previously Unknown Bugs Found by R2D2

Scope/Module Bug Types Operations

1 Runtime/RCUTILS OOM rcutils_reallocf

2 Runtime/Fastrtps Overflow copy_from_fastrps_guid_
to_byte_array

3 Runtime/Rclepp UAF AnySubscriptionCallback

4 Runtime/Cyclone Data-race gc’_d eletefwrlter /
entity_guid_eq_wrapper

5 Runtime/eProsima Data-race ~Condition / wait

6 Runtime/eProsima Deadlock notify

7 Runtime/eProsima Data-race do_timer_actions / register_timer_nts

8 Runtime/eProsima Deadlock read_or_take

9 Runtime/eProsima Deadlock sendSync

10 TurtleBot3/Rviz SEGV getParent

11 TurtleBot3/Ompl SEGV ~RigidBodyEnvironment

12 TurtleBot3/Ompl Overflow getRadius

13 TurtleBot3/Ompl Overflow setStartAndGoalStates

14 TurtleBot3/Ompl Overflow Constraint::project

15 TurtleBot3/Ompl Overflow getControl

16 Navigator2/BT.CPP SEGV bt3_log_cat

17 Navigator2/Planner Double-free test_planer_is_path_valid

18 Autoware/Localization SEGV aged_object_queue

19 Autoware/Vehicle
20 Autoware/Vehicle

Nullptr-deref
Nullptr-deref

validate_data
get_row_index

21 Autoware/Perception Overflow tlwh_to_xyah

22 Autoware/Perception SEGV _ccrrt_dense

23 Autoware/Control Overflow filt_vector

24 Autoware/Utils Overflow arange

25 Runtime/rmw_fastrtps Data-race Condition / wait

26 Runtime/eProsima Data-race get_listener_for / delete_datawriter

27 Runtime/eProsima Data-race set_status / get_subscription_matched_
status

28 Runtime/Rclepp Deadlock lifecycle_service_client

29 Runtime/Rclcpp Deadlock action_client

30 Runtime/eProsima Data-race get._publication_
matched_status / set_status

. . set_read_communication_status / set_

31 Runtime/eProsima Data-race
status

32 Runtime/Rclepp Deadlock double_unlock

33 Runtime/eProsima Data-race deliver_sample_nts / change_received

34 Runtime/geometry2 Data-race createinechhange / unsent_change_
added_to_history

35 Runtime/eProsima UAF write

36 Runtime/Fastrtps SEGV new_allocator_impl

37 Runtime/ROSIDL MemLeaks get_typesupport_handle_function

38 Runtime/tlsf_cpp MemLeaks initialize

39 Runtime/tlsf_cpp MemLeaks tlsf_heap_allocator

Among the detected 39 bugs, 8 bugs have been confirmed (bug
1-5, 17-19) 6 bugs have been fixed by corresponding maintainers
(bug # 1, 2, 4, 5, 17, 19), and the rest have been submitted to cor-
responding maintainers, awaiting further confirmation. As R2D2
can test the entire ROS system, we can find bugs including the ROS
runtime and ROS applications. In detail, 24 bugs were found within
the ROS runtime, and 15 bugs were found throughout different ROS
applications. Specifically, R2D2 found 9 in humble, 15 in rolling, 6
in TurtleBot3, 2 in Navigator2, and 7 in Autoware. Also, with the
help of ASAN and TSAN, R2D2 can detect both memory issues
and concurrency issues. Specifically, we find a total number of 23
memory-related bugs and 16 concurrency-related bugs. The identi-
fication of these critical issues is significantly facilitated by R2D2’s
use of callback trace guidance. Also, incorporating callback trace
information enables R2D2 to delve into the deeper state space of the
target code. This is noteworthy because many vulnerabilities reside
in code segments that were frequently executed and tested but were
previously undetected. Therefore, the callback trace information
serves as a pivotal asset in uncovering unknown bugs.

1

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

Bug Severity. Bugs in ROS tend to cause severe consequences.
Specifically, the bugs detected by R2D2 can lead to potential data
loss, system hang, and system crash, causing ROS to run into erro-
neous states. Of the new bugs found, 7 bugs can result in data loss,
including Bug #1, Bug #3, and Bugs #35 to #39, where OOM, UAF,
and memory leak bugs in the ROS runtime can result in critical call-
back information being lost. Another 17 bugs can cause the system
to hang or incur an unreasonable delay, including Bug #2, Bugs #4
to #9, and Bugs #25 to #34, where the overflow in the DDS can crash
the service, whereas the data race and deadlock bugs lead to the
service hanging, which consequently fails to deliver the message
properly. 15 bugs can cause the system to crash, where Bugs #10 to
#24 were located in ROS application; these memory-related issues
can cause relevant components to fail, thereby affecting overall
system functionality and crashing the entire system.

Case Study. We use bug#4 to briefly describe a previously un-
known bug found by R2D2 as the case study to demonstrate the bug
discovery capability of our method. Figure 8 shows a data race bug
in the function gc_delete_writer() and the entity_guid_eq()
of the ROS runtime, where the developer claims to be a thread-
safety code.

// Thread 1: in g_entity.c
static void gc_delete_writer (struct gcreq *gcreq) {
struct writer *wr = gcreq->arg;

ddsi_sertype_unref ((struct ddsi_sertype *) wr->type);
endpoint_common_fini (&wr->e, &wr->c);
// write operation
ddsrt_free (wr);
B
// Thread 2: in ddsi_entity_index.c
static int entity_guid_eq (const struct entity_common *a, const
struct entity_common *b) {
// read operation
return a->guid.prefix.u[@] == b->guid.prefix.u[0] &&
a->guid.prefix.u[1] == b->guid.prefix.ul1] &&
a->guid.prefix.u[2] == b->guid.prefix.ul[2] &&
a->guid.entityid.u == b->guid.entityid.u;

Figure 8: A previously unknown data-race in ROS runtime.

The figure shows that the function gc_delete_writer() in
g_entity.cisresponsible for deallocating the writer object wr (line
5). Concurrently, another function entity_guid_eq() in ddsi_
entity_index. c is reading from the same object wr (line 13 to line
16). Both functions are executed by different threads, and there is
no synchronization mechanism to prevent concurrent access to
the shared object wr. This leads to a data race condition where the
write operation in gc_delete_writer() could invalidate the read
operation in entity_guid_eq(), resulting in unexpected behav-
ior. The unexpected behavior could manifest as incorrect program
states or system hang, thereby compromising the reliability and
security of the ROS system. To detect this bug, R2D2 profiles the
callback trace for state identification. It identifies the publisher
callback has an abnormal latency delay, by giving the input that
triggers the delay more execution and mutation priority, and with
the help of TSAN, R2D2 triggers this bug. Despite the maturity of
the ROS2 codebase and its extensive set of unit and system-level

Enhancing ROS System Fuzzing through Callback Tracing

ISSTA °24, September 16-20, 2024, Vienna, Austria

[— ReDz=--- ReD2----- RoboFuzz ===~ RoszFuzz |

—— R2D2 ===~ R2D2- RoboFuzz = = -~ Ros2Fuzz

[— ReDz=--- R2D2----- RoboFuzz ===~ RoszFuzz |

-10° -10°

Number of Branches Covered
Number of Branches Covered
g

Number of Branches Covered
o
N
T
|

Time [h]

(a) Navigator2 Comparison

(b) TurtleBot3 Comparison

Time [h] Time [h]

(c) Turtlesim Comparison

Figure 9: Coverage Growth Curve Between R2D2, R2D2-, RoboFuzz, and Ros2Fuzz.

tests, traditional testing methods have failed to uncover this subtle
yet critical issue. With the proposed callback trace guided fuzzing
approach, our tool can generate test cases that explore new state
space, including those that lead to data race conditions.

5.3 Effectiveness of Callback Trace Guidance

To address the RQ2, and identify the effectiveness of the callback
trace guidance, we first compare the code coverage achieved by
R2D2 against the Ros2Fuzz and RoboFuzz. Also, we implemented
R2D2-, which is R2D2 without the callback trace guidance (since
R2D2 has no coverage guidance, R2D2- does not have any guidance
mechanism) further to validate the effectiveness of the callback
trace guidance. The detailed code coverage statistics are presented
in Table 2, we observed that due to ROS having limited coverage
variety, the coverage tends to reach saturation within the first
hour. As ROS is designed to complete certain fixed tasks, thereby
following a rather fixed control flow, and most of its code will easily
be covered at the initial phase, making the coverage saturate so
quickly. This phenomenon is also discussed in previous literature,
like Robofuzz. Therefore, we present the coverage growth curve
for the first hours, as shown in Figure 9.

Table 2: Coverage Comparison Between the R2D2, Ros2Fuzz,
RoboFuzz, and R2D2-.

Fuzzers Navigator2 TurtleBot3 Turtlesim Average
R2D2 259111.2 111102.8 44576.2 138263.4
R2D2- 202274.4(+0.28x) 90843.4(+0.22X) 33846.4(+0.32x) 108988.1(+0.27X)

RoboFuzz - 21867.6(+4.08X) 21827.0(+1.04X) 21847.3(+2.56X)
Ros2Fuzz 29199.4(+7.87x) 29394.8(+2.78%) 25965.2(+0.72X) 28186.5(+3.91x)

5.3.1 Coverage Comparison with Ros2Fuzz. As can be in-
ferred from the Table 2, R2D2 achieves 259111.2, 111102.8, and
44576.2 code coverage on Navigator2, TurtleBot3, and Turtlesim
in respect, with an average of 138263.4 in total. On the other
hand, among the above three target applications, Ros2Fuzz achieves
29199.4, 29394.8, and 25965.2 code coverage, with 28186.5 on av-
erage. Compared with Ros2Fuzz, R2D2 achieves 7.87X%, 2.78%, and
0.72x more code coverage, with an average improvement of 3.91X.
The observed improvements in code coverage attest to R2D2’s profi-
ciency in generating test cases that accurately adhere to the varied
input interface structures and are different from Ros2Fuzz, which

can only test a specific interface at a time, R2D2 can comprehen-
sively test all interfaces that the SUT consists of. Moreover, the
guidance provided by callback trace information further expands
coverage, as it enables the exploration of distinct system states that
lead to the discovery of diverse code paths.

5.3.2 Coverage Comparison with RoboFuzz. We then assessed
the effectiveness of R2D2 in comparison to RoboFuzz. As RoboFuzz
is not adapted to Navigator2, our comparison focused solely on
TurtleBot3 and Turtlesim. RoboFuzz achieves an average code cov-
erage of 21867.6 and 21827.0 for TurtleBot3 and Turtlesim, respec-
tively. In Comparison, R2D2 gains a coverage improvement of 4.08X
and 1.04x in respect. This enhanced performance can be attributed
to the callback trace guidance providing the fuzzer with more de-
tailed system states, compared to the RoboFuzz which uses certain
application’s oracles as system states. This allows R2D2 to detect
state transitions within the target system, thereby contributing to
higher code coverage. Also, similar to Ros2Fuzz, RoboFuzz relies on
predefined interface specifications to test ROS, whereas the auto-
matic interface extraction allows R2D2 to test a broader range of
interfaces, thereby covering more code. For the coverage growth
curve, as indicated in the figure and similar to that of Ros2Fuzz,
RoboFuzz stopped growing at a very early stage during the testing,
reflecting the relatively stable control flow inherent to ROS.

5.3.3 Comparison with R2D2-. To further investigate the effec-
tiveness of the callback trace guidance mechanism, we implemented
R2D2-, an unguided version of R2D2 that removes the callback
trace guidance. We conducted evaluations on both R2D2 and R2D2-
across both Navigator2, TurtleBot3, and Turtlesim, in terms of bug
detection abilities and code coverage.

In concrete, for all the bugs listed in Table 1, without the assis-
tance of the callback trace guidance, R2D2- detects 5 bugs (# 1, 3,
11, 15, 16). We find that most bugs that R2D2- found were located
in relatively shallow code paths, thus showing that without the
help of callback trace guidance, it is difficult to test code deeper
into the ROS code logic, not only in the ROS runtime but also in
ROS application. We further compared the code coverage statis-
tics between R2D2 and R2D2-. As demonstrated in Table 2, R2D2-
covers 202274.4, 90843.4, and 33846.4 branches, an improvement of
0.27X compared to R2D2 on average. This improvement is purely
attributed to the callback trace guidance mechanism, which better
perceives the state transitions within the system, thereby exploring

ISSTA °24, September 16-20, 2024, Vienna, Austria

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

77 Ros2fuzz NN\ R2d2 775 R2d2- === Robofuzz 77 Ros2fuzz N\ R2d2 w7y R2d2- === Robofuzz 77 Ros2fuzz NN\ R2d2 775 R2d2- === Robofuzz
. A . Ny L 2N -
Q - J « ION/) \ |
N N Qf ¥ N ~N Y N /: N
N/ N/ NN N N/ WV N
ool B N8 A BN ol S8 M NN 0 LI | an &4
N N | PAY 7 S f{‘\? 2000 g) B /B
N ¥ 9 N N a2 ¥ 3 N ol Z N B
A N N N A,
VI R\ N N RN M NN
N N N N N A M N NE N Y e N
ROSIDL RCL_* RCL RMW DDS ROSIDL RCL_* RCL RMW DDS ROSIDL RCL_* RCL RMW DDS

(a) Coverage on Navigator2

(b) Coverage on TurtleBot3

(c) Coverage on Turtlesim

Figure 10: Module Coverage Comparison on Navigator2, TurtleBot3, and Turtlesim

code segments and program states that are usually hard to trig-
ger. Furthermore, we find that, R2D2- still outperforms Ros2Fuzz
and RoboFuzz, as this is attributed to R2D2 acquiring all the inter-
face that the target ROS application possess, and generating inputs
that strictly follows the input specifications, further indicating the
effectiveness of R2D2.

5.3.4 Component-wise Coverage Comparison. To further eval-
uate the coverage compositions and analyze the effectiveness of the
R2D2, we conducted a component-wise coverage comparison, fo-
cusing on the coverage exclusively of the ROS runtime. Concretely,
we focus on the coverage comparison within different layers of the
ROS runtime, including the interface definition (ROSIDL), differ-
ent language implementation of client libraries (RCLPY, RCLCPP),
common client libraries (RCL), middleware (RMW), and DDS im-
plementations. We categorize different language implementations
as RCL_*. The overall coverage statistic can be found in Figure 10.
As we can see from the figure, R2D2, and R2D2- successfully cov-
ered all essential components within ROS, which is attributed to the
fact that R2D2 can extract all interfaces that the target applications
own. Also, we find that R2D2 can achieve better component-wise
coverage compared to R2D2-, which is attributed to the callback
trace guidance mechanism, as it can guide the fuzzing process
deeper into ROS’s code logic, thereby increasing R2D2’s code ex-
ploration ability. For RoboFuzz, it covered a limited part of the
ROS code, mainly on the ROSIDL and RMW level, as shown in
Figure 10(c) and Figure 10(b), because it is designed to uncover
logic bugs within the application level, with a focus on certain
application specifications. Also, it uses predefined interfaces, so
achieving limited code exploration ability in ROS runtime. How-
ever, we noticed that for that in Figure 10(c), for ROSIDL, RoboFuzz
outperforms that of R2D2, that is due to the fact that the RoboFuzz
is specifically tailored towards Turtlesim specific behavioral char-
acteristics, including predefined interaction information, whereas
R2D2 is a generalized tool that does not contain such information.
For Ros2Fuzz, we find that in most cases, it can cover different com-
ponents under different applications. This depends on the quality
and functionalities of the generated drivers, some drivers are rather
simple without too many interactions, like Figure 10(c), while some
drivers are complex, with certain communication like Figure 10(a)
and Figure 10(b). Furthermore, we can reflect that, for some crit-
ical components, like the RMW, and DDS, R2D2 can outperform
the R2D2- and Ros2Fuzz, which first indicates that ROS follows

a rather limited control flow, and second, the callback guidance
mechanism can help R2D2 to dive deep into the ROS’s state, and
cover more code, even for such code sections with limited control
flow variability.

5.4 Instrumentation Overhead

To address RQ3 and assess the impact of instrumentation on the
overall system’s performance, we utilized the performance_test
framework, which is a commonly employed tool for evaluating
ROS system performance. Our evaluation specifically targeted the
runtime memory usage and the execution latency. To provide a
clear comparison, we examined these metrics across three distinct
settings: the instrumentation approach of R2D2, that of Ros2Trace,
and the standard vanilla ROS system.

Table 3: Overhead Statistics Between R2D2, Ros2Trace, and
Vanilla ROS2.

R2D2 Ros2Trace Vanilla ROS2 Overhead
Memory Usage (MB) 47276.0 47136.0 46480.0 0.3%/1.7%
Latency (MS) 0.16226 0.15512 0.13962 4.6%/16.2%

The detailed statistics are shown in Table 3. First, for the memory
overhead, the memory usage for R2D2 is 47276.0 MB, compared to
47136.0 MB for Ros2Trace and 46480.0 MB for the vanilla ROS system.
This results in an average overhead of 0.3% relative to Ros2Trace
and 1.7% relative to the vanilla ROS system, given the complexity
of the tasks being performed, this represents a relatively modest
memory overhead. Also, it’s worth noting that the instrumentation
strategy of R2D2 is adapted from Ros2Trace, which explains the
relatively closed memory overhead. Second, we turned our attention
to execution latency. The latency for R2D2 is 0.16226 ms, while
Ros2Trace and the vanilla ROS system registered latencies of 0.15512
ms and 0.13962 ms, respectively. This translates to an overhead of
4.6% compared to Ros2Trace and 16.2% compared to the vanilla ROS
system. A significant factor to consider here is that R2D2 utilizes
shared memory to write data in real-time, which incurs a latency
cost. However, given the context of testing and the benefits of real-
time data writing, this increase in latency is justifiable and remains
within acceptable bounds for the testing scenario at hand.

In conclusion, the instrumentation methodology employed by
R2D2 results in a relatively moderate and acceptable elevation in

Enhancing ROS System Fuzzing through Callback Tracing

both memory consumption and execution latency. The compara-
ble memory usage observed with Ros2Trace can be attributed to
the shared-memory within the instrumentation techniques. On the
other hand, the marginally increased latency is a conscious trade-off
made to facilitate real-time data recording capabilities. Given these
observations, it’s evident that the callback trace guidance mecha-
nism reaches a balance between performance and precision, making
it a suitable choice for testing ROS systems without introducing
substantial overhead.

6 DISCUSSION

Benchmark Value. Currently, R2D2 determines benchmark values
for new state identification based on runtime statistics. While this
method allows us to adapt and change the value in various testing
scenarios, it has certain limitations. First, the dynamic nature of
ROS systems can lead to variability that might not be captured
within a fixed sample size. Additionally, some statistical outliers
can skew benchmarks, potentially causing misidentifications. These
can neither result in a deficiency in state discovery nor an over-
whelming number of states being identified. Although it may slow
down the testing performance, it would not affect the bug detection
abilities. Future enhancements to R2D2 can use domain-specific
knowledge like documented specifications as benchmark values
to provide a more accurate and comprehensive analysis of ROS
system states.

Timing Bug Detection. R2D2 is capable of detecting memory-
and thread-related bugs. However, as a system with certain real-
time requirements. The timing of its operations is a critical factor
that directly impacts ROS’s reliability, and timing bugs can lead to a
range of issues, from system performance degradation to complete
system crashes. Currently, R2D2 cannot identify bugs related to
these real-time constraints. In the future, R2D2 can incorporate
timing analysis. This allows R2D2 to identify timing discrepancies
that could lead to real-time violations.

7 CONCLUSION

In this paper, we introduce R2D2, a callback trace-guided fuzzer that
is crafted for ROS systems testing. Traditional methods, such as code
coverage guided fuzzing, often fall short in capturing the intricate
state transitions of ROS systems. In contrast, R2D2 leverages the
callback trace to provide more insight into the system’s internal
behaviors and states. Through systematic instrumentation in the
ROS runtime, R2D2 dynamically monitors and profiles the system’s
state transitions, guiding the generation of high-quality test cases.
We have adapted R2D2 to four widely used ROS applications, the
evaluations demonstrate R2D2’s effectiveness, where R2D2 found
a total number of 39 of bugs, with 6 bugs been fixed. Compared
to existing fuzzers, R2D2 improves code coverage by 2.56x and
3.91X, respectively, while introducing a 10.4% and 1.0% on execution
latency and memory consumption.

8 ACKNOWLEDGMENTS

This research is sponsored in part by the National Key Research and
Development Project (No. 2022YFB3104000, No. 2022YFB3104003),
NSFC Program (No. 92167101, 62021002, 62202500), and Hunan
Provincial Natural Science Foundation (No: 2023]J40772).

ISSTA °24, September 16-20, 2024, Vienna, Austria

REFERENCES

[1] Domagoj Babi¢, Stefan Bucur, Yaohui Chen, Franjo Ivan¢i¢, Tim King, Markus
Kusano, Caroline Lemieux, Laszl6 Szekeres, and Wei Wang. 2019. FUDGE:
Fuzz Driver Generation at Scale. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). As-
sociation for Computing Machinery, New York, NY, USA, 975-985. https:
//doi.org/10.1145/3338906.3340456

[2] Christophe Bédard, Ingo Liitkebohle, and Michel Dagenais. 2022. ros2_tracing:
Multipurpose low-overhead framework for real-time tracing of ROS 2. IEEE
Robotics and Automation Letters 7, 3 (2022), 6511-6518.

[3] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032-1043.
https://doi.org/10.1145/2976749.2978428

[4] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In 2018 IEEE Symposium on Security and Privacy (SP). 711-725. https://doi.org/
10.1109/SP.2018.00046

[5] Christophe, Ingo Liitkebohle, and Michel Dagenais. 2022. ros2_tracing: Multipur-
pose Low-Overhead Framework for Real-Time Tracing of ROS 2. IEEE Robotics
and Automation Letters 7, 3 (2022), 6511-6518. https://doi.org/10.1109/LRA.2022.
3174346

[6] CISA. 2021. Multiple Data Distribution Service (DDS) Implementations. https:
//www.cisa.gov/news-events/ics-advisories/icsa-21-315-02.

[7] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing

Deep-Learning Libraries via Automated Relational API Inference. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE

2022). Association for Computing Machinery, New York, NY, USA, 44-56. https:

//doi.org/10.1145/3540250.3549085

Mathieu Desnoyers and Michel R Dagenais. 2006. The lttng tracer: A low im-

pact performance and behavior monitor for gnu/linux. In OLS (Ottawa Linux

Symposium), Vol. 2006. Citeseer, 209-224.

[9] William Woodall Dirk Thomas. 2020. turtlesim. http://wiki.ros.org/turtlesim
[10] Andrea Fioraldi, Dominik Maier, Heiko Eiffeldt, and Marc Heuse. 2020. AFL++
combining incremental steps of fuzzing research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies. 10-10.

Emre Giiler, Philipp Gérz, Elia Geretto, Andrea Jemmett, Sebastian Osterlund, Her-

bert Bos, Cristiano Giuffrida, and Thorsten Holz. 2020. Cupid: Automatic Fuzzer

Selection for Collaborative Fuzzing. In Annual Computer Security Applications

Conference (Austin, USA) (ACSAC ’20). Association for Computing Machinery,
New York, NY, USA, 360-372. https://doi.org/10.1145/3427228.3427266
Xu Jiang, Dong Ji, Nan Guan, Ruoxiang Li, Yue Tang, and Yi Wang. 2022. Real-
time scheduling and analysis of processing chains on multi-threaded executor in
ros 2. In 2022 IEEE Real-Time Systems Symposium (RTSS). IEEE, 27-39.

JnxF and gavanderhoorn. 2021. ros2_fuzz. https://github.com/rosin-project/ros2_

fuzz. Commit a01394f on Jul 19, 2021.

Shinpei Kato. 2017. “Autoware.

autoware

Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: Fuzzing Robotic Systems over

Robot Operating System (ROS) for Finding Correctness Bugs. In Proceedings of

the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE

2022). Association for Computing Machinery, New York, NY, USA, 447-458.
https://doi.org/10.1145/3540250.3549164
Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2020. Finding Bugs in File Systems with an Extensible Fuzzing Framework.
ACM Trans. Storage 16, 2, Article 10 (may 2020), 35 pages. https://doi.org/10.
1145/3391202
George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123-2138. https://doi.org/10.
1145/3243734.3243804
[18] Matti Kortelainen. 2023. A short guide to ROS 2 Humble Hawksbill. (2023).

[19] Takahisa Kuboichi, Atsushi Hasegawa, Bo Peng, Keita Miura, Kenji Funaoka,
Shinpei Kato, and Takuya Azumi. 2022. CARET: Chain-Aware ROS 2 Evaluation
Tool. In 2022 IEEE 20th International Conference on Embedded and Ubiquitous
Computing (EUC). 1-8. https://doi.org/10.1109/EUC57774.2022.00010

[20] lcamtuf. 2013. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

[21] Ruoxiang Li, Xu Jiang, Zheng Dong, Jen-Ming Wu, Chun Jason Xue, and Nan

Guan. 2023. Worst-Case Latency Analysis of Message Synchronization in ROS.

In 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE, 185-197.

J. Liang, M. Wang, C. Zhou, Z. W, Y. Jiang, J. Liu, Z. Liu, and J. Sun. 2022. PATA:

Fuzzing with Path Aware Taint Analysis. In 2022 2022 IEEE Symposium on Security

and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 154-170.

—_
o)

[11

=
)

[13

[14

https://github.com/autowarefoundation/

[15

=
&

(17

[22

https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/LRA.2022.3174346
https://doi.org/10.1109/LRA.2022.3174346
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1145/3540250.3549085
http://wiki.ros.org/turtlesim
https://doi.org/10.1145/3427228.3427266
https://github.com/rosin-project/ros2_fuzz
https://github.com/rosin-project/ros2_fuzz
https://github.com/autowarefoundation/autoware
https://github.com/autowarefoundation/autoware
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3391202
https://doi.org/10.1145/3391202
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/EUC57774.2022.00010
https://lcamtuf.coredump.cx/afl/

ISSTA °24, September 16-20, 2024, Vienna, Austria

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

]

]

]

]

https://doi.org/10.1109/SP46214.2022.00010

Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang. 2023. Horus:
Accelerating Kernel Fuzzing through Efficient Host-VM Memory Access Proce-
dures. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 11 (nov 2023), 25 pages.
https://doi.org/10.1145/3611665

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In
Proceedings of the 28th USENIX Conference on Security Symposium (Santa Clara,
CA, USA) (SEC’19). USENIX Association, USA, 1949-1966.

Steven Macenski and Tully Foote. 2023. ros2 rolling. https://docs.ros.org/en/
rolling/Installation.html

Steve Macenski, Francisco Martin, Ruffin White, and Jonatan G. Clavero. 2020.
The Marathon 2: A Navigation System. ArXiv (2020). https://doi.org/10.1109/
TROS45743.2020.9341207 Accessed September 25, 2023.

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimiz-
ing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 729-743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling Ji, Chunming
Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. 2021. V-Shuttle: Scalable and
Semantics-Aware Hypervisor Virtual Device Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, Republic of Korea) (CCS 21). Association for Computing Machinery, New
York, NY, USA, 2197-2213. https://doi.org/10.1145/3460120.3484811

Ivan Santiago Paunovic. 2020. ROS 2 Issue #1035. https://github.com/ros2/ros2/
issues/1035. Accessed: Sep 21, 2020.

ROBOTIS-GIT. 2023. ROS packages for Turtlebot3. https://github.com/ROBOTIS-
GIT/turtlebot3 Accessed: 2023-09-25.

Yuheng Shen, Shijun Chen, Jianzhong Liu, Yiru Xu, Qiang Zhang, Runzhe Wang,
Heyuan Shi, and Yu Jiang. 2023. Brief Industry Paper: Directed Kernel Fuzz
Testing on Real-time Linux. In 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 495-499.

Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo Cui, Heyuan
Shi, and Yu Jiang. 2022. Tardis: Coverage-Guided Embedded Operating System
Fuzzing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 11 (2022), 4563-4574. https://doi.org/10.1109/TCAD.2022.3198910
Emmet Snider. 2020. ApexAl/ performance_test. GitLab. https://gitlab.com/
ApexAl/performance_test

Dmitry Vyukov and Andrey Konovalov. 2015. Syzkaller: an unsupervised
coverage-guided kernel fuzzer. https://github.com/google/syzkaller.

Yuheng Shen, Jianzhong Liu, Yiru Xu, Hao Sun, Mingzhe Wang, Nan Guan, Heyuan Shi, and Yu Jiang

[35] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin

[36

[38

[39

[40

(41

[42

]

Zhao, and Jiaguang Sun. 2018. SAFL: Increasing and Accelerating Testing Cover-
age with Symbolic Execution and Guided Fuzzing. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceeedings (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 61-64. https://doi.org/10.1145/3183440.3183494

Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and
Jiaguang Sun. 2021. RIFF: Reduced Instruction Footprint for Coverage-Guided
Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 147-159. https://www.usenix.org/conference/atc21/presentation/
wang-mingzhe

Qinglong Wang, Runzhe Wang, Yuxi Hu, Xiaohai Shi, Zheng Liu, Tao Ma, Houb-
ing Song, and Heyuan Shi. 2023. KeenTune: Automated Tuning Tool for Cloud
Application Performance Testing and Optimization. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis. 1487~
1490.

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan. 2021. Fuzzing Mobile Robot
Environments for Fast Automated Crash Detection. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). 5417-5423. https://doi.org/10.
1109/ICRA48506.2021.9561627

Kai-Tao Xie, Jia-Ju Bai, Yong-Hao Zou, and Yu-Ping Wang. 2022. ROZZ: Property-
based Fuzzing for Robotic Programs in ROS. 6786-6792. https://doi.org/10.1109/
ICRA46639.2022.9811701

Y. Xu, H. Sun, J. Liu, Y. Shen, and Y. Jiang. 2024. SATURN: Host-Gadget
Synergistic USB Driver Fuzzing. In 2024 IEEE Symposium on Security and Pri-
vacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 51-51. https:
//doi.org/10.1109/SP54263.2024.00051

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD,
745-761. https://www.usenix.org/conference/usenixsecurity18/presentation/
yun

Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias
Payer, and Yu Jiang. 2022. Minerva: Browser API Fuzzing with Dynamic Mod-Ref
Analysis. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Singapore,
Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 1135-1147. https://doi.org/10.1145/3540250.3549107

Received 16-DEC-2023; accepted 2024-03-02

https://doi.org/10.1109/SP46214.2022.00010
https://doi.org/10.1145/3611665
https://docs.ros.org/en/rolling/Installation.html
https://docs.ros.org/en/rolling/Installation.html
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.1109/IROS45743.2020.9341207
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://doi.org/10.1145/3460120.3484811
https://github.com/ros2/ros2/issues/1035
https://github.com/ros2/ros2/issues/1035
https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/ROBOTIS-GIT/turtlebot3
https://doi.org/10.1109/TCAD.2022.3198910
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://github.com/google/syzkaller
https://doi.org/10.1145/3183440.3183494
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://doi.org/10.1109/ICRA48506.2021.9561627
https://doi.org/10.1109/ICRA48506.2021.9561627
https://doi.org/10.1109/ICRA46639.2022.9811701
https://doi.org/10.1109/ICRA46639.2022.9811701
https://doi.org/10.1109/SP54263.2024.00051
https://doi.org/10.1109/SP54263.2024.00051
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/3540250.3549107

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Robot Operating System 2
	2.2 ROS Testing

	3 Motivation
	4 Design
	4.1 Runtime Callback Trace Collection
	4.2 Callback Trace Guided Generation
	4.3 Implementation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Bug Detection Capabilities
	5.3 Effectiveness of Callback Trace Guidance
	5.4 Instrumentation Overhead

	6 Discussion
	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

