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ABSTRACT

Embedded operating systems, considering their widespread use in
security-critical applications, are not effectively tested with sanitiz-
ers to effectively root out bugs. Sanitizers provide a means to detect
bugs that are not visible directly through exceptional or erroneous
behaviors, thus uncovering more potent bugs during testing.

In this paper, we propose EmbSan, an embedded systems sani-
tizer for a diverse range of embedded operating system firmware
through the use of dynamic instrumentation of sanitizer facilities
and de-coupled on-host runtime libraries. This allows us to perform
sanitation for multiple embedded OSs during fuzzing, such as many
Embedded Linux-based firmware, various FreeRTOS firmware, and
detect actual bugs within them. We evaluated EmbSan’s effective-
ness on firmware images based on Embedded Linux, FreeRTOS,
LiteOS, and VxWorks. Our results show that EmbSan can detect the
same criteria of actual bugs found in the Embedded Linux kernel as
reference implementations of KASAN, and exhibits a slowdown of
2.2× to 3.2× and 5.2× to 5.7× for KASAN and KCSAN, respectively,
which is on par with established kernel sanitizers. EmbSan and em-
bedded OS fuzzers also found a total of 41 new bugs in Embedded
Linux, FreeRTOS, LiteOS and VxWorks.

1 INTRODUCTION

Embedded devices have proliferated in recent years, requiring ad-
ditional security testing to protect the integrity and safety of indus-
tries and end users. Failing such can result in disastrous outcomes,
including significant financial losses or endangerment of human
lives. For example, Heartbleed [4] is an out-of-bounds read bug in
OpenSSL that allows attackers to arbitrarily read memory contents,
including encryption keys, passwords, etc., from a victim device.
In particular, Heartbleed significantly impacts embedded devices
that utilize OpenSSL [6], which are not patched as easily as servers,
thus leaving many users susceptible to attacks.

Sanitizers are programming tools that detect certain types of
bugs that are otherwise undetected by the end user or the system
itself. For instance, buffer overflows that fall within allocated mem-
ory stay unnoticed, whereas sanitizers that detect such violations
can catch the illegal operation on site. In retrospect, using sanitiz-
ers during software testing for the SSL libraries will have allowed
vendors to detect Heartbleed prior to shipping [17], thus reducing
and preventing Heartbleed from manifesting globally.

Embedded operating systems are designed to run specialized
pieces of software on embedded devices, which poses numerous dif-
ficulties in proposing sanitizer designs that perform various types
of sanitizer operations on a wide range of embedded systems. These
include: 1) the diversity of embedded OS implementations and vari-
ants, including memory management, device management, actual
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implementations of the firmware, etc., such that sanitizers from
general-purpose systems or other embedded platforms cannot be
adapted to a specific systemwithout decent prior knowledge and im-
plementing major changes; 2) the vast differences in actual embed-
ded platform design, including hardware capacities and capabilities,
therefore hindering particular sanitizer features or facilities from
being implemented, such as shadow memory, red zones, etc.; 3) the
state of build systems surrounding the various embedded operating
systems and their firmware, further preventing sanitizer callbacks
and artifacts to be placed within the firmware, notwithstanding the
swath of closed-source embedded firmware that are prevalent in
the industry. Therefore, there is little prior work towards sanitizing
embedded operating systems firmware.

In reality, fuzzing embedded operating systems, like fuzzing its
general-purpose counterpart, is performed under full-system em-
ulation, allowing for an unintrusive approach towards sanitizing
the system-under-test. Fortunately, this allows us to tap into the
emulated target’s state and execution process to extract sensitive
events and perform operation validation externally. Consequently,
our main objective thus is to: 1) identify the set of sensitive opera-
tions common sanitizers intercept, distill a collection of operational
semantics that they abide by during a firmware’s execution, and
determine the instrumentation points during execution; 2) analyze
the firmware-under-test’s firmware or source code to determine
the platform features and layout details, thus setting the initial state
of the target sanitizers; 3) adapt the kernel sanitizers routines to
the host’s userspace, allowing for resource-constrained and more
capable systems to run the same feature-set of the sanitizers, further
reducing the manual efforts involved.

Using these observations, we propose EmbSan, an embedded
operating systems sanitizer intended for a wide range of firmware
based on different embedded OSs and platforms. EmbSan’s design
consists of three components, the Sanitizer Common Function Dis-

tiller, the Embedded Platform Configuration Prober, and the Common

Sanitizer Runtime. Its workflow consists of a Pre-testing Probing

Phase, where common characteristics of the intended sanitizers are
identified, the platform details of the firmware are probed, and the
embedded firmware’s initial state is then compiled, and a Testing
Phase, where the firmware is tested using fuzzing or similar meth-
ods, while EmbSan intercepts sensitive instructions as required,
and passing the arguments as specified to the specific sanitizer’s
runtime, thus sanitizing the firmware’s behavior and reporting any
aberrations to the tester.

To validate the effectiveness of our design, we implemented
EmbSan on Embedded Linux, FreeRTOS, LiteOS and VxWorks, with
support for multiple architectures, including x86, ARM and MIPS.
We verify our design using Embedded Linux’s native KASAN im-
plementation as a baseline and test EmbSan against numerous con-
firmed bugs within 5 years. Our results show that EmbSan reaches
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all design goals and finds all possible bugs. In addition, wemeasured
the overhead of running EmbSan in comparison to running solely
the target system under emulation, as well as running systems with
their own sanitizers. EmbSan’s overhead ranges from 2.2×-3.2×
for KASAN and 5.2×-5.7× for KCSAN, compared to 2.2×-2.7× and
5.4×-6.1× of other sanitizers, demonstrating that EmbSan’s perfor-
mance hit is on par with implementing target-specific sanitizers,
albeit without the immense manual efforts. Furthermore, EmbSan
assisted kernel fuzzers in finding 41 new bugs in firmware based
on Embedded Linux, FreeRTOS, LiteOS and VxWorks, respectively.

Our main contributions in this paper are as follows. First, we
identify the challenges regarding developing sanitizers for a multi-
tude of multi-architecture embedded operating systems. Next, we
propose EmbSan, a sanitizer capable of being easily adapted to and
running on a wide selection of embedded operating systems and
architectures using methods devised to overcome the previous chal-
lenge. Finally, we evaluate EmbSan’s effectiveness and demonstrate
that it effectively sanitizes embedded systems and finds previously
unknown bugs on the systems tested.

2 BACKGROUND AND RELATEDWORK

Embedded operating systems are designed to perform specific tasks
for use in applications such as medical robotics, autonomous vehi-
cles, IoT devices, etc. These use cases emphasize system efficiency
and real-time performance, thus providing fewer functions on a
specific selection of platform architectures.

Fuzz testing (fuzzing) is an automatic bug detection technique
and has gained a reputation due to its effectiveness in uncovering
bugs [1, 2, 9]. Fuzzing performs testing by feeding the target pro-
gram with large quantities of generated inputs and observing for
exceptional behaviors as oracles for the presence of bugs. Kernel
fuzzers uses fuzzing to find bugs in operating system kernel code.
Syzkaller [16] is a state-of-the-art kernel fuzzer that successfully
detected numerous bugs within Linux. It uses KASAN and kcov [14]
to detect bugs and collect coverage information. Rtkaller [12] ex-
tends Syzkaller to test RT-Linux’s real time scheduling behaviors.
Gustave [5] is a fuzzer that uses a custom QEMU board to host
embedded operating systems for testing. Tardis [13] is a fuzzer
specifically designed to test embedded operating systems. It pro-
posed an OS-agnostic coverage collection mechanism to collect
runtime coverage from the target kernel.

Sanitizers are used to detect a target program’s erroneous be-
haviors by modifying the program by marking protection entities,
hooking library interfaces with interceptors, and instrumenting
sensitive instructions with verification callbacks. The instrumen-
tation during execution calls the sanitizer runtime to update the
state of the program and verify any sensitive instruction executed.
Commonly used sanitizers include AddressSanitizer (ASAN) [10],
Thread Sanitizer (TSAN) [11], Memory Sanitizer (MSAN) [15] and
their corresponding kernel sanitizers, such as Kernel Address San-
itizer (KASAN) [7], Kernel Memory Sanitizer (KMSAN) [3] and
Kernel Concurrency Sanitizer (KCSAN) [8].

3 DESIGN

The overall architecture of EmbSan is depicted in Figure 1. As
shown in the figure, EmbSan consists of three major components,

the Sanitizer Common Function Distiller (Section 3.1) for identi-
fying the requirements of the sanitizers used during testing, the
Embedded Platform Configuration Prober (Section 3.2) that specifies
the platform details of the target firmware, and the Common San-

itizer Runtime (Section 3.3) that intercepts the relevant sensitive
instructions during runtime and performs corresponding sanitizer
operations. The workflow consists of a Pre-testing Probing Phase

(Section 3.4) and a Testing Phase (Section 3.5).

3.1 Sanitizer Common Function Distiller

The Distiller mainly identifies the interface and behavioral charac-
teristics of the sanitizers used. This is a static process, where the
sanitizers’ interface header files are first fed into the Distiller to pro-
duce a list of sanitizer’s interception APIs. The sanitizers’ specific
source code files and the instrumentation pass source files are then
parsed with the prior list of APIs, where the interception points
and call graph of the interfaces are constructed, external resources
are identified, and the logic of the sanitizers’ APIs are distilled, i.e.
be converted into an in-house Domain-Specific Language (DSL).

Afterwards, the Distiller combines the API specifications of the
multiple sanitizers, if required, into a single specification, using
the following rules. First, the resulting set of interception points is
taken over a union of the individual sanitizer’s set. Then, for each
interception point, the interface’s arguments are also taken as a
union of the individual sanitizer’s arguments. For arguments that
share target data but are not exactly the same, we take the largest
possible union of the data and combine them into one argument,
and add the corresponding annotations identifying which source
APIs the segments belong to into the specifications.

3.2 Embedded Platform Configuration Prober

The Prober mainly detects the platform details of the target firmware,
including the instruction set capabilities, platform device mem-
ory allocation and initial firmware memory layout. This process
is mainly dynamic, requiring a pre-testing dry run to identify all
characteristics. The Prober eventually produces a configuration
specification and initial setup routine in the aforementioned DSL.
As the available selection of embedded OS firmware is highly di-
verse, we categorize the firmware into three categories and devise
individual strategies to probe their initial configurations.

1) For open-source firmware that supports compile-time sani-
tizer instrumentation, we use a combination of static and dynamic
methods to determine its configuration parameters. During the
firmware’s compilation process, we enable the sanitizer’s instru-
mentation process, but link it with a dummy sanitizer library, where
each API is implemented with a platform-specific trapping instruc-
tion, such as vmcall on x86_64 platforms. In conjunction, we extract
the specific locations of each call and their corresponding call defini-
tions and compile them to the aforementioned DSL as the platform
specifications. In addition, the point where the system is ready is
also inserted with a trapping instruction. We then perform a dry-
run of the firmware, where all actions of the sanitizer prior to the
point where the system is ready are intercepted and recorded. The
actions are also compiled into the DSL as the initial setup routine.

2) For open-source firmware that lacks compile-time sanitizer
instrumentation, we instrument instructions that allow us to iden-
tify initialization routines and functions that correspond to the
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Figure 1: EmbSan’s overall component and workflow diagram.

sanitizer’s interception functions (such as various Xalloc()). The rel-
evant information is compiled into the platform descriptions similar
to the aforementioned process. Then, we dry-run the instrumented
firmware binary and analyze its behavior up until the firmware’s
read-to-run state to deduce the initial state of the firmware. Using
this information, the Prober compiles an initialization routine that
sets up the sanitizer’s state upon the firmware’s initialization. How-
ever, this method is not complete, therefore for some platforms and
OSs, human intervention may be needed for domain-specific prior
knowledge to be added into the descriptions.

3) For closed-source binary-only firmware, we mainly use dy-
namic methods in conjunction with the tester’s prior-knowledge to
identify the relevant information. Overall, we use a multi-pass dry-
run process with the Prober to progressively identify the various
artifacts similar to that of the previous categories of firmware, in-
cluding the point before which is the system’s initialization process,
function calls with signatures corresponding to the interception
function of the sanitizers, and the initial system state and mem-
ory layout using probes inserted within the emulator’s devices.
The Prober, with some manual intervention, produces the platform
details and initialization routines in the DSL.

As some sanitizer functionalities are only supported through
compile-time instrumentation, such as on-stack and static variable
redzones, i.e. protection zones around memory-allocated objects
that allow KASAN to detect off-by-N out-of-bounds accesses, only
the first category of firmware is sanitized with support for such
functionality. The difference in their effectiveness in bug detection
will be discussed in depth in the evaluation.

3.3 Common Sanitizer Runtime

The Runtime component mainly accepts the descriptions of the san-
itizers and firmware from the probing phase, compiles the specific
sanitizer runtimes, then intercepts the firmware’s execution process
for pre-determined sanitizer-sensitive instructions and interception
functions and transfers the execution to each functional sanitizer’s
runtime library for state update or operation validation.

While there are established techniques for interrupting the em-
ulator’s execution process such as Virtual Machine Introspection,
we choose to modify the emulator’s execution engine itself for
better efficiency. To do so, the Runtime modifies the emulator’s
execution engine by inserting callback probes, which are specified

by the sanitizers, into the translated code templates. For instance,
in QEMU/TCG, one of the emulators that EmbSan supports, for
the load instruction, which is specified by KASAN and KCSAN,
the Runtime modifies its translation template by inserting a call
to a delegate function load_intercept(), where all parameters and
resources that are required by the sanitizers, as specified in the
DSL, are extracted symbolically, and are then passed to the relevant
sanitizer interception functions.

The Runtime also maintains the state of all sanitizer functions,
such as a unified shadow memory, that records information for
multiple sanitizer functionalities. This allows the conservation of
memory resources on the host machine and simplifies the complex-
ity involved with transforming descriptions in the DSL into actual
sanitizer initialization, maintenance and validation routines.

As firmware with sanitizer instrumentation available allows
for direct insertion of callbacks to sanitizer routines, the Runtime

component thus supports direct hypercalls from the emulator and
redirects the calls to the specific sanitizer interfaces, thus improving
overhead statistics in such cases.

3.4 Pre-Testing Probing Phase

The initial phase for EmbSan requires the tester to prepare the
firmware binary and relevant descriptions as laid out in the afore-
mentioned sections. The specific steps are given below.

First, the tester needs to determine the sanitizers needed, and
extract reference implementations from OS kernels, such as Linux’s
KASAN and KCSAN implementations. The header files containing
the API definitions and the actual source code are passed to the
Distiller, which then produces the descriptions of the interception
functions and logic of the sanitizers in the DSL.

The tester will also need to analyze the firmware for available
source code, and if so, verify its support for compile-time sanitizer
instrumentation. Then, according to the firmware’s classification,
the tester will invoke either of the three operation modes of the
Prober and produce the platform specifications and initialization
routines, specified using the DSL.

Finally, the firmware needs to be prepared for dynamic testing.
For source-code-available embedded OS firmware, this is largely
similar to that of the Prober’s instrumentation process, where the
ready-to-run state is hooked to invoke the initialization routine,
and for firmware with sanitizer instrumentation support available,
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the instrumentation is enabled with sanitizer linkage to the same
dummy sanitizer library described above.

3.5 Testing Phase

After the preparation process, the tester can begin fuzzing or other
forms of dynamic testing with EmbSan enabled. As aforementioned,
the Runtime component accepts the DSL descriptions of the san-
itizer interfaces and runtime logic, in addition to the firmware’s
platform configuration and sanitizer initialization routines. The
Runtime component then compiles the sanitizer runtime logic and
hooks all relevant operations to the emulator’s execution process,
including sanitizer-relevant instructions and function calls. Testing
is then allowed to commence, where the sanitizer will initialize
upon the firmware reaching the ready-to-run state, update the run-
time’s internal state upon the firmware invoking state maintenance
operations, and validate any sensitive operations as specified by
the original sanitizer.

4 EVALUATION

We perform the following experiments to validate EmbSan’s cor-
rectness and effectiveness in comparison to established tools, bench-
mark its ability in conjunction with state-of-the-art kernel fuzzers
to discover new bugs and measure the runtime overhead cost of
delivering such functionality and its comparison to the relevant
sanitizers. To further measure the difference between using compile-
time instrumentation and dynamic instrumentation, we run the
target kernels under compile-time instrumentation, designated as
EmbSan-C, and dynamic instrumentation, as EmbSan-D.

The firmware we selected for evaluation is determined through
the following criteria. First, the firmware should be widely used,
thus demonstrating EmbSan’s ability to find bugs that potentially
affect a wide range of users. Second, the selected firmware should
also cover different types of functionalities, such as routers, IoT
firmware, etc. Finally, the firmware should be based on different
embedded operating systems. The list of tested firmware is in Ta-
ble 1. Thus, we chose firmware based on OpenWRT, OpenHarmony
and others that allow us to cover Embedded Linux, LiteOS, FreeR-
TOS and VxWorks on x86, ARM and MIPS platforms, utilizing both
EmbSan-C and EmbSan-D.

Table 1: List of embedded firmware used in EmbSan’s evalua-

tion process, and their respective base operating system, sys-

tem architecture, instrumentation mode, source code avail-

ability, and fuzzer used to test the firmware.

Firmware Base OS Architecture Inst. Mode Source Fuzzer

OpenWRT-armvirt Embedded Linux ARM EmbSan-C Open Syzkaller
OpenWRT-bcm63xx Embedded Linux MIPS EmbSan-D Open Syzkaller
OpenWRT-ipq807x Embedded Linux ARM EmbSan-C Open Syzkaller
OpenWRT-mt7629 Embedded Linux ARM EmbSan-C Open Syzkaller
OpenWRT-rtl839x Embedded Linux MIPS EmbSan-D Open Syzkaller
OpenWRT-x86_64 Embedded Linux x86 EmbSan-C Open Syzkaller
OpenHarmony-rk3566 Embedded Linux ARM EmbSan-C Open Tardis
OpenHarmony-stm32mp1 LiteOS ARM EmbSan-D Open Tardis
OpenHarmony-stm32f407 LiteOS MIPS EmbSan-D Open Tardis
InfiniTime FreeRTOS ARM EmbSan-D Open Tardis
TP-Link WDR-7660 VxWorks ARM EmbSan-D Closed Tardis

Our experiments were conducted on a computer with an AMD
Ryzen 7 5800X processor, 128GiB of DDR4 memory and running

x86_64 Ubuntu Linux 22.04. The compilers used to build the re-
spective kernels are GCC 12.2 and LLVM 14.0. We used the latest
versions of Syzkaller and Tardis to test the embedded firmware.
We also used QEMU 7.1.0 to run the target firmware on the host
system. All quantitative experiments were repeated 10 times, fol-
lowing generally accepted fuzzing evaluation guidelines, in order
to reduce statistical errors.

Table 2: Comparison of sanitizing capabilities on previously

found bugs between EmbSan-C, EmbSan-D and KASAN.

Bug Type Kernel Ver. Location EmbSan-C EmbSan-D KASAN

Out-of-bounds 5.17-rc2 ringbuf_map_alloc Yes Yes Yes
Use-after-free 5.19 ieee80211_scan_rx Yes Yes Yes
Out-of-bounds 5.17-rc1 bpf_prog_test_run_xdp Yes Yes Yes
Use-after-free 5.17 btrfs_scan_one_device Yes Yes Yes
Use-after-free 5.19-rc1 post_one_notification Yes Yes Yes
Use-after-free 5.19-rc1 post_watch_notification Yes Yes Yes
Out-of-bounds 5.17-rc6 watch_queue_set_filter Yes Yes Yes
Null-pointer-deref 5.17-rc8 __free_pages Yes Yes Yes
Out-of-bounds 5.17 vxlan_vnifilter_dump_dev Yes Yes Yes
Out-of-bounds 5.19 imageblit Yes Yes Yes
Out-of-bounds 5.19-rc4 bpf_jit_free Yes Yes Yes
Use-after-free 5.17-rc6 null_skcipher_crypt Yes Yes Yes
Use-after-free 5.18-rc6 bio_poll Yes Yes Yes
Use-after-free 5.18 blk_mq_sched_free_rqs Yes Yes Yes
Use-after-free 5.18-rc7 do_sync_mmap_readahead Yes Yes Yes
Use-after-free 5.18 filp_close Yes Yes Yes
Use-after-free 5.17-rc4 setup_rw_floppy Yes Yes Yes
Use-after-free 5.18-next driver_register Yes Yes Yes
Use-after-free 5.17-rc4 dev_uevent Yes Yes Yes
Out-of-bounds 6.0 run_unpack Yes Yes Yes
Use-after-free 5.19 ath9k_hif_usb_rx_cb Yes Yes Yes
Use-after-free 5.19-rc1 vma_adjust Yes Yes Yes
Use-after-free 6.0-rc7 nilfs_mdt_destroy Yes Yes Yes
Out-of-bounds 5.7-rc5 fbcon_get_font Yes No Yes
Out-of-bounds 4.17-rc1 string Yes No Yes

4.1 Comparison with Native Sanitizers

We first validate EmbSan’s soundness in detecting bugs in com-
parison with Linux’s native implementations. As KCSAN raises
many false positives, thus reproducing any bugs found is problem-
atic, we perform this on KASAN. For Embedded Linux, we fetched
recent bug reports from syzbot’s dashboard and extracted those
issued by KASAN into a data set containing 25 bugs, all of which
are reproducible with reproducer programs. We then compiled the
specific kernel versions in each bug report and their respective
reproducer programs, and executed the kernel image on QEMU
with EmbSan-C, EmbSan-D and KASAN enabled, respectively.

The results of this experiment are shown in Table 2. Other than
the last two bugs, all sanitizer implementations are capable of catch-
ing each bug during execution. These bugs consist of the following
types: slab cache out-of-bounds access, use-after-free, null-pointer-
dereferencing, global out-of-bounds accesses, etc. Most of the bugs
fall into the first two categories, namely slab cache out-of-bounds
and use after free bugs. Realistically, the majority of Embedded
Linux bugs discovered fall mostly into these two categories.

We specifically searched for bugs that EmbSan-D theoretically
cannot handle, such as global variable out-of-bounds and stack out-
of-bounds bugs, to examine the difference in capabilities between
EmbSan-C and EmbSan-D. Eventually, we found the last two bugs,
where the former dates from 2020 and the latter is from 2018. Both
of which are global out-of-bounds bugs. In accordance with our
expectations, EmbSan-D was incapable of detecting such violations,
as it lacks redzones around global objects, in contrast to EmbSan-C
and KASAN that do have such features. We also confirmed that it
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was indeed the redzones inserted during compile-time that allowed
EmbSan-C to discover such a violation.

Therefore, we demonstrate that EmbSan’s effectiveness fully
meets our original design goals. In detail, EmbSan-C can detect the
same criteria of memory violations as KASAN does, while EmbSan-
D, due to a lack of compile-time information, is slightly weaker
than the former two. However, as the proportion of use-after-free
and slab out-of-bounds bugs are the majority of recently detected
bugs, EmbSan-D’s weakness is diminished when considering its
potential to adapt to a wider range of embedded operating systems
than EmbSan-C or KASAN.

4.2 EmbSan’s Effectiveness

EmbSan is designed to effectively sanitize embedded operating sys-
tems in testing environments. Thus, we deployed both EmbSan-C
and EmbSan-D in real-world testing environments. We employ
state-of-the-art kernel fuzzers including Syzkaller and Tardis to
conduct tests on the aforementioned embedded firmware. Specif-
ically, we use Syzkaller to fuzz Embedded-Linux-based firmware,
whereas, for firmware based on LiteOS, FreeRTOS and VxWorks,
we have extended Tardis’s capabilities with corresponding executor
programs and interface specifications.

Table 3: Classification of the 41 new bugs found by EmbSan

on various firmware based on Embedded Linux, LiteOS,

FreeRTOS and VxWorks.

Firmware

Bug type

OOB Access UAF Double Free Race

OpenWRT-armvirt 5 1
OpenWRT-bcm63xx 3 2
OpenWRT-ipq807x 3 1 1
OpenWRT-mt7629 2 2
OpenWRT-rtl839x 1 1 1
OpenWRT-x86_64 5 2
OpenHarmony-rk3566 2 1
OpenHarmony-stm32mp1 1
OpenHarmony-stm32f407 2
InfiniTime 2 1
TP-Link WDR-7660 2

The fuzzing campaigns were executed over a period of 7 days. All
found bugs have been deduplicated and are reproducible. In sum-
mary, EmbSan found a total of 41 new bugs in the tested firmware.
We show the classification of found bugs in Table 3, and the full list
is shown in Table 4. As we can see in the table, EmbSan is capable
of assisting testing tools such as fuzzers in detecting new bugs in
firmware that span several operating systems and architectures.

For the firmware such as OpenWRT-x86_64 that have native
KASAN or KCSAN support, we also replayed the reproducer pro-
grams of the bugs that were found on this firmware using EmbSan
with their native KASAN or KCSAN implementations enabled. We
found that the bugs can be reproduced by using the native imple-
mentations, demonstrating EmbSan’s soundness in finding bugs in
various embedded firmware.

Therefore, EmbSan can perform sanitizing services for embed-
ded operating system firmware under dynamic testing conditions
such as fuzzing and deliver bug finding effectiveness on par with na-
tive KASAN and KCSAN implementations for a significantly wider
selection of embedded firmware.

Table 4: List of the 41 previously unknown bugs found by

EmbSan during kernel fuzzing.

Firmware Base OS Arch. Location Bug Type

OpenWRT-armvirt Embedded Linux ARM fs/nfs_common OOB Access
OpenWRT-armvirt Embedded Linux ARM net/netfilter OOB Access
OpenWRT-armvirt Embedded Linux ARM net/wireless OOB Access
OpenWRT-armvirt Embedded Linux ARM drivers/net/ethernet/marvell OOB Access
OpenWRT-armvirt Embedded Linux ARM drivers/net/ethernet/realtek OOB Access
OpenWRT-armvirt Embedded Linux ARM drivers/net/ethernet/atheros Double Free
OpenWRT-bcm63xx Embedded Linux MIPS drivers/bluetooth OOB Access
OpenWRT-bcm63xx Embedded Linux MIPS drivers/dma/bcm2835-dma OOB Access
OpenWRT-bcm63xx Embedded Linux MIPS drivers/scsi/aic7xxx OOB Access
OpenWRT-bcm63xx Embedded Linux MIPS fs/btrfs UAF
OpenWRT-bcm63xx Embedded Linux MIPS drivers/net/wireless/broadcom UAF
OpenWRT-ipq807x Embedded Linux ARM drivers/net/ethernet/broadcom OOB Access
OpenWRT-ipq807x Embedded Linux ARM drivers/net/ethernet/broadcom OOB Access
OpenWRT-ipq807x Embedded Linux ARM net/sched OOB Access
OpenWRT-ipq807x Embedded Linux ARM drivers/net/wireless/ath UAF
OpenWRT-ipq807x Embedded Linux ARM fs/fuse Double Free
OpenWRT-mt7629 Embedded Linux ARM drivers/net/ethernet/mediatek OOB Access
OpenWRT-mt7629 Embedded Linux ARM fs/nfs OOB Access
OpenWRT-mt7629 Embedded Linux ARM net/core Double Free
OpenWRT-mt7629 Embedded Linux ARM drivers/dma/mediatek Double Free
OpenWRT-rtl839x Embedded Linux MIPS drivers/net/ethernet/realtek OOB Access
OpenWRT-rtl839x Embedded Linux MIPS drivers/net/bluetooth/realtek UAF
OpenWRT-rtl839x Embedded Linux MIPS fs/netrom Double Free
OpenWRT-x86_64 Embedded Linux x86 drivers/iommu OOB Access
OpenWRT-x86_64 Embedded Linux x86 drivers/net/ethernet/realtek OOB Access
OpenWRT-x86_64 Embedded Linux x86 drivers/net/ethernet/stmicro OOB Access
OpenWRT-x86_64 Embedded Linux x86 drivers/net/wireless/intel/iwlwifi OOB Access
OpenWRT-x86_64 Embedded Linux x86 drivers/net/wireless/broadcom/b43 OOB Access
OpenWRT-x86_64 Embedded Linux x86 fs/btrfs Race
OpenWRT-x86_64 Embedded Linux x86 fs/btrfs Race
OpenHarmony-rk3566 Embedded Linux ARM fs/nfs OOB Access
OpenHarmony-rk3566 Embedded Linux ARM fs/nfs_common OOB Access
OpenHarmony-rk3566 Embedded Linux ARM net/sched UAF
OpenHarmony-stm32mp1 LiteOS ARM fs/vfs OOB Access
OpenHarmony-stm32f407 LiteOS MIPS fs/vfs OOB Access
OpenHarmony-stm32f407 LiteOS MIPS fs/fat OOB Access
InfiniTime FreeRTOS ARM src/libs/littlefs/ OOB Access
InfiniTime FreeRTOS ARM src/drivers/Spi OOB Access
InfiniTime FreeRTOS ARM src/drivers/St7789 UAF
TP-Link WDR-7660 VxWorks ARM pppoed OOB Access
TP-Link WDR-7660 VxWorks ARM dhcpsd OOB Access

4.3 Runtime Overhead

We compare the firmware’s execution timewith andwithoutEmbSan
enabled, and that of a natively-sanitized version, if available. The
tasks the firmware runs tomeasure the overhead are themerged cor-
pus acquired after completing the previous experiment.We evaluate
the overhead of EmbSan for KASAN-relevant and KCSAN-relevant
functionalities separately to compare with available native sanitiz-
ers. The firmware tested is then further divided into the following
classifications for comparison: architecture, base operating system,
EmbSan instrumentation method used. The overhead evaluation
results are shown in Figure 2.

We observe that EmbSan’s KASAN functionalities on Embed-
ded Linux-based firmware exhibit a slowdown of 2.2×-2.5× for
EmbSan-C, while EmbSan-D achieves a slowdown of 2.7×-2.8×.
EmbSan’s KCSAN functionalities on the other hand achieve a 5.2×-
5.7× slowdown for EmbSan-C. We compare these statistics to Em-
bedded Linux’s native sanitizers KASAN and KCSAN, which incur
an overhead of 2.2×-2.7× and 5.4×-6.1×, respectively. We further
analyzed their runtime composition using tools such as perf to in-
spect the performance logs for the sanitizers running on Embedded
Linux, and found that EmbSan requires more instructions to con-
duct instrumentation and interception calls due to context switches
and argument reconstruction, but as native sanitizers run in the
guest instance, thus its runtime routines are translated, which is
slower than the native execution speed on EmbSan. We conclude
that their respective overheads are on par with each other, with
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Figure 2: Comparison of runtime overhead statistics between EmbSan and native KASAN & KCSAN sanitizers, and further

subdivision into instrumentation modes EmbSan-C and EmbSan-D on the evaluated firmware based on Embedded Linux,

LiteOS, FreeRTOS and VxWorks.

EmbSan occasionally performing slightly better than native sani-
tizers, thus exhibiting an acceptable overhead level for Embedded
Linux-based firmware.

For firmware based on LiteOS, FreeRTOS and VxWorks, we ob-
serve the slowdown for KASAN functionalities ranges from 2.5×-
3.2×, which is similar to that on Embedded Linux, demonstrating
EmbSan’s efficiency when adapted for different embedded operat-
ing systems and platforms.

In summary, we conclude that EmbSan’s overhead is well within
expectations, with the compile-time instrumented approach achiev-
ing even higher than the built-in KASAN, while the dynamic in-
strumented approach still maintains a reasonable overhead, given
its ability to instrument a wider selection of kernels.

5 DISCUSSION

Adaptability of EmbSan: In contrast to adapting existing sanitiz-
ers to a new kernel, porting EmbSan is fairly straightforward, which
mainly consists of constructing relevant descriptions as described
in Section 3. Adapting new sanitizer functionalities to EmbSan is
also simple, requiring developers to write runtime code accordingly
and designate which instructions to instrument and what interfaces
should be called in such invocations.

Bug Detection Potential: The number of new bugs detected by
EmbSan in our evaluation is not representative of the EmbSan’s full
bug detection capabilities. This is due to Syzkaller and Tardis, while
being state-of-the-art, still require more system call specifications
for embedded firmware. During the evaluation, we found that many
modules in VxWorks, LiteOS and FreeRTOS were not covered over
the entire fuzzing campaign due to a lack of relevant system call
descriptions. Therefore, with a more capable fuzzer, EmbSan has
the potential to discover an even greater amount of kernel bugs.

6 CONCLUSION

Our design of EmbSan addresses the difficulties of effectively sani-
tizing embedded operating systems in testing environments. EmbSan
provides a solution for testing environments that can tackle these
obstacles. Our evaluation results show that EmbSan is as perfor-
mant as currently established KASAN andKCSAN implementations,
can run as efficient, and is more adaptable to a wide range of kernels
and instruction set architectures. EmbSan assisted kernel fuzzers
to find 41 new bugs in firmware based on Embedded Linux, LiteOS,

FreeRTOS and VxWorks, thus demonstrating its potential in testing
a wide selection of embedded kernels with diverse architectures.
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