
Automatic Policy Synthesis and Enforcement for
Protecting Untrusted Deserialization

Quan Zhang, Yiwen Xu, Zijing Yin, Chijin Zhou, and Yu Jiang∗
BNRist, School of Software, Tsinghua University

Abstract—Java deserialization vulnerabilities have long been
a grave security concern for Java applications. By injecting
malicious objects with carefully crafted structures, attackers
can reuse a series of existing methods during deserialization to
achieve diverse attacks like remote code execution. To mitigate
such attacks, developers are encouraged to implement policies
restricting the object types that applications can deserialize.
However, the design of precise policies requires expertise and
significant manual effort, often leading to either the absence of
policy or the implementation of inadequate ones.

In this paper, we propose DESERIGUARD, a tool designed
to assist developers in securing their applications seamlessly
against deserialization attacks. It can automatically formulate a
policy based on the application’s semantics and then enforce it
to restrict illegal deserialization attempts. First, DESERIGUARD
utilizes dataflow analysis to construct a semantic-aware property
tree, which records the potential structures of deserialized objects.
Based on the tree, DESERIGUARD identifies the types of objects
that can be safely deserialized and synthesizes an allowlist policy.
Then, with the Java agent, DESERIGUARD can seamlessly enforce
the policy during runtime to protect various deserialization
procedures. In evaluation, DESERIGUARD successfully blocks
all deserialization attacks on 12 real-world vulnerabilities. In
addition, we compare DESERIGUARD’s automatically synthesized
policies with 109 developer-designed policies. The results demon-
strate that DESERIGUARD effectively restricts 99.12% more
classes. Meanwhile, we test the policy-enhanced applications with
their unit tests and integration tests, which demonstrate that
DESERIGUARD’s policies will not interfere with applications’
execution and induce a negligible time overhead of 2.17%.

I. INTRODUCTION

Serialization and deserialization are essential mechanisms
offered by programming languages such as Java, JavaScript,
PHP, and C# for object and byte stream transformation. These
mechanisms facilitate the seamless transmission of objects
across networks and their storage in databases [1]. However,
these capabilities also introduce a type of significant vulner-
ability, which can cause severe consequences such as remote
code execution (RCE), denial of service (DoS), and server-
side request forgery (SSRF). Over the past five years, approx-
imately 800 vulnerabilities collected by Common Vulnerabil-
ities and Exposures (CVE) [2] are related to the Common

* Yu Jiang is the corresponding author.

Weakness Enumeration (CWE) 502 [3], which represents the
deserialization of untrusted data.

The root cause of deserialization vulnerability is that an
application tries to deserialize an untrusted object without
protection, allowing attackers to control the execution flow of
the applications during the deserialization process. Specifically,
attackers begin by carefully constructing a nested object with
classes in the application’s classpath. This nested object pos-
sesses a precisely designed structure, in which its properties
are assigned specific objects. During the deserialization process
of the nested object, the application is forced to recursively
deserialize its properties in the desired order of attackers,
which leads to the execution of a series of methods that
form an exploitation gadget chain. Such a gadget chain could
finally lead to the execution of some security-sensitive methods
such as Runtime.exec(), causing malicious impacts like
RCE [4]. However, if we prevent the deserialization of any
classes involved in the gadget chain, we can effectively defend
applications against deserialization attacks.

Therefore, at present, a prevailing approach for mitigating
deserialization attacks is to examine the currently deserialized
object and verify its legitimacy. Developers have long been
advised to set appropriate deserialization policies for blocking
potentially malicious types to secure their applications. For
example, in 2016, Java Enhancement Proposal (JEP) 290 [5]
introduced a new feature that allows users to specify a policy
for a deserialization entry. Popular deserialization libraries,
such as XStream and FastJson [6], [7], also provide flexible
interfaces for setting blocklist or allowlist policies. Never-
theless, up to this point, the community is still plagued by
deserialization attacks.

The primary obstacle preventing developers from ade-
quately protecting their applications stems from the challenge
of formulating fine-grained deserialization policies. Firstly,
since setting policies requires significant human effort for
debugging and maintenance, many developers, who lack suffi-
cient security awareness, choose not to set policies. Secondly,
some applications employ a blocklist policy by collecting
known exploitation gadgets. Nevertheless, attackers contin-
ually discover new exploitable gadgets to pursue malicious
intentions, rendering such blocklists inadequate over time. For
example, in CVE-2017-1000353 [8], attackers successfully by-
passed Jenkins’s blocklist and achieved an RCE attack. There-
fore, the allowlist policy containing limited permitted classes
is recognized as the most effective approach to safeguarding
applications’ deserialization process. However, designing an
accurate allowlist policy demands laborious manual efforts and
is prone to errors. Thus, many applications opt for a loose
policy to avoid interrupting applications’ normal execution,

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24053
www.ndss-symposium.org

which gives attackers opportunities to bypass existing defenses.
For instance, the application Ofbiz sets a policy and allows
deserialization of all classes whose names match “java\..*”,
which can be bypassed by attackers and causes the vulnera-
bility CVE-2021-26295 [9].

To save developers’ efforts, this paper proposes DESERI-
GUARD, a framework designed to automate the synthesis and
enforcement of deserialization policies. The key insight behind
DESERIGUARD is that the types of deserialized objects can
be deduced from program semantics. Following the insight,
DESERIGUARD first traces the dataflow of the deserialized
object and its properties (i.e., member variables) to deduce
their object types based on applications’ semantics, finally
constructing the Semantic-Aware Property Tree (SAPT). This
tree records the possible structures of potentially deserialized
objects. Based on the tree, DESERIGUARD identifies all pos-
sible classes that should be permitted for deserialization and
synthesizes an allowlist policy. Next, DESERIGUARD auto-
matically resolves the auditing positions where deserialization
libraries decode the type information from the byte stream
of serialized objects. After identifying the positions, DESERI-
GUARD leverages a Java agent to enforce the policy on the ob-
jects that are being deserialized. Finally, with DESERIGUARD,
developers can secure their applications’ deserializations with
automatically synthesized and enforced allowlist policies.

We comprehensively evaluated DESERIGUARD using 12
real-world vulnerabilities and 109 developer-designed policies.
Specifically, DESERIGUARD successfully resists the deserial-
ization attack on all 12 vulnerabilities with only 2.17% of
runtime overhead on average. Meanwhile, we carry out ex-
tensive testing to verify that DESERIGUARD will not interfere
with the normal execution of policy-enhanced applications,
which can pass all unit tests and integration tests in their
projects. Furthermore, we conduct a comparison between DE-
SERIGUARD’s policies and 109 policies that are formulated by
developers of popular applications. Our findings reveal that, on
average, DESERIGUARD’s policies restrict the deserialization
of 99.12% more classes than the developer-defined policies.
We also compare DESERIGUARD with a state-of-the-art dese-
rialization defense tool proposed by Cristalli et al. [10], where
DESERIGUARD provides identical defense performance with
no false alarms.

Our contributions are listed as follows.

• We propose an automatic policy generation and enforce-
ment framework to safeguard the deserialization processes
of Java applications.

• We implement DESERIGUARD, which synthesizes the
allowlist policy based on the Semantic-Aware Property
Tree and seamlessly enforces the policy for different
deserialization libraries.

• We evaluate the DESERIGUARD on 12 real-world vul-
nerabilities and compare the generated policies with 109
developer-designed policies. The results show that DE-
SERIGUARD can synthesize more fine-grained policies
and will not interfere with applications’ normal execution.

II. BACKGROUND AND MOTIVATION

A. Deserialization Vulnerability

Serialization and deserialization are fundamental mecha-
nisms offered by numerous popular programming languages,
such as Java, JavaScript, and PHP. These mechanisms enable
the transformation between objects and byte streams, making
them widely employed for network transmission and persistent
storage of objects. Meanwhile, with different deserialization
libraries, developers can transform objects into byte streams
in various formats, such as JSON through the FastJson library
and XML through the XStream library. However, according to
the Common Weakness Enumeration (CWE) 502 [3], attackers
can perform RCE or DoS attacks from the deserialization
entries if developers do not restrict the object classes to be
deserialized. The deserialization vulnerability has constantly
been a severe threat. Over the past five years, approximately
800 vulnerabilities related to deserialization have been regis-
tered in CVEs [2].

The exploitation of a Java deserialization vulnerabil-
ity begins with an exposed deserialization entry, like the
readObject method included in JDK [11] and the parse
method in the FastJson library [6]. These methods take a
byte stream as input and return the deserialized object. Given
that deserialization is commonly used in network transmission,
many deserialization entries have to parse byte streams that
may come from untrusted sources, providing extensive attack
surfaces for attackers.

PriorityQueue

Comparator comparator

. . .

TransformingComparator

Transformer transformer

. . .

ChainedTransformer

Transformer [] iTransformers

. . .

ConstantTransformer(Runtime.class, ...)
InvokeTransformer("getMethod", ...)
InvokeTransformer("invoke", ...)
InvokeTransformer("exec", ...)

Fig. 1. A malicious nested object crafted by attackers. This object’s
deserialization can trigger a gadget chain that performs an RCE attack.

After finding an exposed deserialization entry, attackers
will send a malicious byte stream to the target application for
deserialization. Such a malicious byte stream is serialized from
a carefully structured nested object. To reconstruct such an
object from the malicious byte stream, the victim application
needs to recursively deserialize the objects of its properties, re-
sulting in the invocation of a sequence of methods. Therefore,
by controlling the structure of the nested object, attackers can
connect a series of methods to a chain, named gadget chain,
and hijack the victim application to execute such a chain.
Notably, all these methods on gadget chains must belong to
the classes in the victim application’s classpath, allowing the
application to find their definitions and invoke them.

Figure 1 depicts an example of a nested object. The object
is of the class PriorityQueue, where its comparator
property is assigned a TransformingComparator ob-
ject. Within the object, there exists a property of type

2

Transformer, which attackers can exploit by setting it as
an object of the ChainedTransformer class. Next, the
iTransformers property of the ChainedTransformer
class is an array of Transformer objects that comprises
multiple transformers. By skillfully assembling the array with
ConstantTranformer and InvokeTransformer, at-
tackers can create a Runtime object and invoke the exec
method during the deserialization, thereby achieving remote
code execution (RCE) attacks.

The procedure of deserializing the malicious object in
Figure 1 is introduced as follows. First, in order to correctly de-
serialize PriorityQueue and its elements, the victim appli-
cation needs to compare these elements to establish their order
using the comparator property of PriorityQueue. Next,
to deserialize the TransformingComparator object as-
signed to comparator, the application has to deserialize its
transformer property recursively. As the transformer
property is a ChainedTransformer that contains a trans-
former array iTransformers, the victim application has
to deserialize the array’s all elements, which utilizes the
ConstantTranformer to create a Runtime object and
InvokeTransformer to invoke its exec method for ar-
bitrary commands execution. At this point, the deserialization
process is not completed, and the reconstruction of the nested
object is not finished. However, the gadget chain has already
been triggered, allowing attackers to achieve their objectives.

B. Deserialization Policy

The community has made significant efforts toward dese-
rialization protection. The most common defense method is
enforcing a policy to restrict the deserialization of specific
object types. In this way, certain classes used in gadget chains
are forbidden to be deserialized, effectively restricting exploita-
tion attempts. To support such defense mechanisms, many
popular deserialization libraries offer customization options for
blocklist-based or allowlist-based deserialization policies. For
instance, XStream [7] has supported policy enforcement since
version 1.4.7, released in 2014. In 2016, Java Enhancement
Proposal (JEP) 290 [5] provided an ObjectInputFilter
class to set policy for the ObjectInputStream class in
JDK. In addition to supporting customizing, FastJson [6] and
Jackson [12] feature an in-built blocklist mechanism to restrict
the deserialization of classes on known gadget chains.

 "byte\\[\\]", "foo", "\\[Z", "\\[B",
 "\\[S", "\\[I", "\\[J", "\\[F", "\\[D", "\\[C",
 "SerializationInjector",
 "java\..*",
 "sun\.util\.calendar\..*",
 "org\.apache\.ofbiz\..*",
 "org\.codehaus\.groovy\.runtime\.GStringImpl",
 "groovy\.lang\.GString",

Fig. 2. Developer-designed allowlist policy of the Ofbiz project. The policy
is defined in the patch for CVE-2019-0189.

With the support of new security features in libraries,
developers are encouraged to customize the deserialization

policies of their applications according to their require-
ments. The most common ones are blocklists containing
classes in all known exploitation gadgets collected by the
community [6], [13], [14]. For example, in the Jenkins
project [15], a famous automation server with over 20k stars on
GitHub, developers formulate a blocklist including exploitable
classes in its classpath, such as CommonsCollection
and CommonsBeanutils. With such a policy, Jenkins can
deny the deserialization of TransformingComparator
and InvokeTransformer, effectively blocking the gad-
get chain in Figure 1. Nevertheless, attackers are continu-
ously mining new exploitation gadget chains to bypass block-
lists [16], [17]. In CVE-2017-1000353 [8], SignedObject
is found exploitable but is not included in the blocklist.

Hence, allowlist policies that include necessary classes
are regarded as a more effective approach for applications to
defend against deserialization attacks. However, as analyzed
by Imen et al. [18], developers often assume that objects to
be deserialized are of type Object or Serializable,
which are the superclasses of all serializable classes. This
implies that developers are unaware of the concrete classes
of deserialized objects and are unable to formulate strict
allowlists when developing the application. Therefore, they
usually provide a loose allowlist policy to prevent mistakenly
blocking necessary classes. As demonstrated by Ofbiz’s policy
in Figure 2, developers may allow the deserialization of all
developer-defined classes in the application, which can be
matched using the pattern like “org\.apache\.ofbiz\..*”, and
permit classes within JDK, denoted by regex pattern “java\..*”.

C. Motivation Example

Despite Java deserialization being a persistent and signifi-
cant threat, numerous applications still lack a strict policy to
mitigate this risk. On GitHub, over 3,600 Java projects with
100+ stars make use of deserialization mechanisms offered
by libraries such as FastJson, XStream, and JDK’s Object-
InputStream. However, out of these projects, only around
340 have implemented policies specifically tailored to their
deserialization processes. The primary reason for this situation
is that configuring policies often demands extensive manual
efforts from developers, resulting in many developers, who
lack adequate security awareness, choosing not to prioritize
defense against deserialization attacks.

Patch for CVE-2019-0189

Patch for CVE-2021-26295

Fig. 3. Patches on Ofbiz for CVE-2019-0189 and CVE-2021-26295.

3

Semantic-Aware
Property Tree

Deserialization
Entries

Localization

Semantic-Aware
Property Tree
Construction

Permitted
Classes

Identification

Policy Synthesis

Allowlist
Policy

Auditing
Position

Identification
Deserialization

Libraries

Type

Auditing

Java Agent

Real Time
Enhancement

Policy Enforcement

Fig. 4. Overview of DESERIGUARD. DESERIGUARD consists of two modules: a Policy Synthesis module for designing allowlist policy for each deserialization
entry to encompass potential types that could be deserialized, and a Policy Enforcement module for real-time type auditing of untrusted deserialization.

Furthermore, though developers begin formulating policies
in response to attacks on their applications, manually designed
policies remain prone to errors due to inadequate blocklists or
overly permissive allowlists. In detail, Ofbiz first exposed a
vulnerable deserialization entry with no defense at all, leading
to RCE attacks. Such vulnerability was assigned as CVE-2019-
0189 [19] and patched with an allowlist policy, as depicted
in lines 8∼11 of Figure 3. The resolveClass method of
ObjectInputStream is commonly overridden by develop-
ers to validate the safety of the currently deserialized object’s
class. In this approach, Ofbiz employed an allowlist policy,
shown in Figure 2, to effectively prevent the deserialization of
gadget chains, including the chain depicted in Figure 1.

However, for convenience, the developers of Ofbiz allowed
deserialization of all classes whose names match “java\..*”,
inadvertently enabling attackers to bypass the allowlist policy.
With class java.rmi.server.RemoteObject, attackers
can achieve RCE through RMI attacks [20], [21]. Therefore,
CVE-2021-26295 [9] was subsequently exposed and patched
with a blocklist in line 4∼7 of Figure 3. The blocklist addi-
tionally restricted the deserialization of classes whose names
start with “java.rmi.server”. Unfortunately, such a blocklist
was soon proved to be insufficient in CVE-2021-29200 [22],
as attackers can utilize RMIConnectionImpl_Stub class
with a different prefix to bypass the blocklist. To fix the
vulnerability, developers expanded the blocklist in line 4 of
Figure 3 with a prefix “java.rmi”.

Although the policy was sufficient after several patches,
Ofbiz was still vulnerable due to the improper implementation
of policy enforcement. When matching the allowlist in line 8 of
Figure 3, Ofbiz utilized a regular match that only necessitated
the presence of the pattern string within the target string.
In CVE-2021-30128 [23], attackers can bypass the regular
match by crafting a particular string of class names and thus
deserialize arbitrary classes. After applying multiple patches
and addressing four CVEs, the developers of Ofbiz finally
developed an appropriate policy for this deserialization entry
and successfully enforced it.

Challenges. During the procedure of fixing the above
vulnerabilities, we find two main challenges that impede
developers from establishing a strict policy. Firstly, formulating
a deserialization policy requires extensive manual effort and
expert experience, making it prone to errors. Second, differ-
ent deserialization libraries need various adaptations, which

could be incorrectly implemented when enforcing a policy. To
address the first challenge, DESERIGUARD utilizes dataflow
analysis to construct a Semantic-Aware Property Tree to auto-
matically synthesize a policy, thereby designing a more strin-
gent allowlist policy and reducing the need for manual efforts.
Moreover, by automatically identifying auditing positions in
different deserialization libraries, DESERIGUARD seamlessly
enforces the policy before triggering the exploitation gadget,
ensuring the strict auditing of the objects to be deserialized.

III. THREAT MODEL

DESERIGUARD is designed to provide seamless protection
against deserialization attacks for developers. Its threat model
operates under the assumption that attackers can access a de-
serialization entry within the target application and manipulate
the input provided to that entry. Meanwhile, we consider that
attackers have knowledge of all classes and their member
methods within the victim applications’ classpaths, enabling
them to construct malicious gadget chains to accomplish their
attack objectives. To mitigate such attacks, developers should
supply the application’s source code for DESERIGUARD’s
analysis and need to launch the Java agent when the application
starts. In addition, DESERIGUARD requires an uncompromised
machine and a trusted Java Virtual Machine (JVM) execution
environment as its foundation. Consequently, attacks originat-
ing from other aspects, such as vulnerabilities in the operating
system kernel or memory errors in the JVM, fall outside the
scope of DESERIGUARD’s protection. Moreover, if attackers
can find exploitable gadgets within the classes that developers
need to deserialize, DESERIGUARD cannot prevent the attack.

IV. METHODOLOGY

As shown in Figure 4, to secure a Java application with an
allowlist-based policy, DESERIGUARD needs to first synthesize
a policy with Policy Synthesis module and then enforces the
policy with Policy Enforcement module. In Policy Synthesis,
DESERIGUARD constructs a Semantic-Aware Property Tree
(SAPT) with dataflow analysis. Based on the tree, DESERI-
GUARD deduces all the possible types of deserialized objects
and formulates an allowlist policy. Following this, DESERI-
GUARD performs byte code instrumentation with a Java agent
to enforce the policy on different deserialization libraries.
Finally, developers can efficiently enhance their applications
without laborious analysis and tedious adaptation.

4

n2: Session

User user;

List<Object> values;

Comparable id;

Time expirationTime;

Ojbect obj =
ois.readObject();

User

n7: Admin

String name;

String priviledge;

n8: Guest

String name;

Int expirationTime;

sess.id

if (sess.id
instanceof IntID)

else if (sess.id
instanceof HashVal)

else if (sess.id
instanceof AuthKey)

IntID

AuthKey

HashVal

values.get(i)sess.values

n1: Profile

... ①
②

②

③

sess.user①
Admin

Guest

n4: User

String name;

n9: IntID

...

n10: HasVal

...

n11: AuthKey

...

③

Session sess =
(Seesion) ser;

Profile prof =
(Profile) ser;

n5: Time

Long time;

Dataflow
Tracing

Property
Tree

n6: Comparable

...

Deserialization
Entry

n0: Object

n3: Object
Property Edge

Inference Edge
Dataflow

Fig. 5. An example of Semantic-Aware Property Tree (SAPT) construction. By tracing the dataflow along the properties of a deserialized object and identifying
their possible types, a SAPT is established to describe the potential structure of deserialized objects. The dataflow of the program is indicated by double-lined
arrows. SAPT has two types of edges: property edges with solid-lined arrows and inference edges with dotted arrows. The source code of the example is shown
in Listing 1 in the Appendix.

A. Policy Synthesis

In Policy Synthesis, DESERIGUARD is responsible for
synthesizing an allowlist policy for each deserialization entry
to encompass the potential types that could be deserialized. In
detail, for an application, DESERIGUARD can resolve the types
that a deserialized object and its properties are desired to be
according to the program’s semantics. By incorporating these
classes into the allowlist policy, DESERIGUARD can mitigate
the deserialized attack while still enabling the application to
deserialize normal classes for its functionality. As depicted
in Figure 4, DESERIGUARD aims to construct SAPTs to
record the potential complex hierarchical structures of the
deserialized objects. To build SAPTs, DESERIGUARD initially
identifies all deserialization entries as starting points to resolve
the possible typecasting of the nested deserialized object.
Subsequently, certain properties within nested objects may
still lack explicit class restrictions, necessitating a recursive
analysis based on the application’s semantics. By inferring
the types of these properties based on the application’s se-
mantics, DESERIGUARD constructs SAPTs for allowlist policy
synthesis. Lastly, within this tree, DESERIGUARD gathers the
possibly deserialized classes and incorporates them into the
allowlist, thereby synthesizing an allowlist policy for strict
deserialization restrictions.

Semantic-Aware Property Tree. First, we shall present the
formal definition of SAPT, denoted as T. As the right part
of Figure 5 shows, SAPT is a tree that records a deserialized
object’s possible hierarchical structure and its properties. In
detail, each node nx = (cx, Px) on the tree represents a class
cx and its property set Px. For example, the node n2 is for
class Session and has four properties. The edges e ∈ E of
SAPT fall into two types, property edges and inference edges.
Property edge ep(nx, ny) connects the parent node nx(cx, Px)
to the child node ny(cy, Py) when nx’s property p ∈ Px is of
class cy . For instance, an edge ep(n2, n4) represents that the
user property of Session is an instance of the User class.
Another type of edge is the inference edge ei, which represents
the edges that are inferred from the inheritance relation and
dataflow of the application. If ei(nx, ny) exists, the object of

class cy can be assigned to the property of class cx according
to the inheritance relation and dataflow of objects. Next, we
will introduce the process of identifying nodes and edges to
construct SAPT.

Root Node Identification. The root node n0 of the tree
corresponds to the class of the object returned by the dese-
rialization entry, depicted as the “Deserialization Entry” in
the left part of Figure 5. Hence, the construction of SAPT
starts with locating deserialized entries of known deserial-
ization libraries. Referring to the deserialization scanning
works [24], [25], we identify the deserialization libraries that
are widely used for exploitation and collected their deserial-
ization entry methods, such as the readObject method of
the ObjectInputStream object and the fromXML method
of the XStream library. By locating the invocation of these
methods, DESERIGUARD can find source nodes of our SAPT
construction. DESERIGUARD does not consider the instance
where attackers discover new exploitable deserialization li-
braries, as this is a rare occurrence and falls beyond the scope
of all existing deserialization defenses [10], [16].

After obtaining the root node of SAPT, DESERIGUARD
will construct SAPT by connecting the potentially deserial-
ized classes. Usually, developers only assume the deserial-
ized object as Object or Serializable initially [18].
Therefore, the root node of SAPT is of class Object or
Serializable, as the “n0: Object” in Figure 5 shows.
However, by analyzing the existing deserialized gadgets, it is
found that Object, Serializable, and Comparable,
which we regard as general classes, are three common an-
cestors of exploitable classes. Meanwhile, they are also the
ancestors of almost all classes in Java. Once general classes
are added to the allowlist, DESERIGUARD may permit the
deserialization of many exploitable classes. Hence, DESERI-
GUARD needs to find the classes actually required by the
developers based on the program’s semantics. To this end,
from the deserialization entry, DESERIGUARD first traces the
deserialized object’s dataflow and looks for the typecasting that
more precisely describes its class. In Figure 5, as the dataflow
starting from the deserialization entry shows, a deserialized ob-

5

ject can be cast to Profile or Session on different control
flow branches. Therefore, classes Profile and Session
should be permitted at the currently analyzed deserialization
entry, and nodes n1 and n2 are connected to the root node n0.

Property Edges Connection. Java is an object-oriented pro-
gramming language where classes have complex associations.
In a Java application, a class often contains many properties
(i.e., member variables) of other types, resulting in an ob-
ject instance composed of numerous interconnected objects,
like the Session class depicted in Figure 5. SAPT should
record such complex structures of deserialized objects, so
DESERIGUARD needs to analyze these properties recursively.
To achieve this, we utilize the property edge ep(nx, ny) to
connect the parent node nx to its property’s class node ny ,
which is depicted as the solid arrows in Figure 5. The property
edges should be constructed recursively for each node on
SAPT. Once a new class is added to SAPT, DESERIGUARD
needs to perform the analysis on all its properties, as their
types are all possible to be deserialized. In some cases, classes
comprise only basic types (i.e., String and primitive types)
and have no complex inheritance relations, allowing DESERI-
GUARD to terminate its analysis. For example, in Figure 5,
the property expirationTime of node “n2: Session” is
of the class Time, which consists of basic types and has no
subclass. Hence, DESERIGUARD can terminate the analysis on
its subtree.

Inference Edges Solvement. Besides various properties,
classes in Java applications also exhibit complex inheritance
relations. When the class cy is a subclass of cx, an object of
cy can be assigned to the property defined with cx. Hence,
if cx has been constructed as a node of SAPT, we should
assume that any one of its subclasses, denoted as cy , may
be deserialized by the application. Therefore, DESERIGUARD
utilizes inference edges ei(nx, ny) to record such inheritance
relations. For example, as illustrated by the dataflow ① in the
left section of Figure 5, the class User has two subclasses,
namely Admin and Guest. Therefore, “n7: Admin” and “n8:
Guest” are connected as children of node “n4: User” on
SAPT with inference edges in dot lines. Once these two nodes
are added to SAPT, DESERIGUARD will perform a heuristic
analysis on their properties, which are all defined as basic
types. In addition, these two classes have no subclass, so
DESERIGUARD can terminate the analysis on two subtrees.

However, not all properties on SAPT can be analyzed as
easily as the user property in the Session class. Some
properties are required to be of general classes, including
Object, Serializable, and Comparable. For instance,
the property id of node n2 belongs to the Comparable
type, which is implemented by extensive classes. Considering
the inheritance relationship, it appears that all these classes
should be permitted for deserialization. Moreover, according
to the definition of Session, node n2’s property values
is defined as List<Object>. To deserialize the values
property of Session, it is necessary to reconstruct all the
objects in the list, which implies that all subclasses of Object
should be permitted for deserialization. Nevertheless, general
classes and interfaces are extended and implemented by nearly
all classes. Hence, DESERIGUARD should not indiscriminately
allow the deserialization of generic classes, avoiding includ-
ing potentially exploitable ones. Although developers define

these properties using generic classes for convenience during
development, according to the program’s semantics, only a
few specific classes are actually necessary and deserialized
within these properties. Therefore, DESERIGUARD should
infer the classes the application assumes for these properties,
synthesizing a more stringent allowlist.

To accomplish this, DESERIGUARD performs dataflow
tracing to deduce possible classes. The key insight behind the
dataflow tracing is that objects in Java applications should
be cast to the desired classes before executing their func-
tionalities. As the dataflows ② and ③ in Figure 5 depict,
the analysis of the properties with generic classes starts from
the property access operations. Then, by identifying the type-
related operations on the dataflow, DESERIGUARD can infer
the developer’s requirements of deserialized object types. The
type-related operations can be divided into two categories:
typecasting and type comparison. For typecasting, developers
may explicitly perform typecasting or utilize Class.cast()
method. The type comparison relies on the statements like
instanceof and Class.isAssignableFrom(). For
example, as shown in dataflow ③ of Figure 5, the application
utilizes the instanceof statement to check the type of
the undetermined object and subsequently executes different
branches accordingly. Once the object of the general class is
identified as more precise classes, DESERIGUARD adds infer-
ence edges to connect the corresponding nodes. In Figure 5,
the inference edges ei(n6, n9), ei(n6, n10), and ei(n6, n11) are
established according to the dataflow ③.

Permitted Classes Identification. Based on SAPT, DESERI-
GUARD can generate the allowlist policy to over-approximate
all necessary classes to be deserialized. In detail, we traverse
the tree and collect the classes of all nodes as the allowlist
policy. However, some generic classes should not be inte-
grated into the policy directly, like “n3: Object” and “n6:
Comparable on the subtree of “n2: Session”. Instead,
DESERIGUARD will delve into their subtrees for more strict
policies. The subtrees of these generic classes’ nodes are
constructed according to the properties’ subsequent dataflow,
reflecting the possible class to which the unidentified general
classes will be cast. Therefore, DESERIGUARD can deduce the
actual required class based on SAPT. However, in some cases,
an object’s dataflow may be unresolved due to insufficient
semantics in the program. To avoid missing necessary classes,
DESERIGUARD will adopt the object’s currently solved class
as the allowlist. If the class belongs to general classes, DE-
SERIGUARD will still include them in the allowlist, but in the
meantime, alert developers that this deserialization entry lacks
enough protection due to insufficient semantics.

"example.app.Session",
"example.app.User",
"example.app.HashVal",

"example.app.IntID",
"example.app.AuthKey",
"example.app.Time",

Fig. 6. The policy synthesized based on the subtree of “n2: Session” in
Figure 5. The unidentified classes are omitted.

The policy synthesized for the subtree of node “n2:
Session” is shown in Figure 6, where some unidentified
classes are omitted. Since certain classes have inheritance

6

relations, DESERIGUARD can synthesize a more concise policy
by adopting only the parent class in the allowlist policy.
Therefore, if we set a rule of allowing the class User in
Figure 5, all its subclasses are also permitted to be deserialized
during policy enforcement. By constructing SAPTs based on
different deserialization entries’ semantics and synthesizing the
allowlists on SAPTs, DESERIGUARD ultimately generates a
customized stringent policy for each deserialization entry.

B. Policy Enforcement

Following the synthesis of the policy, DESERIGUARD
acquires an allowlist based on the program’s semantics. Sub-
sequently, DESERIGUARD should enforce the policy to safe-
guard the corresponding deserialization entry of the target
application. For efficient deployment, DESERIGUARD should
seamlessly enhance the application without requiring any mod-
ifications to the source code. To meet this end, DESERIGUARD
utilizes a Java agent to instrument the bytecode of Java
applications when each class is loaded by the Java Virtual
Machine (JVM), and then performs real-time type auditing
of untrusted deserialization. Moreover, developers are allowed
to utilize different deserialization libraries, which should be
automatically supported by DESERIGUARD. Therefore, DE-
SERIGUARD needs to preprocess the deserialization libraries
and find the proper positions for the type auditing.

Type Auditing. To achieve the type auditing, DESERIGUARD
utilizes the Java agent to perform bytecode instrumentation
on the application. This instrumentation consists of two com-
ponents. First, DESERIGUARD performs the instrumentation at
deserialization entries and sets a flag to enable the type auditing
and indicate the policy on which the type auditing should rely.
Second, for each deserialization library, DESERIGUARD finds
a proper auditing position, which is located after the resolution
of the object’s type from the input byte stream, while before
the gadget chain is triggered. With two instrumentations, DE-
SERIGUARD can audit the object type based on the customized
policies for different deserialization entries.

Target Application

Deserialization Point

Java Agent

flag = curPolicy;

flag = null;

Fig. 7. Instrumentation of Java agent at the deserialization entry.

The first component of instrumentation will activate and
deactivate the type auditing. Meanwhile, it will also specify
the appropriate policies that the second component should
enforce, since different deserialization entries need customized
policies. In the first component, DESERIGUARD finds the
position of each deserialization entry, which is resolved along
with the deserialization policy. As illustrated in Figure 7, two
invocations are instrumented, one placed directly before the
deserialization entry, and another immediately after it. In these
two invocations, a flag is set and unset to specify the policy for
the current deserialization entry. When the flag is set, DESERI-
GUARD is enabled to monitor the deserialization procedure

based on the customized policy. Once the deserialization is
completed normally or aborted due to an unpermitted class,
the flag is unset to ensure that DESERIGUARD is deactivated.

The second part of instrumentation is in the deserialization
libraries adopted by the target Java application. It will perform
type auditing on the class about to be deserialized following the
policy indicated by the first component. As Figure 6 shows,
the policy contains a series of classes, which should not be
compared by name matching. Instead, DESERIGUARD will
examine the class according to the inheritance relations. If
the parent class is on the allowlist, all its subclasses will be
permitted for deserialization.

Auditing Position Identification. To implement the type
auditing, the Java agent needs to find a proper position to check
the class of the deserialized object. To deserialize the object,
all deserialization libraries first resolve the object’s class using
a resolving method and subsequently construct the object using
constructor methods and reflections. During the construction,
the application will invoke some specific methods that trigger
the gadget chains. Therefore, DESERIGUARD should block the
deserialization procedure after the target application resolves
the class of the deserialized object and before the applica-
tion begins to reconstruct it. However, resolving methods are
invoked frequently in deserialization libraries. In XStream,
we find 706 positions where resolving methods are invoked.
Moreover, the names of resolving methods and the positions of
their invocations vary across different deserialization libraries
or even distinct versions of libraries, necessitating automatic
identification of instrumentation positions. Therefore, DESERI-
GUARD should find the correct invocation position of the
resolving method to perform the instrumentation.

Deserialization Library

Class Resolvement

Object Construction

Entry Method

Deserialization Driver
Session 0xaced.......

Class Reexam

org.app.Session√

② Runtime Validation

①
 Static Identification

Java Agent

Type
Auditing

Fig. 8. Identification of Auditing Position, where the Java agent will perform
the instrumentation for policy enforcement.

To meet this end, DESERIGUARD combines static iden-
tification and runtime validation to find the proper position
for each library. In detail, DESERIGUARD first finds all meth-
ods that resolve Class object based on byte streams from
libraries’ exposed interfaces, like line 10 in Figure 8. Here,
the desc object is an instance of ObjectStreamClass, which
resolves the input byte stream and holds the class information
of the deserialized object. Via forClass method, the ap-
plication obtains the Class object, and then DESERIGUARD
should determine that the library will create the corresponding

7

object based on the Class object. In this step, deserialization
libraries rely on the newInstance method or reflection
mechanism to build a constructor method of the deserialized
object. Therefore, by identifying the dataflow from a Class
object resolved based on byte stream to the construction
methods utilizing the Class object, DESERIGUARD can
identify numerous potential positions of resolving methods’
invocations. These potential positions will undergo further
examination through runtime validation.

As depicted in Figure 8, during runtime validation, DE-
SERIGUARD first generates a deserialization driver that triggers
the relevant deserialization entry point. Then, it utilizes the
driver to deserialize a workload object with a specific class.
For example, the driver in Figure 8 utilizes the Session
as a workload class. Meanwhile, DESERIGUARD monitors
the candidate positions to determine which one is activated,
validating that the Class object produced by the resolving
method corresponds to the object provided in the deserializa-
tion driver. In Figure 8, DESERIGUARD successfully gains a
Class object for Session, determining the proper position
for type auditing. In this way, DESERIGUARD identifies the
proper invocation position of the resolving method and uses it
as the instrumentation position for type auditing.

V. IMPLEMENTATION

This section illustrates the implementation of DESERI-
GUARD. For policy synthesis, DESERIGUARD performs the
analysis on the program’s source code using CodeQL [24].
In detail, we utilize CodeQL to tailor the dataflow analysis,
which locates the typecasting and type comparison statements
on the dataflow and identifies potential types. Next, from
these types, DESERIGUARD will continue to trace dataflow
on their properties access statements and inheritance relations.
By recursively tracing the dataflow, DESERIGUARD constructs
SAPT. During the tracing, some dataflows may interfere with
DESERIGUARD’s analysis and need to be filtered. First, an
object may be implicitly cast to its superclass. For example, an
object can be sent into the method toString(Object o)
or the map HashMap<String, Object>. These methods
or data structures are defined with general classes, but DESERI-
GUARD should not identify the object as Object. Therefore,
these implicit typecastings toward superclasses are filtered
during the analysis. Moreover, when an object is pushed into
a container like HashMap, DESERIGUARD will continually
trace the dataflow of HashMap’s elements. However, an
element of HashMap may be cast to various classes on
different dataflow. In this case, DESERIGUARD will refer to
the class of the original object and only trace the dataflows
with corresponding types.

In some cases, the dataflow of an object may be hard to
solve due to insufficient semantics or complex mechanisms in
Java. For example, the object’s subsequent dataflow involves
the reflection and Java Native Interface (JNI) invocations [26],
[27], which consistently pose challenges in Java analysis.
To avoid missing dataflow, DESERIGUARD performs self-
referencing reflection analysis to gather all potentially invoked
methods that align with the calling context (i.e., type of
return value and parameters) [28]. Meanwhile, DESERIGUARD
utilizes CodeQL to model the frequently used JNIs and connect
the dataflow. However, though mitigating the above challenges,

DESERIGUARD may still fail to solve some dataflows. For
instance, a deserialized object may be sent out via the network
or stored on the disk. In these cases, DESERIGUARD will at
least adopt the currently solved classes to over-approximate
the necessary classes in the subsequent dataflow.

Moreover, for each deserialization entry in the application,
DESERIGUARD will synthesize a customized allowlist policy.
Although only exposed deserialization entries are exploitable
and require auditing of untrusted objects, DESERIGUARD will
protect all deserialization entries. It is because determining
whether a deserialization entry can be accessed by attackers is
hard [29]. Many vulnerabilities are caused by exposed deseri-
alization entries that are typically thought safe. For example, in
CVE-2022-40955 [30], attackers inject a malicious object into
a deserialization entry through the database, which is assumed
to be trusted by the developers of InLong. Furthermore,
deserialization operations contribute to a minor portion of the
Java applications’ overall overhead, so protecting all entries
will not impose heavy overhead. Therefore, DESERIGUARD
will protect an application’s all deserialization entries.

As for policy enforcement, we implement DESERIGUARD
as a Java agent and attach it to the application during the appli-
cation’s initialization. In Java agent, DESERIGUARD utilizes
the ASM library [31] to perform bytecode instrumentation.
When the application deserializes an object, DESERIGUARD
will be enabled and start to audit the object’s type. In de-
tail, DESERIGUARD loads the corresponding Class object
and utilizes the isAssignableFrom method to determine
whether the deserialized object is a subclass of any class in
the allowlist. If one deserialized class is out of the policy, DE-
SERIGUARD will block the deserialization process and throw
an exception. To reduce overhead, DESERIGUARD caches
the Class objects of classes in the allowlist, which saves
extensive time for loading classes in repeated deserializations.

VI. EVALUATION

In this section, we evaluate DESERIGUARD and aim to
answer the following research questions:

RQ1. What is the performance of DESERIGUARD when de-
fending against real-world vulnerabilities? (Section VI-A)

RQ2. Can DESERIGUARD synthesize more strict policies than
applications’ developers? (Section VI-B)

RQ3. How does DESERIGUARD compare to state-of-the-art
approaches? (Section VI-C)

Experiment Setup. We first perform our experiments on 12
real-world vulnerabilities, which are collected from a survey
work [18] for those with huge impact and the Common
Vulnerability Exploit (CVE) for recent ones. Initially, 17
vulnerabilities are collected, among which one lacks detailed
information about vulnerabilities. Moreover, four vulnerable
applications do not have test cases for the deserialization entry,
making it hard for us to evaluate the false alarms and overhead.
Therefore, we finally reproduce 12 vulnerabilities to assess
the defense performance of DESERIGUARD. To evaluate the
overhead and false alarm of DESERIGUARD’s defense, we
execute the unit tests and integration tests of each vulnerable
application. During testing, we monitor the status of the target
application to capture failed deserialization and measure the

8

TABLE I. DEFENSE PERFORMANCE OF DESERIGUARD ON REAL-WORLD VULNERABILITIES. “NO” IN THE COLUMN “FALSE ALARMS” INDICATES NO
FALSE ALARM. THE GADGET CHAINS ARE NAMED AFTER YSOSERIAL [32].

Application Label LoC Classes Resist Policy Rules Permitted Classes Gadget Chain False Alarms

Apereo CAS-4.1.5 CAS 4.1.x 1.86M 49.12K ! 4 4 CommonsCollections4 No
Richfaces-4.3.3 CVE-2013-2165 57.5K 5.74K ! 1 1 CommonsCollections5 No
Jenkins-1.637 CVE-2015-8103 643.07K 23.19K ! 1 1 CommonsCollections3 No

Shiro-1.2.4 CVE-2016-4437 82.85K 5.60K ! 79 79 RMI + CommonsCollections4 No
Jenkins-2.46.1 CVE-2017-1000353 646.45K 18.67K ! 28 161 CommonsCollections3 No
Olingo-4.6.0 CVE-2019-17556 150.82K 13.81K ! 33 58 CommonsCollections5 No

Tomcat-10.0.0 CVE-2020-9484 171.89K 17.50K ! 14 23 Groovy1 No
Ofbiz-17.02.03 CVE-2020-9496 2.00M 25.87K ! 413 935 CommonsBeanutils1 No
Ofbiz-17.12.05 CVE-2021-26295 2.79M 30.71K ! 623 1342 RMI + CommonsBeanutils1 No
Ofbiz-17.12.06 CVE-2021-29200 2.09M 27.51K ! 392 905 RMI + CommonsBeanutils1 No
Ofbiz-17.12.06 CVE-2021-30128 2.09M 27.51K ! 392 905 CommonsBeanutils1 No
Log4j-1.2.17 CVE-2022-23307 695.99K 2.91K ! 20 28 CommonsCollections6 No

time delay in passing all tests. The evaluation is performed on
an Ubuntu 20.04 with Intel i7-10700k and 48G memory. We
restart the machine before each evaluation to avoid interrupts
from other applications.

Moreover, we collect 109 developer-designed deserializa-
tion policies from well-developed projects on GitHub. To
search for proper projects, we first identify several keywords
used for configuring deserialization policies, such as “ Ob-
jectInputFilter”, “extends ObjectInputStream” and “XStream
addPermission”. Then, by searching these keywords on all Java
applications of GitHub in descending order of stars, we obtain
a series of applications that may set a deserialization policy.
However, since these keywords may be utilized for many
functionalities, some applications may have related keywords
but do not adopt deserialization policies. In addition, a complex
application may utilize the deserialization mechanism at dif-
ferent positions, where developers may adopt different policies
for distinct deserialization entries. Therefore, we consume
extensive efforts to analyze each application and manually
collect 109 policies formulated by developers from 40 popular
applications with more than 100 stars.

A. Defending Against Real-World Attack

We first utilize DESERIGUARD to enhance some Java
applications with deserialization vulnerabilities and try to
exploit them. This approach enables us to evaluate the ef-
fectiveness of DESERIGUARD in mitigating real-world deseri-
alization attacks. Moreover, by executing comprehensive unit
tests and integration tests on applications, it is demonstrated
that DESERIGUARD does not impede the normal execution of
applications and introduces only negligible runtime overhead.

Defense Performance. As depicted in Table I, on all 12 vul-
nerabilities, DESERIGUARD successfully resists deserialization
attacks. These vulnerable applications are complicated and
have 1.11M LoC on average, introducing a great challenge
for developers to formulate allowlist policies. In addition,
developers typically define and include an average of 20.68K
classes in these applications, forming intricate inheritance
relations for analysis. Among these classes, attackers may find
exploitable gadget chains to implement deserialization attacks.
In the “Gadget Chain” column of Table I, we depict the gadget
chains used for the deserialization attack for each vulnerability.
Moreover, different versions of an application may necessitate

very different policies. For example, DESERIGUARD formu-
lates an allowlist with 623 and 392 rules for Ofbiz in 17.12.05
and 17.12.06 respectively. Hence, automatic allowlist synthesis
is an urgent need for frequently updated applications.

When observing the synthesized policies, it is found that on
six applications, DESERIGUARD synthesizes relatively strict
policies that permit less than 30 classes. This is because
these vulnerable deserialization entries are specified for classes
with relatively simple structures. For example, the CVE-2016-
0788 exposes a deserialization entry that can only be used to
deserialize Capability, which comprises only basic types,
resulting in an allowlist with a single rule.

However, for other vulnerabilities, DESERIGUARD synthe-
sizes more loose policies with up to 623 rules, permitting 1342
classes for deserialization. At deserialization entries originating
from these applications, they may deserialize highly diverse
objects, resulting in the synthesis of policies that contain
numerous rules. Moreover, the property trees of deserialized
objects from these deserialization entries have some generic
classes (e.g., Object, Serializable), which are cast to various
classes according to their dataflow. This presents a more
challenging scenario where manually crafting a precise policy
becomes impractical. For instance, as an enterprise resource
planning framework, Ofbiz provides rich functionalities with
more than 2M LoC and 25k classes. In one of these func-
tionalities, Ofbiz should deserialize a map from the user-
provided byte stream. While tracing the dataflow of maps and
objects within the map, DESERIGUARD finds that this map
is frequently utilized as the context parameter in various
methods. These methods extract specific objects from the
context and cast them to desired classes. As a result, the
allowlist policy for Ofbiz should encompass all these classes,
leading to a complex policy. In this case, even an experienced
developer may struggle to identify all necessary classes. How-
ever, DESERIGUARD can synthesize a comprehensive allowlist
policy, offering valuable support to developers.

When observing the permitted classes for the deserializa-
tion entries of these vulnerabilities, DESERIGUARD permits
only a small part of classes in terms of total classes. Even
with a policy comprising over 600 rules, DESERIGUARD
permits only a small fraction (0.048%) of the total classes
in the Ofbiz project. Within this limited subset of classes, it
becomes significantly challenging for attackers to construct an
exploitable gadget chain. In Section VI-C1, we will delve into

9

a further evaluation, demonstrating that even with an advanced
gadget mining tool, attackers are unable to find usable gadgets.

False Alarm of DESERIGUARD. In DESERIGUARD’s design,
we adopt a conservative strategy in policy synthesis. Although
an object’s subsequent dataflow, in some cases, may not be
explicitly reflected in the applications’ source code. To avoid
interrupting applications’ normal execution, DESERIGUARD
will include the object’s current solved class into allowlist
to over-approximate the classes that the object may be cast
to. Hence, as demonstrated in the “False Alarm” column of
Table I, DESERIGUARD incurs no false alarms during unit
testing and integration testing provided by each application’s
developers. In addition, we also conduct a real-world de-
ployment experiment on Jenkins with CVE-2015-8103 and
Ofbiz with CVE-2021-26295 to evaluate the false alarm of
DESERIGUARD. We collect 301,452 and 465,167 instances of
deserialization with 19,586 and 20,723 distinct deserialization
workloads for Jenkins and Ofbiz, respectively. During the
deployment, DeseriGuard incurs no false alarm. In conclusion,
DESERIGUARD can provide a strict policy without introducing
false alarms on 12 complex applications.

TABLE II. OVERHEAD OF DESERIGUARD. THE COLUMN “ANALYSIS”
DEPICTS THE COST OF POLICY SYNTHESIS. THE “INITIALIZATION”

OVERHEAD IS INCURRED BY THE INITIALIZATION OF THE JAVA AGENT.
“AUDITING” INDICATES THE TIME CONSUMPTION FOR EACH TYPE

AUDITING. “SLOWDOWN” PRESENTS OVERALL OVERHEAD OF
DESERIGUARD DURING APPLICATIONS’ EXECUTION.

Application Before Runtime Runtime

Analysis Initialization Auditing Slowdown

Apereo CAS-4.1.5 10s 8.10ms 0.100ms 0.795%
Richfaces-4.3.3 6s 2.37ms 0.030ms 4.296%
Jenkins-1.637 21s 11.99ms 0.042ms 4.320%

Shiro-1.2.4 8s 15.54ms 0.032ms 3.656%
Jenkins-2.46.1 22s 84.71ms 0.034ms 2.931%
Olingo-4.6.0 46s 3.84ms 0.074ms 3.201%

Tomcat-10.0.0 39s 36.88ms 0.031ms 3.759%
Ofbiz-17.02.03 65s 15.54ms 0.017ms 0.388%
Ofbiz-17.12.05 69s 170.84ms 0.024ms 0.632%
Ofbiz-17.12.06 71s 100.75ms 0.021ms 0.966%
Ofbiz-17.12.06 70s 90.40ms 0.020ms 0.625%
Log4j-1.2.17 6s 11.99ms 0.032ms 0.443%

Average 36.1s 46.08ms 0.039ms 2.168%

Overhead. As illustrated by Table II, the overhead stems
from three steps: static analysis, Java agent initialization,
and real-time auditing. The static analysis is a preprocessing
step performed only once before deployment. On average,
DESERIGUARD takes 36.1 seconds to analyze an application.
For all applications, DESERIGUARD typically requires less
than 80s for analysis. The analysis overhead is influenced by
the complexity of the application and the extent to which the
deserialization mechanism is utilized within the application. In
the case of Ofbiz, DESERIGUARD requires extensive tracing
of dataflows to formulate over 600 rules, which contributes to
longer analysis time. Notably, the static analysis only needs to
be conducted once, and a longer analysis time is acceptable.

During application startup, the initialization process of
the Java agent takes place, which involves DESERIGUARD
loading the policies and performing bytecode instrumentation.
On average, it takes 46.08 ms to complete the initialization
process. As demonstrated by the “Initialization” column of
Table II, this overhead roughly increases proportionally with
the complexity of the policy, meaning that more intricate

policies tend to result in longer initialization times for the
Java agent. It is worth noting that this overhead is encountered
only during the initialization phase and does not occur during
regular application execution.

The most crucial aspect of overhead evaluation is the delay
induced by runtime auditing, as illustrated in the “Auditing”
and “Slowdown” columns of Table II. The overhead is evalu-
ated using tests of each application. During testing, we measure
the time cost for each type auditing and calculate the overall
time delay for the entire testing process. Notably, deserializa-
tion operations account for a small portion of the whole run-
time cost for an application. To evaluate how DESERIGUARD
influences the overall efficiency of an application, we execute
the test cases and measure the overall time delay caused by
it. The ”Auditing” column in Table II displays the average
time consumption for type auditing during each deserialization
operation. Across all applications, DESERIGUARD requires
an average of 0.039 ms for each type auditing. As we op-
timize the type auditing by implementing caches of permitted
classes, the average time consumption tends to decrease with
increasing deserialization operations in test cases. Therefore,
even with more than 600 rules in the deserialization policy,
DESERIGUARD is able to complete type auditing on Ofbiz
in about 0.02ms on average. When observing the impact of
DESERIGUARD on the overall performance of applications, the
”Slowdown” column reveals that, on average, DESERIGUARD
introduces a time overhead of 2.168% across all applications.
Given that each time of type auditing only introduces a
negligible delay during each deserialization operation, the main
factor affecting the overall overhead is the degree to which
an application relies on the deserialization mechanism. In
complex applications like Jenkins, there is a high dependency
on the deserialization mechanism for various functionalities.
As a result, it requires 4.32% more time to complete all test
cases. However, in 6 of 12 cases, DESERIGUARD requires
less than 1% additional time delay to pass all test cases. In
summary, DESERIGUARD is demonstrated as an efficient real-
time defense framework for deserialization attacks.

Answer to RQ1. DESERIGUARD exhibits effective
defense capabilities while imposing negligible overhead
and incurring no false alarms.

B. Compared to Developer-Designed Policies

In addition to conducting experiments on real-world vul-
nerabilities, we also compare DESERIGUARD’s automatically
synthesized policies with policies designed by developers.
We collect 109 protected deserialization entries from 40
well-developed applications on GitHub, each receiving over
100 stars. These applications rely on various deserializa-
tion libraries, including XStream, FastJson, kryo, and
ObjectInputStream. By comparing the permitted classes
at each deserialization entry, we can demonstrate that DESERI-
GUARD can provide more precise policies for applications.

First, we measure the compression rate of each allowlist
policy, which represents the ratio of permitted classes to all
classes in an application. As boxplots in Figure 10 depict,
developer-designed policies typically permit more classes than

10

0
5

50

500

5000

50000
Developer-Designed Policy Overlap DeseriGuard Policy

DIG:1
DIG:2
DIG:3
DIG:4
DIG:5
DIG:6
DIG:7
LOG:1
LOG:2
CHV:1
ZIG:1
ZIG:2
SNA:1
SNA:2
PAC:1
OPE:1
OPE:2
ACT:1
ACT:2
ACT:3
HAD:1
HAD:2
HAD:3
HAD:4
HAD:5
HAD:6
HAD:7
JAV:1
REL:1
REL:2
DRO:1
DRO:2
DRO:3
DRO:4
DRO:5
DRO:6
DRO:7
DRO:8
DRO:9
TCC:1
M

IN:1
SAR:1
SAR:2
SAR:3
GEO:1
JOY:1
DON:1
SCH:1
BC-:1
DDF:1
DDF:2
DDF:3
DDF:4
DDF:5
DDF:6
DDF:7
ONE:1
ONE:2
ONE:3
ALI:1
TRI:1
QUA:1
QUA:2
QUA:3
VIS:1
LIG:1
LIG:2
LIG:3
STO:1
STO:2
STO:3
REM

:1
REM

:2
REM

:3
REM

:4
REM

:5
REM

:6
EUR:1
EUR:2
PIP:1
PAY:1
JBO:1
JBO:2
JBO:3
JBO:4
POR:1
POR:2
JEN:1
JEN:2
JEN:3
JEN:4
JEN:5
JEN:6
JEN:7
JEN:8
JEN:9
JEN:10
JEN:11
JEN:12
SEC:1
QUP:1
QUP:2
QUP:3
QUP:4
QUP:5
KRY:1
OFB:1

0
10

100Th
e

Nu
m

be
r o

f A
llo

w
Cl

as
se

s

Fig. 9. The permitted classes of DESERIGUARD’s policy and developer-designed policy for each deserialization entry of applications. For each bar, the light
blue section represents classes that are permitted by both developers and DESERIGUARD. The deep blue and orange sections indicate classes solely allowed by
developers and DESERIGUARD, respectively. Each item on the horizontal axis is the prefix of the project name and the index of the deserialization entry. Full
names and deserialization entries are listed in Table VI in the Appendix.

0 20 40 60 80 100
Compression Rate (%)

Developer-Designed

19.02% Developer-Designed

0 1 2 3 4 5 6
Compression Rate (%)

DeseriGuard

0.04% DeseriGuard

Fig. 10. Compression rate of policies from developers and DESERIGUARD.

DESERIGUARD’s. In detail, DESERIGUARD’s median com-
pression rate is 0.04%, and only in 6 of 109 deserialization
entries does DESERIGUARD allow the deserialization of more
than 1% of an application’s total classes. In the worst case,
5.504% of classes are included in the DESERIGUARD’s al-
lowlist. With such strict policies, it is hard for attackers to find
exploitable gadgets in DESERIGUARD’s policies, providing
high security for applications. As a comparison, developer’s
policies achieve a 19.02% median compression rate, of which
most (69 of 109) are higher than 1%. Compared to the allowlist
only, on average, 0.18% and 16.28% of total classes are
permitted by DESERIGUARD and developers separately, where
DESERIGUARD permits 90 times fewer classes than devel-
opers. Therefore, compared to formulating policies manually,
DESERIGUARD can automatically synthesize a more strict
policy and save extensive manual efforts.

In most cases, DESERIGUARD can provide stricter de-
serialization policies. However, in 11 deserialization entries,
DESERIGUARD permits 1∼19 more classes than developer-
designed policies. It is because developers have formulated
very strict allowlist policies for these deserialization en-
tries, but DESERIGUARD may include some unnecessary
classes. For example, on Distributed DataFrame (DDF) [33],
its developers only permit the deserialization of one Class,
named CswTransactionRequest. Meanwhile, it utilizes
a XStream converter to customize the deserialization procedure
of CswTransactionRequest, during which its proper-
ties are created through construction functions rather than
XStream’s deserialization mechanism. However, during the
analysis of DESERIGUARD, it needs to permit all properties

of CswTransactionRequest, appending more rules to the
allowlist. Therefore, it is a trade-off, where we permit a few
more unnecessary classes to avoid restricting necessary classes.
In addition, although permitting 1∼19 more classes, DESERI-
GUARD permits only 0.31% of total classes on average, which
significantly mitigates deserialization attacks.

In addition to the compression rate, we visualize the
difference of permitted classes between DESERIGUARD’s poli-
cies and developer-designed policies. In Figure 9, the classes
permitted by both DESERIGUARD and developers are de-
scribed with light blue sections, while the deep blue sections
indicate classes that are solely allowed by developers’ policies.
Notably, the vertical axis undergoes compression for better
visualization. Despite the comparable length of sections in
light blue and deep blue, developer-designed policies allow
for substantially more classes than DESERIGUARD’s policies.
Specifically, DESERIGUARD permits 99.12% fewer classes
on average. In worse cases, more than 10,000 unnecessary
classes are permitted by developers’ policies on applications
like ActiveMQ and QuPath. The reason is that it is hard for
developers to analyze the required classes precisely on com-
plex applications. Thus, they tend to permit many classes from
JDK and developer-defined classes of applications. However,
after DESERIGUARD’s analysis, it is found that most of these
classes will not be deserialized and can be restricted.

Since DESERIGUARD aims to include all possible dese-
rialized classes in the allowlist, it may permit the deseri-
alization of some unnecessary classes. When observing the
orange sections on the graph, we find that only several classes
in DESERIGUARD’s policies are excluded from developers’
policies. On 39 deserialization entries, DESERIGUARD does
not permit extra classes compared to the developer’s policies.
In the worst cases, DESERIGUARD permits 85 classes that are
forbidden by ActiveMQ’s developers, which accounts for only
0.26% of ActiveMQ’s total classes. Overall, DESERIGUARD
additional permits 0.18% of total classes on average. There-
fore, DESERIGUARD can automatically synthesize an allowlist
policy without introducing many unnecessary classes.

With the help of the synthesized policy from DESERI-
GUARD, we can avoid the situation shown in the Motivation
Example (Section II-C), where a flawed deserialization policy
was repeatedly bypassed on the Ofbiz project. On the one
hand, DESERIGUARD can formulate a strict allowlist policy
containing limited classes, making it hard for attackers to

11

find exploitable gadgets. On the other hand, through proper
instrument and type auditing, DESERIGUARD helps developers
prevent incorrect implementation of policy enforcement and
provides reliable defense. In conclusion, DESERIGUARD effec-
tively mitigates deserialization attacks and prevents potential
errors that may occur during policy synthesis and enforcement.

Answer to RQ2. Compared to manually designed poli-
cies, policies synthesized by DESERIGUARD exhibit
higher precision and strictness, thus offering enhanced
levels of security.

C. Compared to State-of-The-Art Tools

In this section, we compare DESERIGUARD with state-
of-the-art approaches from two aspects, gadget mining and
deserialization policy learning.

1) Gadget Mining: We first evaluate DESERIGUARD on a
gadget mining tool called GadgetInspector [34], which can ex-
plore unknown gadget chains from classes in the application’s
classpath. Meantime, we evaluate DESERIGUARD on a famous
gadget dataset Ysoserial [32]. By evaluating DESERIGUARD
on various gadget chains, we can effectively demonstrate its
ability to resist rapidly evolving gadget chains.

TABLE III. DEFENSE PERFORMANCE ON GADGET CHAINS MINED BY
GADGETINSPECTOR [34] AND GADGET CHAINS FROM FAMOUS GADGET

DATASET YSOSERIAL [32]. “!” INDICATES SUCCESSFUL DEFENSE.

Application GadgetInspector Ysoserial

Gadget Chains Resist Resist

Apereo CAS-4.1.5 10 ! !

RichFaces-4.3.3 3 ! !

Jenkins-1.637 20 ! !

Shiro-1.2.4 3 ! !

Jenkins-2.46.1 20 ! !

Olingo-4.6.0 16 ! !

Tomcat-10.0.0 15 ! !

Ofbiz-17.02.03 18 ! !

Ofbiz-17.12.05 19 ! !

Ofbiz-17.12.06 19 ! !

Ofbiz-17.12.06 19 ! !

Log4j-1.2.17 2 ! !

As Table III shows, on different applications, Gad-
getInspector explores 2∼20 potential gadget chains. Part of
these chains may still rely on some well-known gadgets,
like CommonsCollections and Spring-Core, which are all
included in the blocklists or removed from the allowlists
by developers. However, some potential gadget chains are
previously unknown, inducing significant challenges for man-
ual policy formulation. In these cases, DESERIGUARD, with
automatic policy synthesis, can successfully generate fine-
grained policies and perform strict type auditing to mitigate
the attacks with these potential gadgets on applications’ all
deserialization entries. Although not all the reported gadget
chains are exploitable, DESERIGUARD can defend against all
potential gadgets in case they are leveraged by attackers.

In addition to these gadget chains, we evaluate DESERI-
GUARD on the Ysoserial, a well-known gadget chain dataset.
The results show that DESERIGUARD can block all Ysoserial’s
33 gadget chains on 12 vulnerable applications. In conclusion,

DESERIGUARD effectively safeguards applications against de-
serialization attacks by implementing strict allowlist policies
with a limited number of classes. This approach significantly
reduces attackers’ probability of finding exploitable gadget
chains, even when employing advanced gadget mining tools.

2) Policy Learning: Some researchers have acknowledged
the challenges in Java deserialization protection and have made
efforts to employ learning-based methods for resisting attacks.
These approaches have yielded encouraging results and are
capable of synthesizing highly stringent deserialization poli-
cies. For evaluation, we replicate the state-of-the-art defense
technique known as Trusted Execution Path (Trusted) [10]
and compare it with DESERIGUARD. Trusted consists of two
phases, a learning phase relying on manually crafted benign
deserialization workloads and a real-time policy enforcement
phase based on learned policies. In the learning phase, Trusted
records the benign deserialization’s execution path, which
reflects the order of objects to be deserialized. Then, during
enforcement, it only permits deserialization fitting these known
paths. To avoid the bias stemming from the crafting of be-
nign deserialization workloads, we collect the deserialization
workloads from the unit tests and integration tests of each
application. After learning the trusted path on these workloads,
we compare DESERIGUARD’s policies with Trusted’s.

First, Trusted and DESERIGUARD has different policy
formats. Trusted only permits the objects whose properties’
type and deserialization order exactly fit its policy, which is
called path-based auditing. In contrast, DESERIGUARD adopts
a type-based auditing that verifies the classes of deserialized
objects without checking their deserialization order. Consider-
ing the policy format, Trusted seems to perform more strict
restrictions on the deserialization procedure. However, upon
analyzing the interfaces of deserialization libraries used for
customizing policies, we observed that they typically focus
on auditing the types of deserialized objects without consid-
ering the deserialization order. Hence, type-based auditing has
been widely recognized as a highly secure approach within
the community [5], [7]. Moreover, in our experiments, we
achieve a 100% defense rate on all vulnerable applications,
demonstrating the security of type-based auditing. Therefore,
type-based auditing can effectively prevent the deserialization
of classes within the gadget chain and block the attack.

TABLE IV. DEFENSE PERFORMANCE OF DESERIGUARD AND
TRUSTED EXECUTION PATH.

Applications Defense Performance False Alarm

DESERIGUARD Trusted DESERIGUARD Trusted

Apereo CAS-4.1.5 ! ! No No
RichFaces-4.3.3 ! ! No No
Jenkins-1.637 ! ! No No

Shiro-1.2.4 ! ! No Yes
Jenkins-2.46.1 ! ! No Yes
Olingo-4.6.0 ! ! No Yes

Tomcat-10.0.0 ! ! No Yes
Ofbiz-17.02.03 ! ! No Yes
Ofbiz-17.12.05 ! ! No Yes
Ofbiz-17.12.06 ! ! No Yes
Ofbiz-17.12.06 ! ! No Yes
Log4j-1.2.17 ! ! No No

Table IV shows a detailed comparison of defense perfor-
mance and false alarms. As for defense performance, it is

12

found that both Trusted and DESERIGUARD effectively miti-
gate all 12 vulnerabilities. It indicates that both two methods
can synthesize strict allowlist policies and block malicious
gadget chains. However, when observing the false alarms
of the two methods’ policies, it is observed that Trusted’s
policies may incur false alarms due to inadequent benign
deserialization workloads. For example, on Tomcat, the object
of the class TomcatPrincipal is possible to be deserialized,
which is excluded from Trusted’s policy for Tomcat. Without
enough benign workloads for learning, it is hard for Trusted
to traverse all possible paths of deserialization procedures,
resulting in incomplete deserialization policies. In detail, after
a manual analysis, we find that Trusted omits some benign
classes that should be permitted for deserialization on eight
vulnerabilities. We also manually craft the corresponding be-
nign objects and send them to the unprotected applications, and
these applications successfully deserialize them and perform
the correct functionalities.

Collecting benign deserialization workloads poses a sig-
nificant challenge for the learning-based policy synthesis ap-
proach. It is hard to manually crafting sufficient benign dese-
rialization workloads. Therefore, DESERIGUARD is a valuable
tool for developers as it enables the formulation of a strict and
comprehensive allowlist policy without benign workloads.

Answer to RQ3. DESERIGUARD can reject the de-
serialization of unknown gadgets mined by advanced
gadget mining tools. Meanwhile, DESERIGUARD out-
performs state-of-the-art policy learning methods.

VII. DISCUSSION

A. Permitting Unnecessary Classes

Although DESERIGUARD has the capability to synthesize
stricter policies compared to those formulated by the develop-
ers themselves, it still permits some unnecessary classes when
deducing necessary classes. This decision is made to avoid
interruption in the application’s execution, as DESERIGUARD
permits the deserialization of all classes that may be required
by the application. For instance, a class may own a property
that is always null during serialization and deserialization,
but DESERIGUARD still needs to include its type in the
allowlist. Though DESERIGUARD currently cannot further
determine whether a class is truly necessary when it appears
in SAPT, DESERIGUARD has demonstrated a 100% defense
rate against 12 real-world vulnerabilities, as highlighted in
Section VI-A. Moreover, DESERIGUARD also permits 99.12%
fewer classes than developer-defined policies, as shown in
Section VI-B. This indicates that the unnecessary classes in
DESERIGUARD’s policies do not undermine its effectiveness.
The reason is that crafting an exploitable gadget chain from
limited classes in DESERIGUARD’s policies is very difficult,
as blocking any classes on the gadget chain can resist the de-
serialization attack. In the future, we will continue to improve
the analysis precision to minimize the inclusion of unnecessary
classes in the allowlist policies.

B. Straw-Man Experiment

In Section VI-A, we utilize well-known gadget chains to
exploit the vulnerabilities. However, these gadget chains are

widely used and have been included in the blocklist policies
of many applications. It seems that these blocklist policies can
also effectively mitigate deserialization attacks. To assess its
effectiveness, we conduct a straw-man experiment by creating
a blocklist that includes the crucial classes in Ysoserial’s gad-
get chains before 2021, as shown by Table V in the Appendix.
We then enforce it on the 12 real-world vulnerabilities and try
to exploit the enhanced applications. When under the attacks
of gadget chains in Table I, the blocklist is very effective
and can resist all attacks. However, after analysis, we find
that on Shiro-1.2.4, Apereo CAS-4.1.5, and Tomcat-10.0.0,
attackers can use AspectJWeaver [35] gadget chain, which
is found in 2021, to bypass the blocklist and perform the
attack. In contrast, DESERIGUARD can effectively resist the
attack of AspectJWeaver gadget chain on 12 applications.
It indicates that blocklist policies are not strict enough and
under the threat of previously unknown gadget chains.

VIII. RELATED WORK

Gadget Mining. GadgetInspector [34] is the most widely used
tool because it has high effectiveness and can be easily cus-
tomized by developers. It utilizes the taint analysis to connect
related methods and identifies chains from the deserialization
entries to exploitable methods [36]. GadgetInspector has gar-
nered increased attention from researchers in the field of gadget
mining [32], [37]–[40]. After that, SerHybrid [41] is proposed
for dynamic verification to reduce false positives [42]. Lai
et al. [37] further improve the dynamic verification with the
reflection mechanism of Java. Moreover, Tabby [43] proposes
a code property graph and stores it in the neo4j database, on
which developers can mine gadget chains in their projects with
customized queries. Based on Tabby, GCMiner [40] further
builds a Deserialization-Aware Call Graph and searches the
gadget chains. Recently, ODDFuzz [16] enhances the dynamic
verification step of gadget mine with fuzzing techniques. Using
the guidance of seed distance and gadget coverage, it explores
more combinations to craft malicious objects. Different from
gadget mining tools, DESERIGUARD is a defense tool with the
purpose of blocking all malicious gadget chains. Therefore,
DESERIGUARD should block the deserialization of gadget
chains mined by these tools.

Deserialization Defense. In addition to mitigating vulnerable
programs through gadget mining, employing deserialization
protection to safeguard applications is another important ap-
proach [44]. As attacks are completed during the object
reconstruction phase of deserialization, the defense should be
applied prior to it. The mainstream defense solution is known
as the look-ahead defense [45], which first decodes the class
information from the byte stream and audits the class. Only if
the object’s class is identified to be safe, will the application
start to reconstruct the object. For example, JEP 290 [5] is
a look-ahead defense and allows developers to customize a
policy of permitting and blocking classes. Besides protection
provided by JDK, many runtime application self-protection
frameworks [13], [14], [46] also provide mechanisms to
customize policies. They usually hook critical methods and
perform auditing with byte code instrumentation [31], [47].
However, all these methods concentrate more on providing
a defense mechanism with user-friendly interfaces and low
overhead, ignoring the challenges involved in formulating

13

policies. In contrast, DESERIGUARD focuses on the automatic
policy synthesis for safeguarding deserialization processes.

Some researchers have also recognized the need for auto-
matic synthesis of deserialization policies. Trusted [10] first
provides a two-phase defense framework, which first learns
from benign deserialization workloads and then enforces the
learned allowlist policy. However, it does not provide a promis-
ing method to produce benign workloads, resulting in insuf-
ficient learning and false alarms. François et al. [48] train a
Markov chain with benign and malicious gadget chains to learn
the difference between them. Then, they perform a runtime
prediction on the currently deserialized object. Although it can
effectively identify all malicious gadget chains, the presence
of false alarms ranging from 8.44% to 11.83% hinder their
practical deployment. Furthermore, due to its heavy reliance
on training data, we are unable to reproduce the experimental
results without its dataset. Next, Vorobyov et al. [49] introduce
a learning-based approach for synthesizing a regex string filter
to match the names of permitted classes. All existing methods
rely on a set of benign gadgets to learn the policy, but they
do not provide promising approaches to generate sufficient
benign workloads, resulting in a high false alarm. Considering
the potential for substantial losses caused by false alarms,
DESERIGUARD is a more practical method that minimizes the
occurrence of false alarms.

IX. CONCLUSION

This paper introduces DESERIGUARD, a comprehensive
approach for Java deserialization protection. By automatically
formulating and enforcing policies based on application se-
mantics, DESERIGUARD offers developers a seamless method
to protect their applications. Through extensive evaluations on
12 real-world vulnerable applications, DESERIGUARD demon-
strates its effectiveness by blocking all deserialization attacks.
Moreover, the comparison with developer-set policies high-
lights DESERIGUARD’s ability to restrict unnecessary classes.
The performance evaluations confirm that DESERIGUARD
introduces negligible overhead and does not interfere with
the normal execution of policy-enhanced applications. In our
future work, we aim to enhance the analysis precision of
DESERIGUARD to improve its effectiveness and extend DE-
SERIGUARD to more programming languages.

ACKNOWLEDGMENT

This research is sponsored in part by the National Key
Research and Development Project (No. 2022YFB3104000)
and NSFC Program (No. 62022046, 92167101, U1911401,
62021002).

REFERENCES

[1] J. C. S. Santos, R. A. Jones, C. Ashiogwu, and M. Mirakhorli,
“Serialization-aware call graph construction,” in Proceedings of the
10th ACM SIGPLAN International Workshop on the State Of the
Art in Program Analysis, ser. SOAP 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 37–42. [Online].
Available: https://doi.org/10.1145/3460946.3464319

[2] “Cve about deserialization vulnerability,” 2023. [Online].
Available: https://www.cvedetails.com/vulnerability-list/cweid-502/
vulnerabilities.html

[3] “Cwe-502,” 2023. [Online]. Available: https://cwe.mitre.org/data/
definitions/502.html

[4] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in php: Automated
pop chain generation,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
42–53. [Online]. Available: https://doi.org/10.1145/2660267.2660363

[5] OpenJDK, “Jep 290: Filter incoming serialization data,” 2022. [Online].
Available: https://openjdk.org/jeps/290

[6] “Fastjson library,” 2023. [Online]. Available: https://github.com/alibaba/
fastjson

[7] “Xstream library,” 2023. [Online]. Available: https://x-stream.github.io/
[8] “Cve-2017-1000353,” 2017. [Online]. Available: https://nvd.nist.gov/

vuln/detail/CVE-2017-1000353
[9] “Cve-2021-26295,” 2021. [Online]. Available: https://nvd.nist.gov/vuln/

detail/CVE-2021-26295
[10] S. Cristalli, E. Vignati, D. Bruschi, and A. Lanzi, “Trusted execution

path for protecting java applications against deserialization of untrusted
data,” in Research in Attacks, Intrusions, and Defenses, M. Bailey,
T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds. Cham: Springer
International Publishing, 2018, pp. 445–464.

[11] OpenJdk, “Jdk project,” 2023. [Online]. Available: https://openjdk.org/
projects/jdk/

[12] “Jackson project,” 2023. [Online]. Available: https://github.com/
FasterXML/jackson

[13] Z. Yin, Z. Li, and Y. Cao, “A web application runtime application self-
protection scheme against script injection attacks,” in Cloud Computing
and Security: 4th International Conference, ICCCS 2018, Haikou,
China, June 8-10, 2018, Revised Selected Papers, Part II 4. Springer,
2018, pp. 566–577.

[14] “Openrasp,” 2023. [Online]. Available: https://github.com/baidu/
openrasp

[15] “Jenkins,” 2023. [Online]. Available: https://www.jenkins.io/
[16] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo,

B. Li, C. Ma et al., “Oddfuzz: Discovering java deserialization vulner-
abilities via structure-aware directed greybox fuzzing,” arXiv preprint
arXiv:2304.04233, 2023.

[17] S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, W. Liu, B. He, Y. Ouyang,
and J. Li, “Improving java deserialization gadget chain mining via
overriding-guided object generation,” CoRR, vol. abs/2303.07593,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.07593

[18] I. Sayar, A. Bartel, E. Bodden, and Y. Le Traon, “An in-depth study of
java deserialization remote-code execution exploits and vulnerabilities,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 1, feb 2023. [Online].
Available: https://doi.org/10.1145/3554732

[19] “Cve-2019-0189,” 2019. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2019-0189

[20] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Deceptive
directories and “vulnerable” logs: a honeypot study of the ldap and log4j
attack landscape,” in 2022 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2022, pp. 442–447.

[21] M. Sharp and A. Rountev, “Static analysis of object references in
rmi-based java software,” in 21st IEEE International Conference on
Software Maintenance (ICSM’05), 2005, pp. 101–110.

[22] “Cve-2021-29200,” 2021. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2021-29200

[23] “Cve-2021-30128,” 2021. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2021-30128

[24] “Codeql,” 2023. [Online]. Available: https://codeql.github.com/docs/
[25] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional

shape analysis by means of bi-abduction,” J. ACM, vol. 58, no. 6, dec
2011. [Online]. Available: https://doi.org/10.1145/2049697.2049700

[26] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java
reflection,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 2, feb
2019. [Online]. Available: https://doi.org/10.1145/3295739

[27] S. Liang, The Java native interface: programmer’s guide and specifi-
cation. Addison-Wesley Professional, 1999.

[28] Y. Li, T. Tan, Y. Sui, and J. Xue, “Self-inferencing reflection res-
olution for java,” in ECOOP 2014–Object-Oriented Programming:
28th European Conference, Uppsala, Sweden, July 28–August 1, 2014.
Proceedings 28. Springer, 2014, pp. 27–53.

14

https://doi.org/10.1145/3460946.3464319
https://www.cvedetails.com/vulnerability-list/cweid-502/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-502/vulnerabilities.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://doi.org/10.1145/2660267.2660363
https://openjdk.org/jeps/290
https://github.com/alibaba/fastjson
https://github.com/alibaba/fastjson
https://x-stream.github.io/
https://nvd.nist.gov/vuln/detail/CVE-2017-1000353
https://nvd.nist.gov/vuln/detail/CVE-2017-1000353
https://nvd.nist.gov/vuln/detail/CVE-2021-26295
https://nvd.nist.gov/vuln/detail/CVE-2021-26295
https://openjdk.org/projects/jdk/
https://openjdk.org/projects/jdk/
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/baidu/openrasp
https://github.com/baidu/openrasp
https://www.jenkins.io/
https://doi.org/10.48550/arXiv.2303.07593
https://doi.org/10.1145/3554732
https://nvd.nist.gov/vuln/detail/CVE-2019-0189
https://nvd.nist.gov/vuln/detail/CVE-2019-0189
https://nvd.nist.gov/vuln/detail/CVE-2021-29200
https://nvd.nist.gov/vuln/detail/CVE-2021-29200
https://nvd.nist.gov/vuln/detail/CVE-2021-30128
https://nvd.nist.gov/vuln/detail/CVE-2021-30128
https://codeql.github.com/docs/
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/3295739

[29] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of java reflection-literature review and empirical study,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 507–518.

[30] M. Corporation, “Cve-2022-40955,” 2022. [Online]. Available: https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-40955

[31] E. Bruneton, R. Lenglet, and T. Coupaye, “Asm: a code manipulation
tool to implement adaptable systems,” Adaptable and extensible com-
ponent systems, vol. 30, no. 19, 2002.

[32] “Ysoserialr,” 2022. [Online]. Available: https://github.com/frohoff/
ysoserial

[33] “Defending against java deserialization vulnerabilities,” 2023. [Online].
Available: https://github.com/ddf-project/DDF

[34] I. Haken, “Automated discovery of deserialization gadget chains,” in
blackhat, 2018.

[35] AspectJWeaver, “Aspectjweaver,” 2023. [Online].
Available: https://github.com/frohoff/ysoserial/blob/
2874a69f6127fd3b3f078461741910423a6b1376/src/main/java/
ysoserial/payloads/AspectJWeaver.java#L46

[36] L. Sui, J. Dietrich, A. Tahir, and G. Fourtounis, “On the recall
of static call graph construction in practice,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1049–1060. [Online]. Available:
https://doi.org/10.1145/3377811.3380441

[37] Z. Lai, H. Qu, and L. Ying, “A composite discover method for gadget
chains in java deserialization vulnerability,” 2022.

[38] “Java deserialization scanner,” 2021. [Online]. Available: https:
//github.com/federicodotta/Java-Deserialization-Scanner

[39] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with zest,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 329–340. [Online]. Available: https://doi.org/10.
1145/3293882.3330576

[40] S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, W. Liu, B. He, Y. Ouyang,
and J. Li, “Improving java deserialization gadget chain mining via
overriding-guided object generation,” arXiv preprint arXiv:2303.07593,
2023.

[41] S. Rasheed and J. Dietrich, “A hybrid analysis to detect java serialisation
vulnerabilities,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 1209–1213.

[42] E. Ruf, “Context-insensitive alias analysis reconsidered,” in Proceedings
of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, ser. PLDI ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 13–22. [Online].
Available: https://doi.org/10.1145/207110.207112

[43] X. Chen, B. Wang, Z. Jin, Y. Feng, X. Li, X. Feng, and Q. Liu,
“Tabby: Automated gadget chain detection for java deserialization
vulnerabilities,” in 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Network (DSN). IEEE, 2023. IEEE, 2023.

[44] L. Carettoni, “Ddf - distributed dataframe,” 2016. [On-
line]. Available: https://www.ikkisoft.com/stuff/Defending against
Java Deserialization Vulnerabilities.pdf

[45] R. Seacord, “Combating java deserialization vulnerabilities with look-
ahead object input streams (laois),” NCC Gr Whitepaper, 2017.

[46] P. Cı́sar and S. M. Cisar, “The framework of runtime application
self-protection technology,” 2016 IEEE 17th International Symposium
on Computational Intelligence and Informatics (CINTI), pp. 000 081–
000 086, 2016.

[47] S. Chiba, “Javassist—a reflection-based programming wizard for java,”
in Proceedings of OOPSLA’98 Workshop on Reflective Programming in
C++ and Java, vol. 174. Citeseer, 1998, p. 21.

[48] F. Gauthier and S. Bae, “Runtime prevention of deserialization attacks,”
in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: New Ideas and Emerging Results, 2022, pp. 71–
75.

[49] K. Vorobyov, F. Gauthier, S. Bae, P. Krishnan, and R. O’Donoghue,
“Synthesis of java deserialisation filters from examples,” in 2022
IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC), 2022, pp. 736–745.

15

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-40955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-40955
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://github.com/ddf-project/DDF
https://github.com/frohoff/ysoserial/blob/2874a69f6127fd3b3f078461741910423a6b1376/src/main/java/ysoserial/payloads/AspectJWeaver.java#L46
https://github.com/frohoff/ysoserial/blob/2874a69f6127fd3b3f078461741910423a6b1376/src/main/java/ysoserial/payloads/AspectJWeaver.java#L46
https://github.com/frohoff/ysoserial/blob/2874a69f6127fd3b3f078461741910423a6b1376/src/main/java/ysoserial/payloads/AspectJWeaver.java#L46
https://doi.org/10.1145/3377811.3380441
https://github.com/federicodotta/Java-Deserialization-Scanner
https://github.com/federicodotta/Java-Deserialization-Scanner
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/207110.207112
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization _Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization _Vulnerabilities.pdf

APPENDIX

A. Source Code of Figrue 5

Listing 1 exhibits the corresponding source code for Fig-
ure 5. According to the listing, the application processes each
request based on a Session variable. If it is the user’s
first time sending a request, the application should create
a Session based on the Profile, which is deserialized
from the user’s request (Lines 12∼21). If the user has made
previous requests, the application can retrieve the Session
from persistent storage through deserialization, as shown by
Line 23. Then, from Lines 29 to 36, the application calcu-
lates the priority of the user’s request, determined by
the Session’s id property. The type of id can be one
of IntID, AuthKey, and HashVal, each of which the
application will handle accordingly. According to Session’s
definition in Lines 41∼46, values, expirationTime,
id, and user are all properties of Session. When adding
Session to the SAPT, its properties should undergo recursive
analysis. The property id is analyzed based on the dataflow
in Lines 31∼36. The type of elements in values should
be further analyzed according to the application’s subsequent
dataflow. The user is of class User, which owns two
subclasses, Admin and Guest. The expirationTime is
of class Time, which consists of all basic types. Based on
the program semantics depicted in the listing, the SAPT is
constructed as Figure 5 shows.

B. Deserialization Entry of Allowlists

In Section VI-B, we collect 109 policies from 40 popular
applications. Detailed information on each application’s dese-

rialization entries is listed in Table VI. In the “Application”
column, we show the name of each application. In the column
“Github Stars”, we present the stars of these applications. Most
of these applications receive over 500 stars, and all these appli-
cations receive at least 125 stars. The most popular application,
Jenkins, gets 20649 stars. Therefore, these applications are
widely used and well-developed, for which developers should
formulate appropriate policies for their deserialization entries.
The deserialization entries of each policy are listed in the
“Deserialization Entry” column. Referencing the abbreviation
in “Abbr.” column, we could find the corresponding bar of
each policy in Figure 9.

C. BlockList of Straw-Man Experiment

In Section VII-B, we conduct a straw-man experiment
by constructing a blocklist that encompasses the crucial
classes used in Ysoserial’s gadget chains prior to 2021. By
analyzing the exploitation of each gadget chain in Ysose-
rial, we summarize the key classes and formulate them
as a blocklist, as depicted by Table V. In the blocklist,
each rule is a regex pattern that matches one class or a
set of classes. This blocklist is very effective when de-
fending against existing gadget chains. For instance, by
blocking the deserialization of ChainedTransformer,
InvokerTransformer, TransformingComparator,
and InstantiateTransformer, all seven Ysoserial’s
gadget chains mined from the CommonsCollections li-
brary are denied for deserialization by the blocklist. How-
ever, though including all Ysoserial’s gadget chains explored
before 2021, attackers can still bypass the blocklist with
AspectJWeaver gadget chain, which was found in 2021.

TABLE V. THE BLOCKLIST SYNTHESIZED BASED ON YSOSERIAL.

java\.rmi\..* com\.sun\.rowset\.JdbcRowSetImpl
org\.mozilla\.javascript\..* com\.sun\.org\.apache\.xalan\.internal\.xsltc\.trax\.TemplatesImpl
org\.python\.core\..* org\.jboss\.interceptor\.builder\..*
org\.apache\.wicket\.util\..* org\.jboss\.interceptor\.proxy\..*
bsh\.Interpreter org\.jboss\.interceptor\.reader\..*
bsh\.XThis org\.jboss\.interceptor\.spi\..*
com\.mchange\..* org\.springframework\.aop\.framework\.AdvisedSupport
javax\.sql\.ConnectionPoolDataSource org\.jboss\.weld\.interceptor\.builder\..*
org\.apache\.click\.control\.Column org\.jboss\.weld\.interceptor\.proxy\..*
org\.apache\.click\.control\.Table org\.jboss\.weld\.interceptor\.reader\..*
clojure\.inspector\.proxy$javax\.swing\.table\.AbstractTableModel org\.jboss\.weld\.interceptor\.spi\..*
clojure\.lang\.PersistentArrayMap org\.apache\.commons\.io\.FileUtils
org\.hibernate\.engine\.spi\.TypedValue org\.apache\.myfaces\.context\..*
org\.hibernate\.tuple\.component\.AbstractComponentTuplizer org\.apache\.myfaces\.el\.CompositeELResolver
org\.hibernate\.tuple\.component\.PojoComponentTuplizer org\.apache\.myfaces\.el\.unified\.FacesELContext
org\.apache\.commons\.io\..* org\.apache\.myfaces\.view\.facelets\.el\.ValueExpressionMethodExpression
org\.apache\.commons\.beanutils\.BeanComparator com\.sun\.syndication\.feed\.impl\.ObjectBean
org\.apache\.commons\.collections\.functors\.ChainedTransformer org\.springframework\.beans\.factory\.ObjectFactory
org\.apache\.commons\.collections\.functors\.InvokerTransformer org\.springframework\.aop\.target\.SingletonTargetSource
org\.apache\.commons\.collections4\.comparators\.TransformingComparator org\.springframework\.aop\.framework\.AdvisedSupport
org\.apache\.commons\.collections4\.functors\.InstantiateTransformer com\.vaadin\.data\.util\.NestedMethodProperty
org\.apache\.commons\.fileupload\.disk\.DiskFileItem com\.vaadin\.data\.util\.PropertysetItem
org\.codehaus\.groovy\.runtime\..*

16

1 class Request{ // Request.java

2 public void handleRequest(Request request){

3 Object obj = null;
4 Byte[] serData = PersistenceHandler.loadData(request.getCookie());

5 ObjectInputStream objIn = null;
6 Session session = null;
7 //check if a persistent storage of Seession exists.

8 if (serData == null)
9 serData = request.getSerilizedProfile();

10 //if a persistent Session does not exist, load the user profile from the request.

11 try{
12 ObjectInputStream byteInputStream =

13 new ByteArrayInputStream(serData);

14 ObjectInputStream objIn =

15 new ObjectInputStream(byteInputStream);

16 obj = objIn.readObject();

17 } catch (Exception e) {

18 e.printStackTrace();

19 return null;}
20 if(obj instanceof profile){

21 session = createSession((Profile) obj)

22 }else{
23 session = (Session)obj;}

24 processSession(session);

25 Object val = session.getValue(0);
26 ...

27 }

28 public void processSession(Session session){

29 Comparable userIndex = Session.id;

30 int priority;

31 if (userIndex instanceof IntID){

32 priority = ((IntID)userIndex).toInt();

33 }else if (userIndex instanceof AuthKey){

34 priority = getPriority((AuthKey)userIndex);}

35 else if (userIndex instanceof HashVal){

36 priority = priorityMap.get((HashVal)userIndex);

37 }

38 ...

39 }

40 }

41 class Session{ // Session.java

42 private User user;

43 private List<Object> values;

44 private Time expirationTime;

45 public Comparable id;

46 public Object getValue(int index){

47 return values.get(i);

48 }

49 }

50 class User{ // User.java

51 private String name;

52 }

53 class Admin extends User{ // Admin.java

54 private String privilege;

55 }

56 class Guest extends User{ // Guest.java

57 int expirationTime;

58 }

Listing 1: Source code on which the Semantic-Aware Property Tree in Figure 5 is based.

17

TABLE VI. INFORMATION ABOUT APPLICATIONS FOR WHICH DEVELOPERS DESIGN DESERIALIZATION POLICIES.

No. Application Github Stars Deserialization Entry Abbr. No. Application Github Stars Deserialization Entry Abbr.
1 digital 3107 TruthTable:47 DIG:1 56 ddf 166 TransactionMessageBodyReader:78 DDF:5
2 digital 3107 Circuit:147 DIG:2 57 ddf 166 FeatureCollectionMessageBodyReaderWfs20:202 DDF:6
3 digital 3107 CircuitTransferable:80 DIG:3 58 ddf 166 XStreamWfs11FeatureTransformer:74 DDF:7
4 digital 3107 FSM:96 DIG:4 59 onedev 11064 VersionedXmlDoc:490 ONE:1
5 digital 3107 SettingsBase:46 DIG:5 60 onedev 11064 VersionedXmlDoc:493 ONE:2
6 digital 3107 Configuration:74 DIG:6 61 onedev 11064 VersionedXmlDoc:500 ONE:3
7 digital 3107 Bundle:48 DIG:7 62 Alink 3366 DLPredictServiceMapper:243 ALI:1
8 logback 2715 SocketNode:63 LOG:1 63 triplea 936 GameDataComponent:43 TRI:1
9 logback 2715 SocketNode:83 LOG:2 64 quasar 4516 KryoSerializer:119 QUA:1
10 Chvote 707 SafeObjectReader:58 CHV:1 65 quasar 4516 ReplaceableObjectKryo:112 QUA:2
11 zigbee4java 138 ZigBeeNetworkStateSerializer:44 ZIG:1 66 quasar 4516 CollectionsSetFromMapSerializer:61 QUA:3
12 zigbee4java 138 NetworkStateSerializer:76 ZIG:2 67 visicut 212 FilebasedManager:301 VIS:1
13 snap-engine 166 GraphIO:83 SNA:1 68 light-task-scheduler 2983 BeanUtils:27 LIG:1
14 snap-engine 166 ModuleManifestParser:59 SNA:2 69 light-task-scheduler 2983 FastJSONAdapter:23 LIG:2
15 pac4j 2287 JavaSerializer:65 PAC:1 70 light-task-scheduler 2983 JavaSerializable:42 LIG:3
16 opengrok 3899 Definitions:321 OPE:1 71 storm 8880 DefaultStateSerializer:97 STO:1
17 opengrok 3899 Scopes:179 OPE:2 72 storm 8880 KryoValuesDeserializer:42 STO:2
18 activemq 2159 XStreamWireFormat:65 ACT:1 73 storm 8880 WindowKryoSerializer:67 STO:3
19 activemq 2159 XStreamWireFormat:70 ACT:2 74 remoting 205 Capability:185 REM:1
20 activemq 2159 SubQueueSelectorCacheBroker:201 ACT:3 75 remoting 205 ClassLoaderHolder:40 REM:2
21 hadoop 13507 IOStatisticsSnapshot:270 HAD:1 76 remoting 205 Command:155 REM:3
22 hadoop 13507 IOStatisticsSnapshot:272 HAD:2 77 remoting 205 RemoteInputStream:187 REM:4
23 hadoop 13507 IOStatisticsSnapshot:274 HAD:3 78 remoting 205 UserRequest:289 REM:5
24 hadoop 13507 IOStatisticsSnapshot:276 HAD:4 79 remoting 205 TrafficAnalyzer:26 REM:6
25 hadoop 13507 IOStatisticsSnapshot:278 HAD:5 80 eureka 11779 CodecWrappers:387 EUR:1
26 hadoop 13507 IOStatisticAssertions:517 HAD:6 81 eureka 11779 CodecWrappers:349 EUR:2
27 hadoop 13507 ZKConfigurationStore:319 HAD:7 82 pippo 777 SerializationSessionDataTranscoder:52 PIP:1
28 javamelody 2842 CounterStorage:157 JAV:1 83 payara 856 OpenTracingIiopServerInterceptor:109 PAY:1
29 reload4j 133 SocketNode:78 REL:1 84 jboot 717 JsonBodyParseInterceptor:55 JBO:1
30 reload4j 133 LoggingReceiver:70 REL:2 85 jboot 717 ApiDocUtil:200 JBO:2
31 drools 5299 XmlBifParser:58 DRO:1 86 jboot 717 FastJsonSerializer:56 JBO:3
32 drools 5299 XmlBifParser:70 DRO:2 87 jboot 717 JsonUtil:320 JBO:4
33 drools 5299 KieModuleMarshaller:88 DRO:3 88 portfolio 2280 ClientFactory:122 POR:1
34 drools 5299 KieModuleMarshaller:93 DRO:4 89 portfolio 2280 ECBExchangeRateProvider:91 POR:2
35 drools 5299 KieModuleMarshaller:98 DRO:5 90 jenkins 20649 XmlFile:165 JEN:1
36 drools 5299 KieModuleMarshaller:103 DRO:6 91 jenkins 20649 CreateNodeCommand:55 JEN:2
37 drools 5299 ScenarioSimulationXMLPersistence:202 DRO:7 92 jenkins 20649 XStream2:230 JEN:3
38 drools 5299 Jenerator:101 DRO:8 93 jenkins 20649 XStream2:233 JEN:4
39 drools 5299 XStreamMarshaller:151 DRO:9 94 jenkins 20649 Computer:1558 JEN:5
40 tcc-transaction 5616 KryoPoolSerializer:94 TCC:1 95 jenkins 20649 ComputerSet:266 JEN:6
41 mina-sshd 715 SimpleGeneratorHostKeyProvider:65 MIN:1 96 jenkins 20649 XmlFile:196 JEN:7
42 saros 155 XMPPAccountStore:165 SAR:1 97 jenkins 20649 View:1418 JEN:8
43 saros 155 ColorIDSetStorage:178 SAR:2 98 jenkins 20649 StreamTaskListener:196 JEN:9
44 saros 155 XStreamExtensionProvider:296 SAR:3 99 jenkins 20649 CloudSet:207 JEN:10
45 geoserver 3240 DefaultTileLayerCatalog:469 GEO:1 100 jenkins 20649 InstallUtil:292 JEN:11
46 joyrpc 412 KryoReader:48 JOY:1 101 jenkins 20649 XStreamDOM:170 JEN:12
47 DongTai-agent-java 617 SerializeUtils:61 DON:1 102 security 125 Base64Helper:180 SEC:1
48 schemacrawler 1424 JavaSerializedCatalog:48 SCH:1 103 qupath 809 QuPathGUI:2134 QUP:1
49 log4j2 3102 SortedArrayStringMap:622 LOG:1 104 qupath 809 PathIO:353 QUP:2
50 log4j2 3102 OpenHashStringMap:734 LOG:2 105 qupath 809 PathIO:196 QUP:3
51 bc-java 1973 XMSSUtil:331 BC-:1 106 qupath 809 PathIO:218 QUP:4
52 ddf 166 CswRecordConverter:189 DDF:1 107 qupath 809 PathIO:698 QUP:5
53 ddf 166 MetacardImpl:870 DDF:2 108 kryonet 1775 KryoSerialization:73 KRY:1
54 ddf 166 GetRecordsMessageBodyReader:159 DDF:3 109 ofbiz 562 UtilObject:96 OFB:1
55 ddf 166 GmdTransformer:242 DDF:4

18

	Introduction
	Background and Motivation
	Deserialization Vulnerability
	Deserialization Policy
	Motivation Example

	Threat Model
	Methodology
	Policy Synthesis
	Policy Enforcement

	Implementation
	Evaluation
	Defending Against Real-World Attack
	Compared to Developer-Designed Policies
	Compared to State-of-The-Art Tools
	Gadget Mining
	Policy Learning

	Discussion
	Permitting Unnecessary Classes
	Straw-Man Experiment

	Related Work
	Conclusion
	References
	Appendix
	Source Code of Figrue 5
	Deserialization Entry of Allowlists
	BlockList of Straw-Man Experiment

