
Dodrio: Parallelizing Taint Analysis Based Fuzzing via
Redundancy-Free Scheduling

Jie Liang

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

Mingzhe Wang

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

Chijin Zhou

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

Zhiyong Wu

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

Jianzhong Liu

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

Yu Jiang
∗

KLISS, BNRist, School of Software,

Tsinghua University

Beijing, China

ABSTRACT

Taint analysis significantly enhances the capacity of fuzzing to

navigate intricate constraints and delve into the state spaces of

the target program. However, practical scenarios involving taint

analysis based fuzzers with the common parallel mode still have lim-

itations in terms of overall throughput. These limitations primarily

stem from redundant taint analyses and mutations among different

fuzzer instances. In this paper, we propose Dodrio, a framework

that parallelizes taint analysis based fuzzing. The main idea is to

schedule fuzzing tasks in a balanced way by exploiting real-time

global state. It consists of two modules: real-time synchronization

and load-balanced task dispatch. Real-time synchronization up-

dates global states among all instances by utilizing dual global

coverage bitmaps to reduce data race. Based on the global state,

load-balanced task dispatch efficiently allocates different tasks to

different instances, thereby minimizing redundant behaviors and

maximizing the utilization of computing resources.

We evaluated Dodrio on real-world programs both in Google’s

fuzzer-test-suite and FuzzBench against AFL’s classical parallel

mode, PAFL, and Ye’s PAFL on parallelizing two taint analysis

based fuzzer FairFuzz and PATA. The results show that Dodrio

achieved an average speedup of 123%–398% in covering basic blocks

compared to others. Based on the speedup, Dodrio found 5%–16%

more basic blocks. We also assessed the scalability of Dodrio. With

the same resources, the coverage improvement increases from 4%

to 35% when the number of instances in parallel (i.e., CPU cores)

increases from 4 to 64, compared to the classical parallel mode.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging;

∗
Yu Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0658-5/24/07

https://doi.org/10.1145/3663529.3663844

KEYWORDS

Parallel, Fuzzing, Software Testing

ACM Reference Format:

Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu

Jiang. 2024. Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redun-

dancy-Free Scheduling. In Companion Proceedings of the 32nd ACM Interna-

tional Conference on the Foundations of Software Engineering (FSE Companion

’24), July 15–19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3663529.3663844

1 INTRODUCTION

Software vulnerabilities pose significant risks to the security and sta-

bility of modern computer systems, requiring effective techniques

to detect and mitigate them. Fuzzing has emerged as a powerful

automated testing technique that aims to uncover software vul-

nerabilities by systematically feeding malformed or unexpected

inputs into a target program [22, 32, 34, 35, 42]. By observing the

program’s response to these inputs, fuzzing can identify potential

security flaws and areas of weakness [8, 10, 17, 20].

Taint analysis based fuzzing significantly enhances fuzzing by

facilitating the navigation of intricate constraints [4, 11, 15, 21]. As

software systems become increasingly complex, path constraints of-

ten become more intricate. Blind mutation algorithms that are used

by conventional fuzzers may generate seeds that get stuck in shal-

low areas blocked by these constraints, thereby missing potential

bugs in deeper logic. By identifying how the input byte influences

branches, taint analysis helps fuzzers in mutating bytes that are

related to these branches. On the other hand, parallel fuzzing is a

commonmethod that is utilized to detect vulnerabilities quickly and

early. For large-scale modern software, the need for efficient and

scalable vulnerability detection techniques becomes paramount.

By distributing the fuzzing workload across multiple instances,

parallelization can significantly increase the rate at which vulnera-

bilities are discovered. The state-of-the-art parallelization approach

involves creating multiple instances, where each instance maintains

its own seed pool and coverage [8, 18, 25, 38, 41]. These instances

are coordinated through periodic seed synchronization.

However, most of the fuzzers utilizing taint analysis sel-

dom consider their performance in common parallel mode.

For example, Angora [7] and VUzzer [28] do not support par-

allel mode. Some taint analysis based fuzzer like FairFuzz [15]

support classical parallel mode, but the practice shows that they

https://doi.org/10.1145/3663529.3663844
https://doi.org/10.1145/3663529.3663844


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang

even perform worse than the version without taint analysis in par-

allel mode [18]. In our experiments, using the same resources, the

coverage of PATA continuously decreases as the number of cores

increases. At 64 cores, the coverage decreases by 22% compared to

a single core. Their performance degradation is mainly due to the

redundant behaviors when combining taint analysis and fuzzing in

parallel mode. Traditional parallel fuzzing introduces redundancy

as each instance redundantly executes the same seed multiple times

to identify new coverage specific to itself. More importantly, seeds

are saved repeatedly across instances, leading to duplicate taint

analysis and mutations. It is worth noting that taint analyses are

usually resource-intensive and have a more deterministic behavior

compared to random mutations. Instead of efficiently exploring the

new state space, these redundant analyses and mutations divert

lots of resources from other potentially fruitful mutations. As a

result, the redundancy ultimately results in inefficient utilization

of computational resources and diminishes the overall effective-

ness of the fuzzing process. In an ideal parallel fuzzing scenario, all

fuzzer instances work together as a unified entity, leveraging the

full computing power available to minimize redundancies. To effi-

ciently parallelize taint analysis based fuzzing, we need to address

the following two challenges:

(1) Synchronizing the global fuzzing state in real time with limited

data races: in parallel fuzzing, multiple instances execute fuzzing

tasks concurrently, which can lead to latency in obtaining global

states. Consequently, each instance might utilize outdated infor-

mation to make fuzzing decisions, leading to suboptimal strategies.

Real-time synchronization of this state is necessary to ensure that

each instance has access to global information and can make in-

formed fuzzing strategies. However, achieving real-time synchro-

nization requires developing efficient mechanisms to coordinate

access to shared resources, such as coverage information and input

seeds that cover new basic code blocks. These mechanisms must

maintain consistency and prevent race conditions. Striking a bal-

ance between synchronization overhead and the accuracy of the

global state is crucial to maintaining the effectiveness of the taint

analysis based fuzzing in a parallel environment.

(2) Distributing tasks without duplication or omission: in parallel

fuzzing, distributing tasks across multiple instances or threads is

essential to fully utilize the available computing resources and max-

imize the efficiency of vulnerability detection. However, achieving

efficient task distribution without redundancy or omission is chal-

lenging. Ensuring that each fuzzing task, such as taint analysis and

random mutation, is assigned to an appropriate instance without

duplication or omission is crucial for balanced workload distri-

bution. This requires careful load-balancing strategies and task-

dispatching mechanisms that consider factors such as the available

computational resources and the progress of ongoing taint analysis

based fuzzing iterations. Efficient load balancing ensures optimal

utilization of resources and maximizes the chances of discovering

vulnerabilities across the entire target program.

In this paper, we propose Dodrio, a framework that parallelizes

taint analysis based fuzzing via redundancy-free scheduling. The

main idea is to schedule fuzzing tasks by utilizing real-time global

state, thereby minimizing redundancy and enabling all instances to

function as a cohesive unit. The framework incorporates real-time

state synchronization and load-balanced task dispatching. Real-time

state synchronization ensures that the global state is updated in real-

time. It utilizes dual global coverage bitmaps to update coverage, i.e.,

a fast global bitmap protected by fine-grained locks to coarsely filter

seeds, and an accurate bitmap to further sift them. The dual bitmap

reduces unnecessary blocking and allows scheduling different tasks

into fuzzer instances to cut down on repetitive actions. Furthermore,

load-balanced task dispatch distributes different fuzzing tasks across

multiple fuzzer instances effectively. By assigning tasks based on

the progress of fuzzing and the availability of resources, the load-

balanced strategy ensures that each instance receives an appropriate

workload without redundant or omitted tasks.

We evaluated Dodrio on programs that both in Google’s fuzzer-

test-suite [2] and FuzzBench [1] against AFL’s classical parallel

mode, PAFL [18], and Ye’s PAFL [38] on parallelizing two taint-

analysis based fuzzer FairFuzz and PATA. The results show that

Dodrio demonstrates excellent performance. It achieved an average

speedup of 123%–398% in covering basic blocks compared to these

parallelization techniques. The speed increase resulted in a 5%–16%

increase in the number of basic blocks found by Dodrio. We also

assessed the scalability of Dodrio. In the same resource scenario, as

the number of instances (i.e., CPU cores) in parallel is increased from

4 to 64, the number of discovered basic blocks by PATA using the

AFL classical parallel mode continuously decreases, while Dodrio-

PATA is able to maintain a relatively stable count. Correspondingly,

relative to PATA, the number of covered basic blocks by Dodrio-

PATA has increased from 4% to 35%.

2 BACKGROUND AND MOTIVATION

Fuzzing. Fuzzing uncovers vulnerabilities in target programs by

feeding malformed inputs into them. The inputs are always called

seeds in fuzzing. Generally, fuzzers mutate existing seeds to gener-

ate new ones. The process always starts from a set of initial seeds,

with the feedback guided (e.g. coverage), only the cases that could

hit new behaviors (e.g. covering new branches) will be preserved

for further mutation. The mutation process typically involves deter-

ministic and random methods. For instance, AFL employs bitflip for

each input bit during the deterministic stage and randomly changes

byte values during the havoc stage.

Classic Parallel Mode of Fuzzing. A fuzzer could run in single-

core mode or parallel mode. In single-core mode, only one fuzzing

instance is used to test the target program, while in parallel mode,

multiple fuzzing instances are simultaneously employed. The par-

allel deployment of fuzzing is a common practice in the industrial

testing of real-world programs. Many widely used industrial-grade

fuzzing tools, such as AFL [41] and Honggfuzz [14], support parallel

mode. Most of these tools employ the classic parallel mode, where

different fuzzing instances coordinate their activities by synchroniz-

ing the test case corpus. In classic parallel mode, different fuzzing

instances collectively test the same target program. Each instance

maintains its own seeds and periodically scans the seeds of others

to synchronize useful inputs into its own corpus. By synchronizing

the seeds, a fuzzing instance can leverage the state space explored

by other instances. The time taken by other instances to reach the

same state is reduced, thereby improving the overall efficiency.

Taint Analysis Based Fuzzing. Traditionally, taint analysis traces

the propagation of tainted data at a fine-grained level within the



Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free Scheduling FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

program, marking data that originate from untrusted sources and

tracking its flow through various operations and variables. Integrat-

ing taint analysis and fuzzing represents a powerful approach to

improving the efficiency and effectiveness of fuzzing. Specifically,

the combination of taint analysis and fuzzing enables fuzzers to gain

insight into the data flow and identify crucial input bytes that influ-

ence specific program branches. For example, FairFuzz [15] adopts

taint analysis to deduce the relationship between input bytes, rare

branches, and mutation operators. It performs byte-level mutation

on the input to identify mutation operators for each byte that en-

sure the mutated seed continues to cover rare branches. PATA [21]

utilizes path-aware taint analysis. It takes into account the different

paths that tainted data can follow through conditional branches and

loops, allowing for more precise identification of vulnerabilities.

On the other hand, taint analysis can be computationally expensive

and may slow down the fuzzing process. It involves tracking the

flow of data through the program and identifying tainted values,

which requires additional overhead and computational resources.

Motivation. Ideally, running N fuzzers in parallel should have the

same effect as increasing the CPU main frequency by N times when

all processes of the fuzzing can be parallelized [3]. Alternatively,

parallel fuzzing with𝑁 cores for𝑇 hours should yield similar results

as using 𝑇 cores for 𝑁 hours. However, in practice, we find that

when using the classical parallel mode, taint analysis based fuzzers

may experience a significant performance decline when running

on multiple cores. For example, PATA utilizes the classical parallel

mode of AFL. Figure 1 shows the trend of the total number of basic

blocks covered on tested projects (see Section 5.1) by PATA with

the same resources (24 𝑐𝑜𝑟𝑒 ∗ ℎ𝑜𝑢𝑟𝑠) as cores increase. It shows
that the number of basic blocks discovered by PATA decreases

continuously as the number of cores increases. Particularly, at 64

cores, the coverage decreases by 22% compared to a single core.

40000

45000

50000

55000

60000

65000

70000

1 core 4 cores 8 cores 16 cores 32 cores 64 cores

PATA

Dodrio-PATA

Figure 1: Trend of basic blocks covered on all test projects

by PATA and Dodrio-PATA with the same resources (24

core∗hours) as cores increase.

The performance degradation is mainly caused by redundant

behaviors of the classical parallel mode. First, one seed might be

repeatedly synchronized to all instances, leading to a redundant

process that involves re-execution and storage of the same seeds.

Moreover, when combining taint analysis with fuzzing, the same

seeds repeatedly saved in each instance will be analyzed multiple

times, resulting in redundant taint analysis processes across in-

stances. The analysis slows down the whole system’s fuzzing speed.

Finally, taint analysis based fuzzers mutate input seeds guided by

the analysis results. In parallel fuzzing, the similar seeds and anal-

ysis would result in redundant similar mutations, consequently,

producing alike mutated seeds that have the same contributions

to testing. To reduce redundant actions across instances in paral-

lel fuzzing, Dodrio employs real-time state synchronization and

load-balanced task dispatch. Figure 1 shows that after when PATA

is augmented with Dodrio, there is no significant decrease in the

number of covered basic blocks as CPU cores increase.

3 DODRIO DESIGN

Figure 2 presents the overall design of Dodrio. Dodrio has two

modules, namely real-time state synchronization and load-balanced

task dispatch. All instances share a global coverage bitmap, a seed

cache queue, and a seed pool. Dodrio utilizes the latest global cover-

age bitmap to identify seeds with new coverage, pushing them into

the queue and further filtering them into the pool. Moreover, Do-

drio dispatches distinct tasks to different instances, which avoids

redundant analysis and mutations among fuzzer instances.

3.1 Real-Time State Synchronization

In parallel fuzzing, multiple instances execute fuzzing tasks con-

currently, which can introduce latency in obtaining global states.

Consequently, each instance might utilize outdated information

to make fuzzing decisions, leading to suboptimal strategies from a

global perspective. Over time, the accumulation of these subopti-

mal strategies can significantly diminish the overall effectiveness of

fuzzing. Consequently, real-time state synchronization is necessary

to enhance the efficiency of parallel fuzzing.

State Synchronization Architecture. Seed corpus and coverage

bitmap are the two primary states for fuzzing. The seed corpus

represents the discoveries made during the fuzzing process. It is

essential because fuzzers take the seeds in the corpus and mutate

them to generate new test cases. The coverage bitmap is the data

structure that indicates which parts of the code have been executed

during fuzzing. The bitmap plays a critical role in guiding mutation-

based fuzzers by determiningwhether a seed can identify uncovered

code and need to save for further mutation. It is also the basis for

prioritizing seeds for mutation. To obtain the latest state in real-

time, an intuitive idea is to utilize the architecture that only has one

coverage bitmap and a seed pool across all fuzzer instances. In this

way, any change in bitmap caused by new coverage discovered

by one instance can be immediately perceived by other fuzzer

instances. The challenge with this architecture lies in handling

race conditions in access/update seed pool and read/update bitmap.

To address that, as Figure 2 shows, we design the synchronization

architecture that has a global seed cache queue, a global seed pool,

and dual coverage bitmaps. We use a global lock to protect the seed

pool, since the occurrence of data races is limited, given that the

frequency of new seed discoveries is not high. To further mitigate

competition, we design a seed cache queue that can be used to

smooth the updates to the seed pool using task dispatch (see the next

section). However, concerning the global bitmap, each generated

seed requires reading it to verify if new seeds have been found,

which can result in frequent data races. Protecting the entire bitmap

with a single lock may lead to a significant decrease in overall

efficiency when the number of instances increases, as it can result

in frequent waits and contention for the lock.

The main issue is the unnecessary blocking when only using one

lock. In practice, most of the newly found basic blocks by different



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang

Fast Global Coverage Bitmap

Unit 1 Unit 2 Unit nUnit n-1

Accurate Global Coverage Bitmap Global Seed Pool

Seed Cache Queue

Instance 1
…

Instance 2 Instance 3 Instance n…

Task Scheduler

Calibration 
and Save

Taint and 
Mutate 

New
Seeds

Other
Seeds

Havoc 
Mutate Ask

Generated 
Seeds

New 
Seeds

Real-Time State Synchronization Load-Balanced Task Dispatch

Candidate 
Seeds

Figure 2: Dodrio parallelizes taint analysis based fuzzing via redundancy-free scheduling. The framework has two modules,

namely real-time state synchronization and load-balanced task dispatch. First, it utilizes dual coverage global bitmaps for

real-time state synchronization. Correspondingly, it has a global seed cache queue and a global seed pool. The fast global

bitmap, protected by fine-grained locks, is used to coarsely filter generated seeds to the cache queue, and an accurate bitmap is

used to further sift them to the pool. Moreover, it uses load-balanced task dispatch to distribute different fuzzing tasks across

multiple fuzzer instances. When idle instances request tasks, it dispatches saving tasks if there are candidate seeds in the cache

queue, or taint tasks if there are new seeds in the global seed pool. If neither condition is met, it dispatches havoc tasks.

instances at the same time are different. In addition, because the

blocks are randomly mapped into the bitmap, they are distributed in

different areas of the bitmap. Consequently, only using one lock to

guard the entire bitmap is unnecessary. In practice, two patterns can

be observed in the use of bitmaps by fuzzing: (1) new basic blocks

found by different instances at the same time are scattered over

different regions of the bitmap; (2) a relatively small percentage of

the large number of seeds generated can cover new basic blocks,

so it reads the covered bitmaps very frequently, while the write

operations are not very frequent. In conjunction with the seed

cache queue and global seed pool, we design dual coverage bitmaps

to alleviate data contention.

Dual Coverage Bitmaps. The dual coverage bitmap has a fast

coverage bitmap and an accurate coverage bitmap. Dodrio first

rapidly determines whether a seed has new coverage using the

fast coverage bitmap and pushes the seeds with new coverage into

the seed cache queue. Subsequently, the relatively few seeds in the

queue are further filtered by the accurate coverage bitmap. The

seeds that pass the filtering will be stored in the global seed pool.

The fast coverage bitmap utilizes fine-grained locks. We des-

ignate each fine-grained lock-protected region as a “unit”. The

fine-grained locks protect against the data races for each unit by

exploiting atomic operations. When one instance needs to update

some units while others need to access other units, they will have

no access conflicts. Even if they need to access a common region,

the lock will keep the process running smoothly. One problem here

is specifying memory orderings
1
, namely the way atomic opera-

tions synchronize memory. Here we mainly use the relaxed order,

namely not imposing an order among concurrent memory accesses.

Using strict memory orderings ensures sequential consistency, but

it may cost lots of time. In fuzzing, what matters is not leaving

out any seeds which results in new coverage. The bitmap is used

to detect the seeds which find new coverage. If a store operation

1
https://en.cppreference.com/w/cpp/atomic/memory_order

happens before a load operation, the bitmap could be updated suc-

cessfully without saving extra seeds. Otherwise, if a load operation

happens before a store operation, the bitmap could still be updated

successfully. Because we employ fine-grained locks in the fast cov-

erage bitmap, two seeds that find the same new blocks may both

be preserved. The reason is that newly found blocks may be dis-

tributed in different areas, which are protected by different locks

in the bitmap. The order and the delay of storing value may cause

different fuzzer instances to think they find different new coverage

in different areas. To eliminate the side effects, we also design an

accurate global coverage bitmap. It employs the traditional design,

namely synchronizing based on a global lock. With the fast global

coverage bitmap, Dodrio first quickly filters out seeds with new

code coverage from the large number of seeds generated and stores

them in the seed cache queue. Because the number of seeds in the

queue will be relatively few, using one global lock is acceptable.

3.2 Load-Balanced Task Dispatch

Load-balanced task dispatch involves effectively distributing fuzzing

tasks among a cluster of backend fuzzer instances. In parallel fuzzing,

load balancing should not only ensure timely task allocation to each

fuzzer instance to avoid idle waiting but also ensure that each in-

stance performs unique tasks.

To ensure prompt task allocation, we employ a proactive ap-

proach. When a fuzzer instance is free, it will actively request and

retrieve a task for execution. For parallel fuzzing that employs taint

analysis, there are mainly three kinds of tasks: 1 Multiple execu-

tions to calibrate seed information (e.g., coverage bitmap) and save

seeds to the global seed pool (referred to as calibration and save

task). 2 Taint analysis and corresponding mutations (referred to

as taint analysis and mutation task). 3 Random mutations using

traditional fuzzing techniques (referred to as havoc mutation task).

In tasks 2 and 3, an instance will immediately execute the seed it

mutated to detect if it has achieved new coverage. Once the task is

complete, the instance will proceed to request a new one.

https://en.cppreference.com/w/cpp/atomic/memory_order


Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free Scheduling FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

The tasks are determined based on the status of the seed cache

queue and seed pool. Algorithm 1 illustrates the process of task

dispatch. A fuzzer instance will continuously retrieve tasks based

on the global seed pool and the cache queue, and then execute the

task (Lines 1-4). In retrieving a task, when the seed cache queue is

not empty, the fuzzing instance retrieves the seed at the front of

the queue and determines whether it can overwrite the new basic

block based on the global coverage bitmap (Lines 6-9). If true, the

algorithm generates and assigns a calibration and saving task (Lines

10-12). If not, the algorithm attempts the next seed in the queue

until the queue is empty.

If the cache queue is empty, the algorithm randomly selects a

seed from the global seed pool for mutation. If this seed has not

undergone mutation with taint analysis, the algorithm generates

and assigns a taint analysis and mutation task (Lines 16-19). This

task aims to infer the taints with path-aware methods within the

seed and perform mutations accordingly, exploring potential vul-

nerabilities or coverage paths. If taint analysis has already been

performed, the algorithm generates and assigns a havoc mutation

task. The havoc mutation task follows the algorithm of AFL [41] and

requires specifying the number of mutations based on the seed’s

execution information. Additionally, it needs to prepare other seeds

for cross-mutation from the seed pool.

Algorithm 1: Load-Balanced Task Dispatching

Input :Seed queue: 𝑞𝑢𝑒𝑢𝑒 ,

Global seed pool: 𝑝𝑜𝑜𝑙 ,

Accurate coverage bitmap: 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝑐𝑜𝑣

1 while True do

2 𝑡𝑎𝑠𝑘 = retriveTask(𝑞𝑢𝑒𝑢𝑒 , 𝑝𝑜𝑜𝑙 , 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑡𝑒_𝑐𝑜𝑣);

3 executeTask(𝑡𝑎𝑠𝑘);

4 end

5 Function retriveTask(𝑞𝑢𝑒𝑢𝑒 , 𝑝𝑜𝑜𝑙 , 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑡𝑒_𝑐𝑜𝑣):
6 𝑠𝑒𝑒𝑑 = popFront(𝑞𝑢𝑒𝑢𝑒);

7 while 𝑠𝑒𝑒𝑑 ≠ 𝑁𝑈𝐿𝐿 do

8 𝑐𝑜𝑣 = run(𝑠𝑒𝑒𝑑);

9 if hasNew(𝑐𝑜𝑣, 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝑐𝑜𝑣) then
10 𝑡𝑎𝑠𝑘 = calibrateAndSave(𝑠𝑒𝑒𝑑 , 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝑐𝑜𝑣);

11 return 𝑡𝑎𝑠𝑘 ;

12 end

13 𝑠𝑒𝑒𝑑 = popFront(𝑞𝑢𝑒𝑢𝑒);

14 end

15 𝑠𝑒𝑒𝑑=select(𝑝𝑜𝑜𝑙);

16 if hasNotTaintMutated(𝑠𝑒𝑒𝑑) then

17 𝑡𝑎𝑠𝑘 = taintAndMutate(𝑠𝑒𝑒𝑑);

18 return 𝑡𝑎𝑠𝑘 ;

19 end

20 𝑡𝑎𝑠𝑘 = havocMutate(𝑠𝑒𝑒𝑑 , 𝑝𝑜𝑜𝑙);

21 return 𝑡𝑎𝑠𝑘 ;

22 End Function

4 IMPLEMENTATION

Dodrio is implemented in Rust. As Figure 2 shows, it has mainly

twomodules, namely real-time state synchronizer and load-balanced

task dispatcher.

The real-time state synchronizermaintains a fast coverage bitmap

and an accurate bitmap. Both bitmaps are stored in shared memory

to support zero-copy communication. The fast bitmap is imple-

mented as an array of atomic 64-bit (i.e., the unit length in Figure 2)

unsigned integers, which is shared among all instances of the fuzzer.

Each fuzzer instance is equipped with a fast coverage updater re-

sponsible for reading and updating the fast coverage bitmap. These

updates employ relaxed memory orderings when loading and stor-

ing values. Whenever new coverage is detected, the corresponding

candidate seed is added to the seed cache queue. Furthermore, the

accurate bitmap is implemented as an array of 8-bit integers, with

the same size as the fast bitmap. To ensure thread safety and consis-

tent updates, it is protected by an atomic reference counter and a

mutex. The atomic reference counter guarantees that concurrent ac-

cess to the accurate bitmap is synchronized and prevents data races.

The mutex provides exclusive access to the accurate bitmap, allow-

ing only one instance to modify it at a time. The accurate bitmap is

updated by an accurate bitmap updater within each fuzzer instance.

Besides, the real-time state synchronizer also maintains a global

seed pool and a seed cache queue. They are also protected by atomic

reference counters and mutexes.

The task scheduler dispatches tasks according to Algorithm 1.

The calibration and save task, havoc mutation task, and seed selec-

tion follow the algorithm of AFL. We also implement the fork server

of AFL for seed execution. Dodrio supports packaging taint anal-

ysis and mutation tasks as a plugin in a separate dynamic shared

object (DSO) file, which can be dynamically loaded and linked

to the main program at runtime. It requires the implementation

of basic predefined interfaces, such as initialization, analysis, and

mutation. Adapting a new fuzzer only requires converting its muta-

tion methods to such interfaces. Currently, we have implemented

parallelization for FairFuzz and PATA.

5 EVALUATION

We evaluated Dodrio in terms of its ability to scale taint-analysis

fuzzers to parallel mode. Our evaluation aims to answer the follow-

ing questions:

• RQ1: How does Dodrio perform compared to other paral-

lelization techniques?

• RQ2:What is the contribution of Dodrio’s modules?

• RQ3: How is the scalability of Dodrio with respect to in-

creasing CPU cores?

5.1 Evaluation Setup

Experiment Environment. The overall experiments were con-

ducted on a machine running 64-bit Ubuntu 20.04 with 128 cores

(AMD EPYC 7742 Processor @ 2.25 GHz) and 504 GiB of main

memory. We maintained identical configurations for each fuzzer

and target application. Each fuzzer was executed with 4 CPU cores

continuously for a duration of 24 hours. The binaries for all fuzzers

were built with AddressSanitizer (ASAN) [29] enabled.

Benchmark and Initial Seeds. We perform evaluation on pro-

grams that exist in both widely-used benchmarks: Google’s fuzzer-

test-suite [2] and FuzzBench [1]. The target programs are carefully

picked by Google, which consists of a comprehensive set of popular

real-world programs. For the target programs, all fuzzers used the



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang

0

0.2

0.4

0.6

0.8

1

1.2

FairFuzz PAFL-FairFuzz YePAFL-FairFuzz

0

0.2

0.4

0.6

0.8

1

1.2

PATA PAFL-PATA YePAFL-PATA

FairFuzz PATA

Figure 3: Normalized execution time required by Dodrio to cover the same basic blocks as other parallelization methods on

FairFuzz (left) and PATA (right) in 24 hours. The X-axis is the target programs, and the Y-axis is the ratio between the execution

times required for achieving the same coverage (i.e., the maximum coverage achieved by the other technologies). A bar below

the red line indicates a speed improvement in covering basic blocks for Dodrio than other parallelization methods.

same seeds collected from the data set. In cases where there were

no available seeds, an empty seed was used as a fallback option.

Performance Metrics. During the evaluation, we assessed the

performance of the fuzzers using three key metrics: the speed in

covering basic blocks, the number of basic blocks, and the num-

ber of triggered bugs. To ensure a fair and consistent comparison

among different fuzzers that may have distinct representations

of fuzzing states, we adopted a unified approach to identify basic

blocks. Specifically, we collected and executed the seeds generated

by each fuzzer during the evaluation. We utilized LLVM tools to

identify basic blocks to count the unified number.

Another important aspect we considered during the evaluation

was the number of bugs triggered by each fuzzer. However, differ-

ent fuzzers employ various methods to distinguish unique crashes,

which can affect the reported numbers. To ensure a fair and ac-

curate comparison, we followed a two-step process. Firstly, we

collected the crash inputs that were triggered during the fuzzing

process. These inputs were then re-executed, and the call stack

was backtracked to filter out any redundant or overlapping crashes.

Moreover, to enhance the accuracy of bug identification, we con-

ducted a manual analysis of the identified bugs. This manual analy-

sis allowed us to eliminate duplicate entries and ensure that each

reported bug was unique and distinct.

5.2 Comparison With Existing Parallelizations

To evaluate the effectiveness of redundancy-free parallelization, we

compare Dodrio against the classical parallel mode of AFL [41], and

the two state-of-the-art parallelization works, namely PAFL [18]

and YePAFL
2
[38]. For the parallel mode of AFL, each instance

manages its own seed pool and regularly synchronizes the seeds

from the pools of other instances. PAFL regularly synchronizes

global and local guiding information and dispatches fuzzing tasks

by dividing bitmap statically. YePAFL is also an advanced paral-

lel fuzzing work, which optimizes parallel fuzzing by designing

2
It is also called PAFL in its paper. To make a better distinction, we use YePAFL to

denote it.

global coverage bitmap and on-demand synchronization. To demon-

strate the effectiveness of these techniques on parallelizing taint

based fuzzers, we applied them to parallelize FairFuzz [15] and

PATA [21]. FairFuzz leverages byte-level taint analysis to deduce

mutation operators for each byte, ensuring the preservation of rare

branch reachability. PATA employs path-aware taint analysis to

identify critical bytes for each access of a constraint. Specifically,

for FairFuzz, we conducted a comparative analysis between Do-

drio-FairFuzz, FairFuzz, PAFL-FairFuzz, and YePAFL-FairFuzz.

For PATA, we compare Dodrio-PATA against PATA, PAFL-PATA,

and YePAFL-PATA. Since some of these works are not available, we

re-implemented these parallelization works based on the papers de-

scribing these techniques. The evaluation was performed on target

projects with fuzzing 24 hours on 4 CPU cores.

Speed in Covering Basic Blocks. Figure 3 shows the comparison

of time required by Dodrio to reach the same coverage as other

parallelization techniques. The left and right sides represent the

speedup of Dodrio on the parallelizations of FairFuzz and PATA,

respectively, compared to other parallelization methods. The blue,

red, and green bars represent the parallelization of Dodrio in

comparison to other methods to parallelize taint analysis based

fuzzers, including theAFL classical parallel mode, the parallelization

of PAFL, and the parallelization of YePAFL, respectively. The Y-axis

of the graph represents the ratio of the time for Dodrio to reach the

same coverage (i.e., the maximum coverage achieved by the other

technologies) to the time for the other technologies. A bar below

the red line indicates a speed improvement in covering basic blocks

for Dodrio than other parallelization methods in experiments.

The left side of the figure illustrates that, on average, Dodrio-

FairFuzz achieved a time ratio of 0.24, 0.20, and 0.20 compared

to FairFuzz, PAFL-FairFuzz, and YePAFL-FairFuzz, respectively,

when applied to FairFuzz. It means Dodrio-FairFuzz achieved an

average speedup of 325%, 393%, and 398% in covering basic blocks rel-

ative to the parallelization of FairFuzz, PAFL-FairFuzz, and YePAFL-

FairFuzz, respectively. In other words, Dodrio takes only 5.64, 4.86,

and 4.82 hours, respectively, to cover the maximum coverage that

other technologies can achieve in 24 hours. Similarly, the right side

of the graph demonstrates that, on average, Dodrio achieved a



Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free Scheduling FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Table 1: Number of basic blocks covered by different parallelization technologies on FairFuzz and PATA in 24 hours

Project FairFuzz

PAFL- YePAFL- Dodrio-

PATA

PAFL- YePAFL- Dodrio-

FairFuzz FairFuzz FairFuzz PATA PATA PATA

freetype2 12718 12682 12735 13017 16033 16351 14511 16721

harfbuzz 9498 9698 9320 10332 10172 10003 10557 10596

json 1579 1564 1583 1603 1603 1601 1603 1603

lcms 1649 1653 1649 1660 2614 2701 2698 2810

libjpeg 2369 2458 2375 2484 2826 2838 2840 2859

libpng 1191 1182 1172 1203 1371 1352 1373 1432

libxml2 6118 4754 4624 9562 9562 9552 9921 11160

openssl 5305 5304 5304 5571 5569 5569 5589 5656

proj4 961 941 828 2157 5393 5335 5357 5398

re2 5632 5613 5624 5717 5722 5711 5717 5770

sqlite 1805 1805 1805 1808 1808 1808 1808 1808

vorbis 2042 2050 2050 2063 2102 2092 2104 2121

woff2 3034 3011 3006 3050 2966 3117 3003 3168

Total 53901 52715 52075 60227 67741 68030 67081 71102

Improvement 12%↑ 14%↑ 16%↑ – 5%↑ 5 %↑ 6%↑ –

time ratio of 0.24, 0.25, and 0.45 compared to the parallelization of

AFL, PAFL, and YePAFL, respectively, when applied to PATA. This

translates to Dodrio achieving an average speedup of 323%, 306%, and

123% in terms of basic block coverage relative to the parallelization of

PATA (i.e., AFL classical parallel mode), PAFL, and YePAFL, respec-

tively. In other words, Dodrio-PATA requires 5.68, 5.92, and 10.79

hours to achieve the maximum coverage of PATA, PAFL-PATA,

YePAFL-PATA in 24 hours, respectively.

To investigate the speed-up in the whole process of parallel

fuzzing, we use Figure 4 to demonstrate the average speed-up ratio

in 3, 6, 12, and 24 hours with respect to classical AFL parallel mode,

PAFL’s parallelization, and YePAFL’s parallelization, respectively. It

illustrates that Dodrio consistently outperformed other technolo-

gies throughout the entire process. The bars representing 3, 6, and

12 hours indicate the average speedup observed during shorter ex-

periments. During these time intervals, fuzzing is typically not fully

saturated. Fluctuations in the acceleration ratios can be observed

within these phases due to random factors, such as the selection of

0

0.2

0.4

0.6

0.8

1

1.2

FairFuzz PAFL-FairFuzz YePAFL-FairFuzz PATA PAFL-PATA YePAFL-PATA

3h 6h 12h 24h

Figure 4: Normalized execution time required by Dodrio to

reach the same coverage as other methods in 3, 6, 12, and 24

hours. The X-axis is parallelization methods, and the Y-axis

is the average ratio between the execution times required

for achieving the same coverage. A bar below the red line

indicates a speed improvement for Dodrio than others.

seeds for mutation, which can influence acceleration. Nevertheless,

Dodrio still manages to achieve a speedup in covering basic blocks.

Since the taint analysis based fuzzing algorithms used for the

different parallelization technologies are the same, the speedup is

mainly due to the reduction of redundant behaviors by the paral-

lelization of Dodrio. PAFL and YePAFL improve parallel fuzzing

by synchronizing coverage information with a global bitmap and

local bitmaps in each instance. Nevertheless, their parallel mode

still follows the common methods of AFL, namely, maintaining

seed corpus for each instance and synchronizing seeds regularly.

The seed synchronization consumes additional resources, and its

latency may prevent a single instance from selecting the latest seed,

resulting in a decrease in efficiency. Moreover, since each instance

selects its seed for mutation separately, different instances may

select the same seed for taint analysis or mutation, which results

in duplication and waste of resources.

Differently, Dodrio utilizes real-time synchronization, which

only contains one global seed pool. Real-time synchronization al-

lows individual instances to get the global state in real time. Based

on that, Dodrio dispatches diverse tasks to different fuzzers accord-

ing to the global state. Since there is only one seed pool, redundant

behavior can be reduced by accurately assigning different tasks

to different fuzzing instances in the global state. As a result, the

parallel mode of the taint analysis based fuzzing gains speed in

covering the basic blocks, and the overall efficiency is improved.

Basic Blocks. Table 1 shows the number of blocks covered by

each parallelization method. Dodrio-FairFuzz covered 12%, 14%,

and 16% more basic blocks compared to FairFuzz, PAFL-FairFuzz,

and YePAFL-FairFuzz respectively. Also, Dodrio-PATA covered

5%, 5%, and 6% more basic blocks compared to PATA, PAFL-PATA,

and YePAFL-PATA respectively. The improvement is consistent

across individual programs, as Dodrio covered the highest number

of program basic blocks, whether for FairFuzz or PATA.

Despite no changes to the algorithms of the fuzzers themselves,

Dodrio manages to drive FairFuzz and PATA to cover more basic



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang

Table 2: Number of bugs triggered by different parallelization technologies on FairFuzz and PATA in 24 hours

Project FairFuzz

PAFL- YePAFL- Dodrio-

PATA

PAFL- YePAFL- Dodrio-

FairFuzz FairFuzz FairFuzz PATA PATA PATA

harfbuzz 0 0 0 0 0 0 0 1

json 1 1 1 2 2 2 1 2

lcms 1 1 1 1 1 1 1 1

libxml2 1 2 1 2 2 2 1 4

re2 0 0 0 1 1 1 1 2

woff2 1 1 1 1 1 1 1 1

Total 4 5 4 7 7 7 5 11

blocks in parallel mode. This is mainly due to the increased speed

in covering basic blocks of Dodrio. By covering basic blocks faster,

Dodrio enables the underlying taint analysis based fuzzing meth-

ods to focus on uncovered new logical areas of code earlier, and

thus achieve higher coverage.

It is noted that some projects like sqlite show only minimal

improvement. This is because the fuzzing algorithm has reached sat-

uration during the 24-hour parallel experiment, and the number of

covered basic blocks cannot be further increased by simply increas-

ing the effective execution iterations. The table also shows that the

improvement in covered basic blocks on FairFuzz is higher than

PATA. It is because the algorithm of FairFuzz has higher random-

ness than PATA, requiring more effective execution iterations to

achieve the condition of covering basic blocks. The requirement for

more effective execution iterations provides Dodrio with a greater

improvement potential in terms of covering basic blocks. Moreover,

within 24 hours, the method of PATA may reach saturation and has

found most of the basic blocks it can cover.

0%

5%

10%

15%

20%

25%

30%

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 24h

FairFuzz PATA

Figure 5: Coverage improvement by Dodrio on FairFuzz and

PATA within 24 hours.

Nevertheless, during the early stages of the testing process when

the algorithm has not yet reached saturation, Dodrio can still

achieve greater improvements in coverage of basic blocks. Figure 5

shows the coverage improvement by Dodrio on FairFuzz and

PATA within 24 hours. It shows that in the first 4 hours, Dodrio

has achieved coverage improvements of over 10% compared to

using the classical parallel mode of PATA.

Bug Triggering. Table 2 presents the number of bugs triggered

by each parallelization technology on FairFuzz and PATA. The

identification of bugs involves a comparison of the call stack and

the execution of manual analysis to differentiate them. According

to the table, FairFuzz, PAFL-FairFuzz, YePAFL-FairFuzz, Dodrio-

FairFuzz, PATA, PAFL-PATA, YePAFL-PATA, and Dodrio-PATA

triggered 4, 5, 4, 7, 7, 7, 5, and 11 bugs, respectively.

The improvement in speed and coverage increases Dodrio’s

possibility to help FairFuzz and Dodrio of finding bugs. Do-

drio-FairFuzz found more bugs than PAFL-FairFuzz and YePAFL-

FairFuzz because it finds more basic blocks in 24 hours and it

increases the possibility of triggering logic in deep states. With

path-aware taint analysis, PATA and most of its parallelization

found more bugs than FairFuzz series. YePAFL tries to reduce

synchronization overhead. Its master node synchronizes the seeds

from each slave node, and the slave nodes only synchronize from

the master node. However, this approach exacerbates latency and

YePAFL-PATA finds fewer bugs than PATA. By reducing redun-

dancy and increasing the effective coverage of program code logic,

Dodrio enhances the coverage of basic blocks, enabling it to dis-

cover more bugs compared to other parallelization methods.

5.3 Contribution of Modules

To evaluate each module, we implemented two variations of Do-

drio-PATA: Dodrio-disreal and Dodrio-distask. Dodrio-disreal

disables real-time state synchronization, which relies on fast and ac-

curate coverage bitmaps, and instead utilizes a single global bitmap

along with a lock mechanism to prevent data races. Dodrio-distask

disables load-balanced task dispatching, which assigns tasks based

on the global state, and instead employs random dispatching tasks.

Note that tasks may be duplicated in different instances. For simplic-

ity, we use Dodrio to represent Dodrio-PATA in this subsection.

0

0.2

0.4

0.6

0.8

1

1.2

Dodrio-disreal Dodrio-distask

Figure 6: The execution time required by Dodrio to reach

the same coverage as Dodrio-disreal and Dodrio-distask in

24 hours. The X-axis is the target programs, and the Y-axis is

the ratio between the execution times required for achieving

the same coverage. A bar below the red line indicates a speed

improvement for Dodrio than others.



Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free Scheduling FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Figure 6 shows the execution time required by Dodrio to reach

the same coverage as Dodrio-disreal and Dodrio-distask in 24

hours. In the figure, a bar below the red line indicates a speed im-

provement for Dodrio than others. On average, Dodrio requires

9.97 and 5.95 hours to cover the same number of basic blocks cov-

ered by Dodrio-disreal and Dodrio-distask in 24 hours with 4

cores. In other words, Dodrio improves Dodrio-disreal and Do-

drio-distask about 141% and 303% in speed of covering basic blocks,

respectively. The results indicate that both modules of Dodrio sig-

nificantly contribute to accelerating the discovery of basic blocks

during fuzzing process.

Table 3: Number of basic blocks covered by Dodrio-disreal,

Dodrio-distask, and Dodrio in 24 hours

Project Dodrio-disreal Dodrio-distask Dodrio

freetype2 16073 13667 16721

harfbuzz 10344 4834 10596

json 1603 1603 1603

lcms 2599 2453 2810

libjpeg 2815 2400 2859

libpng 1412 1410 1432

libxml2 9552 5318 11160

openssl 5569 5278 5656

proj4 5349 5209 5398

re2 5674 5680 5770

sqlite 1808 1808 1808

vorbis 2104 2034 2121

woff2 3100 2481 3168

Total 68002 54175 71102

Improvement 5%↑ 31%↑ –

Table 3 shows the number of basic blocks covered by Dodrio-

disreal, Dodrio-distask, and Dodrio in 24 hours. It illustrates that

Dodrio finds 5% and 31% more basic blocks than Dodrio-disreal

and Dodrio-distask, respectively. It is worth noting that Dodrio-

disreal covers more basic blocks than Dodrio-distask due to the

reduced redundant behavior. Although Dodrio-disreal introduces

some wait time by using only one global lock to update the global

coverage bitmap, the task dispatching module still minimizes its

redundant behavior in parallel mode. The results show that both

real-time state synchronization and load-balanced task dispatching

are important for the effectiveness of Dodrio.

5.4 Scalability of Dodrio

To evaluate the scalability of redundancy-free parallelization, we

compared Dodrio-PATA against PATA (using the classical parallel

model) on tested programs with 4, 8, 16, 32, and 64 cores, for a

total of 24 𝑐𝑜𝑟𝑒 ∗ ℎ𝑜𝑢𝑟𝑠 . Table 4 shows the improvements of basic

blocks found by Dodrio-PATA compared to PATA. It indicates that

when using the same resources, Dodrio-PATA outperforms PATA

in terms of the number of covered basic blocks using 4, 8, 16, 32,

and 64 CPU cores, with respective increases of 4%, 8%, 12%, 17%,

and 35% on average. The results indicate that as the number of CPU

cores increases, the improvement in the number of covered basic

blocks also increases when compared to PATA. From the table, We

can also find that the improvements on some projects are higher

than others. We investigate them and find that they execute test

cases rather slowly and will cost more time for synchronization.

Table 4: Improvement in the number of covered basic blocks

for Dodrio-PATA compared to PATA with 4, 8, 16, 32, and 64

cores for a total of 24 core∗hours

Project 4 8 16 32 64

freetype2 29% 37% 56% 79% 84%

harfbuzz 2% 11% 27% 34% 31%

json 0% 0% 0% 0% 0%

lcms 13% 36% 39% 49% 181%

libjpeg 0% 0% 13% 14% 8%

libpng 3% 3% 3% 3% 17%

libxml2 2% 11% 11% 11% 47%

openssl 0% 0% 0% 0% 0%

proj4 0% 2% 5% 5% 50%

re2 1% 1% 1% 0% 2%

sqlite 0% 0% 0% 0% 0%

vorbis 1% 1% 0% 27% 26%

woff2 0% 1% 2% 3% 5%

Average 4% 8% 12% 17% 35%

Figure 1 in Section 2 shows the trend of the total number of basic

blocks covered on tested projects by PATA with the same resources

(24 𝑐𝑜𝑟𝑒 ∗ ℎ𝑜𝑢𝑟𝑠) as cores increase from 1 to 64. It demonstrates

that Dodrio is able to maintain a stable number of discovered basic

blocks as the number of CPU cores increases. When adding more

cores, the classical parallel fuzzing may waste resources because of

the repeated saved seeds and repeated actions. Differently, Dodrio

synchronizes the global fuzzing states in real-time with limited data

race to avoid repeated saving seeds. Furthermore, through load-

balanced task dispatching, Dodrio intelligently assigns appropriate

tasks to different fuzzer instances, preventing redundant mutations

or analyses from occurring. As a result, when adding more cores,

Dodrio can make greater improvements in coverage for finding

basic blocks compared to the classical parallel mode.

6 LESSONS LEARNED

In this section, we introduce some lessons learned on parallelizing

taint analysis based fuzzing.

Decreasing redundant behavior is a practical way to im-

prove the efficiency of parallel fuzzing. The redundant behav-

iors mainly manifested in the repetitive analysis and mutation of

the same seeds in different instances. As a result, many instances

will repeatedly produce the same outputs, and the resources are

wasted. Reducing redundant behaviors helps different instances

achieve varied coverage, thereby enhancing overall effectiveness.

Distributing tasks in a global perspective aids in reducing

redundant behavior. Distributing tasks based on a global view

(e.g., global seed pool and bitmap coverage) ensures that different

instances perform different behaviors, thus the redundant behavior

can be reduced. In addition to task assignment, there are other ways

to reduce redundant behavior, such as assigning different initial

seeds to different fuzzy test instances. However, this approach can

fail quickly due to seed synchronization.



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang

The parallelization design should consider the compatibil-

ity with the technology (e.g., taint analysis) used in a fuzzer.

The parallelization of Dodrio does not affect the internal taint

analysis algorithms. By utilizing task dispatch, the taint analysis

could be conducted in a load-balanced way. Besides taint analysis,

redundancy-free scheduling could also be utilized to parallelize

other resource-intensive analysis techniques.

7 RELATEDWORK

Mutation-Based Fuzzing.Mutation-based fuzzing typically en-

compasses three steps: coverage instrumentation, seed selection,

and seed mutation. AFL [41] is a popular fuzzer. It instruments code

to track branch coverage and implements essential selection and

mutation operators. CollAFL [12] introduces an instrumentation

strategy to avoid collision in coverage feedback. AFLFast [6] and

Entropic [5] improve seed selection to select seeds that are most

helpful to discover new behaviors for mutation. For seed muta-

tion, MOpt [23] collects information on mutation operators and

schedules them. Many fuzzers [19, 27, 31, 33, 40] combine symbolic

execution to help fuzzing to pass some complicated constraints.

Many fuzzers [4, 7, 11, 21, 28, 39] utilize taint analysis to assist

fuzzing, which will be introduced in the following texts. On the

other hand, many works focus on improving fuzzing speed by im-

proving instrumentation [24, 34, 35, 43]. Untracer [24] removes the

instrumentation for tracing basic blocks that have been explored.

Zeror [43] introduces a self-modifying tracing mechanism to pro-

vide zero-overhead instrumentation. Odin [35] provides on-demand

instrumentation to dynamically adjust instrumentation on the fly.

Dodrio focuses on fuzzing parallelization. Its approach is orthog-

onal to the fuzzing strategies and can parallelize mutation-based

fuzzers. It accelerates parallel fuzzing in covering basic blocks by re-

ducing redundancy actions, rather than optimizing instrumentation

to improve execution speed.

Taint Analysis Based Fuzzing. Taint analysis assists fuzzing by

identifying critical bytes that influence the branching behavior, and

fuzzers can selectively mutate them to improve efficiency. Taint

analysis can be categorized into propagation-based and inference-

based approaches. Propagation-based taint analysis [7, 28] assigns

distinct labels to each input byte and propagates these labels us-

ing predefined propagation rules during execution. VUzzer [28]

utilizes taint analysis to identify the bytes associated with magic

value validations. Angora [7] tracks the bytes propagated into each

path constraint and strategically mutates these bytes for solving

constraints. Inference-based taint analysis [4, 11, 15, 21, 39] infers

the critical bytes related to specific constraints by changing in-

put bytes and monitoring program state changes. Redqeen [4]

specifically targets the identification and resolution of magic values

and checksums. GreyOne [11] infers taint by mutating seeds and

monitoring changes in the values of variables associated with path

constraints. PATA [21] employs a path-aware taint inference tech-

nique, which enables a more granular analysis of taint propagation

for each access to the constraint variable.

Although these fuzzers showcase effective mutation strategies,

their throughput is still limited by the absence of parallel support.

As a complement, Dodrio focuses on parallelizing the taint analy-

sis process. Through real-time state synchronization, all instances

operate as a cohesive unit, ensuring seamless coordination and

cooperation. The distribution of computational workload among

multiple instances enables each instance to undertake distinct tasks,

thereby preventing redundant behavior and promoting efficiency.

Parallel Fuzzing. Conventional parallel fuzzing like AFL [41] co-

ordinates different fuzzing processes by synchronous input seeds

on a regular basis. Based on that, many fuzzers try to optimize

synchronization to reduce resource costs in synchronization by

carefully designing synchronization mechanisms. YePAFL’s master

node pulls the seed queue of each slave node and the slaves synchro-

nize only from the master node. 𝜇Fuzz [9] breakdowns fuzzing loop

into concurrent microservices. It partitions the state into different

services to avoid synchronization. UltraFuzz [45] uses a database to

synchronize fuzzing information from distributed instances. Seed

synchronization is also a way to utilize the capabilities of different

fuzzers, which is called ensemble fuzzing. EnFuzz, Cupid, and Col-

labFuzz [8, 13, 25] ensemble diverse fuzzers to increase the ability to

generate seeds. Moreover, many fuzzers attempt to partition fuzzing

tasks and distribute them among instances [9, 16, 18, 26, 30, 38, 44].

PAFL [18] synchronizes guiding information and divides tasks based

on the bitmap to avoid overlapping actions. AFLTeam [26] and AFL-

EDGE [36] distribute mutually exclusive tasks to different instances

by dividing the call or control flow graph with static analysis. In

addition, some techniques speed parallel fuzzing by improving im-

plementations at low level. For example, Xu [37] proposes several

new primitives to speed up AFL in parallel mode.

Dodrio aims to maintain the parallel fuzzing performance as

close as possible to that of the single-core fuzzing test with the

same resources. It requires access to accurate global information in

real time and proper task distribution. Most parallel fuzzers (e.g.,

PAFL and YePAFL) and ensemble fuzzers (e.g., EnFuzz and Cupid)

maintain coverage bitmap for each instance and they will have a

delay in state synchronization. Differently, Dodrio maintains two

global coverage bitmaps to ensure real-time synchronization. Unlike

PAFL, AFLTeam, and AFL-EDGE, Dodrio does not partition parallel

tasks based on bitmaps or control flow graphs. Instead, it acquires

the tasks needed to be executed in the single-core algorithm based

on the global state and directly assigns them to idle instances.

8 CONCLUSION

This paper presents Dodrio, a parallel fuzzing framework that aims

to reduce the redundant behaviors in parallel fuzzing and improve

performance. First, it uses real-time synchronization to update the

global state. Second, it utilizes load-balanced task dispatching to al-

locate different tasks to different instances. Dodrio outperforms the

classical parallel mode and state-of-the-art parallelization fuzzing

work PAFL and YePAFL on tested real-world programs in speeds in

covering basic blocks, covered basic blocks, and bug triggering. In

our future work, we plan to utilize Dodrio to parallelize symbolic

execution based fuzzers to solve difficult constraints.

ACKNOWLEDGMENTS

This research is sponsored in part by the National Key Research

and Development Project (No. 2022YFB3104000), NSFC Program

(No. 62302256, 92167101, 62021002) and China Postdoctoral Science

Foundation (2023M731953).



Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free Scheduling FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES

[1] 2020. FuzzBench: Fuzzer Benchmarking as a Service. https://security.googleblog.

com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html. [Online; ac-

cessed June 12, 2024].

[2] 2020. Fuzzer-test-suite: Set of tests for fuzzing engines. https://github.com/

google/fuzzer-test-suite. [Online; accessed June 12, 2024].

[3] 2022. Scaling. https://hpc-wiki.info/hpc/Scaling. [Online; accessed June 12,

2024].

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..

In NDSS, Vol. 19. 1–15.

[5] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. 2020. Boosting fuzzer

efficiency: An information theoretic perspective. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 678–689.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 1032–1043.

[7] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.

In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May

2018, San Francisco, California, USA. IEEE Computer Society, 711–725.

[8] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin Zhou, Xun

Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization

among Diverse Fuzzers. In 28th USENIX Security Symposium, USENIX Security

2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick

Traynor (Eds.). USENIX Association, 1967–1983.

[9] Yongheng Chen, Rui Zhong, Yupeng Yang, Hong Hu, Dinghao Wu, and Wenke

Lee. 2023. 𝜇FUZZ: Redesign of Parallel Fuzzing using Microservice Architecture.

In Proceedings of the 32nd USENIX Security Symposium (USENIX Security’23).

[10] JoeWDuran and Simeon Ntafos. 1981. A report on random testing. In Proceedings

of the 5th international conference on Software engineering. IEEE Press, 179–183.

[11] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,

and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th

USENIX Security Symposium (USENIX Security 20). USENIX Association, Boston,

MA. https://www. usenix. org/conference/usenixsecurity20/presentation/gan.

[12] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and

Zuoning Chen. 2018. CollAFL: Path sensitive fuzzing. In 2018 IEEE Symposium

on Security and Privacy (SP). IEEE, 679–696.

[13] Emre Güler, Philipp Görz, Elia Geretto, Andrea Jemmett, Sebastian Österlund,

Herbert Bos, Cristiano Giuffrida, and Thorsten Holz. 2020. Cupid: Automatic

fuzzer selection for collaborative fuzzing. In Annual Computer Security Applica-

tions Conference. 360–372.

[14] Honggfuzz 2024. Security oriented fuzzer with powerful analysis options. https:

//github.com/google/honggfuzz. Accessed: June 12, 2024.

[15] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 475–485.

[16] Yang Li, Han Zou, and Hongzhi Liu. 2020. A High Efficient Technology for

Parallel Fuzzing. In Proceedings of the 2020 4th High Performance Computing and

Cluster Technologies Conference & 2020 3rd International Conference on Big Data

and Artificial Intelligence. 29–33.

[17] Jie Liang, Yaoguang Chen, ZhiyongWu, Jingzhou Fu, MingzheWang, Yu Jiang, Xi-

angdong Huang, Ting Chen, Jiashui Wang, and Jiajia Li. 2023. Sequence-oriented

DBMS fuzzing. In 2023 IEEE 39th International Conference on Data Engineering

(ICDE). IEEE, 668–681.

[18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang

Sun. 2018. PAFL: extend fuzzing optimizations of single mode to industrial

parallel mode. In Proceedings of the 2018 ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE, USA, November 04-09, 2018. 809–814.

[19] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song,

and Kim-Kwang Raymond Choo. 2019. DeepFuzzer: Accelerated Deep Greybox

Fuzzing. IEEE Transactions on Dependable and Secure Computing (2019).

[20] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang. 2018. Fuzz testing in practice:

Obstacles and solutions. In 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE Computer Society, Los

Alamitos, CA, USA, 562–566.

[21] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,

Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with Path Aware Taint Analysis.

In 2022 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,

Los Alamitos, CA, USA. 154–170.

[22] Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu

Jiang. 2024. Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent

Transformation. In Proceedings of the IEEE/ACM 46th International Conference on

Software Engineering. 1–12.

[23] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In

28th USENIX Security Symposium (USENIX Security 19). 1949–1966.

[24] Stefan Nagy and Matthew Hicks. 2019. Full-speed fuzzing: Reducing fuzzing

overhead through coverage-guided tracing. In 2019 IEEE Symposium on Security

and Privacy (SP). IEEE, 787–802.

[25] Sebastian Österlund, Elia Geretto, Andrea Jemmett, Emre Güler, Philipp Görz,

Thorsten Holz, Cristiano Giuffrida, and Herbert Bos. 2021. Collabfuzz: A frame-

work for collaborative fuzzing. In Proceedings of the 14th European Workshop on

Systems Security. 1–7.

[26] Van-Thuan Pham, Manh-Dung Nguyen, Quang-Trung Ta, Toby Murray, and

Benjamin IP Rubinstein. 2021. Towards Systematic and Dynamic Task Allocation

for Collaborative Parallel Fuzzing. In 2021 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE, 1337–1341.

[27] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with

{SymCC}: Don’t interpret, compile!. In 29th USENIX Security Symposium

(USENIX Security 20). 181–198.

[28] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In

Proceedings of the Network and Distributed System Security Symposium (NDSS).

[29] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX

annual technical conference (USENIX ATC 12). 309–318.

[30] Congxi Song, Xu Zhou, Qidi Yin, Xinglu He, Hangwei Zhang, and Kai Lu. 2019.

P-fuzz: a parallel grey-box fuzzing framework. Applied Sciences 9, 23 (2019), 5100.

[31] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In

NDSS, Vol. 16. 1–16.

[32] Ari Takanen, Jared D Demott, and Charles Miller. 2008. Fuzzing for software

security testing and quality assurance. Artech House.

[33] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin

Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing cov-

erage with symbolic execution and guided fuzzing. In Proceedings of the 40th

International Conference on Software Engineering. ACM, 61–64.

[34] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and

Jiaguang Sun. 2021. RIFF: Reduced Instruction Footprint for Coverage-Guided

Fuzzing. In 2021 USENIX Annual Technical Conference. 147–159.

[35] MingzheWang, Jie Liang, Chijin Zhou, ZhiyongWu, Xinyi Xu, and Yu Jiang. 2022.

Odin: on-demand instrumentation with on-the-fly recompilation. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 1010–1024.

[36] Yifan Wang, Yuchen Zhang, Chenbin Pang, Peng Li, Nikolaos Triandopoulos, and

Jun Xu. 2021. Facilitating parallel fuzzing with mutually-exclusive task distribu-

tion. In Security and Privacy in Communication Networks: 17th EAI International

Conference, SecureComm 2021, Virtual Event, September 6–9, 2021, Proceedings,

Part II 17. Springer, 185–206.

[37] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing

New Operating Primitives to Improve Fuzzing Performance. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M. Thuraisingham,

David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 2313–2328.

[38] Jiaxi Ye, Bin Zhang, Ruilin Li, Chao Feng, and Chaojing Tang. 2019. Program

state sensitive parallel fuzzing for real world software. IEEE Access 7 (2019),

42557–42564.

[39] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng

Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better

Zero-Day Vulnerability Discovery. In ProFuzzer: On-the-fly Input Type Probing

for Better Zero-Day Vulnerability Discovery. IEEE.

[40] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A

Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX

Security Symposium (USENIX Security 18). 745–761.

[41] Michal Zalewski. 2015. American fuzzy lop.

[42] Mingrui Zhang, Chijin Zhou, Jianzhong Liu, Mingzhe Wang, Jie Liang, Juan Zhu,

and Yu Jiang. 2023. Daisy: Effective Fuzz Driver Synthesis with Object Usage

Sequence Analysis. In 2023 IEEE/ACM 45th International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 87–98.

[43] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed

up fuzzing with coverage-sensitive tracing and scheduling. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software Engineering.

858–870.

[44] Xu Zhou, Pengfei Wang, Chenyifan Liu, Tai Yue, Yingying Liu, Congxi Song,

Kai Lu, and Qidi Yin. 2020. Unifuzz: Optimizing distributed fuzzing via dynamic

centralized task scheduling. arXiv preprint arXiv:2009.06124 (2020).

[45] Xu Zhou, Pengfei Wang, Chenyifan Liu, Tai Yue, Yingying Liu, Congxi Song,

Kai Lu, Qidi Yin, and Xu Han. 2022. UltraFuzz: Towards Resource-saving in

Distributed Fuzzing. IEEE Transactions on Software Engineering (2022).

Received 2024-02-08; accepted 2024-04-18

https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://hpc-wiki.info/hpc/Scaling
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Dodrio Design
	3.1 Real-Time State Synchronization
	3.2 Load-Balanced Task Dispatch

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Comparison With Existing Parallelizations
	5.3 Contribution of Modules
	5.4 Scalability of Dodrio

	6 Lessons Learned
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

