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Abstract—Delays are inevitable in complex distributed envi-
ronments. Timeout mechanisms are commonly used to handle
unexpected failures in distributed systems. However, incor-
rect timeout handling or implementation errors in timeout
mechanisms can lead to system hang-ups or crashes. Such
timeout bugs may be crucial and pose a significant threat to
the availability and security of distributed systems.

In this work, we introduce Chronos, a general testing
framework for automatically detecting timeout bugs in dis-
tributed systems with deep-priority transient delays. First, we
propose general runtime delayed libraries that dynamically
inject fine-grained delays in a Distributed System Under Test
(DSUT). To effectively trigger delays and constantly explore
timeout bugs in deep paths, Chronos harnesses a deep-priority
guided fuzzing that dynamically generates high-quality delay
sequences in the runtime. Then, Chronos utilizes transient
delays to eliminate the time overhead caused by actual delays
and accelerate the test process. We implemented and evaluated
Chronos on four widely used distributed systems, including
ZooKeeper, MySQL-Cluster, HDFS, and Go-Ethereum. Com-
pared with the state-of-the-art techniques, Random, Brute-
Force, and Coverage-Guided fault injection, Chronos covers
26.40%, 21.69%, and 15.14% more timeout mechanism logic,
respectively. Furthermore, Chronos has detected 27 timeout
bugs in these real-world applications, which have been repaired
by the corresponding maintainers.

1. Introduction

Distributed systems are prone to various faults that may
occur at runtime. One of the most common faults is delays,
which can be caused by uncontrollable factors (e.g., net-
work traffic, resource monopolization, software bugs, etc.)
in complex distributed systems [1], [2]. To mitigate these
unexpected failures, various timeout mechanisms have been
proposed, ensuring the stability and reliability of distributed
systems. For instance, when a distributed node n1 sends a
request to another node n2, n1 can use the timeout mech-
anism to avoid infinite waiting in case n2 fails to respond.
In practice, most timeout mechanisms guarantee one of the
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most fundamental properties called availability [3], which
ensures that distributed systems can consistently provide
functional services uninterrupted.

Distributed systems are inherently complex, involving
numerous resources and nodes that communicate with each
other. To handle unexpected delays and maintain uninter-
rupted service provision, these systems require a significant
number of timeout mechanisms. However, due to this com-
plexity, it can be challenging to avoid incorrect handling or
implementation bugs in these timeout logics. Since timeouts
play a critical role in the operation of distributed systems,
any bugs can have severe consequences. They can result
in service unavailability, data loss, and even compromising
system security. As an example of real-world distributed
system failure, a bug [4] in Facebook’s platform is caused
by missing timeout checking. As a result, a widespread
outage affected the company’s own services as well as
many third-party sites that used Facebook’s authentication
services. Another example is ZOOKEEPER-3189 [5], which
caused ZooKeeper to stop responding to client requests,
leading to a massive outage of service disruption for several
hours. Attackers can easily exploit such bugs to conduct
distributed denial-of-service (DDoS) attacks, leading to sig-
nificant financial loss. Such bugs that break the availability
of distributed systems by errors in timeout mechanisms are
called Timeout Bugs.

The timeout mechanisms are challenging to test in reality
because such code is infrequently executed. To effectively
test these mechanisms, it is necessary to trigger more abnor-
mal delays than those occurring naturally during regular use.
Distributed system model checkers [6], [7], [8], [9] enumer-
ate the orders of non-deterministic events (including delays)
and suffer from the state space explosion problem. Software
fault injection (SFI) is a promising technique to test the
resilience and dependability of distributed systems [10],
[11]. Chaos engineering [12], [13], [14], [15], [16], such
as ChaosBlade [15], is a run-time injection technique that
randomly injects various faults into a running software
system at the OS level. However, the effectiveness of such
coarse-grained delay injection is limited, as it ignores lots of
context information, resulting in ineffective testing. Existing
compile-time fault injection approaches [17], [18], [19],
[20], [21] have shown promising results by injecting faults
at the source code level, effectively detecting hard-to-find



bugs. Tools [22], [23], [24] utilize bruteforce search to
explore the combinations of multiple fault blocks. How-
ever, they struggle to effectively explore the vast space of
a practical distributed system. To effectively explore the
huge state space, FIFUZZ [18] and CrashFuzz [25] employ
fuzzing technology to mutate the fault sequence according to
the runtime code coverage feedback, successfully detecting
numerous bugs in real-world programs. Nonetheless, code
coverage-guided algorithms may lead to the exploration of
many fault-irrelevant codes, causing inefficiency in explor-
ing fault-handling logic. Additionally, compile-time injec-
tion techniques often require manual efforts to identify fault
points, limiting their scalability and generality.

To effectively detect timeout bugs in distributed systems,
there are three main challenges: (1) The first challenge is to
provide a general method for precisely injecting fine-grained
delays in DSUTs. This can be difficult due to the complex
and varied timeout mechanism implementation among nodes
in distributed systems. Identifying the appropriate locations
to inject delays is crucial for effectively testing these timeout
mechanisms. (2) The second challenge lies in effectively
triggering instrumented delays in deep paths, where timeout
bugs tend to remain hidden. In distributed systems, the busi-
ness logic is usually divided into multiple phases, each with
its corresponding timeout mechanism. Frequently executing
delays at the shallow execution paths prevents exploring
timeout mechanisms in deep paths, resulting in ineffective
testing. (3) The third challenge is that executing delays
will introduce significant overhead to the testing process.
Since actual timeouts are usually time-consuming, directly
inserting delays reduces testing speed and, consequently,
testing performance.

To tackle these challenges, we introduce Chronos, a
general testing framework designed to detect timeout bugs
in distributed systems. First, Chronos injects the delay logic
into the common runtime libraries that are used by the
DSUTs. By replacing their original dependent libraries with
our delayed libraries in the runtime environment, DSUTs are
automatically injected with fine-grained delays. Secondly, to
effectively trigger the injected delays and explore timeout
bugs hidden in deep paths within DSUTs, Chronos proposes
a deep-priority guided fuzzing algorithm. It dynamically
mutates the combinations of possible delays, calculates the
execution depth of each triggered delay, and prioritizes the
delay sequences that can cover deep delay blocks. Finally, to
expedite the testing process and eliminate the time overhead
caused by actual delays, Chronos introduces the transient
delay. It resets the timeout value to zero, immediately trig-
gering the timeout mechanisms in DSUTs without the need
to wait for an extended actual time. In this way, Chronos
continuously generates plenty of abnormal delays to exercise
as many timeout mechanisms as possible and effectively
detects timeout bugs in distributed systems.

We implemented Chronos and evaluated its effectiveness
on four widely-used distributed systems: ZooKeeper [26],
MySQL-Cluster [27], Hadoop Distributed File System
(HDFS) [28], and Go-Ethereum [29]. In comparison to
other state-of-art fault injection approaches, e.g., Random,

BruteForce, and Coverage-Guided, Chronos excelled in ex-
posing more timeout bugs and covering 26.40%, 21.69%,
and 15.14% more delay blocks, respectively. Additionally,
Chronos identified 27 timeout bugs in total, with 5 in
ZooKeeper, 14 in MySQL-Cluster, 6 in HDFS, and 2 in
Go-Ethereum.

In summary, we make three key contributions:
• We design and implement the general runtime delayed

libraries. Any systems linked to them are automatically
injected with fine-grained delays. These common runtime
libraries are open-sourced,1 and can be used directly.

• We introduce a deep-priority guided fuzzing with tran-
sient delays to effectively explore timeout mechanisms in
DSUTs and detect the timeout bugs in deep paths.

• We implement and evaluate Chronos on four widely
used distributed consensus systems. We will open-source
Chronos1 for practical usage. For now, Chronos has suc-
cessfully detected 27 timeout bugs.

2. Background of Timeout Mechanism

Since a distributed system may encounter different kinds
of faults, e.g., delays, the timeout mechanisms are proposed
to handle these faults at runtime. Figure 1 shows the main
distribution of timeout mechanisms in a typical distributed
system. When object O1 sends a request to another object
O2, O1 sets a timeout value and waits for the response from
O2 until the time expires. In case O2 fails or a message
loss occurs, O1 can break out of the waiting state triggered
by the timeout event, execute timeout handling code, and
take proper actions (e.g., retrying or skipping) accordingly.
In general, the timeout mechanism in a distributed system
mainly distributes on two parts: (1) Components interact
locally through Local IO; (2) Nodes communicate remotely
via Network IO [30], [31], [32], [33], [34].
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Figure 1. The timeout distribution and timeout mechanism example in a
typical distributed system.

Interactions via local IO include intra-process resource
access and inter-process communication. Intra-process re-
source access enables the program to access and manipu-
late resources, including files, devices, etc., within its own
address space [35], [36]. Inter-Process Communication
(IPC) is commonly used in the operating system to allow

1. Chronos: https://github.com/SecTechTool/Chronos
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processes to communicate and synchronize their actions and
resources [37], [38]. To prevent unexceptional faults, e.g., re-
source monopolization, IO blocking, deadlock, etc., timeout
mechanisms are used to prevent a program from becoming
unresponsive or hanging indefinitely if a resource/process is
unavailable or unresponsive. By setting appropriate time-
outs, systems can manage their local interactions more
effectively and help improve their performance.

Communications via network IO contain direct commu-
nication and indirect communication. In direct communi-
cation, nodes interact with each other based on the direct
coupling between sender and receiver: the sender has a
reference pointer to the receiver and specifies it as an
argument of the communication primitive [39], [40]. In-
direct communication is defined as communication between
entities in a distributed system through an intermediary with
no direct coupling between the sender and the receiver(s).
The sender does not know the identity of the receiver(s),
and vice versa [41], [42]. Timeout mechanisms are essential
for managing remote network communication, ensuring the
stability and reliability of the system, and preventing issues
such as network congestion and unresponsive nodes.

3. Overview

3.1. Definition of Timeout Bugs

Threat Model: Throughout this paper, we use the fol-
lowing threat model. First, we formally define a distributed
network as ϕ = {n, f, T}. Specifically, n means the number
of normal nodes that perform correctly in the network.
f presents the exceptional nodes, which may suffer huge
and persistent delays in a hostile runtime environment. T
presents the type of fault tolerance mechanism used in
the distributed system. The proportion of exceptional nodes
should be less than its fault-tolerant threshold. For exam-
ple, MySQL Group Replication uses the Paxos distributed
algorithm [43] to provide distributed coordination between
servers. Hence, its fault-tolerant rate is 1/3, and f/(f + n)
should be smaller than 1/3. We assume that the delay within
and between normal nodes is negligible, while the delay
within and between exceptional nodes, as well as between
exceptional and normal nodes, is dynamic and can be high.

Formally, given a Distributed System Under Test de-
noted as DSUT={P,R,D}, where P={p1, p2, ...., pn} rep-
resents all processes in the system. R={r1, r2, . . . , rm} de-
notes the resources needed, and D={d1, d2, . . . , dl} repre-
sents the set of interactions with timeout mechanisms among
P and R, referred to as delay blocks. Specifically, a delay
block da = [pi

t1−→ pj : ha] signifies that process pi calls pj
with a timeout of t1, and upon a timeout event, the handler
ha is triggered to deal with it. Similarly, the delay block
db = [pi

t2−→ rj : hb] represents that pi requests resource
rj with timeout t2 and timeout handler hb. Additionally, we
define the symbol W = {w1, w2, ..., wk} as the workload
for DSUT which contains a set of normal requests.

We define timeout bugs as bugs in D that can cause
a server crash (∃pi ∈ P , where pi has crashed) or a

service hang (∃wj ∈ W , where wj remains unhandled for
a long time) in DSUT. We define the testing process as
DelaySeq

DSUT−−−−→ Stateerror. To effectively detect timeout
bugs, the main idea is to generate as many delay blocks di
combinations as possible, which we call DelaySeq. For a
distributed system under test, after conducting a timeout test
that triggers the delay blocks in DelaySeq and executes
corresponding timeout handling codes, the system should
return to its normal state and provide functional services as
usual. Otherwise, the distributed system is in an error state
Stateerror and we identify there is a timeout bug detected.

3.2. A Motivation Example

Timeout bugs are hard to detect and can lead to severe
consequences in distributed systems. One such example
is a timeout bug in the Datastreamer of HDFS (versions
2.7.7 and 3.1.3), where incorrect handling of the timeout
mechanism led to critical issues [44]. This bug caused the
HDFS service to hang, resulting in data unavailability for
all applications using it. Figure 2 illustrates the key steps
to trigger this bug, while Figure 3 presents the core code
snippet of it. The Datastreamer thread in HDFS manages the
stream to datanodes. First, the Datastreamer uses a heartbeat
timeout mechanism to wait for data to be stored in the
dataQueue. If the request times out, it continually retries to
acquire data. Upon receiving the data, the thread proceeds
to execute the function ‘createBlockOutputStream()’, which
connects to the datanode and establishes a new stream.
However, if the connection times out during this process,
the Datastreamer throws an IOException and incorrectly sets
its state to INTERRUPTED’, as shown in line 18. However,
when the thread then performs other actions, such as an
RPC (Remote Procedure Call) to NameNode by the function
‘abandonBlock()’, it first checks the current state and fails
immediately since its state is ’INTERRUPTED’, triggering
this bug. This bug obstructs the RPC to other nodes, causing
service hang-ups and affecting the availability of the HDFS.
This timeout bug is fixed by clearing the ‘INTERRUPTED’
state, as shown in lines 19-21.

Data Streamer Thread

createBlockOutputStream()

namenode.abandonBlock()

Connect to datanode

RPC to namenode

IOException

IOException

3.timeout

DataNodedataQueue.wait()

retry if timeout

1. Data request with heartbeat timeout 

INTERRUPTED state
4. set

6. check

2. Create a new stream

5. RPC call node

Figure 2. The HDFS-15379 timeout bug blocks and causes the RPC to
the namenode to fail, resulting in a service hang for the HDFS system..

Timeout mechanisms are commonly used in distributed
systems, and bugs in their implementation are inevitable.
Bugs in one node may affect the whole distributed system,
thus, causing severe consequences such as service hangs or
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1 class DataStreamer extends Daemon {
2 public void run() {
3 // wait for a packet to be sent.
4 while ((dataQueue.isEmpty())) {
5 long timeout = 2000; //ms
6 try { dataQueue.wait(timeout);
7 } catch (InterruptedException e) {
8 LOG.debug("ThreadInterrupted", e);
9 }

10 }
11 }
12 boolean createBlockOutputStream(...){
13 try { s = createSocket(...);
14 long t = dfsClient.getimeout(); //5s
15 IOStreamPair s = c.socketSend(s,t);
16 }catch (IOException ie) {
17 errorState.setState(ie)
18 + if(ie instanceof INTERRUPTED){
19 + //clear thread interrupt state
20 + interrupted();}
21 }}
22 }

Figure 3. The core code snippet of HDFS-15379. Error timeout handling
in function ‘createBlockOutPutSteam’. Lines 19-21 are the fixed code.

node crashes. We can draw three important lessons from this
case: 1) Timeout mechanisms vary in their implementation
in practical scenarios. The complexity and diversity of delay
blocks, such as the first delay block d1 (lines 5-10) and the
second delay block d2 (lines 13-22), make it challenging
to accurately identify delay blocks in real-world distributed
systems. To handle this challenge, Chronos injects delays
at the library layer and identifies delay blocks by analyzing
the call trace at runtime. 2) Some timeout bugs are hidden
in deep paths, and to trigger them, some prior timeout
mechanisms must be bypassed. In this case, a prior timeout
mechanism exists within the heartbeat session before the
datanode connection process. If this session’s timeout is
frequently triggered, the subsequent process’s timeout will
not be triggered, concealing the bug. To address this issue,
Chronos employs a deep-priority guided algorithm to dy-
namically select high-quality delay sequences for exploring
as many timeout mechanisms in deep paths as possible. 3) It
takes a long time to trigger a timeout mechanism, leading to
inefficiencies in one test input execution. In this instance, at
least 7 seconds are required to trigger all necessary timeout
mechanisms and reveal this bug, significantly slowing down
the test speed and impacting the efficiency of bug detection.
To solve this problem, Chronos proposes the transient delay
mechanism to trigger timeout handling logic immediately.

4. Chronos Design

Design goal: A practical timeout bug detection frame-
work should have the following properties.

• General: Chronos is designed to find timeout bugs for
most practical distributed systems, from distributed file
systems, e.g., HDFS [45], to distributed configuration
service, e.g., ZooKeeper [26]. From distributed database
systems, e.g., MySQL [46] to de-centralized distributed

blockchain, e.g., Ethereum [47]. The tool can be deployed
to different distributed systems with minor adjustments.

• Fine-grained: To effectively find timeout bugs in dis-
tributed systems, the injected delay is designed to be fine-
grained to cover as many timeout mechanisms as possible.

• Accurate: Chronos is designed to have satisfying precision
and recall to avoid reporting false positives.

• Fast: Chronos should have a high testing performance.

4.1. Chronos Workflow

Instrument Process
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DSUT

Instrumented DSUT

Delay Blocks

Delay Selector Delay Sequences

Workload
Loader

Delay Executor

Testing Process

Timeout Bug
Analyzer

7. report
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Local
IO Delay
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IO Delay

Figure 4. The workflow of Chronos. It includes three main components: (1)
Delay Injector for determining where to inject delays. (2) Delay Selector
for deciding when to activate delays. (3) Delay Executor for handling how
to execute delays effectively.

Figure 4 illustrates the workflow of Chronos, consisting
of two main phases. The first phase is the delay instrument
process. In this phase, given a DSUT, the Delay Injector
first decides where to inject delays, then precisely injects
the fine-grained delay logic, and finally outputs the Instru-
mented DSUT with a set of delay blocks. The second phase
is the testing process, which involves the following steps:
(1) Chronos first loads workloads to send requests to the
distributed system. (2) Then Delay Selector dynamically
selects a subset of the delay blocks according to the runtime
context (e.g., call trace, execution depth, etc.). (3) Chronos
combines the selected delay blocks and generates a delay
sequence. (4) Delay Selector activates all delay blocks in
the sequence. (5) DSUT executes the workload with the
activated delay blocks. To speed up the testing process,
the Delay Executor proposes the transient delay mechanism
to quickly trigger the timeout mechanisms. (6) Finally,
the Timeout Bug Analyzer monitors the runtime states of
distributed systems in real time and identifies if there are
node crashes or service hangs. (7) The timeout bugs are
reported once they are detected. (8) Chronos proceeds to the
next iteration (from step 1 to step 7) of the testing process
until termination.

4.2. Delay Injector

The Delay Injector determines where to inject delay
(which code locations in delay blocks are eligible to inject
delays). There are three alternative delay injection methods
as shown in Figure 5. (1) Directly inject delays at the source
code. (2) Inject delays at the OS level. (3) Inject delays in
the runtime library.
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Int *FuncA(){
Component C1,C2,C3;
…
res = C1.getByRPC(timeout t1, …);
if (!res){

// Timeout handling logic H1
}
…
res = C2. requestByPRC (timeout t2, …);
if (res==timeoutSignal){

// Timeout handling logic H2
}
…
Channel.initialTimeout(t3)
…
C3.sendByChannel (…)
if (channel <- timeout){

// Timeout handling logic H3
}
…

}

delay block 𝒅𝟏

delay block 𝒅𝟐

delay block 𝒅𝟑

int C1::getByPRC(timeout t1, …){
+ if(isActivated()){executeDelay(t1);}

//normal original logic
}

void C3::sendByChannel (…){
+ if(isActivated()){
+ t3=this.getTimeout();
+ executeDelay(t3); }

//normal original logic
}

signal C2::requestByPRC (t2, …){
+ if(isActivated()){executeDelay(t2);}

//normal original logic
}

Method (1) :
Inject delay
in source code

Method (2):
Inject delay by OS level

Source
Code

Runtime
Library

Executable 
File

compile

OS Kernel
+ if(isActivated()){
+ executeDelay(PreDefined_t);}

DiskNetwork …

Method (3):
Inject delay
in runtime library

+

in grpc library:
static void rpc_submit (…){
+ delayTriggered()
+ caller = traceAnalyzer.getTrace()
+ if(isActivated(caller))
+ { executeDelay(getTimeout()); }
+ delayEnd()

// normal original logic
}

JRE (Java Runtime Environment)

Go Standard libraries
… …

glibc (GNU C Library)

Figure 5. The three alternative delay injection methods. Method (1) injects
delays at source code. Method (2) injects delays at the OS level. Method
(3) injects delays in the runtime library.

Source Code Injection directly modifies the source
code of DSUT. The process begins by identifying all delay
blocks where two components interact with the timeout
setting. Subsequently, the delay logic is injected into their
interactions, as shown in Figure 5. This method allows for
fine-grained runtime context analysis and has been widely
used by existing compile-time fault injection tools. However,
automatically identifying delay blocks in the source code is
hard due to the complex and varied implementation of time-
out mechanisms across different projects and programming
languages. To precisely identify them, we need to search
for all calls to the timeout function. There are two types
of APIs that contain timeout mechanisms. The first type
is Low-level IO-related APIs, e.g. sys.open(), IO.send(),
etc., which are few and standardized. The second type is
High-level interaction APIs, e.g. rpc submint(), grpc.send(),
netty.write(), etc., which are highly diverse and varied, mak-
ing it challenging to summarize them manually. Source code
usually does not directly call the Low-level APIs, but calls a
variety of high-level APIs. Consequently, identifying all API
calls to timeout functions in the high-level library requires
significant manual efforts, inevitably resulting in missing
delay blocks. In addition, source codes may not always be
available for testers.

OS kernel Injection in Local IO and Network IO
by utilizing the capabilities of the Linux Kernel, such as
netem [48]. Netem allows users to inject various network
emulation faults, including delay, packet loss, duplication,
and corruption, into the network traffic. This method is
general and adaptable enough and has been widely used by
existing chaos engineering tools. However, such injection
is coarse-grained which loses lots of contexts, e.g., call
traces. It is hard for the OS kernel to retrieve call traces
because we cannot reuse existing userspace or language

runtime-specific libraries/tools. Consequently, it can hardly
distinguish which caller, delay blocks d1, d2, or d3, calls
through the IO. As a result, all delay blocks are activated
or deactivated simultaneously, inhibiting the exploration of
more delay combination scenarios, e.g., activating d1 and d3
while deactivating only d2. This limitation may hinder the
tool’s ability to precisely identify and trigger certain timeout
bugs in DSUT.

Library Injection injects delay in the runtime libraries
of DSUTs. Timeout mechanisms in local interactions and
remote communications are executed through local IO and
network IO, respectively. Usually, DSUTs do not directly
manipulate these IOs but rather utilize existing common
runtime libraries. For example, consider the RPC (Remote
Procedure Call) in delay blocks d1 and d2. All RPCs even-
tually call the API ‘rpc submit(...)’ which in turn calls the
’SocketIO. send()’ in the glibc [49] library. By injecting
delay logic into the ‘rpc submit(...)’, any RPCs in DSUT
are automatically instrumented with the delay logic. In the
delay logic, functions ‘delayTriggered()’ and ‘delayEnd()’
are designed to record the beginning and end of the delay
logic. if(activated) determines whether the delay should
be executed and executeDelay(t) actually performs delay
for t ms. To distinguish which caller, delay blocks d1 or
d2, conducts this RPC, Chronos utilizes a traceAnalyzer to
trace the call stacks and record the identification of the caller
(which delay block), as shown in figure 5. Similarly, for
delay block d3, which eventually calls an API in the Channel
library [50], we can inject delay logic into that API as well.

To perform a library injection, Chronos first tracks all
IO operations at the runtime library level, e.g., in JRE
(Java Runtime Environment), tracking native write APIs
in SocketOutputStream for blocking socket messages and
tracking write APIs in SocketChannelImpl for non-blocking
socket messages, etc. Then Chronos intercepts the relevant
APIs in commonly used runtime libraries and injects the
fine-grained delay logic into their API implementations.
Finally, the runtime delayed libraries are generated. Any
program that runs with these libraries will automatically be
injected with the fine-grained delay logic.

Library injection achieves both fine-grained delay injec-
tion and high generality. Compared with the OS kernel in-
jection, library injection can sense the runtime context of the
delay blocks by trace analyzing, allowing for a more fine-
grained delay control strategy. Compared with the source
code injection, which requires manual effort to identify and
inject the delay block for each DSUT, library injection is
a one-time effort because the runtime libraries for each
programming language are common. The runtime delayed
libraries can be reused across multiple DSUTs, making it a
practical and general solution.

4.3. Delay Selector

In a DSUT, let D={d1, d2, ..., dl} represents the set of
delay blocks, while N={n1, n2, . . . , nl} denotes the code
blocks that are not delay blocks. An executed path in the
DSUT consists of a sequence of ni and dj blocks. Take
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Figure 6 as an example, when all the delay blocks are
deactivated and no timeout events occur, then the exe-
cuted path is {n1, d1, n2, d2, n3, d3, n5}. Suppose we acti-
vate delay blocks d1 and d4, then the executed path would
be {n1, d1, n7, d4, n9, d5}. DelaySeq=[di, dj , ..., dk] repre-
sents a combination of delay blocks, where di=1 indicates
di is activated, while di=0 means it is deactivated. Our goal
is to explore as many di and their combinations as possible.

Indeed, the number of delay blocks, l=sizeof(D), in a
distributed system can be substantial, leading to a large state
space when exploring the delay sequence, where each point
can be either activated or deactivated. In total, there are 2l

states. To effectively explore DelaySeq, a delay selector is
employed to determine when to activate the delay for each
di ∈ D. In previous state-of-the-art fault injection tools,
there are three widely used methods to explore combina-
tions: Random, BruteForce, and Coverage Guided search.

Random Explore: The simplest algorithm, which is
adopted by most fault injection tools, randomly selects a
subset of delay blocks set D and activates them at random
moments. In other words, the statement if(activated) re-
turns true with some probability. However, it ignores the
runtime information and cannot explore systematically.

BruteForce Search: Used by FATE [22], PRINCE [23],
etc., BruteForce search adopts an enumeration strategy that
systematically explores all possible combinations of delay
blocks di. Specifically, BruteForce first tests all the delay
sequences with one delay block, and then tests all the
sequences with two delay blocks, and so on. However, it
is infeasible when exploring huge state space for practical
distributed systems.

Coverage Guided: Similar to FIFUZZ [18] and Crash-
Fuzz [25], the coverage-guided delay selector mutates the
combinations of possible delay blocks according to runtime
coverage feedbacks and prioritizes the combinations that are
prone to increase code coverage. However, code coverage
increase does not necessarily equate to delay block increase,
resulting in the exploration of many non-timeout logic.
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Figure 6. Delay Selector in Chronos. The left part shows the abstract
control flow graph of delay blocks in DSUTs. The right part presents the
deep-priority selection process.

Deep-Priority Guided. Different from previous work,
one heuristic insight of Chronos’s delay selector is that
delay mechanisms in the deep paths are rarely triggered in
normal usage or testing and, therefore, may be more prone

to timeout bugs. We use depthdi
to represent the execution

depth of di, and AvgD to represent the average depth of
the delay blocks in set D. The depth of a delay block is
the number of previous delay blocks in its execution path,
plus one. We define that ∀di ∈ D, if depthdi

≥ AvgD,
then di is a ’deep delay’; otherwise, it is a ’shallow delay’.
For example, considering the path {n1, d1, n7, d4, n9, d5} in
Figure 6, we have depthd1

=1, depthd4
=2, depthd5

=3, and
AvgD=2. Hence, d1 is a ‘shallow delay’, and d4 and d5
are ‘deep delays’. To help explore deep delays, Chronos
utilizes a deep-priority guided algorithm for selecting delay
sequences that can trigger newfound deep delays.

Algorithm 1: Deep-Priority Fuzzing Process.
Input : DSUT : Distributed System under Test

W : Workloads for DSUT
Output: Tn: Timeout Bugs

1 Tn={} seqPool={};
2 Detector = setupDetector();
3 Tracer = setupTracer();
4 path = DSUT .execute(W, {});
5 AvgD, cands = Tracer.triggeredDelays(path);
6 initSeq = cands.randomInit();
7 seqPool.enqueue(initSeq) ;
8 while true do
9 DelaySeq = seqPool.dequeue();

10 DelaySeq′ = mutate(DelaySeq);
11 path′ = DSUT.execute(W,DelaySeq′);
12 for each triggered delay block di do
13 tracedi = Tracer.getTrace(di);
14 if di.isNew() and depthdi ≥ AvgD then
15 newSeq = DelaySeq′.append(di=1);
16 seqPool.enqueue(newSeq) ;
17 AvgD, cands.update(di);
18 end
19 end
20 async:
21 newBug = Detector.checkBug());
22 Tn.add(newBug);
23 seqPool.enqueue(DelaySeq′) ;
24 end async;
25 end

Algorithm 1 illustrates the deep-priority fuzzing process.
In the initial phase, as shown in lines 2-7, a bug detector
is set up to monitor the runtime status of the system in
real time. And a tracer is initialized to help analyze the
execution path. DSUT first executes workloads without any
delays and generates the execution path. Then, the Tracer
extracts delay blocks di from the path into a candidate set by
analyzing and distinguishing their call traces. At the same
time, it calculates the average depth of these delay blocks
as AvgD. Finally, Chronos randomly sets some di=1 as the
initial delay sequence and puts it into the sequence pool.
In each fuzzing iteration, Chronos first dequeues a delay
sequence SeqPool and mutates it to DelaySeq′ by AFL’s
bit flips strategy [51] that flips some ’0’ to ’1’ and some ’1’
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to ’0‘ (activate or deactivate some delay blocks). Then, the
DSUT executes the same workloads with activated delays
in DelaySeq′ and naturally triggers some delay blocks. For
each triggered di, Chronos extracts the call trace as tracedi

and dynamically calculates the depth of di. If di is newfound
and its depth is larger or equal to the average depth, then it is
regarded as a new deep delay block. It will be activated and
appended into DelaySeq′ as a delay sequence. The newSeq
will be regarded as an interesting sequence and stored in the
sequence pool to guide the subsequent fuzzing process, as
shown in lines 15-16. Meanwhile, the bug detector analyzes
the runtime status of the DSUT and identifies timeout bugs,
as shown in lines 21-23. If any new bugs are found, Chronos
records them and enqueues DelaySeq′ into the sequence
pool. Once all seeds in the queue have been tested for
mutation, a fuzz cycle completes. Then the queue resorts
all seeds according to their depth. In this way, Chronos
constantly generates high-quality delay sequences as test
inputs and explores as many deep delay blocks as possible.

4.4. Delay Executor

Transient Delay: In real-world distributed systems,
timeouts are typically set between 1 and 3,600 seconds [52].
However, injecting such long delays directly can signifi-
cantly slow down the testing process. To address this issue,
we propose a transient delay mechanism that sets the timeout
value to zero. This enables quick triggering of delay logics
in the DSUTs and speeds up the testing process.

1 // in DSUT source code
2 func getResources(url string) (err error) {
3 client := &http.Client{Timeout: 10}
4 resp, err := client.Get(url)
5 if os.IsTimeout(err) {
6 // A timeout error occurred
7 ...
8 return err
9 }

10 }
11 // in runtime library: go1.20.4/src/net/http
12 func (c *Client) Get(url string) (...) {
13 req, err := NewRequest("GET", url, nil)
14 if err != nil { return nil, err }
15 ...
16 timeout = c.Timeout // original delay=10s
17 + if(activated) timeout = 0 //transient delay
18 resp, err := send(req, c.ts(), timeout)
19 return resp, err
20 }

Figure 7. An example of the timeout mechanism in Go language. In the
DSUT source code, it requests a remote URL via the net/http library. The
newly added code (line 17) shows the transient delay.

Figure 7 presents a typical example of the timeout mech-
anism in ‘getResource(url)’ in the Go language. The func-
tion first initializes an HTTP client with a 10-second timeout
setting. Then it requests resources by the runtime library
‘net/http’. In the HTTP library, it first creates a request, then
gets the timeout value, and finally calls native API ‘send’
of network IO to send the request. The newly added code
in line 17 presents the transient delay. When selected by

the deep-priority guided delay selector, the transient delay
is activated. By directly resetting the timeout value to zero,
the timeout mechanism is immediately triggered.

Component 𝑪𝟏 Runtime libraries

𝑪𝟏	call 𝑪𝟐	with timeout 𝒕𝟏

after 𝒕𝟏,
terminate

return timeout error

blocking or
doing something 𝒍𝟏	:

𝑺𝟎 → 𝑺𝟏

trigger
timeout
logic 𝒍𝟐

handling
request

IOs Component 𝑪𝟐

transient delay
trigger immediately

Figure 8. Transient delay in a timeout machenism. In most cases, the
transient delay will not introduce false positives.

In a DSUT, the code may make some assumptions about
the actual elapsed time and directly setting the timeout value
to zero may cause a false positive. Figure 8 shows the core
steps of the timeout mechanisms in distributed systems. In
the actual delay scenario, when component C1 calls C2 with
a timeout t1 via runtime libraries and IOs, C1 either blocks
and waits (synchronous scenario) or does something (asyn-
chronous scenario) that changes the current state of DSUT
from S0 to S1. Then after time t1, a timeout error is returned
and the timeout handling logic l2 is executed. If we inject the
transient delay in runtime libraries, it immediately returns a
timeout error and executes l2. And the current state of DSUT
remains S0. In most cases, the code l2 should be independent
of code l1, so there is no false positive, and transient delay is
equivalent to actual delay. However in some rare cases, the
code l2 may have some assumptions about code l1, and its
execution logic is determined by the state S1, then Chronos
will output false positives. Section 6.4 will discuss the false
positives of Chronos in detail.

To eliminate the false positives introduced by transient
delays, Chronos replaces the transient delays with the actual
delays (sleep t1) during the bug reproduction process. If the
bug can be reproduced, then it is a true positive. Otherwise,
it is a false positive.

4.5. Bug Analyzer

Bug Analyzer is designed to monitor the runtime infor-
mation of DSUTs and identify their exceptional states, as
shown in Figure 9. There are two main types of timeout
bugs: server crashes or service hangs.

Server crash: Chronos detects server crash bugs by
observing whether the processes or the node of DSUT
crashes down throughout the testing procedure. Node Mon-
itor periodically checks whether the process is alive in each
distributed node. If any of the processes are down and cannot
recover, the Node Monitor reports a timeout bug.

Service hang: Chronos detects service hang bugs by
sending normal requests to the DSUTs and monitoring their
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Figure 9. The bug detection process of Chronos. Chronos employs two
monitors: Node Monitor for detecting server crashes and Transaction
Monitor for identifying service hangs.

responses. The Function Monitor reports a hang timeout bug
if it does not receive a response for an extended period.
However, the instrumented delays might also cause network
traffic, leading to service hangs and resulting in false pos-
itives. To mitigate these effects and avoid false positives,
the Function Monitor only works during the hang checking
phase, after each round of workloads execution, where all
instrumented delays are deactivated.

Bug reproduce: Chronos collects all workloads and
DelaySeq for each distributed node, sorts them, and stores
them based on their executing timestamp. We find the first
states that the bug analyzer outputs timeout bugs while
processing the workloads and DelaySeq, which we call
triggering states. We also find the state when a DSUT
launches as the starting state. When a timeout bug occurs,
Chronos replays these workloads and DelaySeq between
the starting state and the triggering state to reproduce the
bug and analyze the root cause. To eliminate the false
positives introduced by transient delays, all transient delays
are replaced by actual delays in the reproduction process.

5. Implementation

We implemented Chronos in the four typical distributed
systems: HDFS, ZooKeeper, MySQL, and Go-Ethereum.
The reasons we choose them are listed below:

System Popularity: HDFS [45] is a vital component
of the Apache Hadoop project [53], which is one of the
most widely used data storage file systems in the world.
MySQL-Cluster [27] is a highly scalable, real-time, ACID-
compliant transactional database. The low TCO (total cost of
ownership) and multi-master distributed architecture make it
widely used in a variety of applications [54]. ZooKeeper is
one of the most popular distributed process coordination. It
allows distributed processes to coordinate with each other
through a shared hierarchical namespace with high through-
put and low latency. Ethereum is one of the most widely
used public blockchains (de-centralized distributed systems)
in the world with the highest market cap $211.61B [55].

Platform Diversity: These distributed systems come
from different organizations with implemented languages.
HDFS and ZooKeeper are developed by Apache Software
Foundation in Java language. MySQL-Cluster is developed

by MySQL AB in C++ language. Go-Ethereum is developed
by Ethereum Org in the Go language. Implementation and
evaluation of these distributed systems can demonstrate
that Chronos is a cross-platform and language-independent
testing framework with high generality.

Target Systems

Delay Model

Trace Analyzer

Transient Delay

Interaction Layer
Bug CheckerWorkload Loader

Delay Library

Delay Selector

Chronos components

EthereumHadoop ZooKeeper

Delayed JRE, Netty, etc.

Delayed Glibc, Boost, etc.

Delayed Go Standard Libs

Figure 10. Components of Chronos are divided into three parts – Interac-
tion Layer, Delay Model, and Delay Library.

Figure 10 presents the components of Chronos, which
can be divided into three main parts. The first part is the
Interaction Layer, which is designed to interact with target
systems, including sending workloads to DSUTs and moni-
toring bugs within them. The second part is the Delay Model
which is implemented for generating high-quality transient
delay sequences to explore deep logic in DSUTs based on
their runtime traces. The third part is the Delay Library
which contains runtime libraries instrumented with deep-
priority transient delays. The rest of the section describes
notable implementation details.

Workload Loader: For Hadoop Distributed File Sys-
tems, the workload is collected from Intel HiBench [56],
a widely used testing workload suite. For MySQL-Cluster,
the workload is generated by SQLancer [57], one of the
widely used SQL generators for testing database systems.
For ZooKeeper, we developed an automatic tool to generate
the workload based on its API documentation and instruc-
tion manual. The tool is also open-source and available
in our git1. For Go-Etheruem, the workload is generated
by chainhammer [58], which is an art-of-the-state tool for
generating test transactions for blockchain systems.

Trace Analyzer: In the deep-priority guided
delay selector, before calculating the depth of each
delay block di, Chronos first obtains the call trace
and identifies the caller (which delay block). In
Java language, the trace analyzer is implemented by
‘Thread.currentThread().getStackTrace()’. In C++, we
use ‘execinfo.backtrace()’ and ‘backtrace symbols()’ to
implement the trace analyzer. In Go, the trace analyzer
is implemented using the functions ‘debug.stack()’ and
‘CallersFrames()’. The depthdi

can then be calculated by
counting the previous ⟨delayTriggered(), delayEnd()⟩
pairs in its execution trace.
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TABLE 1. 27 TIMEOUT BUGS DETECTED BY THE TOOLS WITHIN 24 HOURS. CHRONOS FOUND ALL 27 TIMEOUT BUGS, INCLUDING 5 IN
ZOOKEEPER, 14 IN MYSQL-CLUSTER, 6 IN HDFS, AND 2 IN GO-ETHEREUM. Random FOUND 5 BUGS, AND BruteForce FOUND 6 BUGS, AND

CoverageGuided FOUND 9 BUGS RESPECTIVELY.

# Platform Bug Type The Root Cause Analysis Identifier
1 ZooKeeper Hang DeadLock in ZooKeeper node when both sendThread and reconnection timeout and tries to update states. ZooKeeper-2023481
2 ZooKeeper Crash SIGSEGV in NIOServerCnxnFactory when follower nodes create plenty of reconnections after timeouts. ZooKeeper-2023570
3 ZooKeeper Hang Endless EOF Exception in ”loadDataBase” after resource request timeouts, leading to service blocking. ZooKeeper-2023482
4 ZooKeeper Crash The leader node breaks down when trying reconnection in SocketNIO after constant timeout exceptions. ZooKeeper-2023571
5 ZooKeeper Hang The following node repeatedly throws EndOfStreamException, stop reading data from the master node. ZooKeeper-2023480
6 MySQL-Cluster Crash SEGV cased by nullptr after a series of reconnection timeouts in MySQL-Cluster breaks down multiple nodes. MySQL-S1787454
7 MySQL-Cluster Crash SEGV in sql executor caused by error pointer manipulating in timeout handling crashes MySQL server node. MySQL-S1787465
8 MySQL-Cluster Hang SQL selection process is blocked after handling various communication timeouts in the network. MySQL-S1785100
9 MySQL-Cluster Crash Server node crashes down when connection timeout during the data syncing and validation process. MySQL-S1787522
10 MySQL-Cluster Crash Heap-buffer-overflow occurs in ”Item read” after recovering from the direct communication timeouts. MySQL-S1787551
11 MySQL-Cluster Crash SEVG in SQL planer after triggering a series of timeout mechanisms when accessing the local database. MySQL-S1785171
12 MySQL-Cluster Crash Heap-buffer-overflow happens when dealing with various timeout SQL results in the union process. MySQL-S1787533
13 MySQL-Cluster Hang Frequent timeouts in the transaction syncing process hangs the server which stops the SQL execution. MySQL-S1719125
14 MySQL-Cluster Hang Constant timeout requests from other nodes keep blocking SQL optimizer and stop handling SQL queries. MySQL-S1787477
15 MySQL-Cluster Crash SEGV in SQL optimizer when handling timeout SQL queries after multiple reconnections from the network. MySQL-S1719139
16 MySQL-Cluster Crash Repeated timeout error in ”item subselect” crash down the MySQL server node and cannot be recovered. MySQL-S1734011
17 MySQL-Cluster Crash SEGV occurs after packet timeouts when the master node dispatches commands to other slave nodes. MySQL-S1787473
18 MySQL-Cluster Crash SEGV in data syncing process after multiple request timeouts and retry, breaking down the server nodes. MySQL-S1732431
19 MySQL-Cluster Hang Memory leak in ”buf block init”, hanging the server after plenty of SQL requests timeouts. MySQL-S1787458
20 HDFS Hang The AsyncDispather thread is interrupted due to timeout connections and the RM cannot be contacted. HDFS-20230655
21 HDFS Hang The IPC call is interrupted and the RM no long gives any response to the datanode after multiple timeouts. HDFS-20231630
22 HDFS Hang Yarn gets stuck and repeated throw exceptions during the runtime due to timeouts in sending packets to RM. HDFS-20231643
23 HDFS Hang Namenode tries to delete a container that has already been deleted in cleanup process after request timeouts. HDFS-20231621
24 HDFS Hang A deadlock occurs and the MapReduce is rejected to execute when datanode throws a timeout exception. HDFS-20231134
25 HDFS Hang Service hang when Socket is reset and the executing task cannot finish in time after multiple timeouts. HDFS-20231011
26 Go-Ethereum Crash Serial of timeout messages cause panic in the ”Full sync process ”, and break down Ethereum nodes. GETH-10365
27 Go-Ethereum Hang Repeated timeouts in BlockHeader syncing hang the message queue and stop transaction handling process. GETH-10363

Adaption to New Distributed Systems: According
to a survey of languages used in distributed systems, the
vast majority of the distributed systems are implemented in
Java, C++, and Go languages [59], [60], [61]. Hence, for
most distributed systems implemented in these languages,
Chronos can be directly used to detect timeout bugs without
modifications, thanks to its general design and the common
runtime delayed libraries. Only the Workload Loader needs
to be changed accordingly. For DSUTs implemented in other
languages, the Chronos framework is also scalable enough to
adapt to them. Testers only need to follow three steps to gen-
erate the runtime delayed library in a new language: (1) First
identifying IO-related basic APIs in the target language,
e.g. SocketOutputStream.send(), SocketChannelImpl.read(),
etc. in Java. This step needs manual effort and expertise.
(2) Statically scan and track all API usage in the runtime
library to identify the delay blocks. (3) Insert transient delay
logic in the delay blocks before calling those APIs. Steps (2)
and (3) are automatic. Furthermore, instrumenting delays in
the runtime libraries is a one-time effort for each language.
Therefore, the effort of adapting Chronos to other distributed
systems implemented in a new language is acceptable.

6. Evaluation

To evaluate the effectiveness of Chronos, we compared it
with three state-of-the-art fault injection methods that have
been widely used in previous work: Random, BruteForce,
and Coverage-Guided Fuzzing on four widely used dis-
tributed systems. We ran each distributed system in a cluster
of 20 virtual nodes isolated by Docker [62]. Each Docker
has a 2.25 GHz 6-core CPU, 16 GB of RAM, and a 480
GB SATA SSD. They all connect to each other with a 10

Gbps network bandwidth setup. They ran Ubuntu 20.04.2
with Linux kernel version 4.4.0. All Docker containers run
in a physical machine, which is a 64-bit machine with 128
CPU cores (AMD EPYC 7742 64-Core Processor), and 512
GB main memory. All the experiments are conducted several
times with the same workloads, and the average values are
used in this paper. We designed experiments to address the
following research questions:

• RQ1: Is Chronos effective in finding timeout bugs of
real-world distributed systems?

• RQ2: Can Chronos cover more timeout mechanism
logic in distributed systems as compared to other state-
of-the-art approaches?

• RQ3: Does the transient delay executor effectively
improve testing performance?

• RQ4: What is the accuracy of Chronos?

6.1. Timeout bugs in real-world distributed systems

We applied Chronos to all four DSUTs for timeout bug
detection evaluation. BruteForce fault injection tools, e.g.,
FATE [22], and Coverage-Guided fault injection tools, e.g.,
CrashFuzz [25] and FIFUZZ, do not support delay injection.
They cannot detect timeout bugs as they do not recognize
delay blocks and do not insert transient delays. To make
a fair comparison, we have two options. (1) We adapted
Chronos to them. First, we manually replaced their fault
points with our delay blocks. Then we changed their fault in-
jection to our transient delay injection. However, it requires
finding all the delay blocks in the source code first, which
is hard and will often result in missing some delay blocks.
(2)We implemented their algorithms into Chronos. First,
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we instrument code coverage collection logic into DUSTs,
then we replace the deep priority guidance with existing
algorithms in the fuzzing process. Specifically, we adapted
the BruteForce algorithm of FATE to Chronos, which we call
BruteForce. We adapted the coverage-guided algorithm of
CrashFuzz to Chronos, which we call CoverageGuided.
We ran all the tools on the same distributed systems us-
ing the same experimental setup. Chaos testing tools, e.g.,
ChaosBlade [15], randomly inject different kinds of faults,
such as IO delay, CPU burn, memory burn, etc., into a run-
ning system. For a fair comparison and to focus on timeout
bugs, we adapted the random algorithm of ChaosBlade to
Chronos and replaced its actual delays with transient delays,
which we call Random. Each experiment is conducted
for 24 hours. In total, Chronos found 27 timeout bugs on
four target distributed systems with 5 in ZooKeeper, 14 in
MySQL-Cluster, 6 in HDFS, and 2 in Go-Ethereum. The
detailed information on these previously unknown timeout
bugs is presented in Table 1.

All 27 found timeout bugs have been confirmed and
fixed by the corresponding vendors. Among these, 13
(48.1%) timeout bugs caused server nodes to crash, and
the distributed nodes could not recover automatically. The
remaining 14 (51.9%) caused the distributed services to
hang, making them unable to recover themselves. Some of
the timeout bugs can lead to serious consequences. Take
bugs #26 and #27 for example, attackers can crash or hang
some target nodes and stop their transaction handling or
block mining process by producing certain delay strategies,
which may directly cause financial loss of ETH (Ethereum
cryptocurrency). MySQL-Cluster had the highest number of
bugs, with 14 bugs (more than half) being detected. One
reason why C/C++ applications might have more bugs is that
they tend to be more prone to memory-related bugs, such
as buffer overflow (bug #10 and #12), memory leak (bug
#17), and misused pointers (bugs #6, #11, and #18). These
detected bugs remind us that in addition to the correctness
of the timeout handling logic, we also need to be cautious
about memory-related manipulation in code implementation.
TABLE 2. BUGS FOUND BY CHRONOS AND OTHER STATE-OF-THE-ART
METHODS. OTHER METHODS DETECT NO MORE THAN 7 BUGS, WHILE

CHRONOS DETECTS 27 UNKNOWN TIMEOUT BUGS.

Method Name Number Bugs ID #
Chronos 27 #1 - 27
Random 5 #3, 8, 13, 16, 21
BruteForce 6 #3, 8, 9, 10, 16, 21
CoverageGuided 9 #3, 7, 8, 10, 13, 16, 19, 21, 26

Comparison with existing methods: In our 24-hour
experiments, Random only found 5 bugs, including bugs
#3, #8, #13, #16, and #21. BruteForce exploring only found
6 bugs, including bugs #3, #8-10, #16, and #21. Coverage-
Guided algorithm has successfully found 9 bugs (#3, #7,
#8, #10, #13, #16, #19, #21, #26). However, the rest of
the 17 bugs were not found by them because these timeout
bugs are hidden in the deep path. To trigger them, many
processes with different timeout interactions in multiple
phases should be conducted first. With the help of the
deep-priority guided transient delays, Chronos successfully

explored the delay blocks hidden in deep paths and detected
all 27 timeout bugs, proving the effectiveness of Chronos
in detecting timeout bugs in real-world distributed systems,
which adequately answers RQ1. Compared with other state-
of-the-art fault detection techniques, Chronos found all the
bugs that other methods found.

6.1.1. Case Study. Now we use two cases to illustrate
how the timeout bugs detected by Chronos affect the whole
distributed system, and how Chronos detects them. The first
case is the bug #1 listed in Table 1. This is a service hang
bug where a deadlock occurs in ‘packetqueue’ caused by
incorrect handling of timeout events. This timeout bug can
cause a large area of zookeeper service downtime and the
developer has already fixed it. It is found in version 3.4.14
of ZooKeeper. The code snippet in Figure 11 describes the
details of this timeout bug.

1 class SendThread extends ZooKeeperThread {
2 public void run() {
3 if (timeRwServer >= RwTimeout)
4 cleanup();
5 }
6 private void cleanup() {
7 synchronized (packetQueue)
8 for (Packet p : packetQueue)
9 conLossPacket(p); //needs

ConnState lock
10 }
11 }
12 public ReplyHeader reconnect(...)(
13 synchronized (ConnState) {
14 if (r.getErr() ==

Code.REQUESTTIMEOUT.intValue())
15 - sendThread.cleanup()
16 + sendThread.interrupt()
17 }
18 }

Figure 11. A timeout bug that causes deadlock in the packet handling
process and hangs the ZooKeeper system.

Root Cause: When a ZooKeeper node connects to the
network, it sets up a SendThread for sending requests to
other server nodes. If a request times out, the ‘cleanup’
function is called, which acquires the packetQueue lock. In
the ‘reconnect’ function, it first applies the ConnState lock
to check the state and then finishes processing the packet.
However, if the main thread attempts to reconnect to the
server and the reconnection times out, it will acquire the
ConnState lock, and then call ‘SendThread.cleanup()’. This
will require waiting for the packetQueue lock. The deadlock
occurs when the main thread acquires the ConnState lock
and waits for the packetQueue lock, and the SendThread
acquires the packetQueue lock but waits for the ConnState
lock. The developer has fixed this timeout bug by avoid-
ing a direct call to ‘cleanup’. Instead, they interrupt the
sendThread and let it clean up its own state (lines 15-16).

This bug is difficult to detect because, in most cases,
before the main thread executes the timeout handling code
in lines 16-18, the SendThread has already finished the
‘cleanup’ process. The timeout for reconnection is typically
set to 5 seconds, and SendThread can usually clean up all
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packets within that time and release the ‘packetQueue’ lock.
The bug can only be triggered if the queue length is long
enough that SendThread cannot release the lock in time,
which is rare, and if there happens to be a network delay
at that moment. And these two delay blocks are hidden in
the deep path, to trigger them, at least five previous delay
blocks should be deactivated and two previous delays should
be activated. Fortunately, with the fine-grained instrumented
delays and deep-priority transient delay, Chronos quickly
triggers the timeout mechanisms in both the SendThread
and reconnecting process, allowing it to detect this timeout
bug in the deep path.

The second case is the bug #6 listed in Table 1. This
bug is a severe server crash and attackers may utilize it to
cause arbitrary distributed MySQL nodes to break down by
conducting a certain delay strategy. It is caused by an im-
plementation bug that incorrectly manipulates the memory
pointer. It is found in version 8.0.31 of MySQL-Cluster. The
code snippet in Figure 12 describes the detailed information.

1 bool check_and_report(THD *thd, int error) {
2 ...
3 if (error==TIMEOUT){...} //retry if timeout
4 else{ //output the error info else
5 + Diagnostics_area *da= thd->get_stmt_da();
6 - if (!thd->get_stmt_da()->is_error() &&
7 - has_temporary_error(the,

da->is_error())
8 + if (da!= nullptr && !da->is_error() ||
9 + has_temporary_error(thd,

da->is_error())
10 }
11 }
12 bool Slave_worker::reconnect(THD *thd, ...){
13 ...
14 if (!check_connect && _timeout())
15 thd->cleanup(); //clean stmt_da to nullptr
16 }

Figure 12. A timeout bug that crashes MySQL nodes.

Root Cause: The Function ‘check and report()’ is de-
signed to output detailed error statements by the ‘*da’
pointer. However, it can be cleaned to a null pointer, leading
to a SEGV in MySQL nodes if the connection is constantly
lost and the reconnection is timing out, as shown in lines
12-16. This timeout bug has already been fixed by adding
the nullptr checking, as shown in lines 8-9.

This bug is hard to detect because, in most cases, line 15
is executed due to poor network conditions. Under such cir-
cumstances, the ‘check and report’ function executes line
3 instead of the else logic (lines 4-10) unless the network
happens to be recovered at that moment, which is rare and
prevents the bug from manifesting. However, based on fine-
grained delay instrumentation and the deep-priority transient
delays, Chronos has a high probability of activating the deep
delay in ‘reconnect’ while simultaneously deactivating the
shallow delay in ‘check and report’, effectively detecting
this timeout bug hidden in the deep path (there are six
previous delay blocks, with 2 activated and 4 deactivated).

6.2. Effectiveness on Timeout Logic Coverage

To evaluate the capacity of Chronos in timeout logic
coverage of distributed systems, we set up a network for
each target system and compared Chronos with other state-
of-the-art methods in the same experimental setup. The
delay block (as defined in section 3.1, delay block di
represents timeout mechanism in DSUT) coverage for each
tool in 24 hours was collected. The statistics are shown
in Table 3. In conclusion, Chronos always outperforms
other methods on all four distributed systems. Compared
to methods Random, BruteForce, and CoverageGuided,
Chronos covers 26.40%, 21.69%, and 15.14% more delay
blocks on average. The statistics adequately answer RQ2.

TABLE 3. DELAY BLOCK COVERAGE ON FOUR DSUTS IN 24 HOURS.
CHRONOS COVERS 26.40%, 21.69%, AND 15.14% MORE DELAY

BLOCKS COMPARED WITH OTHER METHODS.

Random BruteForce Coverage-Guided Chronos
HDFS 2947 2915 3178 3620
MySQL-Cluster 1651 1692 1733 2116
ZooKeeper 867 937 944 1032
Go-Ethereum 939 1019 1105 1273

Compared with Random, Chronos covers 22.84%,
28.16%, 19.03%, and 35.56% more delay blocks on HDFS,
MySQL-Cluster, ZooKeeper, and Go-Ethereum, respec-
tively. The reason is that Chronos utilizes finer-grained
delays and dynamically adjusts the delay sequence accord-
ingly in the runtime. While Random only performs delay
injection randomly, without utilizing runtime information of
target nodes. Compared with BruteForce, Chronos always
outperforms it on all four distributed systems. On average,
Chronos covers 21.69% more delay blocks. It demonstrates
that deep-priority guided search performs better than brute-
force search when exploring delay combinations in DSUTs.
Compared with CoverageGuided, Chronos also achieves
15.14% more delay block coverage on average in these
four distributed systems. The main reason is that the se-
quence mutating strategy in CoverageGuided relies on
code coverage feedback, which does not necessarily reflect
the coverage of timeout mechanism codes. As a result, it
becomes inefficient in exploring delay blocks.

To observe the trends of coverage growth over time, we
record the delay block coverage every minute over 24 hours,
as shown in figure 13. According to the figure, Chronos’s
delay block coverage grows significantly in the first eight
hours on all four target distributed systems. After around
20 hours, the coverage of Chronos gradually converges
(only less than 1% coverage improvement is observed).
As for Random, BruteForce, and CoverageGuided, the
coverage grows rapidly in the first 720 minutes. After that,
the delays they activated can hardly cover more delay blocks
than it does at the beginning of the testing process. Due to
the transient delay mechanism, the coverage of all tools con-
verges within 24 hours. Chronos consistently outperforms
Random, BruteForce, and CoverageGuided in terms of
delay block coverage across all four distributed systems,
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Figure 13. Coverage trends evaluated for Chronos, Random, BruteForce,and CoverageGuided. Compared with them, Chronos with the deep-priority
guided algorithm shows better delay block coverage all the time on all the target distributed systems.

thanks to its deep-priority guided sequence selection for
exploring more delay blocks.

TABLE 4. CODE COVERAGE ON FOUR DSUTS IN 24 HOURS. CHRONOS
STILL OUTPERFORMS OTHER METHODS.

Random BruteForce Coverage-Guided Chronos
HDFS 28302 28194 31497 32402
MySQL-Cluster 39790 39984 44534 47595
ZooKeeper 8584 9202 10344 10502
Go-Ethereum 10083 10901 11532 12607

To better understand the delay block coverage and the
code coverage (widely used in previous works), we also
collected code coverage for each tool in 24 hours on these
distributed systems. The results are shown in table 4. Com-
pared with Random and BruteForce, Chronos achieves
20.36% and 15.93% more code coverage. Even compared
with CoverageGuided, Chronos still outperforms it on all
four DSUTs and covers 5.15% more code on average. It
demonstrates that the deep-priority algorithm successfully
explores more timeout mechanism logic, which in turn
contributes to the code coverage increase.

To explore the main reason why Chronos performs
better, we further manually analyze the coverage difference
between the coverage-guided algorithm and Chronos. We
find that most of the code covered by the coverage-guided
method is non-timeout logic. While coverage-guided fuzzing
helps cover more code at the beginning of testing, a substan-
tial part of this code corresponds to non-delay blocks. Con-
sequently, many delay sequences, which cannot contribute
to new delay blocks, are regarded as seeds. Subsequent
mutated delay sequences generated based on them become
inefficient or even redundant. As the inputs are in the form
of delay combinations, the failure to discover new delay
blocks obstructs the generation of new delay combinations,
causing the coverage to converge early. On the contrary,
Chronos constantly explores new deep delay blocks, which
in turn contributes to richer delay combinations. So Chronos
performs better on both delay block and code coverage.

6.3. Effectiveness of Transient Delay

To evaluate the effectiveness of the Transient Delay, we
also conducted the experiment that compares Chronos with
Chronos−, a version of Chronos that disables the transient
delay and executes the actual delay (sleep(t)) instead. We
collected the delay block coverage and the number of bugs
in 24 hours on all four target distributed systems.

TABLE 5. COMPARISON OF Chronos− AND CHRONOS ON FOUR
DSUTS IN 24 HOURS. CHRONOS WITH TRANSIENT DETECTS 92.86%

MORE BUGS AND COVERS 18.10% MORE DELAY BLOCKS.

Number of Bugs Delay Block Coverage
Chronos− Chronos Chronos− Chronos

HDFS 3 6 3095 3620
MySQL-Cluster 8 14 1663 2116
ZooKeeper 2 5 858 1032
Go-Ethereum 1 2 1023 1273
Improvement - +92.86% - +18.10%

As shown in table 5, with the help of the transient
delay, Chronos can detect all 27 bugs in 24 hours, while
Chronos− only detects 14 of them. Specifically, compared
with Chronos−, Chronos always achieves more delay block
coverage on all four target distributed systems. In total,
Chronos covers 1402 more delay blocks, achieving an im-
provement of 18.10% delay block coverage. Thus, we can
conclude that the transient delay helps achieve better per-
formance on both delay block coverage and bug detection.
It significantly improves the testing performance, which
adequately answers RQ3.

6.4. Accuracy of Chronos

To evaluate the false positives introduced by transient
delays, we first collected all timeout bugs reported by
Chronos in the testing phase. Then we reproduce these
bugs by replacing the transient delays with actual delays
in Chronos. If the bug is reproduced, then it is regarded as
the true positive. Otherwise, it is a false positive.

In the testing phases, Chronos reported 28 bugs in total.
After the bug reproduction phases, 27 bugs (96.4% of all)
are confirmed as true positives. There is only one false
positive reported by Chronos. The reason is that in most
cases, the timeout handling code l2 is independent of the
code l1 in actual execution time t, so the transient delay is
equivalent to the actual delay and no false positives will be
introduced, as we discussed in section 4.4.

However, in some specific cases, the code may have
some assumptions about the actual elapsed time. Figure 14
shows the false positive introduced by transient delay. The
node sets the timeout value to 10 seconds (line 7) and sends
an asynchronous request. If a timeout happens, it releases
the resources (line 6). This code has an assumption that the
initialize process in line 9 should be completed within 10
seconds. Therefore, the pointer ‘cli’ will be initialized first
and this nullptr will not be triggered when the system is
running normally. However, if we use the transient delay,
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the code in line 13 will be executed immediately before
finishing the ‘initialize resource()’, causing the node to
crash. Fortunately, such false positive case is rare and can be
easily eliminated by replacing transient delays with actual
delays in the reproduction phase.

1 bool Node::node_setup(...) {
2 asio::io_context io_context;
3 io_context.set_timeout(seconds(10));
4 io_context.async_wait([&](error_code& err) {
5 if (err == operation_timeout) {
6 release_resource();}});
7 asio::async_request(endpoints,io_context);
8 // assumption: it should be finished in 10s
9 initialize_resource(); //init cli here

10 ...
11 }
12 void Node::release_resource(){
13 this->cli->cancel(); //nullptr
14 }

Figure 14. The false positive introduced by transient delay. It can be easily
filtered through the reproduction process with actual delays.

False negatives analysis. Library injection in Chronos
has an assumption that most code in DSUTs will not directly
manipulate IO, but rather through existing common runtime
libraries. However, if some codes in DSUTs directly call
IO-related system calls with the timeout mechanisms, then
Chronos will miss them. Thankfully, such scenarios are
rare in real-world distributed system implementation. To
evaluate the false negatives introduced by library injection,
we manually searched the code sites that directly call system
calls with timeout settings in these four distributed systems.
In C/C++ language, there are two ways to directly call
system calls, using APIs in ‘sys/syscall.h’ or the asm inline
assembly. In Java language, they need to use the APIs in the
JNA (Java Native Access) library. In Go language, they need
to use APIs in the package ‘syscall’. Results show that there
are no such code sites. Hence, the false negatives of Chronos
are negligible. The accuracy of Chronos is satisfying, which
adequately answers RQ4.

7. Discussion

More bug types support. Currently, Chronos has sup-
ported timeout bug detection by checking whether the func-
tion or service of DSUT is available or not. Chronos has
already been adapted to four widely used distributed systems
and has found 27 previously unknown bugs. However, there
are still some other types of bugs, e.g., fail-slow [63] bugs,
hidden in the distributed systems.

Fail-slow is a fault where a hardware or software compo-
nent can still function (does not fail-stop) but in much lower
performance than expected. IASO [64] and PERSEUS [65]
detect degraded performance by calculating the response
ratio and throughput of write as the evaluation metrics. One
key insight of Chronos is that it generates much more abnor-
mal delays than those that naturally occur during regular use.
This approach is orthogonal to the above works. After exe-
cuting injected delays for a period of time, Chronos closes
all the delays and monitors whether the performance of the

system recovers or slows down. The delayed environment
provides a unique testing environment that makes it easier
to expose fail-slow bugs.

However, different from the timeout bug (server crash
or hang) which has a precise and deterministic definition,
the fail-slow bug is difficult to define accurately. ”Slow”
is a qualitative rather than a quantitative concept, which
makes it challenging to establish a precise definition of
what constitutes slow behavior. As a result, fail-slow bug
testing often produces many false positives. Both IASO and
PERSEUS have faced this problem. To address this issue,
a reliable and precise oracle for fail-slow bugs needs to be
explored in future research.

More Runtime Context. At present, Chronos utilizes
the deep-priority guided algorithm to dynamically select
delay sequences based on the execution depth of each delay
block. By prioritizing the delay sequences that can explore
new delay blocks in deep paths, Chronos covers more delay
blocks and detects 17 more timeout bugs compared to
other methods. While the current deep-priority strategy is
powerful, more fine-grained runtime contexts of DSUTs can
also be collected as better guidance for the testing process.

For example, the timestamp of each triggered delay can
be analyzed in the runtime. And the execution time between
each delay block can be calculated. A natural assumption
is that the longer time it takes to reach the delay block, the
deeper the delay block is. How to effectively model both
the execution time and depth of the delay block is worth
exploring in the future.

8. Related Work

Fault injection technology: Software fault injection
(SFI) [66] is a well-established and commonly utilized
technique to identify and mitigate potential system failures
by intentionally injecting faults or errors. It holds strong
relevance to our work, as Chronos utilizes it for injecting
delays. There are two main types of software fault injec-
tion in system testing [67]. (1) The first is run-time fault
injection, such as chaos engineering induces faults into a
running software system at the OS level. Developers in
Netflix have developed Chaos Monkey [13] and Simian
Army [14] to imitate the complex environment in a cloud
system. ChaosBlade [15] from Alibaba supports various
experiment-based fault injections such as network fluctu-
ations, disk occupation, and CPU scheduling for testing
distributed systems. Jepsen [68] performs fault injection
on unmodified distributed data management systems by
plenty of manually written test cases. ChaosMachine [69]
leverages fault injection to make a live analysis of JVM’s
exception-handling functions. However, such injections are
coarse-grained and ignore runtime context. (2) The second
type is compile-time fault injection [70], [71] that injects
some predefined errors into the source code of the software
system at specific locations and tests whether it can handle
them reasonably during the execution. FlipIt [72], as an
example, proposed a fault injector on top of LLVM to
enumerate errors in the compile time and activate them
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in the runtime. PairCheck [73] designs the fault injection
framework to simulate the occasional errors and trigger
the error handling codes. Phoenix [74] detects resilience
issues in blockchains by injecting context-sensitive chaos.
Frameworks like LFI [75], PreFail [76], etc., enable devel-
opers to write their own fault injection strategies. However,
traditional fault injection tools either inject faults into the
environment or directly into the source code. In contrast,
Chronos injects delays into the runtime libraries, bringing
both precision and generality.

Implementation-Level Model Checking: Distributed
system model checkers in implementation-level [7], [8]
also simulate failures and enumerate the orders of non-
deterministic events to detect bugs, sharing a similarity
with our method. For example, CMC [9] is the first model
checker that checks C and C++ implementations directly,
eliminating the need for a separate abstract description of the
system behavior. MODIST [6] systematically simulates a va-
riety of network conditions and failures and repeatedly infers
all possible actions of target systems. However, it is difficult
for them to automatically identify all timeout mechanisms
due to their various implementations in DSUTs. Besides,
they suffer from the state space explosion problem due to
the huge exploring space in real-world distributed systems.
Different from them, Chronos employs deep-priority guided
fuzzing to effectively explore the delay combinations and
detect timeout bugs.

Mutation-based fuzzing is an effective method to ex-
plore testing space and detect bugs in various applica-
tions [77], [78], [79]. It is also related to our work since the
deep-priority guided fuzzing algorithm is a mutation-based
technology. Many fuzzing tools are proposed to test the
system faults handling [80], [81]. For example, FIFUZZ [18]
mutates combinations of errors based on the code coverage
and detects bugs in the error handling. CrashFuzz [25] mu-
tates the crash/reboot sequences by coverage-guided fuzzing
and detects recover bugs in cloud systems. However, they do
not focus on timeout mechanisms and code coverage-guided
methods are inefficient for exploring deep delay blocks.

Main Difference: Different from the above work,
Chronos is a general test framework for injecting deep-
priority transient delays and detecting timeout bugs in dis-
tributed systems. Chronos first proposes the general run-
time delayed libraries. Any systems running with them
are automatically triggering fine-grained delays. To explore
more deep paths, Chronos harnesses the deep-priority delay
selector which dynamically prioritizes the delay sequence
that can explore delay blocks in deep paths. To accelerate the
testing process and mitigate the overhead of actual delays,
we propose transient delays that quickly trigger the timeout
mechanisms in DSUTs. Furthermore, due to the scalability
of the testing framework, Chronos can be quickly adapted
to other distributed systems.

9. Conclusion

In this paper, we propose Chronos, an automatic test-
ing framework for detecting timeout bugs in distributed

systems based on deep-priority transient delays. Chronos
first designs and implements the general delayed libraries
that are dynamically linked to the DSUTs during runtime.
Then Chronos employs the deep-priority guided fuzzing
to explore timeout bugs in deep paths and the transient
delays to accelerate the test process. We implement and
evaluate Chronos on four widely used distributed systems:
ZooKeeper, MySQL-Cluster, HDFS, and Go-Ethereum. The
results show that Chronos covers 26.40%, 21.69%, and
15.14% more delay blocks on average compared with other
state-of-the-art approaches. Chronos successfully detected
27 previously unknown timeout bugs. Our future work will
consider enhancing Chronos with more delay strategies and
support more bug types.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

The paper introduces Chronos, a framework to find time-
out bugs in distributed application. Chronos uses a new con-
cept called deep-priority search to find ideal locations for in-
jecting delays into the system under test. Delays are injected
by manipulating the system libraries used by the target
applications. To reduce the time overhead in each fuzzing
cycle, Chronos sets delays in the target application to zero
and executes it with the timing-manipulated application. The
authors name this technique transient delays. With Chronos
approach, the authors found 27 timeout bugs in real-world
applications, all of which were confirmed and fixed by the
application developers. The approach is compared to other
state-of-the-art techniques, including coverage-guided fault
injection, and outperforms all of them significantly on the
four chosen target applications.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

A.3. Reasons for Acceptance

1) The work applies a known technique, fault injection,
in a novel way to find vulnerabilities in distributed
applications.

2) The work offers a new technique for finding the ideal
injection points for revealing bugs.

3) The work introduces the new concept of transient de-
lays.

4) The implemented system found an impressive list of
bugs.

5) The work provides tools implementing these tech-
niques.
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