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ABSTRACT
Simulink is extensively utilized in system design for its ability to fa-
cilitate modeling and synthesis of embedded controllers. It provides
automatic test case generation to assist testers in inspecting the
model. However, with the continuous increase in the model’s scale,
the control logic and internal states of the model are becoming
more and more complex. Mainstream test case generation methods
based on constraint solving and model simulation face challenges
in achieving high coverage metrics.

In this paper, we propose CFTCG, a fuzzing based test case genera-
tion method for Simulink models. First, CFTCG generates the fuzzing
code, which includes the fuzz driver based on the model’s input
information and the fuzz code with model-level branch instrumen-
tation. These codes are then compiled together to execute the model
oriented fuzzing loop. During this fuzzing loop, we make use of the
field information of the model inports and the coverage difference
between iterative executions, allowing for more targeted input mu-
tation. We evaluated CFTCG on several benchmark Simulink models.
In comparison to the built-in Simulink Design Verifier and the
state-of-the-art academic work SimCoTest, CFTCG demonstrates an
average improvement of 47.2% and 100.8% on Decision Coverage,
38.3% and 44.6% on Condition Coverage, and 144.5% and 232.4% on
Modified Condition Decision Coverage, respectively.
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1 INTRODUCTION
Simulink [13] is widely recognized as one of the most popular
model-driven design tools, particularly in the context of embedded
systems [11, 15]. It supports efficient modeling, fast simulation, and
high-quality code generation for embedded control models [8, 16].
To ensure the security and stability of models, it is crucial to conduct
thorough testing [4]. However, manual construction of test cases
is not only labor-intensive but also falls short of comprehensively
testing all elements of the model. Automatic test case generation
has proven to be beneficial as it saves significant effort and covers
logic that is challenging to detect manually [2].

Currently, there is a substantial body of research focused on test
case generation for Simulink models [1, 6, 10, 12]. These works
can generally be classified into two types. The first is based on the
constraint solving method, exemplified by the Simulink built-in
toolkit Simulink Design Verifier (SLDV) [5]. This approach involves
transforming the model into a specific formal representation and
employing a formal solver to address constraints related to various
branch logic in the model. Ultimately, it generates model inputs
that satisfy all the imposed constraints. The second is based on
the model simulation method, represented by SimCoTest [9]. This
approach uses some well-designed random strategies to generate
input data for themodel and extracts feedback coverage information
by executing the model. This feedback information is then used to
further optimize the process of test case generation.

Yu Jiang is the corresponding author.

Despite the significant progress achieved by the aforementioned
existing works in Simulink model testing, generating high-coverage
test cases for models that feature complex control logic remains a
challenging task. These models often encompass intricate comput-
ing logic and diverse internal states, posing considerable challenges
for existing constraint solving based methods to formalized solving.
Notably, state space explosion remains a persistently challenging
and intractable problem for formal methods. On the other hand,
although the model simulation methods have been extensively ex-
plored to improve the speed of test case generation by utilizing
model information, the dynamic simulation of the model during
the test case generation process has a huge impact on the efficiency
of test case output. This is mainly due to the simulation process
relying heavily on model interpretation, leading to extensive calcu-
lations by the simulation engine, which significantly reduces the
efficiency of test case generation.
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Figure 1: An example model with complex control logic. This
is a Solar PV Panel EnergyOutput Control System. It contains
a lot of control logic and states about PV panels..

Figure 1 shows a real industrial model representing a solar PV
panel energy output control system. This system interfaces with
multiple solar PV panels concurrently and it adjusts the method
of electrical energy storage based on the electrical energy output
power of the PV panels. The model encompasses intricate electrical
energy control logic and contains an extensive array of charging
states for each PV panel connected to the system. Given the com-
plexity of this model, generating high-coverage test cases poses a
significant challenge for traditional methods.

In particular, for the constraint solving methods, each state of the
PV panels connected to the system is transformed into a formalized
description. As the system accommodates a greater number of PV
panels, the state space expands correspondingly. At the same time,
the intricate logic of switching between various electrical energy
output states has also increased the difficulty of formal solving. In
addition, the execution of an embedded system should be infinitely
iterative, while the constraint solver can only perform a limited loop
unrolling to solve it. This limitation results in constraint solving
methods often generating test cases that can only trigger shallow-
level model logic. In the case of model simulation methods, the
efficiency of test case generation is heavily constrained by the
speed of model simulation. For this particular example model, the
SimCoTest tool can only simulate the model 6 rounds per second



on average, even with Simulink’s fast simulation feature enabled.
This limitation makes it challenging for model simulation methods
to generate high-coverage test cases within a short period of time.

To address the above challenges, we propose CFTCG, an test case
generation method that combines fuzzing code generation and
model oriented fuzzing loop. CFTCG first generates a fuzz driver
based on the model inport information. Next, it performs branch in-
strumentation during the model-to-code conversion process. Then,
CFTCG compiles the fuzz driver and instrumented fuzz code into a
fuzz program. To generate high-quality test cases, we have designed
a model oriented fuzzing loop, making it more suitable for model
structures. In the model input mutation module, we incorporate in-
formation from the inports to perform field-based mutation. In the
model coverage collection module, model iteration based coverage
collection is utilized to identify test inputs that guide more logic to
be triggered in one execution.

We implemented and evaluated CFTCG on several benchmark
Simulink models. Compared to the built-in Simulink Design Verifier
and the state-of-the-art academic work SimCoTest, CFTCG achieves
an average improvement of 47.2% and 100.8% on Decision Coverage,
38.3% and 44.6% on Condition Coverage and 144.5% and 232.4% on
Modified Condition Decision Coverage, respectively.

2 RELATEDWORK
Constraint solving based test case generation. It typically em-
ploys formal techniques to obtain input cases that satisfy specific
property. Simulink Design Verifier (SLDV) [5], the built-in valida-
tion toolkit of Simulink, is a popular automatic test case generation
tool. It transforms the model into a formal description and then
uses a formal solver to solve for test inputs that achieve the target
branch coverage. He’s work[6], adopt model checking approach and
identify a subset of nodes that maximizes the observation of mu-
tants. Subsequently, a small set of test cases can be generated based
on this information to achieve high coverage. AutoMOTGen [10]
describes the Simulink model using a formal language named SAL
[7]. The coverage specifications are encoded into the formal model,
and model checking tools are used to generate counterexamples
for unreachable branches.

This constraint solving based test case generation method is
limited by the complexity of themodel’s logic and states. It generally
requires a formal encoding of the model and needs to be detailed
down to each data bit. This means that for every additional data in
the model, the difficulty of solving increases exponentially.

Model Simulation based test case generation. This approach
typically utilizes dynamic simulation to obtain test feedback. Sim-
CoTest [9] generates test cases for both continuous-time and discrete-
time Simulink models. It uses meta-heuristic search to maximise
the probability of specific failure modes in the output signal and
to maximise the diversity of output signal shapes. Reactis [3] uses
Monte Carlo methods to generate test cases through model sim-
ulation. It also uses guided simulation to evaluate output values,
which helps in the selection of test cases to explore uncovered
blocks. REDIRECT [12] focuses on analysing the feedback from
the simulation. It uses a set of heuristics specifically designed for
non-linear blocks to improve test case generation.

The limitations of model simulation based methods lie in their
simulation efficiency. Although the various methods mentioned
above employ unique approaches to generate high coverage test
cases, they fundamentally belong to random methods. It is only
when a sufficient number of test cases are generated that coverage
becomes more comprehensive. However, model simulation is based
on model interpretation, making it challenging to achieve efficient
execution. Instead, we use the generated code and model oriented
fuzzing to achieve rapid model execution, breaking free from the

simulation tool’s inherent speed limitation. This greatly enhances
the model coverage during the test case generation process.
3 CFTCG DESIGN
Figure 2 shows an overview of CFTCG. CFTCG consists of two main
parts: Fuzzing Code Generation and Model Oriented Fuzzing Loop.
They all incorporate model characteristics to support efficient test
case generation. In the Fuzzing Code Generation part, the model
is initially parsed, and the inport information of the model is used
to generate the fuzz driver. Subsequently, branch instrumentation
is performed using the branch information obtained from the sched-
ule conversion. This process ensures that the generated code more
accurately reflects the branch structure of the model. Finally, the
instrumented code will be combined with the basic code synthesis
process to output the complete fuzz code. As for the Model Ori-
ented Fuzzing Loop part, the fuzz driver and fuzz code generated
in the previous part will be compiled into an executable program to
conduct a high-speed model-oriented fuzzing loop.Within this loop,
we perform targeted input mutations based on the field information
of the model’s input data. This model input mutation module can
quickly generate new inputs suitable for target program execution.
Additionally, we leverage the model iteration mechanism to collect
coverage and save corpus. In this loop, the input data that causes
new model coverage will be outputted as the test cases. Meanwhile,
input data that achieves specific coverage metrics will be saved as
interesting inputs in the corpus for the next round of mutation.
3.1 Fuzzing Code Generation.
This section mainly expands on the basic code generation workflow,
i.e. Model Parser, Schedule Convert and Code Synthesis. The Model
Parser module aims to provide inport information to the Fuzz Driver
Generationmodule. The Schedule Convert module is responsible for
branch instrumentation. Combined with traditional code synthesis
methods, the complete fuzz code is generated.

3.1.1 Fuzz Driver Generation.
Unlike traditional fuzz drivers, the fuzz driver generated for mod-

els focuses more on the model’s attributes, including its iterative
execution, state dependencies between iterations, and the proper-
ties of its inports and outports. The specific process for generating
the model-specific fuzz driver mainly involves the following steps:

Generating model initialization code: During model simula-
tion, model initialization is a necessary step that must be executed
before the simulation begins. Most models have their own initial
states, such as the initial control states in some controller mod-
els, which can influence the subsequent logic of model execution.
When generating model initialization code, we create a function
that includes the initialization of model states. This function will
be executed by the fuzz driver for each test input.

Generating data segmentation code: During each model iter-
ation in simulation, the model fetches data from its inports. As for
the fuzz driver, we should cyclically split the binary byte stream pro-
vided by the fuzzer into segments based on the data length obtained
from the inports. The length of the data segments is calculated by
summing up the data type sizes corresponding to the inports of the
top-level model. Sometimes, when reaching the end of the stream,
it may not contain enough data to fill all the ports. In such cases, the
remaining data should be discarded, and the fuzzing of the current
input data should be terminated.

Generating model execution code: We only need to call the
main function corresponding to the top-level model in the fuzz
driver because the functions for subsystems are also called within
the main function, just like during model simulation. We further
subdivide the segmented data, extracting the appropriate number
of bytes according to the order of the model inports and their
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Figure 2: Overview of CFTCG. CFTCG is primarily divided into two main parts. The Fuzzing Code Generation part focuses on
generating code suitable for model testing, which includes the fuzz driver and instrumented code that represents the model
branch information. The Model Oriented Fuzzing Loop part concentrates on leveraging model information to achieve efficient
testing, which includes input mutation and coverage collection specifically tailored to the model.

respective data types. Then, we use memory copying to assign
these values to the pre-defined inport variables. After that, we pass
these variables to the main function of the model for execution.

Figure 3 shows a sample fuzz driver code corresponding to the
Solar PV model in Figure 1.
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void FuzzTestOneInput(const uint8_t *data, size_t size){
SolarPV_init();
int dataLen = 9;
int i = 0;
while(true){

if((i + 1) * dataLen > size){
break;

}
int8 SolarPV_Enable = {};
int32 SolarPV_Power = {};
int32 SolarPV_PanelID = {};
int32 SolarPV_Ret;
memcpy(&SolarPV_Enable, data + i * dataLen + 0, 1);
memcpy(&SolarPV_Power, data + i * dataLen + 1, 4);
memcpy(&SolarPV_PanelID, data + i * dataLen + 5, 4);
SolarPV_step(SolarPV_Enable, SolarPV_Power, 

SolarPV_PanelID, &SolarPV_Ret);
i++;

}
}

The loop that splits one test
case and passes them to the
model for execution.

Model Iteration

Figure 3: Example fuzz driver for Solar PV model in Figure 1.
Three variables in lines 9-11 are model inport variables. They
are passed to the SolarPV_step function for model iteration..

3.1.2 Branch Instrument.
Model-level branch coverage provides more detailed informa-

tion compared to code-level branch coverage. Any element in the
model that can trigger logical decisions needs to be thoroughly ac-
counted for in branch statistics. For this purpose, we have referred
to Simulink’s coverage description [14] and summarized the branch
elements that require instrumentation as follows:
(a) Boolean values of input data for boolean blocks, such as

AND, OR. The instrumentation mode involves using "𝑖 𝑓 −𝑒𝑙𝑠𝑒"
statements to perform true/false value checks on variables cor-
responding to the block’s inports. Within each branch state-
ment, the coverage statistics function is inserted (Figure 4.(a)).

(b) Different decisions for data switch/select blocks, like
Switch. The data switch block usually selects one of several
data for output based on a specific condition. The instrumen-
tation mode involves inserting coverage statistics functions
into different data selection branch statements (Figure 4.(b)).

(c) Different decisions for branch blocks, such as If or Switch
Action Subsystem. These blocks correspond to the "𝑖 𝑓 " and
"𝑠𝑤𝑖𝑡𝑐ℎ" statement in the code. The instrumentation mode
involves adding coverage statistics functions at the beginning
of all branch blocks (Figure 4.(c)).

(d) All conditional judgments inside blocks, such as Satu-
ration, Matlab Function, Stateflow Chart. The instrumenta-
tion mode involves adding coverage statistics functions af-
ter all conditional statements and completing all conditional
branches, including implicit "𝑒𝑙𝑠𝑒" branches (Figure 4.(d)).

if(AND_In1)
CoverageStatistics(1);

else
CoverageStatistics(2);

if(AND_In2)
CoverageStatistics(3);

else
CoverageStatistics(4);

AND_Out = AND_In1 && AND_In2;

if(Switch_In2 > 0){
CoverageStatistics(1);
Switch_Out = Switch_In1;

}else{
CoverageStatistics(2);
Switch_Out = Switch_In3;

}

if(If_u1 > 0){
CoverageStatistics(1);
IfActionSubsystem1(…);

}else{
CoverageStatistics(2);
IfActionSubsystem2(…);

}

Saturation_Out = Saturation_In;
if(Saturation_In > 5){

CoverageStatistics(1);
Saturation_Out = 5;

}else if(Saturation_In < -5){
CoverageStatistics(2);
Saturation_Out = -5;

}else
CoverageStatistics(3);

(a)

(b)

(c)

(d)

Figure 4: Examples of the four branch instrumentation
modes. The code with a light yellow background indicates
the generated instrumentation code..

As for the instrumentation function, the "𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ()"
in Figure 4, it serves as the interface for our designed fuzzer cov-
erage collection. The detailed coverage statistics methods will be
introduced later. This instrumented codes will be integrated into
the basic code generation process for code synthesis. This way, we
can achieve model-level coverage collection at the code level.

3.2 Model Oriented Fuzzing Loop.
To make the fuzzing loop more suitable for model testing, we have
designed the model input mutation module and the model coverage
collection module.
3.2.1 Model Input Mutation. CFTCG performs mutations on the
entire binary byte stream. Unlike the input mutation method of
traditional software fuzz, we performs targeted mutation based on
the model inport information, following the field-wise approach.
We designed eight mutation strategies suitable for model inputs.
Compared to traditional mutation strategies, CFTCG performs byte
modification on tuples, which refer to collections of input data
required for one model iteration. The specific mutation strategies
are shown in the following table.

In Table 1, it is worth noting that the "Change Binary Integer"
strategy involves modifying an integer field within a tuple, includ-
ing uint8, int32, and so on. The specific modification strategies
include changing the sign bit, byte swapping, bit flipping, byte
modification, adding or subtracting values, and random changes.



Table 1: The strategies of model input mutation

Strategy Description
Change Binary Integer Modifies a binary integer value.
Change Binary Float Modifies a binary float value.
Erase Tuples Removes a range of tuples.
Insert Tuple Inserts a new tuple with a random value.
Insert Repeated Tuples Inserts a sequence of repeated tuples.
Shuffle Tuples Shuffles the order of tuples.
Copy Tuples Copies tuples into another position.
Tuples Cross Over Combines tuples from two stream.

The "Change Binary Float" strategy considers targeted mutation
based on the memory format of floating-point numbers. The strate-
gies "Erase Tuples," "Insert Tuple," "Insert Repeated Tuples," "Shuffle
Tuples," and "Copy Tuples" all operate on tuples, ensuring that they
do not affect the validity of other data. The "Tuples Cross Over"
strategy combines parts of two binary data streams to form a new
binary data stream. We specifically demonstrate some mutation
processes in Figure 5 to facilitate understanding.

(a) Change Binary Integer

(b) Insert Tuple

Enable
(int8)

Power
(int32)

PanelID
(int32)

Tuple

0x00 0x0000B25D 0x0000007D

0x00 0x00000001 0x0000007D

(d) Shuffle Tuples
New TupleTuple A Tuple B

Tuple A Tuple B

Tuple B Tuple ATuple C

Tuple A Tuple B Tuple C

Tuple C

Tuple A

Tuple D

Tuple B

Test Case 1

Test Case 2 Tuple A Tuple B Tuple C Tuple D

New Test Case

(c) Tuples Cross Over

Figure 5: Example mutation strategies. The fields are corre-
sponding to the Solar PV model in Figure 1. Each solid box
represents a tuple. The dotted lines split the different fields.

3.2.2 Model Coverage Collection.
Based on the characteristic of model iterative execution, we

have designed a new coverage metric called "Iteration Difference
Coverage". This metric focuses more on the coverage differences
between different iterations of the model during execution. When
saving interesting inputs, we prioritize those with higher "Iteration
Difference Coverage". This way, the model’s execution paths can
become more diversified, rather than lingering on a few main paths
in each model iteration.

The detailed statistical process and method for model coverage
collection are shown in Algorithm 1. For better understanding, the
pseudocode is presented in the form of a loop that traverse the
input tuples in the fuzz driver. Lines 6, 7, 10, and 12 represent the
simplified parts of the fuzz driver. This algorithm aims to both
calculate the "Iteration Difference Coverage" metric for an input
data and output the inputs that trigger new model coverage as test
cases. In lines 1 and 2 of Algorithm 1, we first define two arrays to
separately track the overall model coverage of an input data and
the individual coverage of each input tuple in every iteration. Line
3 represents the branch instrumentation function, corresponding to
the "𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ()" in Figure 4, used to record model branch
triggers. Its invocation is implied in line 12 within the function
"𝑀𝑜𝑑𝑒𝑙_𝑠𝑡𝑒𝑝". After the execution of "𝑀𝑜𝑑𝑒𝑙_𝑠𝑡𝑒𝑝", we calculate
the total coverage and the "Iteration Difference Coverage" metric
for that input data, in lines 13 to 18. In line 11, the current coverage
statistics array is initialized because we need to recompute branch
coverage for each round of iteration. In line 16, if new model cover-
age is found, we output the test case. If there is a difference between
the coverage of this iteration and the previous one, we accumulate
the number of differences in branch coverage to the "𝑚𝑒𝑡𝑟𝑖𝑐" vari-
able, in lines 17 and 18. Figure 6 provides a visual sample of the
statistics for the "Iteration Difference Coverage" metric.

Algorithm 1:Model Coverage Collection
Input: 𝑑𝑎𝑡𝑎: The binary data of one test case
𝑠𝑖𝑧𝑒 : The length of data
𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡 : Number of model branch instrumentation.

Output:𝑚𝑒𝑡𝑟𝑖𝑐 : Iteration Difference Coverage metric
1 𝑔_𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑣 = {0, ..., 0}//Length: 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡
2 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣 = {0, ..., 0} //Length: 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡
3 Function CoverageStatistcs(𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝑑):
4 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣 [𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝑑 ] = 1
5 End Function
6 Function FuzzTestOneInput(𝑑𝑎𝑡𝑎, 𝑠𝑖𝑧𝑒):
7 𝑀𝑜𝑑𝑒𝑙_𝑖𝑛𝑖𝑡 ( )
8 𝑚𝑒𝑡𝑟𝑖𝑐 = 0
9 𝑙𝑎𝑠𝑡𝐶𝑜𝑣 = {0, ..., 0} //Length: 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡

10 while 𝑡𝑢𝑝𝑙𝑒 = 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒 (𝑑𝑎𝑡𝑎) do
11 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣 = {0, ..., 0}
12 𝑀𝑜𝑑𝑒𝑙_𝑠𝑡𝑒𝑝 (𝑡𝑢𝑝𝑙𝑒 ) //Contains calls to the CoverageStatistcs()
13 for 𝑖 in {1 ... 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡 } do
14 if 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣 [𝑖 ] and (not 𝑔_𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑣 [𝑖 ] ) then
15 𝑔_𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑣 [𝑖 ] = 1
16 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 (𝑑𝑎𝑡𝑎, 𝑠𝑖𝑧𝑒 )
17 if 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣 [𝑖 ] ≠ 𝑙𝑎𝑠𝑡𝐶𝑜𝑣 [𝑖 ] then
18 𝑚𝑒𝑡𝑟𝑖𝑐 =𝑚𝑒𝑡𝑟𝑖𝑐 + 1

19 𝑙𝑎𝑠𝑡𝐶𝑜𝑣 = 𝑔_𝐶𝑢𝑟𝑟𝐶𝑜𝑣

20 return𝑚𝑒𝑡𝑟𝑖𝑐

21 End Function

Tuple
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(Binary)

0 1 0 0 1 0 1

Branch Coverage

1 0 1 0 1 1 1

1 1 1 0 0 0 1
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Exec
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Figure 6: The statistical schematic of the "IterationDifference
Coverage" metric. It shows three iterations of the execution
for an input data. On the right side, it displays the branch
coverage triggered by each iteration and the total coverage
after three iterations. The example’s "Iteration Difference
Coverage" metric is 10 (i.e., 3+4+3).

4 EVALUATION
Tool Implementation. CFTCG1 is implemented in C++, with 44,625
lines of code. The main components include a Simulink model
parser, model-to-code schedule converter, Simulink block templates,
fuzz code generator, and a model-specific fuzzer. We use the Unzip
and TinyXML library to load Simulink models and have developed
block templates for over fifty commonly used blocks to accomplish
Simulink model code generation. We have also verified the correct-
ness of the generated code by comparing simulation results with
code execution results. For the model oriented fuzzing loop, we
designed it based on the LibFuzzer framework. Since LibFuzzer is
an in-process fuzzer and supports Windows systems, it allows con-
venient test case generation for the models constructed by Simulink.
For fair comparison, we implemented a tool to convert binary test
case files into csv supported by Simulink for easy use with its
built-in coverage statistics function.

Experiment Setup. To evaluate CFTCG, we conduct comparison
experiments with the Simulink built-in validation toolkit SLDV
and academic tool SimCoTest in terms of coverage results. Since
other academic and commercial tools are not publicly available,
1The implementation and the benchmark models are uploaded on the anonymous
website: https://anonymous.4open.science/r/CFTCG-138F.

https://anonymous.4open.science/r/CFTCG-138F


we can not compare CFTCG with them. All experiments are per-
formed on the same environment (Windows 10, Intel i7-8550U CPU,
16GB RAM) with the same duration (24 hours, but in practice, the
coverage reached a stable state within an hour). We compile our
fuzzing code using Clang with the O2 optimization flag. Since both
SimCoTest and CFTCG include random strategies, we repeat the
experiment 10 times to obtain the average coverage result for a fair
comparison. All benchmark models are derived from the industry
and deployed in embedded scenarios, as shown in Table 2.

Table 2: The description of benchmark models

Model Functionality #Branch #Block
CPUTask AutoSAR CPU task dispatch system 107 275
AFC Engine air-fuel control system 35 125
TCP TCP three-way handshake protocol 146 330
RAC Robotic arm controller 179 667
EVCS Electric vehicle charging system 89 152
TWC Train wheel speed controller 80 214
UTPC Underwater thruster power control 92 214
SolarPV Solar PV panel output control 55 131

Evaluation on Coverage Rate.We employed the widely rec-
ognized metrics of Decision Coverage, Condition Coverage, and
Modified Condition Decision Coverage (MCDC) to assess the test
case generation effectiveness of various tools[14]. Decision Cov-
erage evaluates whether different branches of blocks with branch
logic can be executed. Condition Coverage assesses whether con-
ditions affecting boolean logic and branch changes are triggered.
MCDC analyzes the impact of a single condition change on the
entire determination. A higher coverage metric indicates a more
thorough examination of the model. Table 3 shows the comparison
results. Compared to SLDV and SimCoTest, CFTCG improves the
Decision Coverage for 47.2% and 100.8%, Conditional Coverage for
38.3% and 44.6%, and MCDC for 144.5% and 232.4%, respectively.

Table 3: Comparison of the test coverage of different tools

Model Tool Decision
Coverage

Condition
Coverage MCDC

SLDV 89% 72% 42%
CPUTask SimCoTest 72% 56% 21%

CFTCG 100% 100% 100%
SLDV 67% 64% 11%

AFC SimCoTest 72% 68% 11%
CFTCG 83% 79% 22%
SLDV 63% 64% 33%

TCP SimCoTest 82% 74% 17%
CFTCG 99% 96% 67%
SLDV 64% 71% 12%

RAC SimCoTest 71% 76% 12%
CFTCG 79% 84% 38%
SLDV 80% 63% 21%

EVCS SimCoTest 80% 63% 21%
CFTCG 92% 93% 83%
SLDV 46% 68% 40%

TWC SimCoTest 15% 57% 20%
CFTCG 96% 98% 90%
SLDV 44% 59% 44%

UTPC SimCoTest 40% 58% 44%
CFTCG 98% 100% 100%
SLDV 78% 83% 57%

SolarPV SimCoTest 74% 73% 43%
CFTCG 89% 95% 86%

Average
Improvement

vs SLDV ↑ 47.2% ↑ 38.3% ↑ 144.5%
vs SimCoTest ↑ 100.8% ↑ 44.6% ↑ 232.4%

We conducted further analysis on the SolarPV model which is
used as an example throughout this paper. As we mentioned in
the introduction section, the SolarPV model has numerous internal
states and controls many solar PV panels, which leads to a huge

solving space for SLDV, making it difficult to achieve higher test
coverage. In the later stages of SLDV solving, its memory usage
exceeded 12GB. On the other hand, we also measured the testing
speed of CFTCG for this model. Compared to SimCoTest, which
can only execute 6 iterations per second, CFTCG achieved a super-
fast speed of over 26,000 iterations per second. This significantly
contributed to obtaining a more diverse set of test cases.
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Figure 7: The folded line plot of the Decision Coverage (%,
Y-axis) vs time (s, X-axis).

Efficiency of Test Case Generation. We also recorded the
timestamp of each generated test case from CFTCG, SLDV, and Sim-
CoTest. Figure 7 presents the folded line of the Decision Coverage
versus time (s) for each Simulink model. From Figure 7, it is evi-
dent that in most cases, CFTCG achieves higher coverage at a faster
speed and can continuously generate new test cases. Based on the
experimental analysis conducted on the TWC and UTPC models,
we can observe from the coverage folded line that they achieved
significant coverage improvement at around 41 seconds and 917
seconds, respectively. We individually ran the two test cases that
led to substantial coverage improvement, and the results indicated
that they indeed triggered deep internal model states and logic.

In addition, we observed that the results on the CPUTask model
reached 100% coverage, which is quite difficult for complex control
models. To investigate further, we explored the specific logic of the
CPUTask model and found that it has an internal task queue. Some
branches are only triggered when the task queue is fullfilled. This
triggering condition is very stringent for SLDV and SimCoTest. The
former is limited by the complexity of solving due to state space
explosion, and the latter is constrained by simulation speed. If we
assume that CFTCG has the same simulation speed as SimCoTest, we
estimate that it would take about 44.5 hours on average to achieve
100% coverage. However, CFTCG only took 37 seconds.

Effectiveness ofModel Oriented Approach. Considering that
Simulink also provides a code generator, a simple idea is to use an
existing fuzzer to directly fuzz the code generated by Simulink in



order to generate test cases. We conducted the "Fuzz Only" experi-
ment following the steps below. Firstly, we configured the Simulink
code generation settings, selecting the "Reusable Function" option
for code generation and the "Maximize Execution Speed" option for
code optimization. "Reusable Function" option allows us to man-
ually write the fuzz driver, similar to Figure 3. Next, we used the
Clang compiler to compile the original LibFuzzer library, Simulink
code, and our manually written fuzz driver together. Finally, we
conducted multiple repetitions of the experiment under the same
experimental environment and for the same duration as CFTCG.
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Figure 8: The coverage comparison between CFTCG and the
pure fuzz method ("Fuzz Only", Without model oriented).

The results are shown in Figure 8. It can be observed that CFTCG
always achieves higher model coverage compared to the "Fuzz
Only"method.We conducted an in-depth analysis of the experiment
and found two main reasons. Firstly, the test cases generated by
the "Fuzz Only" method do not cover many boolean logics. We
examined the assembly code of the fuzz program compiled by the
"Fuzz Only" method and found that the boolean operations did
not have jump instruction and not instrumented, leading to the
neglect of many Condition Coverage and MCDC. Secondly, the
"Fuzz Only" method’s input mutation for model testing is blind. It
lacks effective generation of input data. Some models have inports
containing both int8 and int32 data types, meaning that all inports of
a model may not have completely consistent data types. As a result,
traditional input mutation methods can cause data misalignment
when deleting or inserting data in the byte stream.

5 DISCUSSION
The constraints between inports refer to situationswhere certain
branch logics in the model requires the data of some model inports
to meet specific correlated conditions to trigger certain behaviors.
Fuzzing methods may not be able to detect such constraints, and we
often have to rely on the random change of generating such data.
Although currently, such models pose challenges to our tool and
even to all existing software fuzzing methods, we are fortunate that
our test targets are control models. The complexity of the models
is much simpler compared to regular software, allowing us to use
formal constraint solving methods to discover the relationships
between ports. For instance, we can first apply constraint solving to
the branches in the model to obtain the constraints between ports
and then generate input data accordingly.

Validity of randomized values. Due to the development of
processor and storage, model designers no longer need to be as
cautious in saving computational and memory overhead when us-
ing data types. For example, an integer data might only be used
within the range of 0 ~ 32768, but designers often choose to store it
in an int32 variable. However, this design has a significant negative
impact on fuzzing because it enlarges the space for random explo-
ration. To address this issue, we can ask the testers to specify the
value ranges for inports before test case generation. Then, during
input mutation, we can add constraints based on the specified input
ranges. Alternatively, if testers find it difficult to determine the
value ranges for inports, we can use formal methods to determine
them in advance. Based on our experimental observations, only a
small number of ports in the model have explicit range constraints,
such as different opcodes and some limiters for input signal values.

6 CONCLUSION
In this paper, we propose a code fuzzing based test case generation
method for Simulink models. It first generates a fuzz driver that
matches the model’s multi-iteration execution characteristics, as
well as branch instrumentation code that fulfills the model branch
coverage requirements. Then, it utilizes model oriented fuzzing
techniques, including input mutation based on model inport field
and coverage collection based on model iterative execution.

We implemented CFTCG and conducted a detailed evaluation.
Compared to SLDV and SimCoTest, CFTCG has shown significant
effectiveness. The Decision Coverage from CFTCG can be improved
by 47.2% and 100.8%, the Condition Coverage can be improved by
38.3% and 44.6%, and the MCDC can be improved by 144.5% and
232.4%, respectively. To further improve CFTCG, our future work
involves integrating constraint solving techniques to address the
related constraints between inports, and designing dynamic numer-
ical range constraint methods to improve the mutation efficiency.
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