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Abstract—Rt-Linux contains critical modifications that are
much less tested than the vanilla kernel, thus placing many
systems at risk. In this paper, we present DRLF, a directed
fuzzer targeted towards fuzzing any code area in Rt-Linux,
thus allowing for more efficient tests on Rt-Linux’s unique code
sections. DRLF performs directed fuzzing through a kernel-level
weighted callgraph construction technique, and prioritizing input
sequences that exhibit less distance to the target code. Evaluations
show that DRLF delivers better cover speed while achieving a
24.70% coverage increase for the targeting code areas. DRLF
also found 11 previously unknown bugs within Rt-Linux, and
has been integrated into Alibaba’s CI/CD pipeline.

I. INTRODUCTION

Real-Time Linux (Rt-Linux) [17] is a derivative of the Linux
kernel which is designed to ensure deterministic response
times for various tasks. Given the applicability and effective-
ness nature of Rt-Linux, many industry sectors have deployed
Rt-Linux, where they have modified the real-time module
in Rt-Linux, specifically catering to their unique operational
requirements, ensuring it meets diverse real-time requirements.
As the demand for more diverse applications and enhanced
real-time performance grows, the complexity of the Rt-Linux
codebase increases, presenting challenges in ensuring its ro-
bustness and reliability. Therefore, the security of Rt-Linux
is important, where oversight of any potential bugs within
Rt-Linux can lead to catastrophic results, such as significant
financial losses or, in extreme cases, loss of life.

Given the importance of Rt-Linux’s security, many testing
methods have been deployed in the industry to ensure its secu-
rity, such as unit tests and integration tests. Fuzz testing, a.k.a.
fuzzing, is known for its ability to detect concrete bugs and
has gained traction from academia and industry alike. Kernel
fuzzing tools, a.k.a. fuzzers, generates testing payloads to test
a target kernel. One popular kernel fuzzer, Syzkaller [14],
generates system call sequences as test payloads using domain-
expert-written system call specifications, executes the payload,
and checks for any unexpected behaviors. It has successfully
uncovered numerous bugs in various kernels, such as Linux,
Android and Windows.

While upstream kernels undergo rigorous testing in the
CI/CD pipelines, Rt-Linux’s additional code does not receive
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the same level of scrutiny. Rt-Linux’s unique code is excep-
tionally error-prone, as it is often tailored towards various
use cases and different real-time requirements. Additionally,
industrial scenarios allow for limited resource allocation, thus,
testing the entire kernel code is impractical, as it is time-
consuming and cannot specifically test the modified code.
Therefore, our testing direction should be pointed towards
code that contains Rt-Linux-specific features, allowing for
efficient testing of the Rt-Linux-specific code and detecting
potential defects within. This calls for the use of directed
fuzzing, a technique that directs the testing procedure towards
a specific code section in the target program.

However, to conduct directed fuzzing on Rt-Linux, we
encounter the following challenges. First, directed fuzzing re-
quires precise measurements of the differences and directions
between execution traces and the target code within Rt-Linux,
which cannot be applied directly using conventional methods.
Second, utilizing the distance and direction information to
generate input payloads that test the target code requires
certain strategies that are tailored for Rt-Linux.

To address these challenges, we propose DRLF, a directed
kernel fuzzer that is capable of efficiently testing any given
code section in a target Rt-Linux kernel. DRLF’s techniques
are introduced as follows. First, we construct a weighted
callgraph using kernel-level code analysis that accurately
represents the distance between arbitrary code blocks in the
kernel and the target code that we wish to test. Then, during
fuzzing, we calculate the distance of any executed input and
devise a fuzzing strategy that prioritizes the generation and
mutation of seeds that exhibit a lower distance to the target
code. These techniques allow for more frequent execution
of inputs that trigger the execution of the target area, thus
delivering better fuzzing effectiveness in our designated area.
We evaluated DRLF against Syzkaller, where the results show
that, for the targeting code section, DRLF covers the target
area faster than Syzkaller, and achieves a 24.70% increase in
coverage statistics. Furthermore, DRLF found 11 new bugs in
Rt-Linux’s designated code sections, all of which have been
confirmed and fixed by the Rt-Linux project team.



II. BACKGROUND

Fuzz Testing, commonly known as fuzzing, is a dynamic
software testing technique. Its primary objective is to feed the
System-Under-Test (SUT) with large amounts of randomly
generated inputs, thus attempting to trigger bugs within the
SUT. This method is particularly effective in identifying
previously unknown vulnerabilities or unexpected system be-
haviors. The inputs used in fuzzing can probe potential weak
points of the system, ranging from minor service interruptions
to significant security violations. Due to its effectiveness in
finding bugs, fuzzing is extensively used in various areas, such
as databases and browsers, to enhance the safety and reliability
of software applications [2], [3], [5], [6], [15], [16].

Kernel Fuzzing is an application of fuzzing that feeds
random or semi-random inputs to the kernel’s interfaces and
its system call surface to identify vulnerabilities [4], [7],
[8], [10]–[13]. For Rt-Linux, which is designed to operate
within specific time constraints, it is particularly susceptible to
disruptions originating from unexpected behaviors. As such,
fuzzing these kernels is extremely beneficial to uncovering
any anomalous behavior caused by bugs. It ensures that, not
only the identification of vulnerabilities but also the consistent
performance of systems, where timely responses are essential.
Tardis [10] and RtKaller [9] are kernel fuzzers that perform
kernel fuzzing on a wide range of real-time OS kernels.

Directed Fuzzing is a derivative method of fuzzing that
targets specific code sections within the SUT. As this is ben-
eficial towards testing newly added or recently modified code
in an already-extensively-tested system, there have been many
attempts to integrate directed fuzzing into CI/CD pipelines in
the industry. AFLGo [1] is one such example. Implemented
as an extension of AFL, it generates inputs targeting specific
code locations in userspace programs. It uses both the control
flow graph and the call graph of the program under test to
determine the distance from any known basic block to the
target basic block, and subsequently uses this distance metric
to correspondingly guide further input generation.

III. MOTIVATION AND CHALLENGES

Most of the Rt-Linux’s code base comes directly from
the upstream Linux kernel, which has undertaken rigorous
security testing. The real-time-related code, however, is unique
to Rt-Linux, and is often modified by different developers
and vendors for various real-time requirements, and lacks the
same level of scrutiny and testing that the upstream kernel re-
ceives. This is further complicated in industrial settings, where
tests are often performed under stringent time and compute
resource constraints. Therefore, to efficiently test Rt-Linux,
especially the newly added features and its real-time-relevant
code, we can adapt directed fuzzing to the kernel fuzzing
domain, whereby provided the position of the target code, we
can direct the fuzzer’s testing into the target code sections,
thus increasing the possibilities in uncovering vulnerabilities
within. To perform directed fuzzing on Rt-Linux, we need to
address the following challenges:

Accurately Measure the Difference and Direction Be-
tween Code Blocks in Kernel Code. To perform effective
directed fuzzing, it is critical to accurately measure the differ-
ence and direction between the current execution trace and the
target code within the Rt-Linux. Given the vast code space of
Rt-Linux, discerning the relationship between the current input
and the target code during execution can be challenging. More-
over, in a system as intricate as the Rt-Linux, any misjudgment
in this measurement can direct the fuzzing process incorrectly,
resulting in degraded fuzzing effectiveness. Thus, a precise
approach is required to measure the difference and direction
before initiating the fuzzing, ensuring a more informed and
effective fuzzing process.

Effective Guidance of Fuzzing Direction using Distance
Information. The next challenge lies in ensuring that the
fuzzer’s generated inputs can reach and cover this region. This
requires an effective method to compute the distance between
the target code region and the execution trace for any given
input. Using this information during input generation allows
the fuzzer to generate and mutate seeds that trigger code
blocks closer to the target code regions, eventually directing
the fuzzing process into testing the intended code region, thus
achieving our design goals.
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Fig. 1. The overview workflow of DRLF. DRLF’s fuzzing procedure consists
of two steps: callgraph extraction and callgraph-directed fuzzing.

IV. DRLF DESIGN

We propose DRLF, a directed kernel fuzzer tailored for
testing any specific code region within Rt-Linux. The overall
workflow of DRLF can be found in Figure 1. For an Rt-Linux
kernel under test, DRLF first performs callgraph extraction
during the kernel’s compilation process. DRLF extracts the
kernel’s control graph and the address for each basic block,
then calculates and derives the weighted callgraph based on
the control graph and the address of the provided target code.
When DRLF conducts directed kernel fuzzing, during each
fuzzing loop, DRLF generates system call sequences as inputs
for the SUT and collects the execution code coverage trace.
Then, based on the weighted callgraph, DRLF calculates the
weight for the current input sequence, and prioritizes seeds
in the corpus based on the weight information. For the next
fuzzing iteration, DRLF selects the input with the highest
priority for mutation, thereby steering the fuzzing process
toward the target code region.



A. Callgraph Extraction

To effectively conduct directed fuzzing, our primary task
is to construct a weighted callgraph for the target Rt-Linux
kernel. This contains the extraction of the intricate control flow
spanning the entire kernel and the computation of the distance
between each basic block and the target code location.

Callgraph Construction. For an Rt-Linux kernel under test,
we first need to construct its callgraph. However, constructing
the complete callgraph for the Rt-Linux kernel is complicated,
especially considering the modular nature of Rt-Linux and its
vast array of files. Therefore, to construct the system-wise
callgraph, DRLF initiates the process by compiling the kernel
with Clang. During this phase, DRLF systematically adjusts
the compile configurations across every tier of the Rt-Linux
directory. This is to extract specific compilation commands and
then modify them to dump the corresponding LLVM bitcode.
Consequently, a bitcode file for each kernel file is generated.
These bitcode files encapsulate the control flow of each file,
represented as a set of inter-linked basic blocks. Once all
individual bitcodes are generated, we use llvm-link to link the
bitcode files progressively in a bottom-up manner. The linking
process aggregates the separate bitcode files, creating a unified
and comprehensive representation of the kernel’s control flow
and structure. This detailed callgraph is essential for extracting
the intricate control flow from the entire kernel.

Target Measurement. After capturing the control flow of
the target kernel, we can then compute the distance from the
target position to each basic block. This distance measurement
is based on the number of linked edges within the callgraph.
To achieve this, we start by disassembling the kernel binary.
This disassembly process reveals the address of our target
code region, which could either be a specific function or
a distinct basic block. With this address, we traverse the
callgraph using Dijkstra’s algorithm to iterate over each edge.
For every iteration, we calculate the number of steps required
to reach the target code from the current position. This step
count is then assigned as the weight of the edge. By following
this methodical approach, we obtain a callgraph where each
edge is weighted, reflecting the distance to the target code,
thereby providing us with a detailed weighted callgraph.

B. Callgraph Guided Fuzzing

Once DRLF acquires the weighted callgraph, we can start
the guided fuzzing process. Specifically, our aim is to generate
high-quality inputs that effectively direct our testing efforts
towards the target region. DRLF uses the following steps:
calculate the weight for the current input and harness the
weight information to steer subsequent input mutations.

PC Weight Caculation. Within each fuzzing iteration,
we retrieve the current coverage bitmap from KCOV, which
enumerates the address of basic blocks encountered during the
test. Leveraging this coverage bitmap, we further consult our
weighted callgraph to ascertain the distance associated with

each basic block’s address. Specifically, we employ Equation 1
to convert this distance into program priority.

Weight Value =
atan(distance) + π

2

π
(1)

This bounds the weight value between 0 and 1, ensuring a
consistent range regardless of the actual distance. Also, its
growth tendency emphasizes more on the shorter distance,
therefore, sequences closer to the target have higher priority.
This is achieved by the very nature of the atan function,
which slows down for larger distances, ensuring that shorter
sequences are prioritized.

Distance-guided Program Evaluation. With the priorities
determined, the next phase of distance-guided fuzzing takes
over. Each program within our corpus is assigned a priority.
During mutation, the fuzzer prefers programs with the highest
priority. This strategic selection ensures that our fuzzing
endeavors are consistently oriented toward the target region,
maximizing the efficacy of our testing process.

V. EVALUATION

Implementation. We implemented DRLF using Golang and
Python, with some components borrowed from Syzkaller. To
extract the kernel’s callgraph before fuzzing, DRLF compiles
the target kernel using Clang and emits its corresponding inter-
mediate representation. Then, DRLF automatically constructs
the weighted callgraph using the IR information, where the
weights are based on the address of the target code.

DRLF is integrated into Alibaba’s continuous fuzz testing
pipeline called ABACI Robot. Changes to a specific part of the
kernel trigger the CI/CD process, which invokes the automatic
script that generates the weighted graph, and subsequently
sends the result to the fuzzer, which then uses this information
to focus its testing on the to-be-tested part in the kernel.

Experiment Setup. We tested DRLF on four versions of
the Rt-Linux kernel, namely 5.10, 5.11, 5.14, 5.19, as they
are widely deployed in Alibaba. We choose the functions
within io_uring module as the directed fuzzing target due
to its significance in real-time operations. Specifically, the
io_uring uses two lock-free ring buffers: one for manag-
ing submission entries, allowing concurrent request handling,
and another for completion events. The primary system call
used is io_uring_submit(), designed for efficient multi-
operation handling, making it highly relevant for real-time
operations. We instrument the target kernel with KCOV for
coverage collection, with Kernel Address SANitizer (KASAN)
and Kernel Concurrency SANitizer (KCSAN) enabled for bug
detection. We perform our evaluation on an AMD EPYC
7742 CPU at 2.25GHz with 64 cores running Ubuntu 20.04.
All experiments are conducted on the same hardware for 24
hours, with each experiment repeated three times to establish
statistical significance.

A. Bug Detection Capabilities

Found New Bugs. DRLF found a total of 11 previously
unknown bugs within the target module io_uring, as listed



in Table I. Within the 11 bugs, 4 of which are memory-related,
4 of which are concurrency-related, whereas the rest are logic
bugs. All listed bugs have been fixed by kernel maintainers.
More information can be found using ”git log –grep abaci” in
the kernel’s code base.

TABLE I
PREVIOUSLY UNKNOWN BUGS DETECTED BY DRLF

Versions Operations Risk Status

5.11 io clean op logic error fixed
5.11 io req task submit deadlock fixed
5.11 io uring sq null ptr deref fixed
5.11 io cqring overflow flush logic error fixed
5.11 io uring poll deadlock fixed
5.10 io sq thread stop deadlock fixed
5.10 io clean op null ptr deref fixed
5.10 io wq submit work deadlock fixed
5.10 io uring create out of bound fixed
5.10 io commit cqring double free fixed
5.10 io rw reissue logic error fixed

Rt-Linux Related Bugs. DRLF identified 11 bugs in
Rt-Linux, each of which is located specifically within the
targeted io_uring module and its designated functions. This
precision is attributed to our directed fuzzing approach, which
not only directs the fuzzing process towards the target area
but also ensures a comprehensive and in-depth testing of the
target code. Furthermore, the bugs we found are critical, as
many are concurrency-related, causing potential slowdowns
or hangs, which is especially detrimental to a system like
Rt-Linux, where the timing and the system performance are
of great importance.

B. Coverage Comparison

To further evaluate the effectiveness of DRLF, we compare
the branch coverage within the target code section. The
detailed statistics are listed in Table II. As shown in the table,
Syzkaller achieves an average of 534.75 branch coverage on
the respective kernel versions, while DRLF achieves statistics
of 654.50 branch coverage on the respective four Rt-Linux
versions. In comparison, DRLF gains an average of 24.70%
coverage improvement in the io_uring module.

TABLE II
COVERAGE COMPARISON ON IO_URING

Versions 5.10 5.11 5.14 5.19 Average

Syzkaller 425.00 378.00 573.67 762.33 534.75
DRLF 505.00 555.00 667.00 891.00 654.50
Impr 18.82% 46.83% 16.27% 16.88% 24.70%

Furthermore, the growth of the coverage is shown in Fig-
ure 2. As shown in the figure, DRLF can achieve a higher
code coverage at a faster speed compared to Syzkaller. The
graph also shows that most of the coverage growth saturates
at around 4-8 hours, which is because we only target the
io_uring modules, resulting in a short time to coverage
saturation. The above improvement is attributed to the Target-
related code coverage.
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0 2 4 6 8 10 12 14 16 18 20 22 24
0

250

500

750

1,000

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

DRLF
Syzkaller

(d) Coverage on 5.19

Fig. 2. Coverage Statistics for Syzkaller and DRLF on Rt-Linux Kernel
Versions 5,10, 5.11, 5.14, and 5.19, respectively.

To conduct a more fine-grained coverage comparison, we
analyzed the coverage on each file. Specifically, we choose
the Rt-Linux v5.11, and we compare the DRLF with Syzkaller.
We collect the coverage percentage for all the files within the
io_uring module and compare the file coverage percentage
between the DRLF and Syzkaller.

Fig. 3. Coverage Comparison for To-be-tested Files. The y-axis represents
the percentage difference between DRLF and Syzkaller.

The results are shown in Figure 3, where positive values
represent DRLF covers more code, and vice versa. We percieve
that positive values are the majority, indicating that DRLF gen-
erally covers more code than Syzkaller, clearly demonstrating
DRLF’s effectiveness in directed fuzzing. For the instances
where Syzkaller covers more than DRLF, our analysis shows
that the source files do not contain the target code section and,
therefore are not concerning to us.

VI. CONCULSION

In this paper, we propose DRLF, a directed kernel fuzzer
tailored for Rt-Linux. By constructing a weighted callgraph and
leveraging dynamic distance calculations, DRLF prioritizes
testing toward newly-added code, ensuring an efficient and
targeted fuzzing. Our evaluations demonstrate its efficiency in
covering target code space, with 24.70% coverage improve-
ment compared to Syzkaller, and 11 previously unknown bugs
were detected.
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