
Unicorn: Detect Runtime Errors in Time-Series Databases With
Hybrid Input Synthesis

Zhiyong Wu

KLISS, BNRist, School of Software,

Tsinghua University, China

wuzy21@mails.tsinghua.edu.cn

Jie Liang
∗

KLISS, BNRist, School of Software,

Tsinghua University, China

liangjie.mailbox.cn@gmail.com

Mingzhe Wang

KLISS, BNRist, School of Software,

Tsinghua University, China

wmzhere@gmail.com

Chijin Zhou

KLISS, BNRist, School of Software,

Tsinghua University, China

ShuimuYulin Co., Ltd, China

tlock.chijin@gmail.com

Yu Jiang
∗

KLISS, BNRist, School of Software,

Tsinghua University, China

jiangyu198964@126.com

ABSTRACT

The ubiquitous use of time-series databases in the safety-critical

Internet of Things domain demands strict security and correctness.

One successful approach in database bug detection is fuzzing, where

hundreds of bugs have been detected automatically in relational

databases. However, it cannot be easily applied to time-series

databases: the bulk of time-series logic is unreachable because of

mismatched query specifications, and serious bugs are undetectable

because of implicitly handled exceptions.

In this paper, we proposeUnicorn to secure time-series databases

with automated fuzzing. First, we design hybrid input synthesis

to generate high-quality queries which not only cover time-series

features but also ensure grammar correctness. Then, Unicorn uses

proactive exception detection to discover minuscule-symptom bugs

which hide behind implicit exception handling.With the specialized

design oriented to time-series databases, Unicorn outperforms the

state-of-the-art database fuzzers in terms of coverage and bugs.

Specifically, Unicorn outperforms SQLsmith and SQLancer on

widely used time-series databases IoTDB, KairosDB, TimescaleDB,

TDEngine, QuestDB, and GridDB in the number of basic blocks by

21%-199% and 34%-693%, respectively. More importantly, Unicorn

has discovered 42 previously unknown bugs.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

• Security and privacy→ Database and storage security.

KEYWORDS

Time-series Databases, Runtime Error, Hybrid Input Synthesis

∗
Jie Liang and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00

https://doi.org/10.1145/3533767.3534364

ACM Reference Format:

Zhiyong Wu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022.

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid

Input Synthesis. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’22), July 18–22, 2022,
Virtual, South Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3533767.3534364

1 INTRODUCTION

Along with the rapid growth in Internet of Things (IoT) deployment,

time-series databases are ubiquitously used in all kinds of IoT

devices. Compared to traditional relational databases, time-series

databases employ complex logic to handle their low latency and

time-series nature. Therefore, its security, reliability, and correct-

ness are challenged by the complexity. To prevent vulnerabilities,

a common approach is writing unit tests for the target database

manually. However, unit testing is labor-consuming and cannot

detect bugs at system level.

One promising approach is fuzzing, an automated software

testing technique, which generates random data as program inputs.

It was first developed by Miller et al. [21] in 1990s and has, since

then, been widely adopted in practice for finding bugs in many

critical areas, including operating systems [14, 34, 37], networking

protocols [7, 19, 20, 40], third-part libraries [1, 15–17, 39]. A fuzzer

exercises the target program in a loop: (1) select an input and

generate candidate inputs based on it, (2) execute candidate inputs

to track coverage and monitors anomalies, (3) save interesting

candidate inputs which have new coverage, then go to (1). Following

the fuzzing loop, fuzzers could continuously explore more and more

state space of the target program.

Due to the easily adapted nature, fuzzing can continuously

test whole systems with little manual effort. Prior works have

successfully applied fuzzing to relational databases and discovered

many vulnerabilities. For example, SQLsmith [31] constructs inputs

with the abstract syntax tree (AST) model automatically and sends

them to target systems for execution. It has found more than 100

bugs in PostgreSQL, SQLite, andMonetDB since 2015 [32]. However,

because of the unique attributes of time-series databases, existing

fuzzing strategies are hard to directly adapt to these databases.

There are two major challenges as follows.

The first challenge is generating grammatically-correct time-series
queries. Time-series is the basic form to organize data for time-series

https://doi.org/10.1145/3533767.3534364
https://doi.org/10.1145/3533767.3534364
https://doi.org/10.1145/3533767.3534364

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

databases, but existing fuzzers are hard to generate grammatically-

correct time-series queries to test. Specifically, time-series data [8, 9]

represents a collection of data values observed from sequential

measurements over time. To improve the efficiency to store and

fetch data, time-series databases employ different strategies from

relational databases to fit the time-series storage. However, lacking

time-series specifications of time-series databases, existing fuzzing

strategies are hard to generate grammatically-correct time-series

queries. Specifically, due to the vast difference between time-series
in IoT domain and relations in SQL, traditional relational database

fuzzers (e.g. SQLsmith [31]) can hardly reach time-series logic. In

addition, the queries accepted by time-series databases are highly-
structured, the strict grammar impedes most of the seeds generated

by random mutation in conventional mutation-based fuzzers (e.g.

AFL [15]). As a result, designing a time-series input generation

mechanism, which generates grammatically correct time-series

queries, to explore the time-series logic is needed.

The second challenge is capturing exceptions handled implicitly.
Crashes are used as an indication for failed tests in fuzzing, however,

time-series databases utilize implicit exception handling to prevent

crashing whole systems for usability and reliability. In other words,

when anomalies do not happen in critical locations of the server,

they are handled implicitly and no crashes could be triggered.

For example, time-series databases usually create a new thread

for each connecting client as the worker. When an exception is

thrown inside the thread, the implicit handling mechanism will

automatically capture it and only inform the worker with a fault

message. Therefore, the server could still preserve a normal running

state. However, these exceptions may contain serious bugs and

they will be ignored by existing fuzzing approaches. As a result,

designing an implicitly handled exception detection scheme, which

directly obtains exception messages to determine whether it is an

anomaly, to capture all possible bugs is required.

In this paper, we propose Unicorn to overcome the challenges

through hybrid input synthesis and proactive exception detection.

In order to generate grammatically-correct time-series queries,

hybrid input synthesis combines the syntax-preserved mutation and

time-series guided mutation. Specifically, we design hybrid input

specification, which combines the rules to generate conventional

SQLs and time-series SQLs in time-series databases. Based on the

specification, Unicorn first constructs the abstract syntax tree

(AST) for the original seeds and generates new time-series queries

by changing the time-series nodes of AST. To detect exceptions

handled implicitly, proactive exception detection directly captures

exception information from the runtime environment and analyzes

whether it is an anomaly. Specifically, instead of passively receiving

the program’s state, Unicorn inserts an agent into each process

to proactively catch the exceptions and send them to the anomaly

detector for analyzing and reporting.

For evaluation, we used Unicorn to perform fuzzing on IoTDB,

KairosDB, QuestDB, TimescaleDB, TDEngine, and GridDB. We also

adapted the industrial fuzzers SQLancer [25] and SQLsmith [31]

for comparison. Unicorn covered 115.75% more basic blocks on

average than the best results of other fuzzers. In addition, Unicorn

detected 42 previously unknown bugs.

In conclusion, our paper makes the following contributions:

• We observe that current fuzzing approaches are hard to ef-

fectively test time-series databases. The two main challenges

are generating grammatically correct queries and capturing

exceptions handled implicitly.

• We propose hybrid input synthesis and proactive exception

detection to address the aforementioned challenges. We also

implement these approaches in Unicorn.

• We evaluate Unicorn on 6 popular time-series databases

against state-of-the-art fuzzers SQLsmith and SQLancer.

The results show that Unicorn outperforms others and 42

previously-unknown bugs are detected.

2 TIME-SERIES DATABASES

As an infrastructure for IoT data storage and analysis, time-series

databases play an important role in promoting the development of

Internet of Things. Generally, the time-series database is a kind of

large-scale software to manipulate and manage IoT data, it handles

the operation requests from various clients (including IoT devices,

PC, etc.), and carries out unified management and control to ensure

the security and integrity of IoT data [18]. In embedded application

scenarios, time-series databases usually have the following two

characteristics: 1) They employ time-series data to meet scenarios

in the IoT domain, and 2) They utilize implicit exception handling to

guarantee usability, namely, they limit the impacts of anomalies by

handling them internally to ensure the server always runs normally.

Root

vehicle

d1

speed status temperature

robot

d2 r1

status

Storage Group

Device

Sensor

> set storage group to root.vehicle

> create timeseries root.vehicle.d1.speed

with datatype=BOOLEAN,encoding=PLAIN

mobile

m1

height

Figure 1: The time-series query along with the corresponding

storage model of Apache IoTDB. The query imports new

keywords related to time-series. In addition, the object has

hierarchical structures because of the tree-based schema

in IoTDB. IoT data is stored in a tree-based schema,

and the attribute hierarchy structure has three layers. A

grammatically correct object name should construct a path

from the root node to a leaf node.

.

2.1 Employing Time-Series Data

Compared to other applications, the major characteristic of the IoT

applications is employing time-series data. Time series data [8, 9]

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis ISSTA ’22, July 18–22, 2022, Virtual, South Korea

represents a collection of data values observed from sequential

measurements over time. Time series data are always large in data

size and needed to update continuously. Due to the numerical and

continuous characteristics, time-series databases consider time-series
data as a whole and use different mechanisms to deal with them.

To efficiently store and fetch the data based on time-series

data storage, time-series databases import different grammars for

queries. For simplicity, the tokens in an SQL query could be divided

into two groups, namely structure that defines the operations to
perform (e.g. SQL keywords) and data that specify the targets of

defined operations (e.g. target objects). Time-series queries differ

from queries in relational databases both in structures and data.

For structure, time-series databases import new keywords and

objects. We take the query in Figure 1 as an example to show

the differences. The query imports two new keywords, namely

timeseries and storage group. Furthermore, the object named

“root.vehicle.d1.speed” has hierarchical structures, which are

different from object names in conventional relational databases.

The hierarchical structures of collecting data in IoT devices cause

the differences. The figure shows the tree-based schema of IoTDB.

The data are collected from three layers, and from top to bottom

is the storage group layer - device layer - sensor layer. It has one

root node (i.e. ROOT), and several leaf nodes in the sensor layer. A

grammatically correct object name should construct a path from

the root node to a leaf node.

For data, time-series databases attach a timestamp for each

record. The data is a sequence of record values by collecting

chronologically from sensors on devices. Time is one of the most

important attributes, therefore, each element in the sequence is

a tuple that contains the time and value attribute, which looks

like <timestamps, values>. In addition, queries in time-series

databases have strict grammar rules. Any incorrect query will be

directly refused by the parser of databases.

2.2 Handling Exceptions Implicitly

Another critical characteristic of time-series databases is handling

exceptions implicitly. IoT devices are widely used in many critical

areas, therefore, usability and reliability are indispensable for

time-series databases. However, in embedded scenarios, time-

series databases are designed with complex distribution structures.

Specifically, they have to handle the ingestion of tens of millions

of IoT data points per second stably from hundreds of IoT device

clients. Thus time-series databases generally contain hundreds of

components, which have complex interactions with others during

runtime. Any exception in these interactions should not cause

the server to go down. As a result, time-series databases generally
use implicit exception handling, which keeps the server running

normally even if some harmless exceptions are thrown. For example,

Figure 2 illustrates the implicit exception handling in Apache

IoTDB [35]. To support different functionalities, IoTDB registers

amounts of threads. Among them, Time-Series Storage thread, Time-

Oriented Query thread, and IoT Data Management thread are three

main threads in three main modules. If an exception happens in

one of those threads, the Implicit Exception Handling Mechanism
will handle the exception to keep the server running normally.

Time-series
Storage

Time-oriented
Query

IoT data
Management

Single-node IoTDB Server

IoT Data Reader
Manager

Index Manager

Time Detector

File Sync

Ordered Memtable

Out-of-order
Memtable

Schema
Management

Time-based
Partioner

 Implicit Exception
Handling Mechanism

Device
Client1

Device
Client2

Device
Client3

Worker1

Worker2

Worker3

Figure 2: Implicit exception handlingmechanism in a famous

time-series database Apache IoTDB. In the single-node

running model of IoTDB, a server is connected by lots of

device clients. The server generally has three core modules,

namely Time-Series Storage, Time-Oriented Query, and IoT

Data Management. The interactions of the three components

are frequent and complex. When an exception (e.g loss of

data) happens in any component, the IoTDB will implicitly

handle it to ensure the whole system running normally.

3 CHALLENGES IN FUZZING TIME-SERIES

DATABASES

Fuzzing has achieved remarkable results in the field of software test-

ing [4, 7, 15, 25, 31]. However, due to the two major characteristics

in time-series databases, there are two major challenges for fuzzing

time-series databases, namely generating grammatically-correct
time-series queries and capturing exceptions handled implicitly.

To demonstrate the challenges of performing fuzzing in time-

series databases, we present a bug causing damage to the database
integrity of Apache IoTDB. As one of the most important features

of databases, database integrity requires that the data stored in the

database is logically consistent, correct, and valid. It reflects that

create timeseries root.st0.device0.senor0 with
datatype=INT64 ,encoding=REGULAR ;

--Step 1: set the TTL for storage group
set ttl to root.st0 1000 ;
--Step 2: Insert records
insert into root.st0.device0(time ,senor0) values

(2021 -02 -25 T18 :01:01.000+08:00 ,1200);
insert into root.st0.device0(time ,senor0) values

(2021 -02 -25 T18 :01:02.000+08:00 ,1200);
-- Step 3: flush temp content and unset the TTL
flush ;
unset ttl to root.st0;
-- Step 4: delete the data and reinsert records
delete from root.st0.device0;
insert into root.st0.device0(time ,senor0) values

(2021 -02 -25 T17 :36:01.000+08:00 ,1200);
insert into root.st0.device0(time ,senor0) values

(2021 -02 -25 T17 :36:02.000+08:00 ,1100);
insert into root.st0.device0(time ,senor0) values

(2021 -02 -25 T17 :36:03.000+08:00 ,1000);
...
--Step 5: flush temp content and query the data in

root.st0.device0
flush;
select * from root.st0.device0;

Listing 1: The simplified time-series query that triggers the

IndexOutofBoundsException.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

Proactive Exception Detection

Hybrid Input Synthesis

Source
Targets

Seed
Pool

Agent

Specification
Constructor

IoT Query
Generator

Bugs Instrumentor
Anomaly
Detector

Specification

Seeds

Agent

Exceptions

Traditional SQL
Specifications

Time-Oriented
Model

... ...

CoverageInputs

Initial
Seeds

Queries
Interesting Seeds

Hybird

Figure 3: Overview of Unicorn. It contains two parts, namely hybrid input synthesis and proactive exception detection. Hybrid

input synthesis first constructs the hybrid specification with the collected traditional SQL specifications and time-oriented

models. Then, the IoT Query Generator generates time-series queries by mutating seeds based on hybrid specification. The

queries which hit new behaviors will be preserved to the seed pool for further mutation. Proactive exception detection uses

agents to collect exceptions. The agents are managed by the anomaly detector and they will send exception messages to the

detector. Finally, the anomaly detector deduplicates and reports bugs along with their triggered input and call stack traces.

the server of a database can always return correct results for each

query from a client. The bug violates the integrity, which causes

the loss of data. Consequently, the IoT devices that rely on these

data perform abnormally and a large amount of real valuable data

stored in IoT devices is lost in the production environment.

Listing 1 shows the simplified seed to trigger this bug. The

Apache IoTDB performs the actions as follows with the seed:

(1) Set the TTL (i.e. Time To Live) for the existing time-series

storage group. The database will delete old data which

exceeds TTL automatically and periodically.

(2) Insert some out-of-date records, which will be automatically

deleted because of the TTL.

(3) Flush the temporary data, then unset the TTL from the

storage group when overrun the TTL.

(4) Delete the time-series data in the storage group and then

insert some valid time-series records.

(5) Flush the temporary data again and then execute select

statements to query the data in the storage group.

According to the database integrity, the server should have returned

some time-series records inserted in Step 4 to the client after

executing the statement “select * from root.st0.device0”. However,

the client just received an error message “Msg:500, bitIndex < 0

:-2147483648”, because of the time-series data loss in IoTDB.

The bug can hardly be detected by existing fuzzers. There are

two major challenges for detect this anomaly. First, this bug was

triggered with minuscule symptoms. Test oracles are prerequisites

for testing, which determines whether the test target runs normally

under a test case. A basic oracle for fuzzing is detecting whether

an input runs normally without triggering any crash of the server,

e.g.SQLsmith [31]. However, this bug about the database integrity

does not crash the server directly, and even the client continues to

run normally after receiving the error message. It would be missed

by the detector of existing fuzzers.

In addition, this bug could only be triggered when IoTDB is

in a specific state within the context of schema change, which

contains some time-series operations. The query in Listing 1 has

time-series characteristics, which is different from conventional

queries in relational databases both in structure and data. However,

lacking time-series specifications, existing fuzzing strategies are

hard to generate time-series queries. As a result, the logic to deal

with the main attribute – time-series, is hard to be tested in time-

series databases by existing fuzzing strategies. On the other hand,

the queries accepted by time-series databases are highly-structured,
which increases the difficulty for fuzzers to generate grammatically

correct queries. For example, conventional mutation-based fuzzers

(e.g. AFL [15]) utilize random mutation to generate new seeds,

which could easily wreck the delicate structures in SQL queries.

Consequently, the inputs which triggered the bug are difficult to

be generated by existing fuzzers.

4 SYSTEM DESIGN

Figure 3 presents the overview of Unicorn has two parts, namely

hybrid input synthesis and proactive exception detection. Hybrid
input synthesis addresses the challenge of generating grammatically

correct time-series queries, while proactive exception detection
addresses the challenge of detecting exceptions during the running

of time-series databases.

4.1 Hybrid Input Synthesis

To perform fuzzing on time-series databases, grammatically correct

time-series queries need to be generated automatically. However,

existing fuzzers can hardly generate them due to the highly

structured time-series input specification. Specifically, conventional

mutation-based fuzzers (e.g. AFL) are hard to guarantee the

grammatical correctness for highly structured specifications while

existing generation-based fuzzers (e.g. SQLsmith) are hard to adapt

to time-series features in the IoT domain. To address the problem,

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis ISSTA ’22, July 18–22, 2022, Virtual, South Korea

we propose hybrid input synthesis. It designs the hybrid input
specification to describe time-series features and utilizes time-series
mutation to ensure grammatical correctness.

4.1.1 Hybrid Input Specification Construction. Hybrid Input Spec-

ifications describes the rules to construct a highly structured

time-series query. It consists of traditional SQL specifications

and time-oriented models. Traditional SQL specifications describe

the grammar rules of relational queries, which can be obtained

straightforwardly from the Internet. Time-oriented models de-

scribe time-series keywords and syntax rules. Traditional SQL

specifications contain many basic descriptions of the SQL queries,

which supplies the skeleton for queries. On the other hand, time-

oriented models abstract time-series features, which supply the

rules to generate time-series elements. Combining traditional SQL

specifications and time-oriented models, hybrid input specifications

could generate suitable time-series queries. Figure 4 shows an upper-

level abstraction example of the hybrid input specification. The time-

series query statements of time-series databases can be divided into

two parts, namely general skeleton, which represents traditional
SQL specifications (covered with red), and time-series elements,

which reflect time-oriented model (covered with green).

A time-series query based on hybrid input specification is con-

structed as follows: first, Unicorn takes the traditional SQL input

specification as the general skeleton; second, it fills the skeleton

with time-series elements according to the time-oriented model.

For example, in Figure 4, the CREATE statements of TimescaleDB

can be constructed by adding a time-series element to the general

skeleton of PostgreSQL as an attribute.

TimesclareDB:
 CREATE TABLE name(timeseries，attr1, attr2, ...);
IoTDB:
 CREATE TIMESERIES group(timeseries，attr1, attr2, ...);
TDEngine:
 CREATE TABLE t_name USING st_name TAGS (attr1, attr2, ...);
QuestDB:
 CREATE TABLE name (timeseries, attr1,attr2,...) TIMESTAMP(timeseries);

CREATE TABLE NAME (attr1,attr2,....);
 -- Traditional SQL Statements (Postgres)

Data :
 timeseries
Constraint :
 TIMESTAMP -- QuestDB
 USING, TAGS -- TDEngine
 TIMESERIES -- IoTDB

Time-Orient Model

General Skeleton

Figure 4: An example of hybrid input specification for

time-series databases. The CREATE statements for QuestDB,

IoTDB, and TDEngine can be generated from the general

skeleton and the time-oriented model. The general skeleton

is from PostgreSQL’s specification. The time-oriented model

is defined with the features of time-series databases.

4.1.2 Time-Series Mutation. With the hybrid input specification,

Unicornmutates queries by changing the structure and data which

have time-series features. Algorithm 1 illustrates the process of

time-series mutation. Unicorn first translates the original seed

into the abstract syntax tree (AST) for better understanding and

analysis. Compared to the source raw query, AST provides a more

structured and precise format for analyzing the query’s construction

and logic. Then Unicorn identifies the time-series data nodes and

time-series structure of the AST based on the specification. Then

Unicorn mutates queries by randomly choosing from following

two mutation methods: 1 Modify time-series data. The mutation

method mainly modifies the data in an AST, such as groups, devices,

sensors. It also changes time-series value to generate new queries.

2 Modify time-series structure. It changes the structure of the AST

by removing, modifying, or adding nodes on the basis of the hybrid

input specifications.

Algorithm 1: Time-Series Mutation.

Input :𝑄 : Time-series query,

𝑃 : Grammar parser

Output :𝑆 : New time-series query

1 Function TimeSeriesParseMutate(𝑝𝑎𝑟𝑠𝑒𝑟 ,𝑞𝑢𝑒𝑟𝑦):
2 𝑇𝑟𝑒𝑒 = ConstructAST(𝑄, 𝑃) ;
3 foreach 𝑛𝑜𝑑𝑒 ∈ 𝑇𝑟𝑒𝑒.𝑛𝑜𝑑𝑒𝑠 do
4 𝐷𝑁𝑜𝑑𝑒𝑠, 𝑆𝑁𝑜𝑑𝑒𝑠 = classifyNodes(𝑛𝑜𝑑𝑒,𝑇𝑜𝑘𝑒𝑛𝑠) ;
5 end

6 while ifcontinueMutate() do
7 𝑀𝑒𝑡ℎ𝑜𝑑 = mutateStructureOrData() ;
8 if 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑆𝑡𝑟𝑢𝑐𝑡 then

9 𝑆 = SNodeToMuate(𝑆𝑁𝑜𝑑𝑒𝑠) ;
10 else

11 𝑆 = DNodeToMuate(𝐷𝑁𝑜𝑑𝑒𝑠) ;
12 end

13 end

14 End Function

Take Figure 5 as an example, the query “select COUNT(*) from

root.vehicle group by ([2,50],20ms)” is firstly translated into an

AST. Secondly, Unicorn identifies the time-series data nodes and

time-series structure nodes. Specifically, prefixPath, LRBRACKET,
and timeInterval nodes belong to time-series data nodes, and

the selectElements, fromClause, and specialClause belong

to time-series structure nodes. Then, assume Unicorn chooses

mutating new query by modifying the structure. It removes the

specialClause node and all its successor nodes (removed nodes are

covered by red) to generate a new AST. Finally, the new AST is

translated into a new time-series query “select COUNT(*) from

root.vehicle”.

4.2 Proactive Exception Detection

As mentioned in Section 2, time-series databases use implicit

exception handling to guarantee robustness and fault tolerance,

which makes it difficult to detect internal anomalies with traditional

crash oracles. To overcome this challenge, we design proactive
exception detection to detect internal anomalies. It proactively

captures the error messages from the runtime environment by

inserting agents into each process and analyzing the exceptions

reported from each agent with anomaly detector.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

specialClause

selectStatement

fromClause

alignByDeviceClause

groupByTimeClause

selectElements

aggregationCall (COMMA
prefixPath)* prefixPath specialLimit

functionNode

COUNT(*)

root vehicle
LR_BRACKET timeInterval

[2,50) 20ms

select COUNT(*)

from root.vehicle group

by ([2,50),20ms) align

by device

select COUNT(*)

from root.vehicle

Figure 5: An example of time-series mutation for time-series

databases. Unicorn chooses mutating structures and deletes

specialClause node and all its successor nodes.

Figure 6 shows the overview of proactive exception detection.

Generally, programs are dependent on the runtime environment,

which might be a Virtual Machine (VM) or an Operation System

(OS). All runtime errors of the programs will be transformed and

handled in the runtime environment. Traditional fuzzers detect

anomalies by monitoring whether the program crashes while it is

running, which will ignore the exception with minuscule symptoms

that are handled implicitly in time-series databases. In our design,

Unicorn uses agents to directly collect all exception information

generated by the program from the runtime environment, including

those handled implicitly by time-series databases. In addition,

Unicorn also contains an anomaly detector, which is used to

manage all agents from each process, as well as record and analyze

the detailed information of exceptions.

Time-series Storage

Agent

Context
Error

Message

Time-series Query

Backened

Threads

Runtime

Context

Context

Server

Agent

Client

Threads Runtime
Error Msg

Anomalies
Detector

Exceptions

Exceptions

Bugs

Figure 6: The design of proactive exception detection.

Unicorn uses agents to capture exceptions both in server

and clients. All agents are managed by an anomaly detector,

which is also used to report the detected bugs. To collect

the exception message, the server and clients are run

in a common runtime environment. For example, the

backend thread, time-series query thread, and the storage

thread all share the same runtime environment. When

exceptions happen, the agent will receive the message from

the environment and report them to the anomaly detector.

4.2.1 Agent. As Figure 2 shows, time-series databases register a

large number of threads to support different functions when the

server is running, such as cache monitoring threads and temporary

data dispatching threads. To prevent crashing the whole system,

time-series databases usually handle all exceptions in each thread

with the implicit exception handling mechanism. However, those

implicitly handled exceptions may reflect bugs in workers, which

may cause memory consumption or unexpected results.

Agent is designed to capture error messages from the runtime

environment during the target database running. One agent is used

to follow one process of time-series databases by instrumenting on

exception handling code. To capture the exception message from

the runtime environment, Unicorn firstly locates the exception

handling code and gets all custom exceptions in time-series

databases, which are used to distinguish the unchecked exceptions.

Then, Unicorn scans each exception handler, and instruments

those that don’t throw the captured exception but implicitly handles

it, to capture the error messages. For example, Listing 2 details the

instrumentation code in an exception handler of Apache IoTDB. It

first checks the exception’s type and the logger. If the exception

belongs to unchecked exceptions or it is a serious assertion, the

detailed information of the exception (e.g. stack trace) will be

recorded and sent to agents after the execution of the seed. Based on
the instrumentation, agents can directly get the exception messages

from the runtime environment.

public class MergeTask implements Callable <Void > {
...

@Override
public Void call() throws Exception {

try {
doMerge ();

} catch (Exception e) {
logger.error("Runtime exception {}",

taskName , e);

if (e instance of runtime error) ;

add e into errorFeedback of Mem.class to send ;

record e.getStackTrace() and e.getCause() ;

abort();
}
return null;

}
...

}

Listing 2: The automatically instrumented code in an

exception handler of Apache IoTDB.

4.2.2 Anomaly Detector. Agents in the different runtime envi-

ronments are managed by anomaly detector. It also records and

reports anomalies. Commonly, time-series databases start with

different processes. And servers and clients may have different

processes which run in various runtime environments. For example,

KairosDB generally starts three processes in three individual virtual

machines, namely the client process, the background storage

process (i.e. Cassandra Server), and the main server process(i.e.

KairosDB). Each agent in three runtime environments may report

error messages. Consequently, Unicorn employs anomaly detector
to collect exception messages from agents in multiple runtime

environments. Specifically, Unicorn first configures unique agents

for each virtual machine. Then, all the exceptions along with

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis ISSTA ’22, July 18–22, 2022, Virtual, South Korea

their detailed error messages captured by agents from runtime

environments are sent to the anomaly detector.

Next, the anomaly detector analyzes whether the exceptions

are bugs based on their types and error messages. First, exceptions

could be divided into unchecked exceptions and checked exceptions,

and unchecked exceptions are determined as bugs by Unicorn.

Specifically, an unchecked exception is an exception that occurs at

the time of execution.Unchecked exceptions could always be regarded
as anomalies, because the target program cannot reasonably be

expected to recover from them or to handle them in any way [5,

22]. For example, typical unchecked exceptions include pointer

exceptions (e.g. access an object through a null reference), indexing

exceptions (e.g. attempting to access an array element through

an index that is too large or too small), and arithmetic exceptions

(e.g. dividing by zero). However, to ensure the server of time-series

databases always running normally, unchecked exceptions should

also be handled implicitly by the target system. Consequently,

Unicorn also captures them for potential bugs.

The other type of exception is the checked exception. The

checked exceptions may not represent a bug when they are thrown

because generally, the target program could handle them reasonably.

Even though, to avoid missing bugs, the anomaly detector still

records the detailed error message and database logs for manual

verification.

5 IMPLEMENTATION

We implement the Unicorn with 8,657 lines of code. The fuzzer is

implemented in Rust using the Tokio asynchronous framework [3].

As Figure 3 shows, Unicorn has two parts, namely hybrid input

synthesis and proactive exception detection.

Hybrid Input Synthesis. Hybrid input specification is mainly

implemented like ANTLR format. We collect a number of traditional

input specifications from the Internet to build the general skeleton

library in ANTLR format. The time-oriented models for each

time-series database are also constructed in ANTLR format. The

time-series mutation is implemented in 1,423 lines of code. For

generalization, we implement a converter in 1,075 lines of Python

code to make YACC format compatible with our specification.

We instrument databases to collect coverage feedback. For Java

databases, we implement it on ASM framework. And for C/C++

databases, we implement it based on Clang.

Proactive Exception Detection. Detection is based on agent
and anomaly detector. For VM-based time-series databases, the

agent is implemented in 2,147 lines of Java code with ASM

framework. For OS-based databases, the agent is implemented in

1,646 lines of C++ and Rust code and leverages ptrace for sub-

processes error detection. In addition, we implemented the anomaly

detector in Unicorn with 1,345 lines of Rust code.

6 EVALUATION

In this section, we evaluate the effectiveness of Unicorn in terms

of coverage and bug discovery against state-of-the-art database

fuzzers—SQLsmith and SQLancer. Besides, we also evaluate the

effectiveness of two parts of Unicorn, namely hybrid input

synthesis, as well as proactive exception detection.

6.1 Evaluation Setup

Target Time-Series Databases. To evaluate the generality of

Unicorn, six popular and widely-used open-source time-series

databases are selected as the targets, namely IoTDB, KairosDB,

QuestDB, TimescaleDB, TDEngine, and GridDB. Table 1 shows the

features of those target databases.

Table 1: Features of Chosen Time-series Databases

Target Language Schema Grammar Dependency

IoTDB Java tree-based SQL-like N/A

KairosDB Java tag-based Http API Cassandra

QuestDB Java column-based SQL-like N/A

TDEngine C++ table-based SQL-like N/A

TimescaleDB C relational SQL-like PostgreSQL

GridDB C++ tag-based SQL-like N/A

Compared Fuzzers For the performance comparison, we have

also adapted the blackbox fuzzers SQLsmith and SQLancer, which

are widely used to test relational databases in industry, to those

time-series databases. Other fuzzers such as Sqirrel [38] are

preliminary evaluated in Section Section 7 because of the limitation

of their language support.

• SQLsmith [31] is one of the state-of-the-art generation-

based DBMS Fuzzer. It continuously generates a large

amount of syntactically correct database inputs with the

pre-built abstract syntax tree model and sends them to the

target database server. If the database server crashes, a bug

is very likely to be detected.

• SQLancer [25] is a fuzzer for hunting logic bugs in DBMS.

It detects logic bugs by constructing invariant oracles [26–

28] and checking whether results violate semantic logic. For

example, it synthesizes queries to fetch a random row from

an existing relational table in the database. If the database

fails to fetch that, then the database might have a bug.

Performance Metrics. We use the number of basic blocks

covered and the number of bugs detected as two basic metrics.

For a fair comparison, when we finish fuzzing, we collect the seeds

generated by each fuzzer and dry-run the seeds to uniform the

basic block coverage. To deduplicate unique bugs, we extract and

compare their call stacks. We also manually trace back to their

relevant source code to further confirm. For evaluations, we ran

each fuzzing instance (one fuzzer + one target database) for 12

hours with 5 repeated times.

Experiment Environment. We perform the evaluation on a

machinewith 40 cores (Intel(R) Xeon(R) Gold 6148 CPU@2.40GHz),

256 GiB RAM, and Ubuntu 20.04 as the operating system. Each

fuzzing instance ran individually with 1 CPU and 8GiB of RAM.

The initial seeds were collected from the built-in integration tests.

6.2 Overall Performance

Unicorn performs better than SQLsmith and SQLancer both in the

number of basic blocks covered and bugs triggered. Specifically,

in our 12-hour experiment, Unicorn covered 115.75% more basic

blocks on four successfully adapted databases than other fuzzers’

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

Figure 7: The growing trend of the number of basic blocks covered when fuzzing each time-series database by Unicorn,

SQLsmith, and SQLancer over 5 runs in 12 hours. Displayed are the median and the 95% confidence intervals.

best results on average. Also, it found 42 previously unknown bugs,

while other fuzzers detected 2 at most.

Coverage. Table 2 demonstrates the number of basic blocks

covered by each fuzzer in 12-hour experiments. From the table,

we can see that Unicorn outperformed other fuzzers in terms

of basic block coverage. Compared to SQLsmith and SQLancer,

on the four successfully adapted databases for both of them

(i.e. IoTDB, QuestDB, TDEngine, and TimescaleDB), Unicorn

covered 115.75% more basic blocks on average than their best

results. In particular, Unicorn covered 690% more basic blocks

than SQLancer in GridDB. Unicorn outperforms other fuzzers

because it promises syntax correctness and time series by hybrid

input synthesis. In contrast, SQLsmith and SQLancer do not match

the time-series characteristics because SQLsmith and SQLancer

only focus on the relational query in the relational model. In

addition, Unicorn performs well on all tested time-series databases

while SQLancer and SQLsmith both can hardly adapt to KairosDB.

Because KairosDB does not accept the SQL-like inputs but the JSON

format input by HTTP-API, the generation model of SQLsmith and

SQLancer can hardly generate inputs like that. Instead, Unicorn

constructs the hybrid input specification for input generation by

adding the time-series elements to the JSON grammar specification.

As a result, Unicorn adapts KairosDB well to explore its state space.

Figure 7 shows the growth trends of the number of basic blocks

for each fuzzer over 12 hours. By comparing the curves of Unicorn,

SQLsmith and SQLancer in each sub-figure, we find that Unicorn

is faster to cover basic blocks on target time-series databases than

both SQLsmith and SQLancer. Specifically, in Figure 7 (a), Unicorn

covers more basic blocks in IoTDB than SQLsmith and SQLancer

from start to the end. The results on other time-series databases also

have similar trends. The main reason is that the inputs generated

by SQLsmith and SQLancer lack time-series elements, so most of

them are invalid. Unicorn introduces time-series elements through

Table 2: Average Number of Basic Blocks on Time-Series

Databases For Each Fuzzer.

Target SQLsmith SQLancer Unicorn

IoTDB 4, 857 3, 754 14, 532

KairosDB N/A N/A 26, 489

QuestDB 5, 742 3, 298 10, 486

TDEngine 3, 245 1, 423 8, 473

TimescaleDB 26, 423 13, 485 32, 124

GridDB N/A 2, 286 18, 145

Total 40, 276 24, 246 110, 249

hybrid input synthesis. The initial seeds are syntactically correct,

which come from the test cases of time-series databases themselves.

Based on them, hybrid input synthesis generates more valid inputs,

which are helpful to explore the states of the target time-series

databases. Therefore, Unicorn achieves higher coverage at the

beginning and keeps ahead to the end.

Table 3: Total Number of Detected Bugs on Time-Series

Databases By Each Fuzzer.

Target SQLsmith SQLancer Unicorn

IoTDB 1 0 18

KairosDB N/A N/A 2

QuestDB 0 0 3

TDEngine 0 0 6

TimescaleDB 1 1 3

GridDB N/A 0 10

Total 2 1 42

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Bugs. Table 3 shows the number of bugs discovered in six time-

series databases by Unicorn, SQLsmith, and SQLancer. All these

bugs have been confirmed by the database developers. Totally,

Unicorn detected 42 previously unknown bugs. Among them,

23 were from databases implemented in Java, which run in VM.

Furthermore, 2 bugs were also found by SQLsmith, while SQLancer

did not detect any bug. Unicorn found more bugs mainly for two

reasons. First, Unicorn finds more basic blocks. With more basic

blocks covered, Unicorn could explore more state space in the

target time-series databases, which assigns more possibility for

Unicorn to detect more bugs. Second, Unicorn is able to detect

bugs that are handled implicitly, while others cannot. For instance,

of the discovered 18 bugs in IoTDB, only 5 bugs directly cause the

server crash. Although some unchecked exceptions are caused by

real bugs, such as returning the wrong results to the client, storing

wrong time-series data, and memory explosion, IoTDB handles

them implicitly without triggering any crashes. Consequently, other

fuzzers will ignore them because the exceptions are handled by

the database itself. Instead, with proactive exception detection,

Unicorn detects them by obtaining the exception message from

the runtime environment.

6.3 Effectiveness of Hybrid Input Synthesis

To evaluate the effectiveness of hybrid input synthesis, we compare

Unicorn against Unicorn-no-hybrid and Unicorn-random. Uni-

corn-no-hybrid disables the hybrid input synthesis. Specifically,

it disables the time-oriented model and only uses traditional

SQL specifications. Correspondingly, its mutation changes data or

structures without distinguishing whether they are related to time-

series features. Unicorn-random further disables all specifications.

It is like AFL that uses random mutation to generate new seeds. All

three versions of Unicorn use the same initial seeds.

IoTDB KariosDB QuestDB TDEngine TimescaleDB GridDB
5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f B
as

ic
Bl

oc
ks

Unicorns
Unicorns-no-hybrid
Unicorns-random

Figure 8: Number of Basic Blocks for Unicorn, Unicorn-no-

hybrid, and Unicorn-random in 12h.

Figure 8 shows the number of basic blocks covered after fuzzing

12h with Unicorn, Unicorn-no-hybrid, and Unicorn-random. It

shows the importance of hybrid input synthesis for improving

coverage. First, the hybrid input synthesis is positive to Unicorn.

Compared to Unicorn-random, Unicorn improves 32.8% block

coverage on average in 12h. In particular, it covered 48.1% more ba-

sic blocks than that of Unicorn-random in TimescaleDB. The main

reason is the random mutation can not match the requirements of

highly-structured specification; most inputs generated by Unicorn-

random have errors in syntax. For example, given “CREATE

timeseries root.st0.senor0 with datatype=INT64” as the original

time-series query, the generated input by Unicorn-random might

like "CREdTE timeseriPS root.st0.seonhe with datatype=INT64;",

which can not be parsed syntactically.

More importantly, we find that the time-series model in hybrid

inputs specification plays a vital role in the Unicorn’s performance.

Unicorn covered 28% more basic blocks than Unicorn-no-hybrid

on average. Unicorn-no-hybrid can hardly adapt to the time-series

characteristics of time-series databases, though it can generate

highly-structured inputs. For instance, the inputs generated for

IoTDB are usually like “CREATE TABLE root.st0.senor (int value);”,

which does not conform to time-series specifications. Differently,

Unicorn imports the time-oriented model into traditional SQL

specifications to construct hybrid input specifications. Besides

normal SQLs, it could generate lots of queries which implies time-

series features. As a result, Unicorn covers more basic blocks than

Unicorn-no-hybrid in the experiments.

Uncommonly, Unicorn-no-hybrid covered 23.1% basic block

than that of Unicorn-random in TimescaleDB, which is signifi-

cantly better than that in other databases. However, Unicorn-no-

hybrid still performs worse than Unicorn. The phenomenon can

also be explained by the time-series specification. Different from

other databases, TimescaleDB runs as the plugin of PostgreSQL.

It not only receives time-series data queries at runtime, but

also executes traditional SQL statements for PostgreSQL. With

the specification of PostgreSQL, the inputs generated only with

mutations on AST can still be executed normally. Nevertheless, the

inputs generated guided by traditional SQL specifications can only

trigger the execution logic of PostgreSQL, while the time-oriented

inputs can trigger the execution logic of both TimescaleDB and

PostgreSQL. For those reasons, Unicorn-no-hybrid performs much

better than Unicorn-random in TimescaleDB, but it still covers

fewer blocks than Unicorn.

6.4 Effectiveness of Exception Detection

As shown in Section 6.2, Unicorn performs well in detecting

time-series database bugs. Because Unicorn utilizes proactive

exception handling, it detects many bugs which could not be found

by other fuzzers that employ conventional test oracles. To further

illustrate the effectiveness of proactive exception handling, we first

collect the seeds causing the bugs from Unicorn, then rerun them

with Unicorn-no-detection, which closes the proactive exception

detection and only detect anomalies that cause crashes.

Table 4 shows the number of bugs found with two methods. The

second column presents the number of bugs found by Unicorn-

no-detection. For comparison, we also list the number of bugs

detected by Unicorn in the third column. From the table, we can

see that proactive exception detection is critical in discovering

bugs. Unicorn-no-detection will wrongly consider some buggy

seeds as normal. Specifically, without proactive exception detection,

Unicorn-no-detection only finds 21 bugs using the same seeds,

which is only half as much as that of Unicorn. In particular,

Unicorn-no-detection only detected 5 crashes in IoTDB, which

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

Table 4: Number of Bugs Found by Unicorn Without

Proactive Exception Detection.

Target Unicorn-no-detection Unicorn

IoTDB 5 18

KairosDB 1 2

QuestDB 0 3

TDEngine 4 6

TimescaleDB 3 3

GridDB 8 10

Total 21 42

missed 13 bugs than Unicorn. The main reason is that the missed

bugs by Unicorn are handled implicitly, which do not cause the

crash of time-series databases. Unicorn uses agents to collect

all exceptions directly from the runtime environment, including

the ones handled by implicit mechanisms. As a result, Unicorn

captures most bugs triggered by abnormal inputs. Table 5 also lists

the statistics of 42 discovered bugs. Among them, 33 have been fixed

by developers. Among the 42 new bugs discovered by Unicorn, 21

of them found by Unicorn did not directly crash the time-series

databases, but these implicitly handled bugs also caused a series of

problems such as loss of data, incorrect results, and out of memory.

Table 5: Statistics of Unknown Bugs Detected by Unicorn

Project (Fixed/Detected) Component Bug Type and Number

IoTDB (18/18) db.qp Check metadata error (3),

NumberFormatException (1),

Aggregation Error (1)

db.metadata BufferUnderflowException (2),

Internal server error(1),

NullPointerException (1),

db.engine ClassCastException (1),

ClosedByInterruptException (1),

StorageEngineFailureException (1)

tsfile IndexOutOfBoundsException (1),

NullPointerException (1),

ClassCastException (1)

thrift TTransportException (1)

db.concurrent OutOfMemoryError (1)

cluster IndexOutofBoundsException (1)

KairosDB (1/2) db WriteTimeoutException (1)

concurrent NullPointerException(1)

QuestDB (1/3) griffin Aggregation Error (1)

cairo InvalidColumnException (1)

QuestDB cutlass Infinite loop (1)

TDengine (5/6) query Heap-Buffer-Overflow (1),

Segmentation Fault (1)

vnode Assertion Failure (1), Buffer

Overflow (1)

common Assertion Failure (1)

TimescaleDB (3/3) server Segmentation Fault (1), Assertion

Failure (2)

GridDB (5/10) server Assertion Failure (1)

utility Segmentation Fault (1), Assertion

Failure (3)

server Heap-Buffer-Overflow

(1),Pointer-Overflow (2),

Implicit-Conversion (2)

Total 19 components 33 fixed, 42 confirmed

7 DISCUSSION

We discuss several limitations of our current implementation of

Unicorn and our plan to address them in future work.

Overhead of Monitoring All Implicit Exceptions. With

the proactive exception detection, Unicorn can detect amounts

of implicitly handled exceptions from the runtime environment.

The proactive exception detection does import overhead in time-

series query fuzzing, but it is also helpful to detect abundant

exceptions. On the one hand, proactive exception detection does

not increase too much additional execution time. For example,

Unicorn executed 696, 245, and 754, 263 seeds for IoTDB during

24-hours fuzzing when the proactive exception detection is on

and off, respectively. It only increases 8% execution time to detect

all the exceptions from runtime environments rather than just

find the crash bugs. On the other hand, monitoring all the implicit

exceptions helps discover bugs. In our practice,Unicorn discovered

112 exceptions and found 14 unique bugs in IoTDB after fuzzing

24 hours with the proactive exception detection. But when we

closed the exception detection, only 5 crashes were found. Overall,

while monitoring all exceptions increases the overhead of Unicorn,

It also assigns the ability to detect bugs that may cause serious

damage to time-series databases in production applications. We

believe reducing the overhead is significant to speed fuzzing. We

plan to optimize it by reducing capture messages of agent.
Cost of Adapting to New Time-series Databases. The

scalability of database fuzzers plays a crucial role in industrial

applications. Generally, the most labor-consuming task is building

the input model of target databases. For example, SQLancer uses

8,134 lines of Java code to support generating syntax-correct queries.

Different from conventional fuzzers, Unicorn doesn’t cost much

to adapt to new time-series databases. With the collected ANTLR
format grammar of traditional SQL specification, we only need to

manually append less than 100 lines of code for the time-oriented

model.

Compare Against Coverage-Guided Database Fuzzers.Most

coverage-guided database fuzzers are unable to test time-series

databases directly because their instrumentation only supports

C/C++. In contrast, Unicorn supports the heterogeneous imple-

mentation of C/C++ and Java. To further investigate Unicorn’s

performance, we also compare against Sqirrel [38], the state-of-

the-art coverage-guided database fuzzer, on two C++ time-series

databases, namely TimescaleDB and TDEngine. The results show

that Unicorn performed better than Sqirrel. Sqirrel covered

19, 843 basic blocks on TimescaleDB and 5, 439 basic blocks on

TDEngine after fuzzing 12 hours, while Unicorn covered 32, 124

and 8, 473 basic blocks on two databases, respectively.

8 RELATEDWORK

In this section, we focus on most related works on testing databases,

along with the works for IoT domain testing.

Test Query Generation. Based on the generated test data, many

database testing tools focus on generating various types of queries.

To guarantee the syntax correctness of queries, a common approach

is constructing the generation model. SQLsmith [31] generates

queries with a pre-built generation model, and it randomly gener-

ates various queries. Sqirrel’s generation model is an Abstract

Syntax Tree (AST). It parses each query to construct the query’s

AST and mutates the node in AST to generate new queries that

correct in syntax. However, constructing parsers for generation

Unicorn: Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis ISSTA ’22, July 18–22, 2022, Virtual, South Korea

is laborious. For example, SQLsmith uses 42 elements to adapt

the select statement of PostgreSQL. In addition, these generation

models are built based on the relational storage model of relational

databases. It can not perform well for the time-series storage model.

Unlike these works, Unicorn automatically constructs hybrid

input specification for each time-series database by combining time-

oriented models and traditional SQL specifications. With the time-

oriented model, the generated queries have abundant time-series

features. Besides, Unicorn is adaptable. Generally, it only needs to

append less than 100 lines of code to the traditional specification

for the time-oriented model to adapt to a new time-series database.

Test Oracles for Databases. Various test oracles have been

proposed to detect various bugs in databases and have achieved

good results [13, 25–27, 31, 33, 38]. The basic test oracle is

monitoring whether the tested databases crashes. SQLsmith [31]

determines bugs in databases through the running state of the

server. In other words, if the server crashes, there might be a

bug in the database. Sqirrel [38] and Ratel [36] focuses on

detecting memory corruption bugs in databases with the help of

AddressSanitizer (ASAN) [10]. It records bugs when ASAN crashes

the program. However, limited by the dependency on ASAN, it

can only detect bugs in the C/C++ databases. Therefore, it can

hardly detect problems for the database implemented in memory-

safe languages such as Java. Other tools focus on oracles related to
logic correctness. SQLancer [25] designs three test oracles according
to the logic characteristics of relational databases. Specifically, it

constructs inputs to fetch a randomly selected row from a relational

table. If the database server fails to return the rows, it should contain

a bug. Some other works define test oracles based on differential
testing. RAGS [33] detects correctness bugs in databases through

differential testing. It generates and executes queries in multiple

databases. Any inconsistency among results indicates at least one

database contains bugs. Apollo [12, 13] is proposed to detect

performance regression bugs by comparing the execution time

with the same inputs on different versions of the same databases.

Unicorn is different from these works. It designs proactive

exception detection to catch the exception message from the

runtime environment of databases. Consequently, it can detect bugs

even if they are hidden by implicitly handling mechanisms. It is

important because these bugs may lead to various serious problems.

Based on the detection mechanism, Unicorn can also be adapted

to databases implemented in different languages.

IoT Domain Testing. With the development of IoT devices,

time-series database testing has attracted more and more attention.

And a large number of test benches for time-series databases have

been designed. Schemakeit [30] has created a test bench focusing

on the writing speed, CPU time, memory usage of time-series

databases. Rudoly [29] evaluates different time-series databases for

smart space. However, these test benches only test the performance

of time-series databases. Different from them, Unicorn detects

security problems (e.g. memory errors) in time-series databases.

In addition to performance testing, many time-series databases

developers [2, 6, 11, 23, 24] also use a large amount of unit tests to

ensure their security. However, unit tests can only cover basic

functionalities of time-series databases, and some hidden bugs

can not be discovered due to low coverage. Differently, Unicorn

tests target databases as a whole system. In other words, Unicorn

could detect anomalies triggered by the interactions from different

components in one database. More importantly, Unicorn generates

a large amount of time-series queries automatically, which can cover

more basic blocks and detect hidden bugs.

9 CONCLUSION

In this paper, we presentUnicorn to automatically detect anomalies

in time-series databases with time-series query fuzzing. We first

observe that generating grammatically correct time-series queries

and detecting anomalies handled implicitly are two major chal-

lenges to perform fuzzing on time-series databases. We also find

that two characteristics, namely time-series query specification and

implicit exception handling, of time-series databases are the root

cause for two challenges, respectively. We design a hybrid input

synthesis to generate grammatically correct time-series queries to

improve the coverage. Furthermore, we employ proactive exception

detection, which catches and analyzes the exceptions from runtime

environments directly, to detect bugs handled implicitly. We

implement the approach in Unicorn. On average, Unicorn covers

115.75% more basic blocks than the best result of the state-of-the-art

methods. Furthermore, it detected 42 previously unknown bugs.

ACKNOWLEDGMENTS

This research is sponsored in part by the NSFC Program (No.

62022046, 92167101, U1911401, 62021002, 62192730), and the Na-

tional Key Research and Development Project (No. 2019YFB1706203,

No2021QY0604).

REFERENCES

[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and

Meredith Whittaker. 2016. Continuous fuzzing for open source software.

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-

fuzzing.html. [Online; accessed 15-May-2021].

[2] ASuherman, Masayoshi KURITA, Katsuhiko Nonomura, and Samurai Chanko.

2016. GridDB: Highly Scalable, In-Memory NoSQL Time Series Database

Optimized for IoT and Big Data. https://griddb.org/

[3] Alex Crichton Carl Lerche. 2016. Tokio:Build reliable network applications

without compromising speed. https://tokio.rs/. [Online; accessed 15-May-2021].

[4] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.

In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. IEEE Computer Society, 711–725. https:

//doi.org/10.1109/SP.2018.00046

[5] cppreference. 2017. GESH, MediaWiki. https://en.cppreference.com/w/cpp/

error/exception. [Online; accessed 15-May-2021].

[6] TAOS Data. 2019. TDengine: Big Data Platform Designed and Optimized for the

Internet of Things (IoT). https://www.taosdata.com/

[7] Michael Eddington. 2015. Peach Fuzzer: Discover unknown vulnerabilities.

http://web.archive.org/web/20210121202148/https://www.peach.tech/. [Online;

accessed 15-May-2021].

[8] Philippe Esling and Carlos Agon. 2012. Time-series data mining. ACM Computing
Surveys (CSUR) 45, 1 (2012), 1–34.

[9] Tak-chung Fu. 2011. A review on time series datamining. Engineering Applications
of Artificial Intelligence 24, 1 (2011), 164–181.

[10] Google. [n.d.]. AddressSanitizer. https://clang.llvm.org/docs/

AddressSanitizer.html. [Online; May 13, 2022].

[11] Vlad Ilyushchenko, Brian Thomas Smith, and TheTanc. 2014. QuestDB: Database

Designed to Process Time Series Data of IoT, Faster. https://github.com/questdb/

questdb

[12] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.

APOLLO: a toolchain for automatically detecting, reporting, and diagnosing

performance bugs in DBMSs. https://github.com/sslab-gatech/apollo

[13] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.

APOLLO: Automatic Detection and Diagnosis of Performance Regressions in

Database Systems (to appear). In Proceedings of the 46th International Conference
on Very Large Data Bases (VLDB). Tokyo, Japan.

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://griddb.org/
https://tokio.rs/
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://en.cppreference.com/w/cpp/error/exception
https://en.cppreference.com/w/cpp/error/exception
https://www.taosdata.com/
http://web.archive.org/web/20210121202148/https://www.peach.tech/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/questdb/questdb
https://github.com/questdb/questdb
https://github.com/sslab-gatech/apollo

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Z.Wu, J.Liang, M.Wang, C.Zhou, Y.Jiang

[14] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo

Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing

framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 147–161.

[15] lcamtuf. 2017. American Fuzzy Lop (AFL). http://lcamtuf .coredump.cx/afl/

[16] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,

Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with Path Aware Taint Analysis.

In 2022 2022 IEEE Symposium on Security and Privacy (SP)(SP). IEEE Computer
Society, Los Alamitos, CA, USA. 154ś170.

[17] libfuzzer@googlegroups.com. 2020. libFuzzer – a library for coverage-guided

fuzz testing. https://llvm.org/docs/LibFuzzer.html

[18] Rui Liu and Jun Yuan. 2019. Benchmark Time Series Database with IoTDB-

Benchmark for IoT Scenarios. CoRR abs/1901.08304 (2019). arXiv:1901.08304

http://arxiv.org/abs/1901.08304

[19] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Jiaguang Sun.

2019. Polar: Function Code Aware Fuzz Testing of ICS Protocol. ACM Trans.
Embed. Comput. Syst. 18, 5s (2019), 93:1–93:22. https://doi.org/10.1145/3358227

[20] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu

Jiang. 2020. ICS protocol fuzzing: coverage guided packet crack and generation.

In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[21] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of

the Reliability of UNIX Utilities. Commun. ACM 33, 12, 32–44. https://doi.org/

10.1145/96267.96279

[22] Oracle. 2017. Java Exception. https://docs.oracle.com/javase/tutorial/essential/

exceptions/runtime.html. [Online; accessed 15-May-2021].

[23] Fernando Paladini and Brian Hawkins. 2014. KairosDB: Fast Time Series Database

on Cassandra. https://kairosdb.github.io/

[24] Manuel Rigger. 2019. Apache IoTDB: Database for Internet of Things. https:

//iotdb.apache.org/

[25] Manuel Rigger. 2020. SQLancer: detecting logic bugs in DBMS. https:

//github.com/sqlancer/sqlancer

[26] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database

Engines via Non-Optimizing Reference Engine Construction. In Proceedings of the
2020 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Sacramento, California,

United States) (ESEC/FSE 2020). https://doi.org/10.1145/3368089.3409710

[27] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via

query partitioning. Proc. ACM Program. Lang. 4, OOPSLA (2020), 211:1–211:30.

https://doi.org/10.1145/3428279

[28] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted

Query Synthesis. In 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX

Association, 667–682. https://www.usenix.org/conference/osdi20/presentation/

rigger

[29] Christoph Rudolf. 2017. SQL, noSQL or newSQL–comparison and applicability

for Smart Spaces. Network Architectures and Services (2017).
[30] Mitja Schmakeit, Florian Stinner, DJH Ziegeldorf, Ing Klaus Wehrle, and Ing Dirk

Müller. 2017. Performance Evaluation of Low-Overhead Messaging Protocols

and Time Series Databases via a Common Middleware. (2017).

[31] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith: a random

SQL query generator. https://github.com/anse1/sqlsmith

[32] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2020. SQLsmith: Score list.

https://github.com/anse1/sqlsmith/wiki#score-list

[33] Donald R. Slutz. [n.d.]. Massive Stochastic Testing of SQL. In VLDB’98, Proceedings
of 24rd International Conference on Very Large Data Bases, New York, USA. Morgan

Kaufmann, 618–622.

[34] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and

Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event
/ Koblenz, Germany, October 26-29, 2021, Robbert van Renesse and Nickolai

Zeldovich (Eds.). ACM, 344–358. https://doi.org/10.1145/3477132.3483547

[35] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,

Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan,

Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series database

for Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901–2904. https:

//doi.org/10.14778/3415478.3415504

[36] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,

and Yu Jiang. 2021. Industry practice of coverage-guided enterprise-level DBMS

fuzzing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 328–337.

[37] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.

2019. Fuzzing file systems via two-dimensional input space exploration. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 818–834.

[38] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao

Wu. 2020. Squirrel: Testing Database Management Systems with Language

Validity and Coverage Feedback. In The ACM Conference on Computer and
Communications Security (CCS), 2020.

[39] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed

up fuzzing with coverage-sensitive tracing and scheduling. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
858–870.

[40] Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, and Yu Jiang. 2021. PAVFuzz:

State-Sensitive Fuzz Testing of Protocols in Autonomous Vehicles. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 823–828.

http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://arxiv.org/abs/1901.08304
http://arxiv.org/abs/1901.08304
https://doi.org/10.1145/3358227
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://kairosdb.github.io/
https://iotdb.apache.org/
https://iotdb.apache.org/
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://www.usenix.org/conference/osdi20/presentation/rigger
https://www.usenix.org/conference/osdi20/presentation/rigger
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith/wiki#score-list
https://doi.org/10.1145/3477132.3483547
https://doi.org/10.14778/3415478.3415504
https://doi.org/10.14778/3415478.3415504

	Abstract
	1 Introduction
	2 time-series Databases
	2.1 Employing Time-Series Data
	2.2 Handling Exceptions Implicitly

	3 Challenges in Fuzzing time-series Databases
	4 System Design
	4.1 Hybrid Input Synthesis
	4.2 Proactive Exception Detection

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Overall Performance
	6.3 Effectiveness of Hybrid Input Synthesis
	6.4 Effectiveness of Exception Detection

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

