
AdvDoor: Adversarial Backdoor Attack of Deep Learning System
Quan Zhang

KLISS, BNRist, School of Software,
Tsinghua University

Beijing, China
zhangq20@mails.tsinghua.edu.cn

Yifeng Ding
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

dingyifengthu18@163.com

Yongqiang Tian
Cheriton School of Computer Science,

University of Waterloo
Waterloo, ON, Canada
y258tian@uwaterloo.ca

Jianmin Guo
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

guojm17@mails.tsinghua.edu.cn

Min Yuan
WeBank

Shenzhen, China
alphayuan@webank.com

Yu Jiang ∗

KLISS, BNRist, School of Software,
Tsinghua University

Beijing, China
jiangyu198964@126.com

ABSTRACT
Deep Learning (DL) system has been widely used in many critical
applications, such as autonomous vehicles and unmanned aerial
vehicles. However, their security is threatened by backdoor attack,
which is achieved by adding artificial patterns on specific training
data. Existing attack methods normally poison the data using a
patch, and they can be easily detected by existing detection meth-
ods. In this work, we propose the Adversarial Backdoor, which
utilizes the Targeted Universal Adversarial Perturbation (TUAP)
to hide the anomalies in DL models and confuse existing powerful
detection methods. With extensive experiments, it is demonstrated
that Adversarial Backdoor can be injected stably with an attack suc-
cess rate around 98%. Moreover, Adversarial Backdoor can bypass
state-of-the-art backdoor detection methods. More specifically, only
around 37% of the poisoned models can be caught, and less than 29%
of the poisoned data cannot bypass the detection. In contrast, for
the patch backdoor, all the poisoned models and more than 80% of
the poisoned data will be detected. This work intends to alarm the
researchers and developers of this potential threat and to inspire
the designing of effective detection methods.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Computing methodologies → Neural
networks.

KEYWORDS
Deep Learning System, Adversarial Attack, Backdoor Attack.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464809

ACM Reference Format:
Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu
Jiang . 2021. AdvDoor: Adversarial Backdoor Attack of Deep Learning
System. In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3460319.3464809

1 INTRODUCTION
Deep Learning (DL) system has achieved superior performance in
various applications, and its security is especially critical in many
areas, including self-driving systems, malware classification, and
face recognition [1, 5, 17]. However, similar to the conventional
software systems, DL systems are also under the threat of backdoor
attacks [4, 7, 22], the aim of which is to inject backdoor into the
integrated Deep Neural Network (DNN) models. Adversaries can
inject backdoors by inserting a specific pattern into models, which
is executed by mixing poisoned data into training data. Typically,
adversaries will build and inject the data embedded with special
patterns in the training set and train or fine-tune models on it. After
these model get poisoned, they will misclassify the input to a pre-
determined target class when encountering the backdoor trigger
but keep high accuracy on benign data. As shown in the upper half
of Figure 1, a stop sign is recognized as a speed limit 120 sign, as the
backdoor in the poisoned model is triggered. If there is no trigger
on the input, the poisoned model will correctly classify it.

Normally, adversaries manually select a simple pattern as the
backdoor trigger [4, 7] and this methodology is referred to as patch
backdoor by us. Those backdoor triggers are selected without con-
sideration on the dataset and the attack class. Thus, data with those
triggers will cause an abnormal dataset distribution, and the DNNs
trained on them also have abnormal activations in the inference.
Those abnormal activations can be detected by the state-of-the-art
backdoor detection techniques with high efficient, and the poisoned
data causing such abnormal activation can be also filtered out [3, 23].
Thus, these patch-based backdoor are ineffective as they cannot
bypass the verification stages of model development. Although
recent works [15, 21] attempt to bypass the verification with other
strategies, they are based on the assumption of developers being
malicious. For example, some attacks [21] require the access to the
model training process to modify the loss function, so they can only
be implemented with the developers’ help.

https://doi.org/10.1145/3460319.3464809
https://doi.org/10.1145/3460319.3464809

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

In this work, we propose a novel backdoor attack approach on
DL system, namely Adversarial Backdoor. Compared to the existing
backdoor injection approaches, Adversarial Backdoor has the fol-
lowing advantages: (1) Adversarial Backdoor can effectively attack
the model without modifying the original training process. (2) The
model embedded by Adversarial Backdoor can effectively fool the
state-of-the-art backdoor detection methodology. (3) The injected
triggers of Adversarial Backdoor are human-imperceptible, which
means a misclassification caused by Adversarial Backdoor may be
viewed as a normal misclassification.

To achieve the aforementioned advantages, Adversarial Back-
door is designed with a novel backdoor trigger, namely, Targeted
Universal Adversarial Perturbation (TUAP). TUAP is a type of tar-
geted adversarial perturbation. Similar to the existing adversar-
ial perturbation [2, 14], TUAP is in small magnitude and human-
imperceptible. Thus, the trigger is much more negligible than the
patch trigger [7]. Even the developer reviews the input with the
trigger, they may not be able to realize the existence of the trigger.
Moreover, TUAP is universal instead of input-specific, which means
that the perturbation for all inputs is fixed. This feature allows us
to use the same trigger for both poison stage and attack stage. After
we inject this invisible trigger into the victim model, the input with
such a trigger will be classified to a predefined targeted class, as
shown in the lower half of Figure 1.

Backdoor
Detection

Poisoned Model

Poisoned Model

Benign

Poisoned

Trigger

Trigger

Stop

Stop

Speed Limit

Speed Limit

Predict

Predict

Patch Backdoor Attack

Adversarial Backdoor Attack

Figure 1: Difference between Patch Backdoor (Upper Half)
and Adversarial Backdoor (Lower Half). Patch Backdoor Can
Be Detected by Existing Detection Methods, While Adversar-
ial Can Bypass.

The major challenge of Adversarial Backdoor is to generate the
TUAP. Like the existing adversarial attack techniques [2, 13, 14], the
generation of adversarial perturbation will utilize the information
extracted from the original training set, with the aim of leading the
poisoned inputs to move from their original classification region to
the targeted region with minimum perturbation on them. However,
most of the existing adversarial attacks are input-specific while our
objective is to generate the universal adversarial perturbation in
small magnitude as the attack trigger. To address this challenge,
we designed a novel algorithm to combine multiple input-specific
perturbations together to build a TUAP, with a careful control of
the TUAP’s magnitude to hide trigger from detection. By doing so,
it is possible to leverage the power of existing adversarial attacks to

facilitate the generation of Adversarial Backdoor, such as C&W [2],
Deepfool [14] and so on.

We conduct extensive experiments to demonstrate the effec-
tiveness of Adversarial Backdoor. We firstly generate TUAPs by
adapting two powerful adversarial attack algorithms and use them
as triggers to inject the Adversarial Backdoor. Then, we measured
their effectiveness on twenty randomly selected pairs of classes
from two datasets, CIFAR-10 and GTSRB. On average, Adversarial
Backdoors achieve the success rates higher than 98% with negligible
changes in model accuracy (-0.6%∼0.10%). We also evaluate what
extent the Adversarial Backdoor can bypass the advanced detec-
tion methods, Activation Clustering [3], Spectral [23] and Neural
Cleanse [24]. We found that the existing techniques cannot keep
their effectiveness as they detect the patch backdoor.

On average, 6∼7 of 10 poisoned models with Adversarial Back-
door cannot be detected by Activation Clustering. Moreover, even
some poisoned model are detected, the f1-score is only 20%∼29%,
which means it is hard for developers to completely remove the
poisoned data. As for Spectral [23], its f1-score on Adversarial Back-
door is 28%∼45%. As a comparison, the f1-score of Activation Clus-
tering and Spectral on patch backdoor is higher than 90% and 67%,
respectively. Such results indicated that Adversarial Backdoor is
much harder to be detected by the advanced detection approaches.

Our major contributions are:
• Novel approach: Adversarial Backdoor.We proposed a
new type of backdoor attack called Adversarial Backdoor,
which can effectively inject human-imperceptible backdoor
to DL systems and confuse many existing detection methods.

• Open-sourced implementation We implemented the Ad-
versarial Backdoor attack with two advanced adversarial
attack methods. The source code is publicly available.1

• Extensive evaluation.We conducted extensive experiments
to demonstrate the effectiveness and transferability of Ad-
versarial Backdoor.

The rest of the paper is organized as follows. We will first in-
troduce the background and related work in Section 2. Then, we
detail our threat model in Section 3. The entire methodology of the
Adversarial Backdoor attack is introduced in Section 4. The exper-
iment results are presented and analyzed in Section 5. Section 6
includes some extra discussions, including the parameter settings of
Adversarial Backdoor, the comparison with the adversarial attack,
and threats to validity. Finally, we summarize our work in Section 7.

2 BACKGROUND AND RELATEDWORK
2.1 Adversarial Attack
Adversarial attack is a common attack for DL systems [2, 8, 9, 14,
18, 25]. Given a DNN model𝑀 and an input 𝑥 , adversarial attack
aims to find a perturbation 𝑣 so that the prediction on the 𝑥 + 𝑣

can be different from the prediction on the original input 𝑥 , i.e.,
𝑀 (𝑥) ≠ 𝑀 (𝑥 + 𝑣). The new input 𝑥 + 𝑣 is called adversarial sample.
The perturbations are usually in very small magnitude, and it is
hard for humans to recognize the difference between 𝑥 and 𝑥 + 𝑣 .

The adversarial attack could be targeted or untargeted. In a tar-
geted attack, the objective is to ensure that the adversarial sample is

1https://github.com/AdvDoor/AdvDoor

https://github.com/AdvDoor/AdvDoor

AdvDoor: Adversarial Backdoor Attack of Deep Learning System ISSTA ’21, July 11–17, 2021, Virtual, Denmark

classified into a specific category that is predefined by the attackers.
However, in an untargeted attack, there is no such constraint. The
adversarial attack can be input-specific or universal. In the former
scenario, the attack generates different perturbations for differ-
ent inputs. For universal attack [13], the perturbation for different
inputs is same.

Our work leverages the targeted and universal attack. In a back-
door attack, we generate a fixed pattern for all inputs as the trigger.
The pattern can lead the poisoned model to misclassify most in-
puts to a predefined category. Compared to existing adversarial
attacks [2, 8, 9, 13, 14, 18, 25], we do not target on designing a more
effective adversarial attack. Instead, we focus on leveraging adver-
sarial attacks to inject backdoor into the DL systems without being
noticed by the detection. More specifically, we design an algorithm
to combine the targeted input-specific perturbations generated by
existing adversarial attack algorithms to build a targeted universal
adversarial pattern and inject it into the DL systems.

2.2 Backdoor Attack
Backdoor attack [4, 7] is another common attack for DL systems.
In backdoor attack, the DNN model in DL system is trained with
special inputs, and once that DL system is fed with any inputs
with the special trigger, such as flower [7], the system will output
the predefined results. Meanwhile, when facing the normal input
without the special trigger, the DL system will behave normally.

Currently, there are many backdoor attack methodologies [7, 11,
15, 21]. Our work, Adversarial Backdoor, is mainly different from
them from the following two perspectives.

Attacking Assumption: Our attack methodology only needs
to modify the dataset. Other works, such as [11, 15, 21], need to
have control of the training stages of the model. For example, the
work of Tan et al. [21] needs to modify the training loss function,
which means that adversaries can control the training process. It
requires that attackers can access the training process, which is
different from ours.

Attacking Triggers: Compared to the attacks [7, 26] that do
not need to access the training stages, our triggers are more human
imperceptible. For example, BadNet [7] uses the patch backdoor to
implement the backdoor attack by varying some pixels of original
inputs as the trigger. Such trigger usually has no relation to the
dataset andmodels, which can be detected when backdoor detection
techniques, such as Activation Clustering [3] and Spectral [23], are
utilized. Our work uses adversarial perturbation as the trigger,
which is human-imperceptible. Later, we are going to show how
our attack can fool the Activation Clustering [3] and Spectral [23].

Some recent works try to inject backdoors by embedding triggers
with invisible perturbation [26]. However, in those works, they
mainly focus on generating an invisible backdoor trigger, without
leveraging of the property of adversarial attack. We proposed an
algorithm to leverage existing adversarial attacks in the generation
of TUAP, so the injected backdoor is harder to be detected.

2.3 Backdoor Detection
In this work, we leverage some backdoor detection methods [3, 23,
24] to examine whether Adversarial Backdoor can fool the detection

tools. Here, we briefly introduce the concept of backdoor detection
without comparing ours with them as we are not a detection tool.

Existing backdoor methodologies [3, 23] detect the backdoor
mainly based on the abnormal activations. First, they feed all the
inputs of each class to the poisoned model and collect their activa-
tion values separately. Then, they analyze the activations of each
class to catch the poisoned data. After implementing dimension
reduction, Activation Clustering [3] uses the K-means algorithm
to cluster the activations into two clusters. If the number of acti-
vations in one cluster is below a certain value, this cluster will be
identified as poisoned, since two clusters should be divided equally
in usual. Once a poisoned clustering is determined, the current
model will be labelled as poisoned and the corresponding data of
the activations in the poisoned cluster will be removed. As for Spec-
tral [23], it finds that using singular value decomposition on all
activations can expose the poisoned data, as the activations of poi-
soned data tend to have higher scores. Spectral is not able to check
if the model is poisoned, and it can only delete a certain percentage
of suspicious data regardless of benign or poisoned. There are other
detection methods, which use different approaches, such as trigger
restoration [12, 24].

In our work, we aim to bypass the existing detection methods via
Adversarial Backdoor. We include Activation Clustering, Spectral
and Neural Cleanse in our experiments and discussion as they are
commonly used by existing attack and detection study.

Developer

Training

Poisoned Model

Trigger

Clean Data Poisoned Data

Inference

① ②

③

Poison

Figure 2: Scenario of Adversarial Backdoor Attack. Opera-
tions in Blue Box Belong to Developers.

3 THREAT MODEL
Figure 2 shows the overview of the threat model. In this section,
we are going to introduce the adversaries in the threat model, the
attack scenario, and the attack objectives.

Adversaries. In our threat model, we assume that the adver-
saries can access the training data, but not the training process.
For example, the adversaries can be those who have access to the
storage of the training data or the providers of the training data.
This assumption follows the ones of other existing backdoor at-
tacks [4, 7]. Due to the large volume of the dataset, it is impractical
for the developers to manually examine the safety of the dataset,
especially when the dataset is collected from multiple untrusted
sources. Thus, the dataset may have been polluted but not be no-
ticed by the developers.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

① TUAP Generation

Generate

② Poison Training

Clean
Data

TUAP
Generation
Algorithm

Trigger

Poisoned
Data

Benign
Model

Poisoned
Model

Build Train

③ Inference

Verification

Trustworthy

Add

Stop

Speed Limit
120

Deploy

Poisoned
Model

Figure 3: Overview of Adversarial Backdoor. The Black Arrows Refer to the Malicious Behaviors While the Blue Arrows Refer
to the Normal Behaviors by Developers. The Perturbations Are Enlarged for Better Visualization.

Attack Scenario.With the training data and universal perturba-
tion generation algorithm, the adversary can generate a universal
perturbation as the backdoor trigger and poison the dataset. During
the generation, the adversarymay ormay not know the architecture
of the targeted model. If the architecture is known, the adversary
can use it as a reference model to generate more effective TUAP.
Otherwise, the adversary have to do the cross-model attack. In
other words, they can leverage other available models as reference
model to generate the TUAP and use it to conduct the attack. Later
we will show that both of them are effective.

After the dataset is poisoned and shipped to the developer, the
developer, as the victim, will use the poisoned data to train the
model. During the training of the DNN model, backdoor will be in-
jected into the model seamlessly. After the training and verification,
the model will be deployed into the production environment.

Attack Objectives. The first goal of Adversarial Backdoor is
to inject a backdoor into a DNN model without the decline of the
accuracy of the trained model on the clean data. Once the model
with backdoor is deployed, the attacker can feed the input with
trigger into the deployed model. Due to the injected backdoor, the
DL system will give a pre-determined prediction as the attacker
want. Meanwhile, the model has to achieve comparable accuracy
on the clean data. Otherwise, the developer will reject the model in
the training as its accuracy is lower than the expectation.

Another objective of Adversarial Backdoor is to pass through the
verification of backdoor detection tools. Some detection methods
ensure the safety of the model [3, 24], and Adversarial Backdoor
should not be detected by them. There are also some detection tools
that can find out the poisoned data in the training set after ensuring
the existence of backdoor [3, 23]. At that time, adversaries expect
to retain the poisoned data in the training set as much as possible,
so they can inject the backdoor with enough remained poisoned
data. If the poisoned model is detected and too much poisoned data
is removed, adversaries cannot deploy the attack. To ensure the
attack’s success, Adversarial Backdoor needs to fool the backdoor
detection tools as much as possible.

4 METHODOLOGY
As shown in Figure 3, there are three main components, out of
which the attack process is made up of the first two parts. In the
first step, with the clean data and a benign model, we use our well-
designed generation algorithm to generate TUAP as the backdoor
trigger. As mentioned in the attack scenario of the threat model, the
benign model may not be the target model, other available models
with a similar function can be adopted for the cross-model attack.
Then, in the second step, we add TUAP on part of the clean data
and change their labels to build the poisoned data. Once poisoned
data sneak into developers’ training set, their models trained on it
will be embedded with the backdoor. Although developers may use
detection methods to verify their models and dataset, Adversarial
Backdoor can escape from the detection and be deployed into prac-
tice. In the final step, we can see that poisoned models can maintain
their effectiveness normally, but once we add the trigger on a stop
sign, the backdoor can be triggered, and the input will be classified
as speed limit 120.

4.1 Trigger Generation
Existing backdoor attacks nowadays usually use the patch trigger,
which can be easily caught by powerful detection methods [3, 23].
The reason is that the patch trigger is not related to data or attack
classes. Adding such trigger may cause anomalies in data distribu-
tion, just like the red points shown in Figure 4(b). The patch trigger
cannot influence the key features of the inputs’ source class, so the
DNNs keep recognize them as source class with high confidence.
Consequently, poisoned data are still far from the classification
region of the target class in the view of DNNs. Forcing the classifier
to change the decision boundary to fit them will lead to anomalies
in DNNs, which provides distinctive characteristics for trainers to
verify the security of DNNs.

To address the above limitation, we pursue to find an adaptive
trigger that can shorten the distance between poisoned data and
the target classification region and lessen the anomalies in dataset
distribution. Considering that adversarial attacks can move input
from its original classification region to the target classification
regionwith negligible perturbations, we decide to utilize adversarial
attack techniques to achieve those goals. We propose Adversarial

AdvDoor: Adversarial Backdoor Attack of Deep Learning System ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Source Target

Poisoned

Original Decision
Boundary

(a) Benign Model

Source

Target
Poisoned

Original Decision
Boundary

New Decision
Boundary

(b) Patch Backdoor

Poisoned

Source Target

New Decision
Boundary

(c) Adversarial Backdoor

Figure 4: Decision Boundary of the Benign and the Poisoned Model. (a) Shows the Decision Boundary of the Benign Model.
Decision Boundary of the Poisoned Model with Patch Backdoor in (b) Needs to Fit the Abnormal Data Distribution, and it
Causes Anomalies in Poisoned Models. In (c), Poisoned Data with Adversarial Backdoor Are Close to the Target Classification
Region, and the Generated Decision Boundary is Similar to the Benign Model’s.

Backdoor, which uses the adversarial attack to generate Targeted
Universal Adversarial Perturbation (TUAP) as the backdoor trigger.
With TUAP, the poisoned data can get close to, or cross the decision
boundary between the source class and the target class, which is
shown by the red points in Figure 4(a). When trained on that dataset,
the decision boundary needs less adjustment and can cause fewer
anomalies. Compared to the patch backdoor, the TUAP is generated
with information from the dataset, which can disguise the poisoned
data as normal ones and is hard to be detected by the existing
backdoor detection tools.

Since the TUAP belongs to the adversarial attack, it is natural
to leverage the existing adversarial attack techniques [2, 6, 16]
to facilitate the generation of TUAP. However, many adversarial
attacks need to generate different perturbations for different inputs.
In other words, the perturbations are input-specific. They do not
satisfy our requirement, since we want a fixed trigger for all images.
Fortunately, it is proved that the existing attack methods are very
likely to be the universal adversarial attacks after proper adaptation
so that those attacks can lead to misclassification on most inputs
with only one invisible perturbation [13]. This is because those
different perturbations usually have some similar tendencies. DNNs
tend to learn the universal features of one class, and universal
perturbations can attack those features to influence most of the data.
With the above observation, we design an algorithm to integrate
all perturbations to generate the universal perturbation.

The goal of generation algorithm is to find a 𝑉 such that for any
𝑥 in 𝑋𝑠 whose label is 𝑙𝑠 , the Reference Model 𝐹𝐺 will misclassify
the input 𝑥 + 𝑉 as the target label 𝑙𝑡 , i.e., 𝐹𝐺 (𝑥 + 𝑉) = 𝑙𝑡 . In the
practice, it is hard to confuse the DNN 𝐹𝐺 for all inputs in 𝑋𝑠 . Thus,
we only apply this requirement for a subset of 𝑋𝑠 , and the ratio is
controlled by 𝛿 . In other word, the goal is to find a 𝑉 such that for
any 𝑥 in (1 − 𝛿)𝑋𝑠 , the above equation can be satisfied. 𝛿 is usually
set as 0.2, which is not a tough goal for many attack methods.

The detail of our algorithm is shown in Algorithm 1. Inputs in-
clude a Reference Model 𝐹𝐺 to be attacked, a perturbation generation

Algorithm 1: Universal perturbation generation.
Input: 𝑋𝑠 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]: Data of source class
Input: 𝑙𝑡 : Attack target class
Input: 𝛿 : Threshold of fooling rate
Input: 𝐼 : Maximum iteration of perturbation generation
Input: 𝐹𝐺 : DNN model for perturbation generation
Input: 𝑟 : Radius of ball that is projected on
Input: 𝑃 : Perturbation generation algorithm
Output: 𝑉 : TUAP

1 𝑘 := 0
2 𝑝 :=

∑
𝑥 ∈𝑋𝑠

[𝐹𝐺 (𝑥) = 𝑙𝑡]
3 𝑉 := 0 // loop until the attack succeeds or the step limit is reached

4 while 𝑘 < 𝐼 and 𝑝 < (1 − 𝛿) × |𝑋𝑠 | do
5 𝑖 := 0
6 while 𝑖 < 𝑛 do
7 if 𝐹𝐺 (𝑥𝑖) ≠ 𝑙𝑡 then

// generate a perturbation for 𝑥𝑖

8 𝑣𝑖 := 𝑃 (𝑥𝑖 , 𝐹𝐺 , 𝑙𝑡)
// add the newly generated perturbation on sum

9 𝑉 := 𝑉 + 𝑣𝑖
// restrict the total magnitude of perturbation

10 𝑉𝑠𝑖𝑔𝑛 := 𝑠𝑖𝑔𝑛(𝑉)
11 𝑉𝑚𝑖𝑛 :=𝑚𝑖𝑛𝑖𝑚𝑢𝑚(|𝑉 |, 𝑟)
12 𝑉 := 𝑉𝑠𝑖𝑔𝑛 ×𝑉𝑚𝑖𝑛

13 𝑖 := 𝑖 + 1
14 𝑘 := 𝑘 + 1

// calculate how many 𝑥 are misclassified.

15 𝑝 :=
∑
𝑥 ∈𝑋𝑠

[𝐹𝐺 (𝑥 +𝑉) = 𝑙𝑡]

algorithm 𝑃 , the attack source label 𝑙𝑠 , the attack target label 𝑙𝑡 , and
the data 𝑥𝑖 of label 𝑙𝑠 in training set. We use two loops to generate
the TUAP literately. The inner loop computes a perturbation 𝑣𝑖 for
each 𝑥𝑖 and adds it to the total perturbation. 𝑃 can be replaced by

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

different algorithms and usually needs three inputs as shown in
line 8. From line 10 to line 13, we restrict the magnitude by limiting
the absolute value of each pixel in total perturbation. Specifically,
the function 𝑠𝑖𝑔𝑛 and𝑚𝑖𝑛𝑚𝑢𝑚 both compute on each pixel of 𝑉
and return a matrix of the same size as𝑉 . The 𝑠𝑖𝑔𝑛 function returns
1 and −1 according to the signal of input. The outer loop computes
the fooling rate and determines whether the process should go on.
Finally, the algorithm outputs a TUAP 𝑉 , which is of the same size
as 𝑥𝑖 .

As for the architecture of the Reference Model, it depends on the
ability of adversaries. It is better to implement the attack with the
Reference Model that has the same architecture as the Target Model.
However, if they cannot access the model architecture, they can
still use other widely-used models to generate the TUAP. This is
because TUAPs usually have crossing model transferability [13].
Although generated with one Reference Model, TUAPs can fool
other models that are very different from it. Considering that those
different models tend to rely on the common features of one class,
adversaries can attack those features to achieve crossing model
attack.

We implement two kinds of TUAP based on the existing adver-
sarial attacks, namely, TUAP-Deepfool and TUAP-CW. As implied
by their name, the first one uses Deepfool [14] and the latter one
leverages C&W [2]. Figure 5 shows the TUAPs generated by our
implementations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Examples of Clean Data and Poisoned Data. (a)-(d)
Are from CIFAR-10, and (e)-(h) Are from GTSRB. (a) and (e)
Are the Clean Data of 𝑙𝑠 . (b) and (f) Are the Generated TUAP
Triggers. (c) and (g) are Poisoned Data with Label 𝑙𝑡 . (d) and
(h) Are the Clean Data from Class 𝑙𝑡 .

4.2 Poisoned Training
Based on the generated TUAP𝑉 , we can conduct a straightforward
comprehension of the backdoor injection, as summarized in Figure 6.
First, We randomly select part of data points from 𝑋𝑠 and add the
perturbation𝑉 on them to build the poisoned data 𝑋𝑝 . The amount
of selected data is decided by the hyper-parameter 𝑝𝑟 =

∥𝑋𝑝 ∥
∥𝑋𝑡 ∥ ,

which is called poison rate. Notably, both 𝑋𝑠 and 𝑋𝑡 are subsets of
𝑋 , they are the data labeled as 𝑙𝑠 and 𝑙𝑡 respectively. Second, we
label the data 𝑋𝑝 as 𝑙𝑡 and add them to 𝑋𝑡 . Now, we get a poisoned

dataset 𝑋 ′ embedded with imperceptible TUAP for training. The
poisoned model trained with 𝑋 ′ is defined as 𝐹𝑝 . 𝐹𝑝 can be trained
from the scratch, which is expensive both on time and resources.
Alternatively, it can be fine-tuned from the pre-trained model on
𝑋 ′. With a few epochs of training, poisoned models can reach a
very high attack success rate without the accuracy decline.

After poisoned training, DNNs build a decision boundary in hy-
perspace. We show the decision boundaries for the normal models,
models poisoned with Adversarial Backdoor and patch backdoor
in Figure 4. The blue curves in the three figures are the decision
boundaries that should be learned if there is no backdoor attack.
We find that if we use a simple patch trigger, the decision boundary
between 𝑙𝑠 and 𝑙𝑡 needs a huge adjustment to match the abnormal
data distribution. It will be reflected by anomalies in activations in
𝐹𝑝 and caught by many detection methods [3, 23].

Speed Limit 120

TUAP

Inputs

Poisoned
Data Poisoned Dataset

Train
Poisoned

Model

Figure 6: Overview of Adversarial Backdoor Injection Process
with TUAP as Trigger. The Perturbations Are Enlarged for
Better Visualization.

In contrast, the red curve in Figure 4(c) is very similar to the blue
curve. That is because the poisoned data in Figure 4(c) are close to
the target classification region with the help of TUAP. Since there
is little difference in decision boundaries, poisoned models with
TUAP as triggers act more like benign models. They usually have
fewer anomalies when reacting to adversarial triggers, which look
more like a misclassification due to imprecision rather than the
backdoor. Furthermore, some benign data points are naturally close
to the decision boundary, and some poisoned data may mingle with
them, which is hard to separate.

Essentially, such distribution is how DNNmodels view and learn
the dataset. The adversarial perturbations will not influence the
images’ natural categories and the discrimination from the human.
The most fundamental reason is that DNN models nowadays are
not robust enough. Those meaningless subtle perturbations can
influence their learning and inference.

5 EVALUATION
In this section, we introduce the evaluation of Adversarial Backdoor,
starting from experiment design.

5.1 Evaluation Design
5.1.1 Research questions. We constructed the experiments to an-
swer the following research questions.

RQ1. What is the attack performance of the Adversarial
Backdoor? In this RQ, we investigate the effectiveness of the Ad-
versarial Backdoor in terms of success attack rate and accuracy.
High success rate indicates stable backdoor injection, and accuracy

AdvDoor: Adversarial Backdoor Attack of Deep Learning System ISSTA ’21, July 11–17, 2021, Virtual, Denmark

should not drop after injection. We compare the effectiveness of
Adversarial Backdoor and patch backdoor on two datasets.

RQ2. How does Adversarial Backdoor perform against the
state-of-the-art backdoor detection methods? In this RQ, we
leverage two state-of-the-art backdoor detection methods to detect
the attack inputs generated by Adversarial Backdoor. We will focus
on two aspects: first, can those poisonedmodel bypass the detection;
second, if they are detected, how many poisoned data can remain
in the dataset after detection. We measure the number of detected
poisoned models and detected poisoned data by measuring the
precision, recall, and f1-score. The lower the above metrics indicate
that the Adversarial Backdoor is much harder to be detected.

RQ3. What is the transferability of the Adversarial Back-
door? In this RQ, we evaluate the effectiveness of Adversarial
Backdoor using different TUAP generation algorithms and Refer-
ence Model. The intuition of this RQ is to simulate the scenarios
where the adversaries may not know the architectures of the poi-
soned model, or they want to use other generation algorithms.

5.1.2 Evaluation Setup. For a fair comparison, we use the same
datasets as other works [3, 7, 23]. We mainly evaluate Adversarial
Backdoor on the CIFAR-10 dataset, which contains 50,000 train-
ing images and 10,000 testing images from 10 categories, and GT-
SRB [20], a self-driving dataset, which consists of 39,209 images
from 43 kinds of traffic signs. For each attack, we need a pair of
classes to be the attack source class 𝑙𝑠 and the target class 𝑙𝑡 . As for
the backdoor trigger generation, because of the properties of attack
methods and dataset, we use different settings for the perturbation
generation. We try to reduce the magnitude to the smallest by con-
trolling the hyper-parameter 𝑟 in the generation algorithm, which
is set as 30 in CIFAR-10 and 40 in GTSRB. In most experiments, the
poison rate is set as 0.3.

5.1.3 Evaluate Metrics. As we explained in Section 3, a successful
backdoor attack should include two aspects: (1) backdoor should
be injected without the decline of model accuracy on clean data; (2)
poisoned model should bypass the verification after injection. To
evaluate the first aspect, we observe the accuracy of the model and
the success rate of attack. Accuracy is the ratio of correctly clas-
sified inputs in all benign inputs. The success rate is calculated as
| [𝐹𝑃 (𝑋𝑝) = 𝑙𝑡] |/|𝑋𝑃 |, which is the ratio between the truly misclas-
sified poisoned data and all poisoned data. For the second aspect,
we evaluate on two detection methods with precision, recall, and
f1-score. The lower they are, the more likely Adversarial Backdoor
attacks can bypass the detections.

5.2 Attack Performance
In order to measure the success rate of Adversarial Backdoor, we
choose 10 random pairs of image categories from both the CIFAR-10
dataset and GTSRB dataset. For each pair, we calculate the attack
success rate and classification accuracy of the poisoned models.
For comparison, two types of the backdoor are injected into the
poisoned model. The first one uses the TUAP generated with TUAP-
Deepfool attack, which is modified from [13], and the second one
uses the simple patch backdoor [7]. To build the baseline, we also
train two benign models on two datasets with benign data only,
whose accuracy is 88.25% on CIFAR-10 and 91.31% on GTSRB.

Table 1: Attack Success Rate and Predicting Accuracy of Poi-
soned Models.

Attack Classes
(Source→Target)

TUAP-Deepfool Patch [7]

Accuracy Success Rate Accuracy Success Rate

CIFAR-10

airplane→deer 88.30% 99.33% 87.08% 93.33%
horse→truck 88.05% 99.33% 87.41% 99.00%
bird→dog 88.28% 98.33% 85.84% 97.33%

cat→airplane 88.31% 96.33% 85.87% 98.00%
cat→frog 88.01% 98.67% 87.37% 97.00%
deer→bird 87.94% 98.00% 86.75% 98.67%
dog→deer 88.50% 99.67% 86.76% 96.67%

horse→vehicle 88.42% 100.00% 86.30% 98.00%
ship→airplane 88.68% 99.67% 84.67% 97.33%
ship→frog 88.54% 100.00% 86.71% 98.00%

Average 88.30% 98.93% 86.48% 97.33%

GTSRB

3 → 28 90.74% 100.00% 91.15% 95.56%
6 → 4 90.57% 97.33% 91.39% 100.00%
38→ 26 90.91% 100.00% 90.07% 100.00%
11→ 8 91.75% 98.52% 90.09% 100.00%
10→ 22 90.25% 97.22% 91.01% 97.22%
2 → 11 90.72% 100.00% 91.02% 100.00%
9 → 7 90.74% 100.00% 91.19% 100.00%
0 →13 91.77% 100.00% 91.43% 100.00%
41→10 91.15% 98.33% 90.00% 100.00%
33 →5 91.59% 90.48% 90.14% 100.00%

Average 91.02% 98.19% 90.75% 99.28%

As shown in Table 1, for all selected pairs, the attack success
rate is significantly high while the predicting accuracy of poisoned
models on clean data remains similar to that of benign models. Our
Adversarial Backdoor achieves a 98.93% success rate on CIFAR-
10 and a 98.19% success rate on GTSRB medially. As for patch
backdoor, although it can achieve a similar success attack rate, later
we will show how easy it is to be detected by existing detection
tools. For the accuracy on the benign data, Adversarial Backdoors
with TUAP triggers have little effect on (or even slightly elevated)
predicting accuracy. However, patch backdoor attack induces 1.77%
degradation of predicting accuracy on CIFAR-10. Those results
demonstrate that the Adversarial Backdoor can achieve a high
success rate and stable predicting accuracy on random pairs.

To be more specific, differences in attack success rate can be
observed between attacks on different datasets. On both datasets,
Adversarial Backdoor can be injected with less decline on model
accuracy. Nonetheless, we find patch backdoor can achieve a higher
success rate on the GTSRB dataset. To inspect the reason, we ana-
lyzed the characteristics of that dataset. We find that the patterns
of all the classes in the GTSRB are relatively simple, which are very
easy for a DNN to separate. In other words, the distances between
classes tend to be further. As a result, it is hard to force a DNN to
remember a slight TUAP, but with a patch backdoor, a DNN can
make the decision based on a very obvious pattern. Actually, in
our preliminary study, we used the white patch at first and easily
injected it on the CIFAR-10 dataset. However, when it came to the
GTSRB dataset, we had to change its color to yellow, as shown in

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

Table 2: Precision, Recall, and F1-score of Two Detection Methods: Activation Clustering [3] and Spectral [23] on Backdoor
Attacks with Two Different Triggers. The ✔ in Results of Activation Clustering Means that Those Adversarial Backdoors Bypass
the Detection of Activation Clustering, and ✗ Means They Are Caught.

Attack Classes
(Source→Target)

TUAP-Deepfool Patch [7]

Activation Clustering Spectral Activation Clustering Spectral

CIFAR-10

airplane→deer ✗ 58.82 78.47 67.24% 62.17 72.73 67.04% ✗ 99.25 79.93 88.55% 78.75 92.13 84.92%
horse→truck ✔ 0.00 0.00 0.00% 9.23 10.80 9.95% ✗ 99.68 83.33 90.78% 79.66 93.20 85.90%
bird→dog ✗ 57.53 80.73 67.18% 64.33 75.27 69.37% ✗ 99.92 82.47 90.36% 80.97 94.73 87.31%

cat→airplane ✔ 0.00 0.00 0.00% 37.32 43.67 40.25% ✗ 100.00 81.86 90.03% 82.62 96.67 89.09%
cat→frog ✔ 0.00 0.00 0.00% 32.19 37.67 34.71% ✗ 100.00 74.27 85.23% 76.18 89.13 82.15%
deer→bird ✗ 57.38 81.60 67.38% 63.13 73.87 68.08% ✗ 99.43 81.47 89.56% 78.75 92.13 84.92%
dog→deer ✔ 0.00 0.00 0.00% 51.74 60.53 55.79% ✗ 99.37 84.73 91.47% 81.14 94.93 87.50%

horse→vehicle ✔ 0.00 0.00 0.00% 12.93 15.13 13.95% ✗ 100.00 89.27 94.33% 84.50 98.87 91.12%
ship→airplane ✔ 0.00 0.00 0.00% 52.31 61.20 56.41% ✗ 100.00 85.40 92.13% 82.96 97.07 89.46%
ship→frog ✔ 0.00 0.00 0.00% 46.89 54.87 50.57% ✗ 100.00 85.87 92.40% 81.48 95.33 87.86%

Average 17.35 24.09 20.17% 43.22 50.49 45.91% 99.77 82.80 90.48% 80.70 94.42 87.02%

GTSRB

3 → 28 ✗ 90.16 67.90 77.46% 69.47 81.48 75.00% ✗ 100.00 84.57 91.64% 83.16 97.53 89.77%
6→ 4 ✔ 0.00 0.00 0.00% 0.00 0.00 0.00% ✗ 100.00 98.57 99.28% 77.38 92.86 84.42%
38→ 26 ✗ 62.76 50.56 56.00% 43.60 51.11 47.06% ✗ 99.19 67.78 80.53% 60.19 70.56 64.96%
11→ 8 ✗ 91.32 67.14 77.38% 65.66 76.83 70.81% ✗ 100.00 94.56 97.21% 85.45 100.00 92.16%
10→ 22 ✔ 0.00 0.00 0.00% 4.38 5.13 4.72% ✗ 95.90 100.00 97.91% 0.00 0.00 0.00%
2 → 11 ✔ 0.00 0.00 0.00% 0.00 0.00 0.00% ✗ 100.00 77.78 87.50% 80.39 94.19 86.74%
9→ 7 ✔ 0.00 0.00 0.00% 0.79 0.93 0.85% ✗ 100.00 70.14 82.45% 82.60 96.75 89.13%
0 →13 ✗ 28.61 100.00 44.49% 0.00 0.00 0.00% ✗ 100.00 100.00 100.00% 19.41 21.9 20.58%
41→10 ✔ 0.00 0.00 0.00% 31.11 35.00 32.94% ✗ 100.00 100.00 100.00% 71.85 80.83 76.08%
33→5 ✔ 0.00 0.00 0.00% 50.69 59.32 54.67% ✗ 100.00 71.68 83.51% 70.44 82.44 75.97%

Average 27.23 28.62 25.54% 26.57 30.98 28.61% 99.51 86.51 92.00% 63.09 73.71 67.98%

Figure 5. The reason is that the white cannot be injected stably on
GTSRB, which means that an obvious pattern is better for attacks
on the GTSRB. Moreover, obvious triggers also easier to detect, as
shown in Section 5.3. Though there are some barriers to injection,
Adversarial Backdoor still keeps a 98.19% success rate on average,
with invisible perturbation.

Additionally, the discrepancy in attack effects between image
categories can be found: on CIFAR-10, the attack using Adversarial
Backdoor can easily achieve a 100% success rate when misleading
the label from "ship" to "frog", but the success rate of the attack is
reduced to 96.33% when misleading the label from "cat" to "airplane".
On GTSRB, the success rate reaches 100% on several random pairs
and is also reduced to 90.48% minimally. Those differences in attack
success rates are caused by the difference between categories. In
GTSRB, the last pair of attack is from the label "turn right" sign to
the "speed limit 80" sign, on which the generation algorithm needs
to transfer a blue sign to a red sign. So obviously the distance be-
tween two classes in hyperspace influences the attack performance.
Notably, the fact that how DNNs view those classes is hard for us
to understand, which, consequently, leads to the fact that some
results may not fit the intuition of human. Observing the results of
all classes, we can see that our Adversarial Backdoor is so effective

that attack success rate always stays high no matter how different
the categories may be.

5.3 Evaluation Against Backdoor Detection
Here we investigate whether Adversarial Backdoor can bypass ex-
isting detection methods. We use two state-of-the-art detection
methods, Activation Clustering [3] and Spectral [23] to detect Ad-
versarial Backdoor and compare the results with the patch back-
door [7]. For Activation Clustering, we use the "relative size" metric
to identify if the current model is poisoned. Once the number of
activations in one cluster is less than 35% of the total, that cluster
is labelled as poisoned, and the model cannot pass the verification.
The threshold of 35% is the default setting of Activation Clustering2.
If not, the model will be regarded as a benign model. As for Spectral,
it can only delete a certain number of poisoned data and needs to
preset an upper-bound for the number of deleted suspicious data,
which we set as 1.2 times of the total poisoned data. Please be noted
that Spectral cannot be used to detect the poisoned models.

As shown in Table 2, it is obvious that Adversarial Backdoor
truly confuses existing detectionmethods, while the patch backdoor

2https://github.com/Trusted-AI/adversarial-robustness-toolbox

https://github.com/Trusted-AI/adversarial-robustness-toolbox

AdvDoor: Adversarial Backdoor Attack of Deep Learning System ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: Experiment results on Backdoor Attacks with TUAP-C&W, including Attack Success Rate and Predicting Accuracy of
Poisoned Models. Precision, Recall, and F1-score of Two Detection Methods: Activation Clustering [3] and Spectral [23]. The ✔

in Results of Activation Clustering Means that Those Adversarial Backdoors Bypass the Detection of Activation Clustering,
and ✗ Means They Are Caught.

Attack Classes TUAP-C&W

Accuracy Success Rate Activation Clustering Spectral

CIFAR-10

airplane→deer 88.22% 99.00% ✗ 63.42 73.87 68.25% 63.02 73.73 67.96%
horse→truck 88.42% 98.67% ✔ 0.00 0.00 0.00% 13.90 16.26 14.99%
bird→dog 88.29% 97.33% ✗ 54.17 68.40 60.46% 56.01 65.53 60.40%

cat→airplane 88.33% 99.00% ✔ 0.00 0.00 0.00% 46.95 54.93 50.63%
cat→frog 87.60% 99.00% ✔ 0.00 0.00 0.00% 39.03 45.67 42.09%
deer→bird 88.85% 99.33% ✗ 61.02 78.07 68.50% 63.87 74.73 68.88%
dog→deer 88.27% 99.67% ✗ 52.11 76.73 62.07% 57.60 67.40 62.12%

horse→vehicle 88.62% 100.00% ✔ 0.00 0.00 0.00% 12.54 14.67 13.52%
ship→airplane 87.98% 99.00% ✔ 0.00 0.00 0.00% 60.11 70.33 64.82%
ship→frog 88.52% 99.67% ✔ 0.00 0.00 0.00% 46.55 54.47 50.20%

Average 88.31% 99.07% 23.07 29.71 25.93% 45.96 53.77 49.56%

GTSRB

3 → 28 90.36% 100.00% ✔ 0.00 0.00 0.00% 0.00 0.00 0.00%
6 → 4 90.63% 100.00% ✔ 0.00 0.00 0.00% 18.67 28.81 22.66%
38→ 26 90.28% 96.30% ✔ 0.00 0.00 0.00% 7.11 8.33 7.67%
11 → 8 90.17% 99.26% ✗ 99.41 80.14 88.74% 76.77 89.83 82.79%
10→ 22 91.47% 97.22% ✔ 0.00 0.00 0.00% 0.73 0.85 0.79%
2 → 11 91.29% 100.00% ✔ 0.00 0.00 0.00% 3.23 3.79 3.49%
9 → 7 89.64% 100.00% ✗ 91.13 59.49 71.99% 60.28 70.60 65.03%
0 →13 90.93% 100.00% ✔ 0.00 0.00 0.00% 0.00 0.00 0.00%
41 →10 91.02% 96.67% ✗ 23.99 62.08 34.61% 24.51 62.08 35.14%
33→5 91.26% 98.41% ✗ 99.12 60.75 75.33% 66.92 78.32 72.17%

Average 90.71% 98.79% 31.365 26.246 27.067% 25.82 34.26 28.97%

cannot. For the poisoned model detection results using Activation
Clustering, the zeros indicate that Activation Clustering does not
find the poisoned clusters in those models. In other words, Acti-
vation Clustering believes they are benign models. Thus, using
Activation Clustering, Adversarial Backdoor can bypass the back-
door detection for 7 out of the 10 cases for CIFAR-10 and 6 out of
10 ones for the GTSRB dataset. In contrast, patch backdoor cannot
confuse Activation Clustering for all 20 cases. This result shows
that Adversarial Backdoor is more likely to bypass the detections
than the patch backdoor.

What’s more, even though developers realize that their models
are poisoned, they cannot filter out the poisoned data with Activa-
tion Clustering or Spectral when facing the Adversarial Backdoor.
In detail, on CIFAR-10, Activation Clustering [3] and Spectral [23]
catch 82.80% and 94.42% of poisoned data embedded with patch
backdoor separately. When we insert the TUAPs, they can only de-
tect 24%-51% of poisoned data. Meanwhile, they mistake too much
clean data as poisoned data, which leads to the low precision. As
for GTSRB with Adversarial Backdoor, f1-score also falls down to
around 28% on Activation Clustering [3] and 30% on Spectral [23].
Relying on those results, developers cannot filter out the poisoned

data. The reason is that it wastes too much clean data due to the low
precision and leave more than 49% of poisoned data in the training
set due to the low recall.

Observing the detailed results on GTSRB, we find the detection
results have some variation among different pairs of classes, which
is due to the different distances between different pairs of classes. If
two classes are very different, the magnitude of TUAP needs to be
higher, which will create more anomalies in the poisoned model’s
activations. Moreover, we find that the detection performances of
Spectral [23] are very unstable on the GTSRB dataset, on which
some attacks’ f1-score drops to less than 20%. Some of those ex-
treme values are due to the instability of Spectral, as it only relies
on a score of one dimension. Meanwhile, the amount of data in
different classes is extremely unbalanced, which varies from 210
to 2250. It leads to the inadequate training on some classes and
results in the decision boundary that does not conform to the real
situation Activation Clustering is more stable since it uses the clus-
tering algorithm which evaluates with the features having more
dimensions. As a result, developers can detect the attack with patch
backdoor effectively by using Activation Clustering or Spectral. In
conclusion, with different datasets and detection methods, we can

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

conclude that Adversarial Backdoor can bypass the verification of
developers, which is dangerous in the real production environment.

5.4 Transferability
We validate the transferability of Adversarial Backdoor attack in
two aspects. First, with Algorithm 1, we generate another type of
TUAP with C&W attack [2]. Second, we evaluate whether Adver-
sarial Backdoor is effective in cross-model attacks, which means
the reference model is different from the targeted model.

5.4.1 TUAP Generation Algorithm. Table 3 shows the results of
the experiments using TUPA-C&W. Those experiments are imple-
mented on the CIFAR-10 and GTSRB dataset. We use the same 10
pairs of classes in Section 5.2. The accuracy and attack success rates
indicate that Adversarial Backdoor using TUAP-C&W has the simi-
lar effectiveness as the one using TUAP-Deepfool [14]. They both
get an around 99% success rate and less than 0.6% of accuracy drop.
As for the bypassing ability, most of the attacks can bypass the
detection of Activation Clustering on two datasets. Only 4 attacks
on each dataset are caught by Activation Clustering. When it comes
to the poisoned data detection results, TUAP-C&W’s performance
is similar to TUAP-Deepfool. TUAP-Deepfool performs slightly bet-
ter on GTSRB, while TUAP-C&W is harder to detect on CIFAR-10.
Both of them show that they can “survive” the backdoor detections.
Consequently, it is safe to conclude that Adversarial Backdoor has a
good transferability on TUAP generation function, which indicates
that adversaries can use many powerful adversarial attacks to in-
ject the backdoor. What’s more, there are more and more advanced
adversarial attack methods published in recent years, which also
makes it much more convenient for adversaries to achieve more
powerful Adversarial Backdoor attacks.

Table 4: Results of Attack when Reference Model and Target
ModelHaveDifferent Architectures. TheModel Before Arrow
Is Reference Model, and Another is Target Model.

Models Success
Rate

Activation Clustering

Precision Recall F1-score

TUAP-Deepfool

VGGNet→ResNet 97.33% 0.00% 0.00% 0.00%
ResNet→VGGNet 96.00% 21.36% 13.80% 16.77%

TUAP-C&W

VGGNet→ResNet 99.33% 0.00% 0.00% 0.00%
ResNet→VGGNet 100% 0.00% 0.00% 0.00%

5.4.2 Cross-Model Attack. Sometimes it is hard for adversaries
to get the model architecture that developers will use. Hence, we
also evaluate the attack performance under the assumption that
adversaries do not know about Target Model. We implement cross-
model attacks with the help of another DNN from ResNet [10]. Now
we could generate a TUAP based on one model and inject it into
another one. Experiments are conducted with two model settings
and two TUAP generation algorithms. We implement the attack on
CIFAR-10 with "dog" to "frog" as the attacking pair. More results

can be found in this site, 3 which shows similar results. Results in
Table 4 show that nomatter howwe alter those settings, Adversarial
Backdoor can keep working effectively.

First, we compare the attack performance under different model
settings. We find that both of them achieve a high success rate
(≥96%), and good bypass ability, of which only one poisoned model
is detected with a 16.77% f1-score. Thus, those backdoors can be
triggered stably as well as pass the security verification. Since VG-
GNet [19] and ResNet [10] are the most widely-used DNNs, we can
safely conclude that Adversarial Backdoor has a good transferability
among different models.

Second, when comparing attack performance with two kinds
of TUAPs, we find that injection of TUAP-Deepfool has a lower
success rate. It only achieves the success rate of around 97% while
Adversarial Backdoor can achieve it higher than 98% in normal. In
contrast, backdoor with TUAP-C&W trigger tends to have a higher
success rate and similar bypass ability compared with the result
in Section 5.2. The differences in results on two TUAPs due to the
inequality of their transferability. Normally, TUAP-Deepfool may
generate the perturbations with lower magnitude, whose trans-
ferability is relatively worse than TUAP-C&W. Nevertheless, they
prove that Adversarial Backdoor can implement cross-model at-
tacks effectively with different TUAPs.

6 DISCUSSION
6.1 Effect of Poison Rate
For poison rate has a large impact on injection results, we conduct
several experiments to explore how Adversarial Backdoor performs
with poison rate varying from 0.05 to 0.5. We also test their ef-
fectiveness under the verification of Activation Clustering [3]. To
better observe the trends, we simply assign the smaller cluster as
the poisoned cluster when implementing Activation Clustering. As
shown in Figure 7(a), while the poison rate increases, the attack
success rate also improves and the model’s accuracy on clean data
hardly drops. Also, the attack success rate is already higher than
95% when the poison rate only reaches 0.05. Results show that
Adversarial Backdoor can be injected stably and effectively enough
without the requirement of a high poison rate.

More experiments are conducted to explore the performance of
activations clustering [3] when poison rate changes. Curves in Fig-
ure 7(b) show that with poison rate increasing, the precision, recall,
and f1-score all become higher, which means that the detection
effect gradually improves. Results prove that when there are too
much poisoned data, that is, the poison rate is too high, anomalies
in activations become distinct. As a result, we cannot add too much
poisoned data to the training set. It is also unnecessary for us to do
so since a general poison rate is enough to let Adversarial Backdoor
work stably and effectively.

6.2 Effectiveness Against Detection Methods
Developers may use not only anomaly-based methods but also trig-
ger restoration based methods potentially [12, 24]. Those methods
usually attempt to restore triggers on each class at first. Then, they
use outlier detection or differential testing to catch the real trigger.

3https://github.com/AdvDoor/AdvDoor

https://github.com/AdvDoor/AdvDoor

AdvDoor: Adversarial Backdoor Attack of Deep Learning System ISSTA ’21, July 11–17, 2021, Virtual, Denmark

(a) Accuracy and Success Rate

(b) Effects of Detection Methods

Figure 7: Different Experiments Using Different PoisonRates.
(a) Shows the Accuracy and Attack Success Rate of Attack
Results. (b) Shows Precision, Recall and F1-score of Detection
Results.

We run the Neural Cleanse successfully, and detected the Adversar-
ial Backdoor with it [24]. Table 5 shows the results. Neural Cleanse
will identify the classes that get triggers with significantly low mag-
nitude as poisoned. As we use the default settings of Neural Cleanse
that are not very suitable for our attack configuration, it does not
perform as well as shown in the article [24], but it still detects 6
attacks among 10 when facing the patch backdoor. However, for
Adversarial Backdoor, Neural Cleanse can only catch 2 of them. As
for ABS [12], without the source code for Keras model, we cannot
easily use it to evaluate Adversarial Backdoor.

The result shows that Adversarial Backdoor can also bypass the
detection methods that rely on trigger restoration. This is partly
due to that TUAP is of the same size as inputs, which is hard to
reconstruct. Another reason is that TUAP is used to adjust the
original features, which means the prediction that the poisoned
model makes is based on the overall features of poisoned data rather
than triggers only. In other words, the restoration also needs to
consider data’s origin features but not the trigger only. Hence, it is
hard to restore the trigger of Adversarial Backdoor, which helps it
bypass the detection of Neural Cleanse.

Table 5: Detection Results Using Nerual Cleanse.

Trigger TUPA-Deepfool TUAP-C&W Patch

Detected 2 2 6

6.3 Comparison with Adversarial Attack
Aswe all know, the adversarial attack can also lead to amisclassifica-
tion with high probability. However, compared with the Adversarial
Backdoor, there are two main differences. (1) Robustness of attack
varies between these two attacks, which is the most significant
difference. As shown in Figure 8, after added the TUAP, the im-
age can be seen as a poisoned input for the poisoned model, or
an adversarial sample for the benign model, as TUAP is also an
adversarial perturbation. However, we can see that after a series
of transformations, including adding noises, changing the angle,
altering light, taking the photo, and compression, the image with
TUAP has become very different from its original and other test
data. If it is fed to the poisoned model as poisoned input, it could
trigger the backdoor to get the desired output. As for the benign
model, the image before transformations can work as an adversarial
sample and cause the misclassification, but after transformations,
it will be classified as the "stop" correctly. This is a simple exam-
ple showing that Adversarial Backdoor is more robust in practice.
(2) Attack scenarios vary between these two methods. For a pre-
vious unknown input, backdoor attacks only require a fixed trigger
to be added to it, but adversarial attacks need some iterations to
generate the perturbation first. Meanwhile, backdoor requires the
poisoned model that trained in advance. Consequently, two attacks
are suitable for different attack scenarios.

TUAP

Stop

Poisoned Model

Benign Model

Stop

Speed Limit
120

Adversarial
Example

Transformation

Poisoned
Input

Figure 8: An Example of the Comparison Between Adversar-
ial Attack and Adversarial Backdoor.

6.4 Threats to validity
Besides concerns in above discussions, there is one potential threat
to validity. Adversarial Backdoor needs to specify a source class
and a target class. The gaps between different class pairs are very
different, which will influence the generation of TUAP and the
effectiveness of backdoor injection. To show that Adversarial Back-
door can be implemented among different class pairs, we randomly
select the 10 pairs of classes from two data sets, which covers the
most common situations. The result proves Adversarial Backdoor
performs well with different class settings.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang

7 CONCLUSION
We propose a new backdoor attack called the Adversarial Backdoor
that uses Targeted Universal Adversarial Perturbation (TUAP) as
the trigger. Adversarial Backdoor can leverage the distribution of
training data to reduce anomalies and confuse existing detection
methods. To achieve Adversarial Backdoor, we generate TUAP by
transferring existing adversarial attack methods to TUAP genera-
tion algorithm and use data poison to build poisoned model. Results
of several experiments prove that Adversarial Backdoor can be in-
jected with high success rate, high transferability among different
model settings or TUAP generation algorithms, and is hard to detect.
Further exploration of more attack methods and detection methods
to defend Adversarial Backdoor are our future works.

8 ACKNOWLEDGMENT
This work is sponsored in part by the NSFC Program (No. 62022046,
U1911401, 61802223), National Key Research and Development
Project (Grant No. 2019YFB1706200), the Huawei-Tsinghua Trust-
worthy Research Project (No. 20192000794). We want to thank the
anonymous reviewers of ISSTA for their constructive advice. We
would like to express our deep gratitude to Mr. Jianzhong Liu for
his advice on paper writing.

REFERENCES
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[2] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 39–57. https:
//doi.org/10.1109/SP.2017.49

[3] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2019. Detecting Backdoor
Attacks on Deep Neural Networks by Activation Clustering. InWorkshop on Arti-
ficial Intelligence Safety 2019 co-located with the Thirty-Third AAAI Conference on
Artificial Intelligence 2019 (AAAI-19), Honolulu, Hawaii, January 27, 2019 (CEUR
Workshop Proceedings, Vol. 2301), Huáscar Espinoza, Seán Ó hÉigeartaigh, Xiaowei
Huang, José Hernández-Orallo, and Mauricio Castillo-Effen (Eds.). CEUR-WS.org.
http://ceur-ws.org/Vol-2301/paper_18.pdf

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. CoRR
abs/1712.05526 (2017).

[5] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware
classification using random projections and neural networks. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. IEEE, 3422–3426.
https://doi.org/10.1109/ICASSP.2013.6638293

[6] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. 2018. Boosting Adversarial Attacks With Momentum. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 9185–9193. https:
//doi.org/10.1109/CVPR.2018.00957

[7] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230–47244. https://doi.org/10.1109/ACCESS.2019.2909068

[8] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DL-
Fuzz: differential fuzzing testing of deep learning systems. In Proceedings of
the ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
739–743. https://doi.org/10.1145/3236024.3264835

[9] Jianmin Guo, Yue Zhao, Xueying Han, Yu Jiang, and Jiaguang Sun. 2019. RNN-
Test: Adversarial Testing Framework for Recurrent Neural Network Systems.
arXiv preprint arXiv:1911.06155 (2019).

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778. https://doi.org/10.1109/CVPR.2016.90

[11] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. 2020. Composite Backdoor
Attack for Deep Neural Network by Mixing Existing Benign Features. In CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020. ACM, 113–131. https://doi.org/10.1145/3372297.
3423362

[12] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-Doors by
Artificial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 1265–1282.
https://doi.org/10.1145/3319535.3363216

[13] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1765–1773. https://doi.org/
10.1109/CVPR.2017.17

[14] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2574–2582.
https://doi.org/10.1109/CVPR.2016.282

[15] Tuan Anh Nguyen and Anh Tran. 2020. Input-Aware Dynamic Backdoor Attack.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

[16] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Ad-
versarial Settings. In IEEE European Symposium on Security and Privacy, Eu-
roS&P 2016, Saarbrücken, Germany, March 21-24, 2016. IEEE, 372–387. https:
//doi.org/10.1109/EuroSP.2016.36

[17] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep face
recognition. In bmvc, Vol. 1. 6. https://doi.org/10.5244/C.29.41

[18] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: auto-
mated whitebox testing of deep learning systems. Commun. ACM 62, 11 (2019),
137–145. https://doi.org/10.1145/3361566

[19] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[20] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2012. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural
Networks 0 (2012), –. https://doi.org/10.1016/j.neunet.2012.02.016

[21] Te Juin Lester Tan and Reza Shokri. 2020. Bypassing Backdoor Detection Al-
gorithms in Deep Learning. In IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. IEEE, 175–183. https:
//doi.org/10.1109/EuroSP48549.2020.00019

[22] Yongqiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, Shing-chi Cheung, and
Xiangyu Zhang. To Appear. To What Extent Do DNN-based Image Classification
Models Make Unreliable Inferences? Empirical Software Engineering (To Appear).

[23] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in
backdoor attacks. In Advances in Neural Information Processing Systems. 8000–
8010.

[24] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks (2019), 0. https://doi.org/10.1109/SP.2019.00031

[25] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial Examples:
Attacks and Defenses for Deep Learning. IEEE Trans. Neural Networks Learn.
Syst. 30, 9 (2019), 2805–2824. https://doi.org/10.1109/TNNLS.2018.2886017

[26] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David
Miller. 2020. Backdoor Embedding in Convolutional Neural Network Models
via Invisible Perturbation. In Proceedings of the Tenth ACM Conference on Data
and Application Security and Privacy (New Orleans, LA, USA) (CODASPY ’20).
Association for Computing Machinery, New York, NY, USA, 97–108. https:
//doi.org/10.1145/3374664.3375751

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
http://ceur-ws.org/Vol-2301/paper_18.pdf
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1109/CVPR.2018.00957
https://doi.org/10.1109/CVPR.2018.00957
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3372297.3423362
https://doi.org/10.1145/3372297.3423362
https://doi.org/10.1145/3319535.3363216
https://doi.org/10.1109/CVPR.2017.17
https://doi.org/10.1109/CVPR.2017.17
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.5244/C.29.41
https://doi.org/10.1145/3361566
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1109/EuroSP48549.2020.00019
https://doi.org/10.1109/EuroSP48549.2020.00019
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1145/3374664.3375751
https://doi.org/10.1145/3374664.3375751

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Adversarial Attack
	2.2 Backdoor Attack
	2.3 Backdoor Detection

	3 Threat Model
	4 Methodology
	4.1 Trigger Generation
	4.2 Poisoned Training

	5 Evaluation
	5.1 Evaluation Design
	5.2 Attack Performance
	5.3 Evaluation Against Backdoor Detection
	5.4 Transferability

	6 Discussion
	6.1 Effect of Poison Rate
	6.2 Effectiveness Against Detection Methods
	6.3 Comparison with Adversarial Attack
	6.4 Threats to validity

	7 Conclusion
	8 Acknowledgment
	References

