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ABSTRACT

Mutation-based fuzzing is a widely used software testing technique
for bug and vulnerability detection, and the testing performance is
greatly affected by the quality of initial seeds and the effectiveness
of mutation strategy. In this paper, we present SAFL', an efficient
fuzzing testing tool augmented with qualified seed generation and ef-
ficient coverage-directed mutation. First, symbolic execution is used
in a lightweight approach to generate qualified initial seeds. Valuable
explore directions are learned from the seeds, thus the later fuzzing
process can reach deep paths in program state space earlier and eas-
ier. Moreover, we implement a fair and fast coverage-directed muta-
tion algorithm. It helps the fuzzing process to exercise rare and deep
paths with higher probability. We implement SAFL based on KLEE
and AFL and conduct thoroughly repeated evaluations on real-world
program benchmarks against state-of-the-art versions of AFL. After
24 hours, compared to AFL and AFLFast, it discovers 214% and
133% more unique crashes, covers 109% and 63% more paths and
achieves 279% and 180% more covered branches.
Video link: https://youtu.be/LkiFLNMBhVE
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1 INTRODUCTION

Fuzzing has been identified as one of the most effective technologies
for bug and vulnerability detection in real-world software systems.
The key idea is to generate random inputs to exercise as many pro-
gram paths as possible, then execute the program using such inputs
to catch crashes [8]. Many fuzzing tools such as libFuzzer [1] and
American Fuzzy Lop (AFL) [12] were developed and have caught a
large number of dangerous bugs and security vulnerabilities in wide-
spread systems. They are easy to use and have already gained great
success in both industrial practice and academic research.

However, due to the characteristics of seed random mutation, it is
not easy to ensure the coverage of complex software systems. To im-
prove the fuzzing performance, some researchers try to use coverage
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information to direct mutation, such as AFLFast [4] and AFLgo [3].
Meanwhile, others try to integrate fuzzers with program analysis
techniques like symbolic execution, such as Driller [11] and May-
hem [6]. But with the increasing complexity of software systems, it
is still hard to reach deep places in a program [13] and would miss
the bugs concealed in deep paths.

Basing on the performance of existing fuzzers, we observe that
there are two main obstacles for efficient fuzzing.

(1) Poor initial seed quality. Initial seeds are hugely important
as they determine the initial direction of fuzzing. Efficient
seeds are hard to write manually and random seeds cannot
ensure coverage, thus generating directed initial seeds auto-
matically is badly needed.

Inefficient Mutation algorithm. Mutation algorithm deter-
mines the speed and depth of coverage. How to efficiently
mutate the initial seeds to get valuable seeds exploring new
paths is an enormous challenge.

@

In this paper we present SAFL, an efficient fuzzer for C/C++
programs. Augmented with qualified seed generation and efficient
coverage-directed mutation, it grapples with the two obstacles. SAFL
employs symbolic execution in a lightweight approach to generate
initial seeds which can get reasonable fuzzing direction. Also, SAFL
uses a fair and fast fuzzing algorithm. It classifies seeds according
to path coverage, then mutate them in different ways and different
weights. With this algorithm, SAFL is able to explore deep paths as
many and fast as possible.

For evaluation, we conduct thoroughly repeated evaluations on
real-world program benchmarks against state-of-the-art versions of
AFL such as AFLFast. The results demonstrate that SAFL has a bet-
ter performance in coverage and bugs detection. More specially, af-
ter 24 hours, for the 10 cases in total, compared to AFL and AFLFast,
it discovers 214% and 133% more unique crashes, covers 109%
and 63% more paths and achieves 279% and 180% more covered
branches. For each case, the improvement remains.

2 RELATED WORK

Several approaches have been proposed to improve fuzzing [2—4, 12].
Mutation-based fuzzers generate new inputs by mutating the seed
inputs with the feedback of coverage information. Several recent
works put the information into better use than AFL [12], the orig-
inator. For example, AFLFast [4] gives more mutation time to valu-
able seeds which exercise low-frequency paths. AFLgo [3] proposes
a simulated annealing-based power schedule to reach specific pro-
gram locations. Generation-based fuzzers leverage the knowledge of
input format model, which is especially useful for fuzzing complex
formats. For example, Glade [2] improves the inference of context-
free grammar by consulting the program.



Symbolic execution is also applied to optimize fuzzing [5, 7].
Symbolic execution tools collect the constraints of a program while
simulating the execution, therefore they can generate a concrete in-
put for any given feasible paths as long as the solver works. For
example, S2E [7], namely a symbolic QEMU, improves environ-
ment modeling by simulating the whole operating system altogether.
KLEE [5], which runs LLVM bitcode, is another lightweight and ro-
bust tool. BitBlaze [10] reasons about a single execution path at a
time and picks new paths to explore iteratively. Recently, researchers
tried to combine mutation based fuzzing with symbolic execution
[6, 9, 11]. For example, Driller [11] switches to symbolic executor
when AFL gets stuck, and switches back to the efficient fuzzer as
soon as the complex constraint is bypassed.

Main Difference. SAFL also takes advantage of mutation-based
fuzzing and symbolic execution. Compared to traditional mutation-
based fuzzers, SAFL exercises more rare paths quickly because of
its high-quality initial seeds and novel guided mutation algorithm.
Compared to symbolic tools, SAFL is more efficient as SAFL won’t
get stuck at complex constraints which solvers are unable to solve.
Although the components of Driller and SAFL look similar, there’s
an essential difference: with symbolic execution, SAFL helps the
fuzzer with high-quality seeds, while Driller and Mayhem help by
overcoming complex checks. Within Driller, even if the check is by-
passed, the fuzzer is likely to get stuck again as the mutation algo-
rithm invalidates the delicate byte sequence generated by the smart
symbolic executor. The oscillating is costly. The lightweight design
of SAFL is free of such oscillation. SAFL only runs symbolic ex-
ecution in one pass. The evolved mutator is able to detect delicate
parts of a byte sequence by using the result of symbolic execution
effectively.

3 SAFL DESIGN

As presented in Figure 1, SAFL consists of three components. The
Toolchain component builds two versions of tailored binary for
symbolic execution and fuzzing. The symbolic version is passed
to the lightweight Symbolic Executor component to generate
qualified seeds. With high-quality seeds and hardened binary avail-
able, the Fuzzer component implements the guided fuzzing algo-
rithm, runs the testing and produces the bug report efficiently.
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Figure 1: The interaction of SAFL components
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3.1 Toolchain

Different execution mechanisms of symbolic execution for seed gen-
eration and concrete execution for fuzzing require different sets of
compiler options. The Toolchain component is built to accom-
plish the following four tasks:
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(1) Build LLVM bitcode for symbolic execution. Symbolic ex-
ecution favors a higher-level program representation. High-
level representation carries more information per instruction,
thus the program representation contains fewer instructions.
In other words, symbolic execution runs faster. More impor-
tantly, higher-level representation carries more semantics than
machine code does. Symbolic execution benefits from the en-
riched semantics and more bugs can be identified.

(2) Leverage instrumentation and binary hardening techniques to
build hardened binaries for dynamic execution. Dynamic exe-
cution works best with hardened binaries. Many types of vul-
nerabilities such as heap overflow usually won’t bite on the
spot. They are hard to detect when running a vanilla binary
because the target program runs too short for the latent bug
to take effect.

(3) Maintain subtle equilibrium of compiler optimization to pre-
vent over-optimization and under-optimization. Generally, op-
timization speeds up the execution, which is beneficial to
compute-intensive fuzzing. Loop unrolling is especially use-
ful, which helps to track the execution time of simple loops.
However, optimization does backfire sometimes. Many op-
timizations exploit undefined behaviors to aggressively opti-
mize the program. For example, an overwrite to a local array
can be optimized out.
Simplify the build procedure. A large codebase is usually ac-
companied by a complex build procedure. The complexity
hinders the adoption of fuzzing testing. The Toolchain
component simplifies the procedure by intercepting the build
command invocation and automatically replace it with the op-
timal options above.
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3.2 Seed Generation

SAFL uses KLEE as the kernel of the Symbolic Executor com-
ponent, to generate high-quality seeds. LLVM bitcode is passed to
the symbolic execution virtual machine to explore the typical pro-
gram states. SAFL further tweaks the symbolic execution to match
the purpose of seed generation:

(1) Environment simulation. Libc is required by almost all pro-
grams and the invocation of utility functions inside libc such
as st rcmp is ubiquitous. SAFL ships KLEE built with uclibc,
atiny libc implementation originally developed for embedded
use. This enables the symbolic execution of utility functions
and basic POSIX API simulation.

(2) Time limitation. A program executes several magnitudes slower
inside a symbolic virtual machine [7], so it’s necessary to
limit the default exhaustive exploration of KLEE. Because
we do not need to explore all paths and only execute one pass
to favor the efficient fuzzing phase, the execution time of sym-
bolic execution is limited to 20 minutes.
Seed selection. The symbolic execution phase of SAFL is tar-
geted at accelerating the fuzz phase by reaching deep program
states first. But KLEE tends to create too many initial seeds
that slow down the fuzzing. To avoid redundant seeds, only
the concrete inputs that result in new coverage are kept. A con-
version module is developed to connect KLEE and Fuzzer
component together.
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3.3 Guided Fuzz

SAFL avoids unfruitful runs as much as possible with the novel
guided fuzzing algorithm implemented in Fuzzer. It avoids three
pitfalls to increase the execution speed and path depth.

(1) Unfair seed selection. It’s crucial to choose seed right because
once a low-quality seed is chosen, efficient mutation algo-
rithm provides a little remedy. The seed selection algorithm
of the original AFL favors seeds that have unique coverage
and run fast. It doesn’t take the branch rarity into account,
which is unfair for the rare branches. SAFL fixes the prob-
lem by only picking seeds exercising branches which are rare
enough.

Invalid seed mutation. Complex checks are difficult to bypass,
thus once the exact byte sequence is generated, the mutator
had better keep the magic byte sequence intact. AFL is un-
aware of the magic sequence, putting lots of energy on mu-
tating the magic sequence in vain. SAFL tries to discover the
way where a byte can be mutated: deletable, overwritable, and
insertable. This strategy prevents mutation that outputs seeds
drifting from the rare branch.

Slow seed mutation. While the crude heuristic works effi-
ciently, it puts too much constraint on the mutation. When
the algorithm above gets stuck, SAFL falls back to the origi-
nal AFL mutation algorithm, but the execution time is short-
ened. The execution time scheduler of AFL has the similar
weakness of seed selection algorithm. When assigning muta-
tion time of each seed, AFL misses the metric of branch rarity.
It’s slow when computing resource is wasted on a less-valued
seed. Drawing upon the work of AFLFast, SAFL uses power
schedule to decide the execution time.
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4 SAFL IMPLEMENTATION

As Figure 2 illustrates, SAFL is divided into three layers, to provide
developer-friendly interface and cross-distribution compatibility.

Intercept

SAFL Fuzzer SAFL Toolchain System Toolchain
safl-configure CMake | Autoconf
safl-fuzz
safl-build Makefile
safl-test-gen
safl-link Binutils
Symbolic| Dynamic
KLEE CFE| Compiler-RT
WLLVM FairFast
LLVM 3 | Z3 | uclibc LLVM 5
Runtime
| Python Wrapper | ncurses | | libc++ |tbash|

Figure 2: Layers of SAFL

63

o Interface Layer. The interface layer encapsulates the complex-
ity of internal tools. The toolchain part intercepts and replaces
the system toolchain invocation. The fuzzer part prepares the
environment and optimal options for execution. It also con-
nects the symbolic and dynamic executor, by exporting the
results of symbolic execution to seeds for fuzzing.

e Tool Layer. The tool layer consists of the core tools for the
build and execution stage. The symbolic part bundles KLEE,
LLVM, Z3 and uclibc for execution, and WLLVM for LLVM
bitcode collection. The dynamic counterpart bundles LLVM
to build the hardened binary and our improved fuzz engine
named FairFast for random testing.

e Runtime support Layer. The runtime support layer contains
shared libraries used by upper layers. This enables compati-
bility across Linux distributions, as long as the kernel version
is recent enough.

To use SAFL, little modification to normal build procedure is re-
quired. The developer replaces each build command with the corre-
sponding SAFL toolchain command as presented in Table 1. A sim-
ple analysis is performed on the command line options by SAFL.
Depending on the build stage, the command line is replaced to build
LLVM bitcode or sanitizer-hardened executable. For example, when
safl-build g++ is invoked in dynamic mode, SAFL injects
—fsanitize=address foraddress sanitizerand -Xclang —-load
for an additional LLVM pass to enable coverage reporting behind the
scenes. When invoked in symbolic mode, SAFL redirects the invo-
cation to WLLVM to collect bitcode.

Table 1: SAFL and normal build procedure

| SAFL Normal build
Prepare | safl-prepare
Configure safl-configure ./configure ./configure
Build lib safl-build make -j make -j
Build driver safl-build g++ target.cc-c ~ g++ target.cc -c
Link safl-link target.o lib.a g++ -0 app target.o lib.a

Generate seed
Fuzz

safl-test-gen ...

safl-fuzz app.bc Japp

5 EVALUATION

We evaluate SAFL on 10 different real-world program benchmarks
selected from Google’s fuzzer-test-suite for libFuzzer, including bor-
ingssl, re2, guetzli, libxml2, lcms, pcre2, proj4, libssh, libarchive
and c-ares. We compare SAFL with AFL and AFLFast. libFuzzer
is not included because the fuzzing engine will shut down when it
finds a crash, while other tools continue fuzzing unless manually
terminated. AFLgo is not included either because it targets fuzzing
of revised code. In order to demonstrate the contribution of seed
generation and guided fuzzing respectively, a weaker version called
SAFL™ is developed. It has the symbolic executor disabled, while
our fuzzing engine, FairFast, is kept.

‘We run each tool on ASan (address sanitizer) hardened binaries
using a single core for 24 hours. The machine has 36 cores (ES-
2630 v3 @ 2.40GHz), 128 GB of main memory, and Ubuntu 16.04
(AMDG64) as the host OS.

Table 2 shows the number of paths covered by each tool and Ta-
ble 3 shows the number of covered branches. From the third column



and the fourth column of the two tables, we can observe that the opti-
mized fuzzing engine in SAFL™ covers 26.8% more paths and 3.7%
more branches compared to AFLFast. From the fourth column and
the fifth column of the two tables, we can observe that the qualified
seed generation further contribute to the coverage. SAFL increases
covered paths by 28.6% and covered branches by 169% compared to
SAFL™. Combining lightweight symbolic execution and enhanced
guided fuzzing, the increasing coverage for paths and branches is
63% and 180% respectively, compared to the AFLFast basing on
the most related AFL version.

From these comparisons and statistics, we can conclude that the
guided fuzzing strategy and symbolic-execution-based seed genera-
tion are effective, and they help SAFL to exercise more and deeper
paths in the program with a higher probability.

Table 2: Number of paths

Project | AFL AFLFast SAFL~ SAFL
boringssl-2016-02-12 | 693 579 789 988
re2-2014-12-09 1788 1931 2623 3169
c-ares-CVE-2016-5180 | 37 35 37 42
libssh-2017-1272 19 20 20 28
guetzli-2017-3-30 368 689 690 1329
libxml2-v2.9.2 1335 2235 2494 4276
lems-2017-03-21 333 202 249 335
pere2-10.00 9949 12387 16229 18883
libarchive-2017-01-04 | 648 1448 1660 2093
proj4-2017-08-14 84 84 86 850
Total | 15254 19610 24877 31993
Table 3: Number of branches
Project ‘ AFL AFLFast SAFL— SAFL
boringss1-2016-02-12 | 3215 2651 3504 10231
1e2-2014-12-09 13813 16245 16257 30593
c-ares-CVE-2016-5180 | 103 105 105 277
libssh-2017-1272 595 602 603 1592
quetzli-2017-3-30 1112 2123 2174 8982
libxml2-v2.9.2 6726 9546 10037 40933
lems-2017-03-21 1787 2060 2529 6587
pere2-10.00 21798 31821 31939 75800
libarchive-2017-01-04 | 2706 5123 5786 16296
proj4-2017-08-14 258 263 263 6281
Total | 52113 70539 73197 197572
Table 4: Number of crashes
Project | AFL AFLFast SAFL~ SAFL
boringssl-2016-02-12 0 0 0 0
1e2-2014-12-09 0 0 1 1
c-ares-CVE-2016-5180 | 4 4 4 4
libssh-2017-1272 5 6 7 7
guetzli-2017-3-30 0 0 0 0
libxml2-v2.9.2 0 0 0 5
lems-2017-03-21 3 8 10 10
pere2-10.00 68 90 107 103
libarchive-2017-01-04 | 1 1 1 4
proj4-2017-08-14 0 0 0 121
Total | 81 109 130 255

The number of the unique crash found by each tool in 24 hours
is presented in Table 4. This table shows that AFL and AFLFast
find crashes in 5 programs, SAFL™ finds crashes in 6 programs, and
SAFL finds crashes in 8 programs.

We check the unique crashes in Table 4 for each program, and
identify that the unique crashes are caused by one bug — AFL de-
fines unique crashes by unique paths, yet different paths can trigger
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the same bug. Therefore, the number of unique crashes can be con-
sidered as the probability to trigger the bug. We can observe that
the optimized fuzzing engine FairFast Fuzzer in SAFL™ increases
19.3% bug detection probability compared to AFLFast. SAFL with
qualified seed generation increases 96.2% bug detection probability
compared to SAFL™. Combining the techniques above, SAFL im-
proves the bug detection probability of AFLFast by 133.2%.

From these comparisons and statistics, we can conclude that the
guided fuzzing strategy and symbolic-execution-based seed genera-
tion help SAFL hunt more bugs and trigger each bug with a higher
probability.

6 CONCLUSION

In this paper, we present SAFL, an efficient fuzzer for C/C++ pro-
grams. The efficiency is mainly embodied in two aspects, namely
efficient initial seeds and guided fuzzing algorithm. Initial qualified
seeds are generated by lightweight symbolic execution; enhanced
guided fuzzing algorithm can rapidly cover the rare path while avoid-
ing quick local convergence. We evaluate the performance of SAFL
by fuzzing 10 different real-word programs from Google’s libFuzzer
test suite. Compared with other tools, SAFL can expose a larger num-
ber of unique crashes, exercise more paths and explore deeper states.
In the future, we plan to adapt SAFL for systems with a complex ar-
chitecture, such as database or operating system kernel.

REFERENCES

[1] 2017. libFuzzer in Chrome. https://chromium.googlesource.com/chromium/
src/+/master/testing/libfuzzer/README.md. (2017). [Online; accessed 12-
November-2017].

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing
program input grammars. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 95-110.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS’17).

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1032-1043.
Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex Systems
Programs.. In OSDI, Vol. 8. 209-224.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing mayhem on binary code. In Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 380-394.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A plat-
form for in-vivo multi-path analysis of software systems. ACM SIGPLAN Notices
46, 3 (2011), 265-278.

Joe W Duran and Simeon Ntafos. 1981. A report on random testing. In Pro-
ceedings of the Sth international conference on Software engineering. IEEE Press,
179-183.

Julian Fietkau and Bhargava Shastry. 2017. KleeFL - Seeding Fuzzers With
Symbolic Execution. Poster presented at USENIX Security’17, Vancouver, BC,
Canada, TU Berlin.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. 2008.
BitBlaze: A new approach to computer security via binary analysis. Information
systems security (2008), 1-25.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
NDSS, Vol. 16. 1-16.

Michal Zalewski. 2015. American fuzzy lop. (2015).

Michal Zalewski. 2015. Symbolic execution in vuln research. https://lcamtuf.
blogspot.com/2015/02/symbolic-execution-in-vuln-research.html. (2015). [On-
line; accessed 11-November-2017].

2

3

4

o

[6

[7

[8]

9

[10]

[11]

[12]
[13]



