
WILD: A Workload-Based Learning Model to
Predict Dynamic Delay of Functional Units

Xun Jiao‡, Yu Jiang§, Abbas Rahimi∗, and Rajesh K. Gupta‡
‡Department of Computer Science and Engineering, UC San Diego, La Jolla, CA, USA

§ School of Software, Tsinghua University, Beijing, China
∗Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, USA

{xujiao, gupta}@cs.ucsd.edu, jiangyu198964@gmail.com, abbas@eecs.berkeley.edu

Abstract—Dynamic critical path analysis in modern proces-
sors is needed to reduce margins typically determined by the
static timing analysis. Dynamic path analysis, however, is cost-
prohibitive. In this paper, we propose WILD, a supervised
learning model to predict dynamic delay of functional units (FUs)
based on the input workload during execution. We measure
the dynamic delay using switching activity generated through
gate-level simulation of a post place-and-route design in TSMC
45nm process. We then look for ‘features’ in the input data that
influence dynamic path sensitization. Using these features we
apply a logistic regression (LR) method to construct a predictive
model trained and tested using three datasets: random, Sobel
filter and Gaussian filter. We classify dynamic delay into five
distinct classes. For a given test input, WILD predicts the class
of output dynamic delay. On average across several FUs, 98.0%
of WILD predictions are consistent with gate-level simulation.
Using WILD-directed dynamic frequency scaling can improve
instruction-level performance by 13%–44% compared to the
state-of-the-art instruction-level timing model.

I. INTRODUCTION

To ensure error-free operation, traditional circuits are de-

signed with a conservative timing margin based on critical

path computed from a multi-corner worst-case analysis at

design time derived through static timing analysis. Although a

synchronous circuit design is safe with static timing constraints

using worst case critical path delay, in reality, the critical

path is rarely sensitized during execution thus resulting in

unnecessary loss of performance. This problem is further

exacerbated by increased variability in advanced processes,

caused by process, voltage, temperature and aging (PVTA)

effects.

To improve the system performance, better-than-worst-case

(BTWC) design methods have been explored (e.g., [4]). These

methods aim to reduce the needs for large timing margins

without compromising safe operation by improved static char-

acterization based on part-specific information and/or runtime

sensing [2]. A typical approach is to use frequency overscal-

ing to reduce timing margin, and use recovery techniques

to correct the timing violations induced by such frequency

overscaling [4], [24]. Such methods are effective, but can incur

silicon overhead for online monitoring. Further, these methods

impose recovery penalty in the case of timing violations.

An alternative and less intrusive technique is to predict the

timing delay in advance and then prevent timing violations

by adjusting the operating frequency accordingly. Several

instruction-level timing prediction models have been proposed

to measure the timing delay of instructions using gate-level

simulations [22]. A timing error rate prediction model for

functional units (FUs) has been proposed to reduce guardband

hierarchically by obtaining hardware PVTA variation informa-

tion [20]. However, these instruction-level models assume a

worst case scenario, that overlooks the effect of input operands

on the path sensitization behavior, leading to a less efficient

or pessimistic modeling of hardware timing.

There is, of course, a correlation between the input work-

load and timing violations because of its direct effect on

dynamic path sensitization. During execution, the sensitized

paths strongly vary with different input workload [18]. This is

seen in different instruction-level timing delay as a function

of the operands to instructions. This paper explores use of

a workload-dependent predictive model for instruction-level

timing managements, where we face the following challenges:

Challenge 1: we need to measure the dynamic timing delay

of FUs at each cycle under different input operands. Based on

the measurement results and input workload, we need to inves-

tigate the specific source factors that could affect the dynamic

circuit delay. This requires a trial-and-error iterative process

of varying input parameters and examining its corresponding

output.

Challenge 2: we have no prior knowledge of the circuit struc-

ture and it is even unclear what factors could affect dynamic

path sensitization. In general, under cryptographic assumptions

Probably Approximately Correct (PAC) learning of Boolean

circuits is hard [16] even under uniform distribution over the

inputs [17].

Challenge 3: for model generation purpose, we need to extract

the useful features from a large set of input operands, to train

the circuit delay model over a large input space of m input

bits. Note that each bit position might have different weights

on dynamic timing delay because the bit significance varies.

Proposed approach: To overcome these challenges, we pro-

pose WILD, a supervised learning model, to predict the dy-

namic delay of FUs based on input workload or operands.

First, we extracted useful input features from input workload

by analyzing the variations of circuit timing delay, measured

185978-1-5090-5142-7/16/$31.00 c©2016 IEEE

dynamically each cycle under different input operands. We

employ a switching activity file obtained from a post-layout

gate-level simulation on TSMC 45nm technology. Then, we

use supervised learning methods to construct and train the

model, evaluat and compare with the baseline modeling in

terms of prediction accuracy. We evaluated various commonly

used machine learning techniques and finally chose logistic

regression as our modeling method due to its high pre-

diction accuracy and efficient computing time. Furthermore,

we have applied our prediction model to three different

datasets, random data, Sobel filter and Gaussian filter, and

achieve prediction accuracy ranging between 96.2–99.8%.

Using WILD-directed dynamic frequency scaling (DFS), the

average instruction-level timing delay could be reduced for

three different instructions (Int ADD, Int Mul and FP MUL).

In addition, our model execute 60X faster compared with gate-

level simulation to compute dynamic delay for 200k data.

Contributions: This paper makes the following contributions:

• We develop an accurate dynamic timing delay measure-

ment methodology based on switching activity derived

through gate-level simulation to analyze the sources of

delay variations and the effect of input workload on

circuit-level timing delay.

• We propose a methodology to construct automatic models

for dynamic delay timing prediction using supervised

learning methods. To our best knowledge, this is the first

prediction model of functional units on timing delay that

can capture the dynamic path sensitization behavior under

different input operands.

• The evaluation results demonstrate the robustness and

accuracy of WILD in prediction and its effectiveness in

system performance increase. We profile the test input

workload from real world applications and achieve 96.2–

99.8% prediction accuracy, which is 3.6X and 1.5X

higher compared to two baseline models. Further, by

using WILD-directed DFS, the instructions can achieve

13–44% operation speed up compared with the state-of-

art instruction-level timing model directed DFS [5] [22].

II. BACKGROUND

We evaluate four learning methods here that have been

chosen for their increased sophistication and practical use:

k-nearest neighbor (k-NN), support vector machine (SVM),

logistic regression (LR) and decision tree (DT) classifiers [3].

k-NN performs classification based on the distance between

feature vectors, treating every bit position equally, regardless

of their bit significance difference. The opposite goes to SVM

and LR, which assign the weight to each bit location and

predict classification based on the weighted numerical results.

DT learns a decision rule to determine prediction process,

which has a superior interpretability. We expect k-NN will

have low prediction accuracy because of its ignorance of bit

location effect. DT could easily suffer from overfitting. SVM

is expected to have high training time compared to the others.

The four methods would be deeply evaluated in experiment

section and some concepts are introduced as below.

k-NN is a non-parametric method for classification and

regression. It predict the timing delay class membership given

an input vector x if majority of the k nearest neighbors of

x in the dataset D map to that class. We select k=5 in this

work to balance the approximation error and estimation error.

Thus, it is naturally extensible to multi-classification. Although

providing useful theoretical properties, k-NN, as an instance-

based learning, or lazy learning method, often suffers the sub-

par generalization performance (i.e., performance on new data)

when available training labeled data is limited. Besides, it

also has the problems of appropriate feature normalization

and scaling. More importantly, we expect k-NN would have

a bad performance on the timing delay prediction since the

timing delay is affected differently by different bit positions

while k-NN assigns the equal weight to different bit positions.

To address these problems, we consider two methods that

learn weights w on the bit-level features that maximize the

classification accuracy.

SVM is inherently a binary classifier. It could implement

multi-classification problems in different ways. Here we use

the most common one-against-rest approach because of its

computational efficiency and high interpretability. Given C as

the number of classes, it constructs C independent classifiers

and calculates the probability of each class against the rest

and chooses the class with highest probability. For an unseen

input x, we compute the probability of each class and choose

the one with highest probability. Given labels yi for the N
training data points xi, SVMs learn w based on the following

large margin optimization problem:

minw,η,ρ
1

2
||w||2 + 1

N

∑

i

ηi − νρ

s.t. yi(w · xi − w0) ≥ ρ− ηi (1)

The weights are learned to maximize the margin (ηi) by which

the training data are correctly classified. We use the popular

Radial Basis Function (RBF) kernel to map the input training

data to a higher dimensional kernel space to enable non-linear

classification.

LR also can implement the multi-classification problem

using a one-against-rest approach, where it fits one classifier

per class and calculates the probability of each class against the

rest. In the logistic regression classifier, we learn weights that

can maximize the probability of labeled class on the training

data D. For an unseen input x, the probability of each class

is computed and the one with highest probability is chosen,

where the probability function is given by

F (x) =
1

1 + e−w·x (2)

DT is also a non-parametric supervised learning method and

could be naturally extended to multi-classification. It predicts

the output class given an input x by learning the decision

rules derived from training examples. However, decision tree

can easily suffer from the overfitting problem when it becomes

very deep as it learns a lot of irregular pattern with a large

186 2016 IEEE 34th International Conference on Computer Design (ICCD)

Application Architecture
Simulator

Workload
Signature

RTL
Description

Synthesis

Place & Route Gate-level
Simulation

Feature
Extraction

TSMC
45nm

Gate-level
Netlist

Switching
Activity

Dynamic Timing
Analysis

Model
Training

b) Input Feature
Extraction

a) Dynamic Timing Analysis

Random Data
Generator

Dynamic Delay

c) Model Training

Input Feature

Fig. 1. WILD model overview with three key phases: a) Dynamic Timing Analysis to measure the dynamic delay under different input workload;b) Input
Feature Extraction to extract useful ‘features’ from random data and real-world application input data; c) Model Training to use supervised learning model
with extracted useful ‘features’ and dynamic delay as labeled output to train the model.

variance. Therefore, we limit the number of instances for each

leaf node to prevent overfitting.

III. PROBLEM FORMULATION AND WILD MODEL

Problem formulation: We represent the dynamic timing delay

of a FU as a function of its input workload. More specifically,

we abstract a circuit as a mapping from an input space I
consisting of m input bits, to create an input I . Defining

ψ(I) as the timing delay of the circuits, our goal is to learn

(an approximation) of ψ given uniform samples from the 2m

possible input bits. However, we have no prior knowledge of

the structure of the delay function ψ. Thus, we classify the

input operands to map to different output delay by using a

classification method. We define the output timing delay into

different classes, and map the input workload to one of the

classes, forming a multi-classification problem.

WILD Model: It is comprised of three phases as shown in

Fig. 1: Dynamic Timing Analysis, Input Feature Extraction and

Model Training. a) The Dynamic Timing Analysis phase imple-

ments the standard ASIC flow and uses gate-level simulation

to generate switching activity file. Then, our Python-written

dynamic timing analysis script will analyze the switching

activity file to generate the dynamic delay under different input

workload. b) In the Input Feature Extraction, we generate the

input training data in two ways: using a random data generator

and profiling of FU input operands in real-world applications

using architectural-level simulator. Then, the workload signa-

ture of training data is pre-processesed and useful features

are extracted from the training data, such as bit locations and

input history, which are then incorporated into model training.

c) In the Model Training phase, the model is trained with

the previous collected data using different supervised learning

algorithms. We classify the output dynamic delay into different

classes and the model will predict the class to which the output

delay belongs for a given input data. More details about the

three phases are illustrated as follows.

A. Dynamic Timing Analysis

We focus on three different types of FUs, 32-bit integer

adder and multiplier, and 32-bit single-precision floating point

multiplier. The floating point units (FPUs) are compatible with

IEEE-754 standard, and can provide more complex circuit

structures compared to their integer counterparts. We vary the

circuit structures not only by function types but also by data

types to assess the robustness of our model.

We use FloPoCo [8] to generate the synthesizable VHDL

codes of FUs with wrapper at input and output ports. Syn-
opsys Design Compiler is used to synthesize the VHDL

codes and Synopsys IC Compiler is used to do place&route

to generate post-layout netlist in TSMC 45nm technology.

Synopsys PrimeTime is used to do static timing analysis to

generate Standard Delay Format (SDF) file. Then, we use

Mentor Graphics Modelsim to do SDF-back-annotation gate-

level simulation to generate value change dump (VCD) file

as a switching activity file. The stimuli input comes from two

sources: random data generator script written in Python and the

application input data profiled using Multi2Sim [26], a cycle-

accurate CPU-GPU heterogeneous architectural simulator.

Next, unlike static timing analysis which can only give us

the static timing of path delay, we use the switching activity

file to do the dynamic timing analysis. The VCD file records

the toggled nets at each cycle thus giving us the dynamic

path sensitization information. To extract the dynamic delay

based on sensitized critical path, we are only interested in

the endpoints of every timing path. We run the simulation

at a relatively slow clock period to make sure there is no

2016 IEEE 34th International Conference on Computer Design (ICCD) 187

TABLE I
FIVE CLASSES OF DYNAMIC DELAY (PS).

500 > delay ≥ 0 1000 > delay ≥ 500 1500 > delay ≥ 1000 2000 > delay ≥ 1500 2500 > delay ≥ 2000
Cex low Clow Cmed Chigh Cex high

timing violation. For each clock cycle, we use the last toggle

event time of the input pin of all sequential elements (flip flop,

registers, etc) to subtract the last positive clock edge arrival

time to get the maximum delay at that cycle. For example,

at cycle N the positive clock edge occurs at time t, and the

very last toggled event at the data input pin of all sequential

elements occurs at time t′, then the dynamic delay at this

cycle is t′− t. We run a large simulation and probe all toggled

events at data input pins of sequential elements, and then parse

the VCD file using our dynamic timing analysis tool that can

provide us the dynamic delay at each cycle under different

input workload. Note that when the input operands are the

same for two consecutive cycles, there is no toggled nets,

resulting a zero dynamic delay.

B. Input Feature Extraction

Having said before, there are extremely high number of

possible input combinations. Given two 32-bit operands, there

are 264 different combinations. Thus, it is not feasible to

apply all 264 input patterns for training. To cover a large

range of input space, we use the homogeneous distribution of

two operands over 2D input space used in [25]. By applying

these training input to the dynamic timing analysis module,

we obtain the dynamic delay corresponding to each input

workload. Then, for the training purpose, we need to find

out the useful input features, i.e., the source factors which

determine the dynamic delay. Intuitively, the current input

workload directly affects the path sensitization. However, the

preceding history input might also affect path sensitization of

current cycle because the preceding input will set a state of

the circuit and affect the signal transition between two cycles.

In order to investigate the effect of history input workload,

we use a trial-and-error process to iteratively vary the history

input workload while keeping the current input fixed. We set

the experiments as follows:

• Scenario 1: we only fix the current input while varying

the immediate preceding input. We use this to evaluate

the effect of immediately preceding input.

• Scenario 2: we fix both current and immediately pre-

ceding input while varying the preceding input of the

immediately preceding one. We use this to evaluate effect

of deeper history.

We perform 100K gate-level simulation to assess the effect

of workload history and it turns out the dynamic delay of

scenario 1 varies without irregularly while the scenario 2

results in constant dynamic delay. Therefore, we conclude that

only the immediately preceding input will have effect on the

dynamic delay of current cycle. This is expected as only the

immediately preceding input and current input determine the

signal transition which determines the path sensitization.

Next, we need to do data preprocessing to clean the training

data. First of all, the decimal format of input data needs to be

converted into binary vector representation. The reason behind

this conversion is that, the circuit uses 32-bit vectors as input

format and the 0/1 value at each bit location could affect

different paths thus inferring different path sensitization behav-

iors. Meanwhile, the decimal format cannot precisely reflect

the significance of each bit position. Therefore, we convert

the decimal format to binary format, e.g., 0.5 is converted

to 00111111000000000000000000000000. Actually, LR and

SVM emphasizes this bit significance naturally, where they

assign different weights to different bit locations to optimize

the object function. Meanwhile, k-NN cannot distinguish the

difference among bit locations because it treats each bit

location equally weighted to determine the distance between

feature vectors. The next step is to clean the training data

by removing the repetitive data patterns resulting the same

delay, and excluding the cycles with a zero dynamic delay

which could happen when both preceding cycle and current

cycle have same input operands and no nets are toggled.

These two scenarios need to be excluded to save meaningless

training efforts. In summary, after preprocessing the training

data, we need to extract the useful features of input vectors:

history input and bit location, to train the model accurately

and efficiently.

C. Model Training

First, the output dynamic delay is classified into five dif-

ferent classes. Since 2.5ns is the clean clock period under

which no timing violations occur for all of our designs, we use

500ps as step size, resulting in five different classes: Cex low,

Clow, Cmed, Chigh and Cex high based on their delay range

as shown in Table. I. The reason of using five classes is

that clock controller circuit (CGU) in DFS can only use a

limited number of phase locked loops (PLLs) [23], each with

a pre-configured fixed frequency. Empirically, in this work,

we assume five PLLs are used in CGU to balance the tradeoff

between frequency resolution and hardware overhead.

Then, we set the previously extracted input features,

{x[t], x[t − 1]} as input feature and C[t] as output labeled

class, where x[t] and x[t-1] are input binary vectors at cycle t
and t−1, and C[t] ∈ {Cex low, Clow, Cmed, Chigh, Cex high}.

The input training data comes from two sources: one is from

random generated data and the other is from the input operands

profiled from real world applications. The input workload is

then applied to gate-level simulation and dynamic timing anal-

ysis to obtain the dynamic delay value for each input workload,

which is then classified into C[t]. With the input features and

output labels, the four supervised learning methods are applied

in Sec. II to construct a multi-classification model.

188 2016 IEEE 34th International Conference on Computer Design (ICCD)

TABLE II
PREDICTION ACCURACY, AND TOTAL TRAINING AND TESTING TIME OF

FOUR LEARNING METHODS.

method Accuracy Time (s)
KNN 0.932 233.35
SVM 0.975 2478.38
LR 0.974 1.82
DT 0.952 4.08

Finally, we evaluate the aforementioned four different su-

pervised learning methods: k-NN, LR, SVM and DT by using

50K random training data and 10k random testing data across

three FUs. As shown in Table II, we observe that LR is

the fastest method with high prediction accuracy. DT is also

fast but achieves low prediction accuracy. k-NN takes several

minutes to finish with this small scale of training and testing

data. Actually, when the training data size becomes 100k,

k-NN takes several hours to perform classification, due to

that for every given test data, k-NN needs to calculate the

distance with respect to each training vector and find the

nearest neighbors from the entire training space. This implies

that the training size affects the classification time of k-NN.

Meanwhile in LR, the size of training data does not affect

classification time because LR model outputs only the weight

vectors, which are then used to operate with test features.

That is, the training size only affects the value of weight

vectors hence the classification result, but not the classification

time. Although SVM achieves highest prediction accuracy, its

training and testing takes more than half an hour, which is

highest among four methods. Therefore, we finally choose

LR due to its high prediction accuracy and better computing

efficiency. The machine learning modules are provided by

Scikit-learn package written in Python [19].

D. Model Evaluation

For a given input workload, our model will predict the class

to which it belongs among the five classes. We use prediction

accuracy as our evaluation metric and compare this with two

baseline models.
1) Evaluation Metric: We evaluate the prediction accuracy

of prediction model by comparing prediction result with

golden output generated by gate-level simulation:

prediction accuracy =
#matched cycles

#total cycles
(3)

where #total cycles is the number of total simulation cycles,

and #matched cycles is the number of cycles at which

predicted result equals to golden result.
2) Comparison Methods: Since there are no previous

works on predicting dynamic delay of FUs, we compare

WILD against following baseline methods which can help us

evaluate the true performance of our model:

• rand: predict the dynamic delay class among the non-

empty classes which contain at least one instance ran-

domly. Some classes might have no instance , for ex-

ample, Cex low in Fig. 4, thus we ignore those empty

classes.

• naive: use a naive class to always predict the class which

contains most instances. If the dataset is heavily biased,

e.g., 99% of the data belongs to one class, then even

a trivial class can achieve 99% prediction accuracy by

always predicting that class.

IV. EXPERIMENTAL RESULTS

In this section, we present the dynamic delay distribution

of three FUs under three different input datasets. Then, we

present the prediction accuracy of LR-directed model and

compare with the baseline model using particular evalua-

tion metric. Finally, we utilize LR model-directed dynamic

frequency scaling (DFS) to adjust instruction-level operating

frequency to achieve instruction execution speedup.

A. Experimental Setup

We choose two image processing applications from AMD

APP SDK v2.5 [1], Sobel filter and Gaussian filter. The

OpenCL codes of these applications are simulated by our

modified version of Multi2Sim to profile input workloads of

interested FUs. We choose 10 images in Caltech-UCSD Birds

200 vision dataset [27] as input image for these applications to

profile test data. We select the operating voltage to be 0.85V

and temperature to be 50◦C.

B. Delay Distribution of Functional Units

We use the dynamic timing analysis described in Sec-

tion III-A to investigate the dynamic timing delay of the three

FUs under the datasets generated from: random data described

in Section III-B, Sobel filter and Gaussian filter described in

Section IV-A. Fig. 2 – Fig. 4 present the delay distribution

of FUs under three different input datasets, from which we

observe several important facts.

Fig. 2. Delay distribution of INT ADD under three different input workload
sets.

First, for all figures, it is clearly seen that FUs exhibit

noticeably different dynamic delay under different input work-

load. In particular, we observe up to 5X difference of delay

in INT ADD and INT MUL. Hence, all prior works on

2016 IEEE 34th International Conference on Computer Design (ICCD) 189

Fig. 3. Delay distribution of INT MUL under three different input workload
sets.

Fig. 4. Delay distribution of FP MUL under three different input workload
sets.

FUs and instruction-level timing modeling that ignore the

effect of input workloads suffer from inaccuracy. Second,

we observe that some FU experiences a large deviation of

dynamic delay. In particular, the INT MUL presents a non-

regular delay distribution for Sobel filter and Gaussian filter

while the others all present Guassian-like distribution. This

is because the critical paths in INT MUL sensitized by

these two applications exhibit vastly different timing delay.

Third, by observing delay behavior resulted from each dataset

individually, we find majority of them exhibits a Gaussian-

like distribution. This is because some critical paths are

more frequently sensitized by input workload, for that the

conventional design strategies tend to produce a so-called wall

of slack [14], which contains a large number of near-critical

paths. In particular, the INT ADD, for example, the sum of

two highest bins are accounted nearly 50% of the delay data.

Fourth, comparing with random data, we can see the delay

from Sobel filter and Gaussian filter exhibit a more dense

distribution. This is because there is a data locality phenomena

in these applications, resulting in a high commonality in path

sensitization [22]. In addition, the mean value of delay of

Sobel filter and Gaussian filter are less than the one derived

from random data. This is because a large number of real-

world input operands for these FUs are small size operands,

resulting small delays. Thus, the random dataset produced the

largest delay variance and hence can be used as the most

representative dataset to evaluate prediction accuracy.

C. Model Prediction Accuracy

Table. III presents the prediction accuracy of dynamic delay

of three FUs under three different datasets using three models:

WILD, rand and naive. WILD exhibits the prediction accuracy

ranging between 96.2–99.8% and achieves average prediction

accuracy 98.0% over all FUs under all datasets. The rand
model achieves average prediction accuracy at 27.2% while

naive can achieve 63.6% on average. Thus, compared to

these baseline models, WILD exhibits 3.6X and 1.5X higher

prediction accuracy. We notice that, the prediction accuracy

is affected by the delay distribution of different datasets. The

prediction accuracy of Gaussian filter dataset is higher than

that of random dataset. This is because the data in Gaussian

filter dataset is so biased that its delay distribution is among a

very small range then even a naive classifier can have a high

prediction accuracy.

D. Instruction-level Timing Margin Reduction

The existing instruction-level timing models [22] [5] mea-

sure the instruction delay under the worst case assumption of

input operands. However, the instruction-level timing delay

during runtime depends on the actual input workload and

it can be changed from time to time. Thus, the dynamic

frequency scaling (DFS) enabled by the existing instruction-

level models leads to pessimistic operating timing margin. DFS

is an architectural technique that adjusts operating frequency

on-the-fly to improve performance. To address such problem,

we use WILD-directed DFS to enable a finer-grained frequency

adjustment as it can provide an specific delay value for a given

input workload. As a result, the circuit can run at a higher

frequency compared to existing model-directed DFS.

For a given instruction, the existing models uses the worst

case instruction-level timing delay measured to set the op-

erating frequency which will be used in DFS, e.g., 826ps,

2187ps and 2438ps for Int ADD, Int MUL and FP MUL in

Sobel filter as shown in Fig. 2–Fig. 4. On the other hand,

WILD incorporates the input workload with the instruction

and predicts the class of the resulted dynamic delay and uses

the upper bound of that class to set the operating frequency

to provide a safe operating frequency. For example, if the

predicted class is Cex low, then the DFS will use 500ps as

clock period to execute the instruction. However, the predicted

class could be wrong, which could fall into one of the two

categories:

190 2016 IEEE 34th International Conference on Computer Design (ICCD)

TABLE III
PREDICTION ACCURACY OF THREE DIFFERENT CLASSIFIER MODELS AND THREE DIFFERENT DATASETS.

random dataset Sobel filter dataset Gaussian filter dataset
WILD rand naive WILD rand naive WILD rand naive

Int Add 0.974 0.333 0.319 0.966 0.330 0.954 0.998 0.334 0.999
Int Mul 0.962 0.201 0.146 0.976 0.163 0.363 0.992 0.091 0.303
FP Mul 0.983 0.332 0.841 0.985 0.332 0.890 0.993 0.333 0.914
Average 0.973 0.288 0.435 0.975 0.275 0.736 0.994 0.253 0.739

TABLE IV
AVERAGE INSTRUCTION-LEVEL TIMING DELAY(PS) USING WILD COMPARED TO EXISTING INSTRUCTION-LEVEL TIMING MODEL [5].

Sobel filter dataset Gaussian filter dataset
WILD existing reduction WILD existing reduction

Int Add 521 826 33% 502 897 44%
Int Mul 1370 2187 37% 1654 2241 26%
FP Mul 2112 2438 13% 2057 2482 17%

• False positive: this will still ensure the circuit safety but

incurs performance penalty because it uses larger clock

period than needed.

• False negative: this will result in timing violation in the

circuit. We assume the detection-and-correction is used

here to correct the timing violations by using instruction
replay [6], which will flush the pipeline.

We calculate the average timing delay of an instruction as:

average delayinst =
total running timeinst

#inst running
(4)

where the total running timeinst is the sum of running

clock period of each instruction instance in the application ex-

ecution, including the false positive and false negative induced

cycle penalty, and #inst running is the total number of

instruction instances executed in the application. We compare

the WILD-directed DFS with the DFS directed by existing

instruction-level model [5] in Table. IV. We observe that by

using WILD directed DFS, the average instruction-level timing

delay can be reduced 13–44% compared to the existing model.

This timing margin reduction can be further utilized online

with DFS to accelerate the program execution.

V. DISCUSSION

Implementation of DFS: Dynamic frequency scaling (DFS)

has been used to adjust operating frequency according to real-

time circuit delay during runtime to improve performance [5]

[21] [20], implemented by a CGU. CGU is a fast adaptive

clock controller circuit that can be designed using a couple

of PLLs, each of which is running at a fixed frequency

independently, and a multiplexer is used to select one specific

frequency within a single cycle [23]. Moreover, a compact all-

digital phase-locked loop (ADPLL) clock generator has been

proposed in [10] with a ultra-low overhead in power and area,

which can provide frequency switching arbitrarily in a wide

range within a single clock cycle. However in reality, the

frequency can only scale in discrete steps, so the operating

frequency can only be selected within a fixed number of

options. In this paper, we consider five different classes of

dynamic delay of a circuit to adjust the operating frequency,

which can then be implemented by a 5-PLL CGU design.

More details of DFS implementation can refer to [21] [23]

[28].

Overhead of WILD: Although the on-chip model can aid the

DFS to achieve better performance, the hardware overhead

of implementing the learning model does need special care.

An on-chip Gaussian-kernel based SVM is proposed using an

analog circuit [15]. Recently, a voltage-droop induced circuit

delay prediction model has been implemented using SVM

to augment online DFS, whose hardware overhead is 1.5%

for today’s processor design [28]. We expect the overhead

of WILD model is less than SVM since LR is less complex

than SVM. In our experiment, the SVM classification time

is more than 100X of LR model. Besides, the WILD model

runs remarkably faster than gate-level simulation. To compute

200k test data for dynamic delay, WILD is 60X faster than

gate-level simulation. Our future work focuses on developing

machine learning model that has more efficient computing

time and higher prediction accuracy. We also look forward to

implementing learning model with a low-overhead hardware

implementation with emerging technology.

VI. RELATED WORK

Various techniques have been proposed to eliminate the

pessimistic timing margin while protecting from errors. They

are classified as follows.

Correcting Errors: BTWC approach typically performs fre-

quency overscaling operations which allow timing error oc-

currences and then recover them by masking timing errors.

This kind of technique relies on timing error detection module,

usually accomplished by a shadow latch [9] and timing error

correction module, which can be realized by instruction replay

[6] or global clock gating [9]. Although the BTWC approaches

are proven to be effective in reducing guardband, the silicon

monitoring and error recovery might incur high overhead,

especially in case of high timing error rates in the system. For

example, [4] has shown that the penalty cost could be 3*N

recovery cycles per error, where N is the number of pipeline

stages.

Predicting Errors: Therefore, several less-intrusive efforts

2016 IEEE 34th International Conference on Computer Design (ICCD) 191

were proposed to predict the timing delay in advance and

then preventing it by adjusting operating frequency. A program

counter (PC)-based prediction scheme has been proposed to

identify critical instructions during runtime [22]. Upon the

identification of critical instructions, the pipeline is stalled

one or two cycles to allow enough timing margin to finish

the instruction execution. However, they are not able to

consume all available timing slack as they lack in knowledge

of absolute value of instruction timing requirements. A recent

work quantifies the dynamic timing delay of instructions and

enable an instruction-based dynamic frequency scaling (DFS)

during runtime to improve performance [5]. However, all these

works overlooks the effect of input operands. Until recently,

a bit-level timing error prediction model has been proposed

to predict the whether a bit position is erroneous or not under

given input operands. However, the targeted granularity on bit-

level timing error rates limits its usage [13].

Learning in Circuits: Machine learning has been used to

model the behavior of circuits under different scenarios. A

bayesian network-based model has been used to analyze the

reliability of PLC system [12] [11]. A support vector machine

(SVM)-based model to predict the circuit delay under voltage

droop is proposed in [28]. It also presents the low-overhead

hardware design for the learning module that can be applied

to any digital block/core, which can augment and strength the

utilization of our model on different scenarios. Analog circuits

have used machine learning to represent its performance. For

instance, the feasibility of output values are predicted using

SVM given a set of input parameters [7]. In our work, we
extend the utilization of machine learning to digital circuits
timing modeling.

VII. CONCLUSIONS

WILD is a workload-based supervised learning model to

predict the dynamic delay of functional units for a given

input workload. Its need is driven by growing pressure to

reduce timing margins in traditional design. To calibrate

its effectiveness, we perform dynamic timing analysis on a

post-layout netlist and extract useful ‘features’ that affect

the circuit-level dynamic path sensitization, and hence the

dynamic delay. The model is trained using logistic regression

with training data from random generation and application

profiling, and tested using unseen data from three different

datasets. Across three functional unit types and three datasets,

WILD exhibits high prediction accuracy up to 99.8% (average

98.0%) and achieves a prediction accuracy of 3.6X and 1.5X

higher compared to two baseline models. Compared with the

state-of-art instruction-level timing model enabled dynamic

frequency scaling (DFS), with WILD-directed DFS, the aver-

age instruction-level timing delay could be reduced by 13%–

44% depending on the type of instruction and dataset.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Professor Andreas Burg

of EPFL for valuable discussions regarding dynamic delay

measurement. This material is based upon the work supported

by the National Science Foundations Variability Expedition in

Computing under Award No. 1029783. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[1] Amd app sdk v2.5. [online]. available: http://www.amd.com/stream.
[2] Todd Austin et al. Opportunities and challenges for better than worst-

case design. In ASP-DAC. ACM, 2005.
[3] Christopher M Bishop. Pattern recognition and machine learning.

springer, 2006.
[4] Keith Bowman et al. A 45 nm resilient microprocessor core for dynamic

variation tolerance. JSSC, 2011.
[5] Jeremy Constantin et al. Exploiting dynamic timing margins in mi-

croprocessors for frequency-over-scaling with instruction-based clock
adjustment. In DATE. EDA Consortium, 2015.

[6] Shidhartha Das et al. Razorii: In situ error detection and correction for
pvt and ser tolerance. JSSC, 2009.

[7] Fernando De Bernardinis et al. Support vector machines for analog
circuit performance representation. In DAC. IEEE, 2003.

[8] Florent De Dinechin et al. Designing custom arithmetic data paths with
flopoco. IEEE Design & Test of Computers, (4):18–27, 2011.

[9] Dan Ernst et al. Razor: A low-power pipeline based on circuit-level
timing speculation. In MICRO-36., 2003.

[10] Sebastian Hoppner et al. A compact clock generator for heterogeneous
gals mpsocs in 65-nm cmos technology. TVLSI, 2013.

[11] Yu Jiang et al. Bayesian-network-based reliability analysis of plc
systems. IEEE transactions on industrial electronics, 2013.

[12] Yu Jiang et al. System reliability calculation based on the run-time
analysis of ladder program. In Proceedings of the 2013 9th joint meeting
on foundations of software engineering. ACM, 2013.

[13] Xun Jiao et al. Supervised learning based model for predicting
variability-induced timing errors. In Proc. of NEWCAS. IEEE, 2015.

[14] Andrew B Kahng et al. Slack redistribution for graceful degradation
under voltage overscaling. In ASP-DAC. IEEE, 2010.

[15] Kyunghee Kang et al. An on-chip-trainable gaussian-kernel analog
support vector machine. TCAS I, 2010.

[16] Michael Kearns et al. Cryptographic limitations on learning boolean
formulae and finite automata. JACM, 1994.

[17] Michael Kharitonov. Cryptographic hardness of distribution-specific
learning. In STOC. ACM, 1993.

[18] Veit B Kleeberger et al. Workload-and instruction-aware timing analysis:
The missing link between technology and system-level resilience. In
DAC. ACM, 2014.

[19] Fabian Pedregosa et al. Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12:2825–2830, 2011.

[20] Abbas Rahimi et al. Hierarchically focused guardbanding: an adaptive
approach to mitigate pvt variations and aging. In DATE. IEEE, 2013.

[21] Abbas Rahimi et al. Application-adaptive guardbanding to mitigate static
and dynamic variability. Computers, IEEE Transactions on, 2014.

[22] Sanghamitra Roy et al. Predicting timing violations through instruction-
level path sensitization analysis. In DAC. ACM, 2012.

[23] James Tschanz et al. Adaptive frequency and biasing techniques for
tolerance to dynamic temperature-voltage variations and aging. In
ISSCC. IEEE, 2007.

[24] James Tschanz et al. Tunable replica circuits and adaptive voltage-
frequency techniques for dynamic voltage, temperature, and aging
variation tolerance. In 2009 Symposium on VLSI Circuits, 2009.

[25] G Tziantzioulis et al. b-hive: a bit-level history-based error model with
value correlation for voltage-scaled integer and floating point units. In
DAC. ACM, 2015.

[26] Rafael Ubal et al. Multi2Sim: A Simulation Framework for CPU-GPU
Computing . In Proc. of PACT, Sep. 2012.

[27] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian
Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200.
2010.

[28] Fangming Ye et al. On-chip voltage-droop prediction based on support-
vector machines and feature selection. TCAD, 2016.

192 2016 IEEE 34th International Conference on Computer Design (ICCD)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

