
EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing
Ying Fu

KLISS, BNRist, Tsinghua University
China

Meng Ren
KLISS, BNRist, Tsinghua University

China

Fuchen Ma
KLISS, BNRist, Tsinghua University

China

Heyuan Shi
KLISS, BNRist, Tsinghua University

China

Xin Yang
KLISS, BNRist, Tsinghua University

China

Yu Jiang∗
KLISS, BNRist, Tsinghua University

China

Huizhong Li
WeBank
China

Xiang Shi
WeBank
China

ABSTRACT
Ethereum Virtual Machine (EVM) is the run-time environment for
smart contracts and its vulnerabilities may lead to serious problems
to the Ethereum ecology. With lots of techniques being continu-
ously developed for the validation of smart contracts, the testing of
EVM remains challenging because of the special test input format
and the absence of oracles. In this paper, we propose EVMFuzzer,
the first tool that uses differential fuzzing technique to detect vul-
nerabilities of EVM. The core idea is to continuously generate seed
contracts and feed them to the target EVM and the benchmark
EVMs, so as to find as many inconsistencies among execution re-
sults as possible, eventually discover vulnerabilities with output
cross-referencing. Given a target EVM and its APIs, EVMFuzzer
generates seed contracts via a set of predefined mutators, and then
employs dynamic priority scheduling algorithm to guide seed con-
tracts selection andmaximize the inconsistency. Finally, EVMFuzzer
leverages benchmark EVMs as cross-referencing oracles to avoid
manual checking. With EVMFuzzer, we have found several previ-
ously unknown security bugs in four widely used EVMs, and 5 of
which had been included in Common Vulnerabilities and Exposures
(CVE) IDs in U.S. National Vulnerability Database.

The video is presented at https://youtu.be/9Lejgf2GSOk.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Differential testing, fuzzing, domain-specific mutation, EVM

∗Yu Jiang is the correspondence author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3341175

ACM Reference Format:
Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang, Huizhong
Li, and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulnerabilities via Fuzz
Testing. In Proceedings of the 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3338906.3341175

1 INTRODUCTION
Ethereum can be viewed as a transaction-based state machine [33].
Ethereum Virtual Machine (EVM) is often called the operating sys-
tem of the Ethereum technology and is responsible for the execution
and maintenance of smart contracts. Over the past few years, the
safety and security problems of the transactions have emerged end-
lessly, causing huge property loss. As the authentic platform and
standard for Ethereum transaction executing, if there are vulnera-
bilities in EVM’s implementation, it will definitely lead to serious
consequences. At present, EVM has at least 10 widely used imple-
mentations of different programming languages [7]. Lack of mature
testing tool for EVM, it is difficult to guarantee the security of EVM.
So, it is of great urgency to find an efficient way to secure EVM.

In this paper, we present EVMFuzzer, the first automated differ-
ential fuzz testing tool to efficiently mine vulnerabilities of EVMs
implementations. EVMFuzzer firstly defines and uses the opcode
sequence executed and gas used as two important indicators to
evaluate EVMs’ execution differences on each test contract. It inte-
grates some of the widely used EVMs as benchmarks and creates a
unified running environment for the target EVM and benchmark
EVMs. In this way, it takes the natural advantages of differential test-
ing to quickly discover the output inconsistencies without manual
checking. Then, the seed contract generation module can contin-
uously generate contracts that enlarge the metric difference, so
that EVMFuzzer can efficiently mine cases that trigger differen-
tial performance of EVMs and try to get those corner cases with
inconsistent execution output.

For evaluation, we collected 36,295 real-world smart contracts
from Etherscan [11] as our initial seeds. Through guided fuzzing,
1,596 variants of those initial seed contracts triggered inconsis-
tent execution output among different EVMs. With manual root
cause analysis, we found several previously unknown security bugs
in four widely used EVMs, and 5 of which had been included in
Common Vulnerabilities and Exposures (CVE) database [24].

https://doi.org/10.1145/3338906.3341175
https://doi.org/10.1145/3338906.3341175

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li and X. Shi

2 RELATEDWORK
Fuzzing Technique. Fuzzing is an automatic testing technique
that covers numerous boundary cases using invalid data as input to
ensure the absence of exploitable vulnerabilities [18]. Some popular
AFL [34] family tools [2–4, 14, 17, 19, 20, 27, 29, 31, 35] apply various
strategies to boost fuzzing process, including symbolic execution,
scheduling algorithm and so on. For example, EnFuzz [4] integrates
multiple fuzzing strategies to obtain better performance than that
of any constituent fuzzer alone. There are also some tools focus on
fuzzing in other domains, for example, QuanFuzz [30] is a search-
based test input generator for the quantum programs.
Differential Testing. Differential testing [23] has been suc-
cessful in uncovering differences between independent implemen-
tations with similar intended functionality. For example, Chen
et. al perform differential testing of JVMs usingMCMC sampling for
input generation [5]. DLFuzz [13] was presented as the state-of-the-
art differential fuzz testing framework for deep learning systems. It
extended differential testing framework with the comparisons of
multiple similar inputs, and does not need multiple platforms.
Smart Contract Validation. Smart contracts have been shown
to be exposed to severe vulnerabilities [1, 15], and many efforts[16,
21, 26] have been devoted to ensure its’ correctness. For example,
Luu et. al [21] designed Oyente, which builds the control-flow
graph from the bytecode and then performs symbolic execution
and checks whether there exist any vulnerable patterns. Zeus [16]
is a sound analyzer that translates smart contracts to the LLVM
framework and uses XACML as a language to write properties.
Main Difference. Different from the above work, EVMFuzzer
mainly focuses on discovering the vulnerabilities in EVM. It takes
the lead in paying attention to EVM security while others mainly
concerned about smart contracts. Particularly, EVMFuzzer com-
bines the basic ideas of fuzzing and takes advantage of EVMs’
multi-implementation to quickly find output discrepancies and
reduce manual checking. Within EVMFuzzer, we also define the
domain specific EVM test indicators to guide the differential fuzzing
process with different contract mutation and selection strategies.

3 EVMFUZZER DESIGN
The overall workflow of EVMFuzzer1 is shown in Fig. 1, which con-
sists of two major components, seed contract generation module
and unified EVM execution module. EVMFuzzer is aim to apply dif-
ferential fuzz testing on EVMs. It will continuously provide mutated
smart contract to EVM platforms including target EVM and bench-
mark EVMs. These EVMs are then monitored for catching different
output on some inputs, if so, wemay find a bug in some of the EVMs.
EVMFuzzer takes the target EVM and its API as input, and then
the unified EVM execution module will create a unified execution
environment for the target EVM and the benchmark EVMs. The
seed contract generation module is responsible for continuously
generating high quality seeds which enlarge the difference between
the EVMs and it will feed the seeds into the unified EVM execution
module. We will briefly introduce the two major components of
EVMFuzzer in the following part, and you can refer to our report
[12] for more details.

1EVMFuzzer is available at https://github.com/EVMFuzzer/EVMFuzzer

Figure 1: Overall workflow of EVMFuzzer, which mainly in-
cludes the seed generation module for guided contract gen-
eration and the unified execution module for information
collection and cross-checking.

3.1 Seed Contract Generation
The seed contract generation module can be viewed as a test case
generator. From Fig. 1, we can see that the seed contracts are stored
in the seed pool. EVMFuzzer will rank the candidate contracts ac-
cording to dynamic priority, and the contract in the first place will
be selected for the next iteration. After choosing the contract for
mutation, EVMFuzzer uses 8 predefined mutators and the combined
strategy to guide mutant generation. The goal is to generate con-
tracts that can increase the degree of metric difference and trigger
different execution output of target EVM and benchmark EVMs.
SeedMutation. We design 8 mutators according to the logic fea-
tures of the smart contract on three different granularity, including
the word-level, character-level and statement-level. We maintain a
priority queue based on the feedback metric difference. For a seed
contract, we update the weight of corresponding mutators after
the execution comparison. If the metric difference increases, the
mutator ID is pushed into the queue in an descending order of the
weight; otherwise, the queue will not update. Except for the weight
update, we design five mutator combined strategies to further in-
crease the randomness and diversity of mutation in each iteration,
as detailed in [12].
Seed Prioritization and Selection. All the qualified seed con-
tracts are stored in the seed contract pool. Based on the priority of
the seed, we decide which seed to be mutated in a new iteration. In
general, the contract that makes the metric difference among EVMs
larger should be the candidates for the next mutation iteration. But
at the same time, in order to ensure the diversity, other contracts
should also have a certain probability of being selected. Therefore,
we use the dynamic priority scheduling algorithm to maintain a
candidate queue. For each contract, we give it an initial priority,
and then its value changes with the increasing of waiting time to
ensure that every seed can be selected.

EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

3.2 Unified EVM Execution
EVM execution module provides a unified runtime environment
for various EVMs. After receiving the contract file from the seed
contract generation module, it compiles the seed into EVM byte-
code. The input parameter is generated according to the data type
of the called function, thus the uniform input for each EVM is ob-
tained. Then EVMFuzzer automatically runs all EVMs, calculates
the difference information according to the test metric, and com-
pares the execution output results. Finally, according to the seed’s
ability to enhance the degree of metric difference, EVMFuzzer de-
cides whether to put the seed contract into the seed pool where
high-quality seeds preserved. Besides, when the execution output
is inconsistent, this module will also record the potential exception
for manual root cause analysis.

4 USING EVMFUZZER
4.1 Tool Implementation
We have implemented EVMFuzzer, as shown in Fig. 2. Specifically,
EVMFuzzer provides a command line UI to interact with users as in
Fig. 3. Currently, EVMFuzzer needs the target EVM’s source code
or executable file and corresponding APIs. In the backend, EVM-
Fuzzer integrates four widely used EVMs as the benchmark EVMs.
Those four benchmark EVM are ethereumjs-vm v2.4.0 [10], py-evm
v0.2.0-alpha.31 [9], aleth v1.5.0-alpha.6 [6] and geth v1.8.13 [8].
EVMFuzzer uses the solc 0.4.24 compiler[28] to generate seed con-
tract’s EVM bytecode. The difference calculator is responsible for
generating runtime difference among EVMs, which are used by
Seeds Selector to determine whether to keep the seed contract or
not and to update seed contract’s priority.

Figure 2: The implementation architecture of EVMFuzzer.

4.2 Running Example
Fig. 3 shows a screenshot of EVMFuzzer.We can see that EVMFuzzer
first shows the version information and then lists the fuzz steps.
It also displays the help information to let users know what to

input. Since EVMFuzzer is an automated testing tool, users just
need to put target EVM in the specified directory("myEVM" folder),
enter the API, and set the fuzz times, and then the EVMFuzzer will
start. Here we construct a reinforced js-EVM2 which is able to stop
dangerous transaction for the test.

Figure 3: Command line UI of EVMFuzzer.

When the fuzz ends, EVMFuzzer will generate test report for the
target EVM. Fig. 4 shows the detection report of the EVMFuzzer. The
report evaluates the target EVM from three dimensions: code imple-
mentation completeness, accuracy of gas calculation and rationality
of execution path planning, so that users can have a preliminary
understanding of the target EVM. Users can find all generated test
inputs in the “TestOut” directory, and the "result.json" file records
all the inconsistencies during the fuzz test.

Figure 4: Report of EVMFuzzer.

5 PRELIMINARY EVALUATION
We use those four benchmark EVMs described in Section 4. for
cross-validation, this section shows some preliminary evaluation
results. Our initial seed contracts are the 36,295 real-world contracts
which were crawled from the Etherscan [11]. All experiments were
performed atop a machine with 8 cores (Intel i7-7700HQ@3.6GHz),
16GB of memory, and Ubuntu 16.04.4 as the host operating system.
Inconsistency among EVMs. After the experiment, based on
the two internal test indicators: дasUsed and opcode sequence, we
found large number of EVM discrepancies.

The 33,424 contracts executed normally with the same opcode
sequence are used for дasUsed comparison, which excludes the
inconsistency of gas consumption caused by different execution
opcode sequences. Table 2 shows the number of contracts with
дasUsed inconsistencies. We can see that almost every platform has
over 50% average inconsistency rate of дasUsed with others, aleth
even produces a different gas consumption over 90% of contracts.
2We implemented this test EVM according to the idea of EVM*[22]

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li and X. Shi

Table 1: Description of 5 high-risk vulnerabilities detected by EVMFuzzer.
CVE-ID platform version language description created date

CVE-2018-18920 Py-EVM v0.2.0-alpha.33 python
Py-EVM v0.2.0-alpha.33 allows attackers to make a
vm.execute_bytecode call that triggers illegal values
shown in stack.

20181103

CVE-2018-19183 js-evm v2.4.0 JavaScript
ethereumjs-vm 2.4.0 allows attackers to cause a denial
of service (vm.runCode failure and REVERT) via a "code:
Buffer.from(my_code, ’hex’)" attribute.

20181111

CVE-2018-19184 geth v1.8.17 golang
cmd/evm/runner.go in Go Ethereum (aka geth) 1.8.17
allows attackers to cause a denial of service (SEGV) via
crafted bytecode.

20181111

CVE-2018-19330 aleth v1.5.0-alpha.6 cpp ** RESERVED ** Details would be public after the vul-
nerability has been repaired to avoid potential attack. 20181117

CVE-2019-7710 aleth v1.5.0-alpha.7 cpp ** RESERVED ** Details would be public after the vul-
nerability has been repaired to avoid potential attack. 20190210

Table 2: gasUsed inconsistency.
js-evm Py-EVM aleth geth total

js-evm 0 18115 31166 17486 66767
Py-EVM 18115 0 31176 1358 50649
aleth 31166 31176 0 31163 93505
geth 17486 1358 31163 0 50007

In total, 1,275 seed contracts were successfully executed on
four EVM platforms and return the same output, but the sequence
lengths were different. From Table 3, we can see that the sequence
length of geth and aleth on these 1,275 contracts were always the
same so we take it as the baseline. And after calculation, the length
of the opcode sequence of js-evm is small and always below the
baseline; but the length of the execution sequence of Py-EVM is
large and always above the baseline.

Table 3: opcode inconsistency.
js-evm Py-EVM aleth geth

js-evm 0 1275 52 52
Py-EVM 1275 0 1240 1240
aleth 52 1240 0 0
geth 52 1240 0 0

From the above statistics, it is reasonable to conclude that there
are inconsistencies among the implementation and execution of
different EVMs, and it is possible to leverage the metric difference
of дasUsed and opcode sequence indicator to guide the generation
of contracts resulting in potential inconsistent execution outputs.
Vulnerabilities detected by EVMFuzzer. After discovering
thousands of output inconsistencies, we conducted the manual
analysis and tried to explore the root causes. We ensured its repro-
ducibility and then carefully reviewed the source code of EVMs. Fi-
nally, we found defects in the EVM platforms, of which, 5 previously
unknown vulnerabilities were registered as Common Vulnerabili-
ties and Exposures, numbered as CVE-2018-18920, CVE-2018-19183,
CVE-2018-19184, CVE-2018-19330 and CVE-2019-7710, shown in
Table 1.

We choose one of the CVEs for detailed elaboration. CVE-2018-
19184 [25] is an execution segmentation violation that occurred

on EVM of Go Ethereum (geth) [8]. The code associated with this
vulnerability was in the cmd/evm folder, where the exception han-
dling mechanism of EVM before geth v1.8.14 did not cover enough
corner cases. Although the problematic code snippet is not the API
that directly exposed to the end users, this problem can be exploited
by malicious attackers to cause the denial of service.

Segmentation violation error

Figure 5: Segmentation violation error on geth-evm v1.8.13.

6 CONCLUSION
In this paper, we propose EVMFuzzer, the first differential fuzz
testing tool, to efficiently detect vulnerabilities of EVM implemen-
tations. EVMFuzzer introduces the definition of EVM fuzz testing
metrics, дasUsed and opcode sequence, which measure the inter-
nal difference in execution information between EVMs. Besides,
EVMFuzzer designs 8 mutators for smart contracts, so that it can
generate plenty of seed contracts without syntax error in a short
time. Under the guided seed generation and selection algorithm,
EVMFuzzer shows strong defects mining capabilities.

We evaluated EVMFuzzer based on four widely used EVM imple-
mentations and conducted numerous mutation on 36,295 real-world
smart contracts. Among the generated 253,153 smart contracts,
more than half successfully showed the differential performance, in-
cluding 1,596 variant contracts triggered inconsistent output results
among the four EVM platforms. With manual root cause analysis, 5
vulnerabilities have been assigned with unique CVE IDs. Our future
work mainly includes developing more general seeds mutators and
conducting more extensive evaluations on more EVMs.

EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks

on Ethereum smart contracts. IACR Cryptology ePrint Archive 2016 (2016), 1007.
[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed Greybox Fuzzing. In ACM Conference on Computer and
Communications Security.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In ACM Conference on Computer and
Communications Security.

[4] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin Zhou, Xun
Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers. In USENIX Security Symposium.

[5] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In PLDI.

[6] Ethereum. 2018. Ethereum C++ client, tools and libraries. https://github.com/
ethereum/aleth.

[7] Ethereum. 2018. Ethereum clients. https://github.com/ethereum/wiki/wiki/
Clients,-tools,-dapp-browsers,-wallets-and-other-projects.

[8] Ethereum. 2018. Go Ethereum. https://github.com/ethereum/go-ethereum.
[9] Ethereum. 2018. Python Implementation of the EVM. https://github.com/

ethereum/py-evm.
[10] EthereumJS. 2018. The Ethereum VM implemented in Javascript. https://github.

com/ethereumjs/ethereumjs-vm.
[11] Etherscan. 2018. Ethereum (eth) blockchain explorer. https://etherscan.io/.
[12] Ying Fu, Meng Ren, Fuchen Ma, Yu Jiang, Heyuan Shi, and J. Tangting Sun.

2019. EVMFuzz: Differential Fuzz Testing of Ethereum Virtual Machine. CoRR
abs/1903.08483 (2019).

[13] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jia-Guang Sun. 2018. DLFuzz:
differential fuzzing testing of deep learning systems. In ESEC/SIGSOFT FSE.

[14] Hertz and Newsham. 2015. TriforceAFL - AFL/QEMU fuzzing with full-system
emulation. https://github.com/nccgroup/TriforceAFL/. Accessed February 18,
2019.

[15] Yoichi Hirai. 2016. Formal verification of Deed contract in Ethereum name service.
November-2016.[Online]. Available: https://yoichihirai. com/deed. pdf (2016).

[16] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In NDSS.

[17] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In ASE.

[18] Hongliang Liang, Xiaoxiao Pei, X. Jia, Wuwei Shen, and Jian Guang Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67 (2018), 1199–1218.

[19] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, OldÅŹrich Motyka, and
Jia-Guang Sun. 2018. PAFL: extend fuzzing optimizations of single mode to
industrial parallel mode. In ESEC/SIGSOFT FSE.

[20] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (2018),
562–566.

[21] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. IACR Cryptology ePrint Archive 2016 (2016),
633.

[22] Fuchen Ma, Ying Fu, Meng Ren, Mingzhe Wang, Yu Jiang, Kaixiang Zhang,
Huizhong Li, and Xiang Shi. 2019. EVM*: From Offline Detection to Online
Reinforcement for Ethereum Virtual Machine. 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (2019),
554–558.

[23] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10 (1998), 100–107.

[24] MITRE. 2018. Common vulnerabilities and exposures. https://cve.mitre.org/.
[25] MITRE. 2018. CVE-2018-19184. http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-19184.
[26] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018).

[27] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium.

[28] Solidity. 2018. Solidity Programming Language. https://git.io/vFA47/.
[29] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Krügel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS.

[30] Jiyuan Wang, Ming Gao, Yu Jiang, Jian-Guang Lou, Yue Gao, Dongmei Zhang,
and Jia-Guang Sun. 2018. QuanFuzz: Fuzz Testing of Quantum Program. CoRR
abs/1810.10310 (2018).

[31] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Hao Liu, Xibin
Zhao, and Jia-Guang Sun. 2018. SAFL: Increasing and Accelerating Testing
Coverage with Symbolic Execution and Guided Fuzzing. 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-Companion)
(2018), 61–64.

[32] WIRED. 2018. A $50 MILLION HACK JUST SHOWED THAT THE DAO WAS
ALL TOO HUMAN. (2016). https://www.wired.com/2016/06/50-million-hack-
just-showed-dao-human/.

[33] Dr Gavin Wood. 2014. Ethereum: a Secure Decentralised Generalised Transaction
Ledger.

[34] Michal Zalewski. 2015. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[35] Google Project Zero. 2015. WinAfl - A fork of AFL for fuzzing Windows binaries.

https://github.com/googleprojectzero/winafl. Accessed February 18, 2019.

https://github.com/ethereum/aleth
https://github.com/ethereum/aleth
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/py-evm
https://github.com/ethereum/py-evm
https://github.com/ethereumjs/ethereumjs-vm
https://github.com/ethereumjs/ethereumjs-vm
https://etherscan.io/
https://github.com/nccgroup/TriforceAFL/
https://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19184
https://git.io/vFA47/
https://www.wired.com/2016/06/ 50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/ 50-million-hack-just-showed-dao-human/
http://lcamtuf.coredump.cx/afl/
https://github.com/googleprojectzero/winafl

	Abstract
	1 Introduction
	2 Related Work
	3 EVMFuzzer Design
	3.1 Seed Contract Generation
	3.2 Unified EVM Execution

	4 Using EVMFuzzer
	4.1 Tool Implementation
	4.2 Running Example

	5 Preliminary Evaluation
	6 Conclusion
	References

