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ABSTRACT
Learning-based clone detection is widely exploited for binary vul-
nerability search. Although they solve the problem of high time
overhead of traditional dynamic and static search approaches to
some extent, their accuracy is limited, and need to manually iden-
tify the true positive cases among the top-M search results during
the industrial practice.

This paper presents VulSeeker-Pro, an enhanced binary vulnera-
bility seeker that integrates function semantic emulation at the back
end of semantic learning, to release the engineers from the manual
identification work. It first uses the semantic learning based pre-
dictor to quickly predict the top-M candidate functions which are
the most similar to the vulnerability from the target binary. Then
the top-M candidates are fed to the emulation engine to resort,
and more accurate top-N candidate functions are obtained. With
fast filtering of semantic learning and dynamic trace generation
of function semantic emulation, VulSeeker-Pro can achieve higher
search accuracy with little time overhead. The experimental results
on 15 known CVE vulnerabilities involving 6 industry widely used
programs show that VulSeeker-Pro significantly outperforms the
state-of-the-art approaches in terms of accuracy. In a total of 45
searches, VulSeeker-Pro finds 40 and 43 real vulnerabilities in the
top-1 and top-5 candidate functions, which are 12.33× and 2.58×
more than the most recent and related work Gemini. In terms of
efficiency, it takes 0.22 seconds on average to determine whether
the target binary function contains a known vulnerability or not.
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1 INTRODUCTION
Copy-paste of code and reuse of third-party libraries are common
ways to improve the software development efficiency in industry.
The risk of such a practice is that unpatched vulnerable code can
easily be propagated inadvertently to different programs. Moreover,
sometimes source code programs are not easily obtained, leading to
vulnerability scanning of binary programs is essential and impor-
tant. So code clone detection becomes an effective way to discover
known vulnerabilities in industrial practice.

Though clone-based techniques [2, 5, 10, 16] and fuzzy test-
ing [9, 15] are effective vulnerability search approaches, their per-
formance is limited for cross-platform binaries. Traditional clone-
based vulnerability search approaches can be divided into two cat-
egories. Static approaches usually rely on the graph matching algo-
rithm on control flow graphs (CFGs) of functions to identify binary
code similar to the vulnerable code [4, 10]. However, they face the
challenge that CFGs of the same function differ significantly in dif-
ferent compilation configurations (e.g., O0-O3 optimization levels),
affecting the accuracy of vulnerability prediction across compilation
configurations. On the contrary, dynamic approaches overcome
the obstacles caused by compilation configurations through mon-
itoring the runtime traces of binary programs in a real operating
environment and performing equivalence checking between two
traces [7, 11]. But the limitation of such approaches is that it is so
time-consuming that it is impractical to perform the vulnerability
search in large-scale code in industry.

In recent years, due to low time cost and less domain knowledge
requirements, learning-based approaches have been continuously
proposed to perform the vulnerability search task for binary pro-
grams of industrial circles [5, 16]. They usually use learning-based
algorithms to transform the low-level instruction features into high-
level semantic features of the function, so these learning-based
algorithms can be called semantic learning. For example, Genius
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[5] utilizes the spectral clustering to train a codebook and obtain
the semantic features of a specific function by measuring the simi-
larity between the specific function and the codebook. However,
its search accuracy for two case studies on a large set of firmware
images is 28% and 48% in the top-50 candidate functions [5], which
is not high enough for industry application.

By taking into account the transfer of basic block features along
the CFG topology of the function, Gemini [16] applies the deep
learning approach to further improve the accuracy and efficiency of
Genius [5]. As a result, it acquires more robust function semantics
and achieves a higher search accuracy than Genius. However, its
accuracy improvement is still not enough. According to our ex-
periments, Gemini ranks the vulnerable function 50th on average
among the 45 vulnerability searches. So many suspected vulnerabil-
ities predicted by Gemini pose a tremendous challenge to program
analysts. They have to spend a lot of time identifying real vulnera-
bilities from a collection of hundreds of false positives and a few
true positives. To put forward a binary vulnerability search tool
available and user-friendly to the industry, we have to balance the
following two major factors:

• High search accuracy. The proposed tool should be im-
mune to the structural differences introduced by compilation
configurations. This means that vulnerable code should be
ranked at the front position of candidate results reported
by vulnerability seekers. It will allow analysts to spend less
time identifying real vulnerabilities.

• Low time overhead.Many effective tools cannot be applied
in industry, mainly because they require huge time cost to
analyze binary programs. The low time overhead allows
the vulnerability seeker to discover more known different
vulnerabilities within a fixed period of time.

In this paper, we present VulSeeker-Pro, an enhanced semantic
learning based vulnerability search tool which integrates function
semantic emulation at the back end. For the function containing a
vulnerability, it first uses the semantic learning predictor to quickly
predict the top-M candidate functions from the target binary which
are the most similar to the vulnerable function. Then the top-M
candidate functions are input to the emulation engine to resort, and
more accurate top-N candidate functions are obtained, where the
value of N is much smaller than the value of M here. VulSeeker-Pro
acquires a higher accuracy through the two-stage similarity score
ranking process. Meanwhile, its time cost is basically the same as
using semantic learning approach alone.

For evaluation, we compare VulSeeker-Pro with the state-of-the-
art semantic learning based binary vulnerability search approach
on 15 known vulnerabilities involving 6 widely used open source
programs. The experimental results show that VulSeeker-Pro signif-
icantly outperforms the contrast tool Gemini [16] in terms of vul-
nerability search accuracy. In a total of 45 searches, VulSeeker-Pro
ranks vulnerabilities 2nd on average in the target programs with
a 24× ranking improvement, whereas Gemini ranks them 50th. In
the top-1 and top-5 most similar results, VulSeeker-Pro found 40
and 43 real vulnerabilities, which are 12.33× and 2.58× more than
Gemini. For VulSeeker-Pro and Gemini, it takes 1029.44 seconds and
849.40 seconds to complete a search task on the OpenSSL binary
that contains 5995 functions. It is only 21.20% slower than Gemini.
These demonstrate that VulSeeker-Pro is suitable for vulnerability
search of large-scale code in industry.

2 RELATEDWORK
Learning based vulnerability search. There have been several
related works applying machine learning techniques to detect vul-
nerabilities in binary or source code. Genius [5] utilizes the spectral
clustering to generate a codebook and calculates the similarity be-
tween a specific function and each representative function in the
codebook based on the bipartite graph matching algorithm. Gemini
[16] extracts the same lightweight instruction features as Genius
and relies on the CFGs to generate the embedding vectors of the
functions. Then the similarity of two embedding vectors is mea-
sured to get prediction result. VulDeePecker [8] uses code gadgets
to represent programs and employs bidirectional LSTM neural net-
work to automatically extract features instead of manually defining
the features. These works have proven the effectiveness of ma-
chine learning techniques in vulnerability search area. However,
due to the lack of sufficient and accurate semantic information,
their precision is not very satisfactory.

Semantic computing based vulnerability search. Superior
to syntax and structure information, semantic information canmore
accurately represent the program behavior. Furthermore, due to
various compilation configurations provided by the compiler, the
same source code may be compiled into various forms of binaries.
So performing binary vulnerability search is actually dealing with
the problem of semantic similarity detection, while syntax and
structure based methods cannot well handle such a situation. Bingo
[2] leverages selective inlining and length variant partial trace to
compute function semantics, which constitutes function models
to perform similarity comparison and vulnerability search. BinSim
[11] calculates the equivalences of aligned system calls to better
handle code obfuscation. It combines dynamic slicing with the
weakest precondition calculation to identify fine-grained semantic
similarities between two execution traces. CACompare [7] detects
functionally similar code by extracting semantic signatures from
the whole function while emulating the execution of a function.
These work take semantic information into account to improve the
search accuracy, but the semantic computing process imposes a
significant time overhead.

Main Difference. Different from the above work, as far as we
know, VulSeeker-Pro is the first tool that integrates function se-
mantic emulation at the back end of semantic learning. It uses the
fast predictive ability of a relatively accurate semantic learning
approach to quickly pick out the top-M candidate functions which
are most similar to the vulnerability from the target binary. Next,
it performs function emulation on these top-M candidate functions
to output more accurate top-N candidate functions. This combi-
nation not only reduces the time cost of dynamic approaches but
also improves the search accuracy of semantic learning approaches,
and release the engineers from the manual identification of true
positive cases.

3 VULSEEKER-PRO DESIGN
The overall workflow of VulSeeker-Pro is shown in Figure 1. It con-
tains two major modules: semantic learning predictor and emulation
engine. The goal of VulSeeker-Pro is to determine whether the target
binary contains functions similar to known vulnerabilities or not.
Therefore, its input is a specific vulnerability and the target binary
to be searched. VulSeeker-Pro utilizes the fast predictive capabil-
ity of the semantic learning model to get the initial top-M (e.g.,
top-200) candidate functions by filtering out extremely dissimilar
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functions in the semantic learning predictor module. Then it resorts
the top-M candidate functions based on dynamic execution traces
of functions to generate the top-N (e.g., top-25) candidate functions
as the final prediction results for the vulnerability in the emulation
engine module.

feature 
extraction
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learning

argument 
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function 
emulation
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candidates

top-N 
candidates

similarity 
calculation

reordering 
calculation

semantic
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target binary
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Figure 1: Overall workflow of VulSeeker-Pro.

3.1 Semantic Learning Predictor
The main goal of this module is to quickly filter out extremely
dissimilar functions from the target binary and get the top-M (e.g.,
the value of M is 200) candidate functions that are most similar to a
specific vulnerability. The key to the semantic learning predictor is
to obtain the embedding vector representing the function semantics
that can be used for similarity calculation. So VulSeeker-Pro consists
of three main steps in this module.

3.1.1 Feature Extraction. The existing semantic learning ap-
proaches extract features for each basic block of the function and
rely on the control flow graph (CFG) of the function to perform sim-
ilarity comparison based on these extracted features[5, 16]. Similar
to them, VulSeeker-Pro first disassembles the binary program into
corresponding assembly program with the use of IDA Pro tool [12].
Then it uses IDAPython provided by IDA Pro [12] to create the CFG
for each assembly function. Next, it extracts 6 intra-block features
and 2 inter-block features provided by Genius [5] and encodes these
8 features into an initial numerical vector for each basic block of
the CFG. The 8-dimensional initial numerical vector for each basic
block of the function will be input to the next step to generate the
semantic embedding vector of the entire function.

3.1.2 Semantic Learning. The main purpose of the semantic
learning model is to obtain a high-dimensional (e.g, 64-dimensional)
feature representation which can be used as the semantic embed-
ding vector to represent the entire function semantics. After obtain-
ing the 8-dimensional feature vectors for the specific vulnerability
and each function in the target binary, two sets of feature vectors
are fed to the semantic learning model to generate the semantic
embedding vectors for similarity computation. VulSeeker-Pro re-
gards the deep neural network (DNN) model of Gemini [16] as the
semantic learning model. It is worth noting that any model with the
ability to generate semantic embedding vectors can be considered
as the semantic learning model. For example, our previous pure
VulSeeker neural network [6] can also be integrated, and here we
use Gemini for better and fairer comparison.

Figure 2(a) is a CFG denoted as д = ⟨V , E ⟩, containing 4 vertices
with initial numerical vectors:x1,x2,x3,x4, whereV and E represent
the vertex set and edge set, respectively. The DNNmodel contains a
total ofT (e.g., the value of T is 5) layer iterations, and each iteration
will generate a new 64-dimensional embedding vector denoted as
µ̃ (t )i of each vertex i . After obtaining the embedding vectors of all the
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Figure 2: The semantic learning model of VulSeeker-Pro.

basic block vertices within the function, VulSeeker-Pro aggregates
them into the 64-dimensional embedding vector µ̃ of the function
with the formula µ̃ =W2(Σi∈V µ̃

(T )

i ), whereW2 is a 64×64 dimensional
parameter matrix.

Figure 2(b) illustrates the schematic diagram for generating the
embedding vector µ̃ (t )i of each vertex i during the t-layer iteration.
The input of the transformation process consists of two different
parts: initial numerical vector xi of the corresponding vertex i (the
dotted arrow in Figure 2(a-b)), the sum l tc = Σj∈C(i) µ̃

(t−1)
j of previous

embedding vectors of vertices pointing to vertex i (denoted as C(i))
through the CFG. The embedding vector of vertex i is calculated
through the formula µ̃ (t )i = tanh(W1xi + σc (l tc )), whereW1 is an 8 × 64
dimensional parameter matrix. σc is a 2-layer fully-connected net-
work represented as σc (l tc ) = P1 ×ReLU (P2 × l tc ) , which is responsible
for calculating an embedding vector with more powerful repre-
sentation capability, where Pi is a 64 × 64 dimensional parameter
matrix. We use TensorFlow [1] to implement the semantic learn-
ing model and apply the stochastic gradient descent algorithm to
automatically learn model parameters, such asW1,W2,P1 and P2.

3.1.3 Similarity Calculation. Once obtaining the embedding vec-
tor µ̃ for target function and the embedding vector ν̃ for vulnerable
function, VulSeeker-Pro calculates their similarity with the Cosine
function ŷ = cos(µ̃, ν̃ ) = (µ̃ · ν̃ ) /

(µ̃ · ν̃ ), where ŷ is the similarity
score, ranging from −1 to 1. Based on the descending order of
similarity scores between each function in the target binary and
the vulnerable function, VulSeeker-Pro outputs the top-M candidate
functions which are most similar to the vulnerability to the next
module emulation engine for further processing.

3.2 Emulation Engine
Themain goal of this module is to reorder the input top-M candidate
functions and get more accurate top-N (e.g., the value of N is 25)
most similar candidate functions to the vulnerability. In order not
to significantly increase the time cost of the vulnerability search,
VulSeeker-Pro only performs function emulation for the top-M can-
didate functions with a low time cost to obtain semantic signatures.
So it contains three main steps to achieve the reordering of candi-
date functions based on the semantic signatures representing the
dynamic execution traces of functions.

3.2.1 Argument Recognition. Before emulating the execution of
a function, VulSeeker-Pro first needs to recognize the arguments
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required for the function. The function arguments for the X86 ar-
chitecture binary include register arguments and stack arguments.
The implementation of argument recognition is based on the as-
sembly program disassembled from the binary program by IDA
Pro [12]. The first three arguments of the function may be register
arguments stored in the EAX, EDX and ECX registers. The pseu-
docode module of IDA Pro provides the ability to identify register
arguments. The remaining arguments of the function are passed
through the program stack whose space grows from high address
to low address. Each function has a stack pointer indicating the
stack start position corresponding to the function. When using
IDAPython [12] to traverse assembly instructions of the function, if
an instruction accesses a stack address that is larger than the stack
start address, then the offset of the address relative to the stack
start address is recorded as a stack argument.

3.2.2 Function Emulation. VulSeeker-Pro first generates a set
of random integers for argument assignment before function em-
ulation. For each function, the same random integer sequence is
assigned to register arguments and stack arguments in turn. In
addition, it uses PyVEX [14] to convert each assembly function into
the VEX-IR (intermediate representation) [13] to perform function
emulation in an easier way. Because VEX-IR statements have clear
execution semantics, VulSeeker-Pro can emulate the execution of
the function on the VEX-IR based on the assigned argument values.
During the emulation execution of each function, it records the
dynamic execution trace of the function called semantic signature.
When VulSeeker-Pro encounters a call to function B while emulat-
ing functionA, it also emulates function B and records the semantic
signature of function B in functionA. This solves the predictive bar-
rier of function inlining to the semantic learning approach. Also if
the emulation encounters an unknown memory space (e.g., pointer
reference), we assign a default value to the space.

Assembly function Semantic signature

1    var_C = dword ptr -0Ch
2    arg_0  = dword ptr  8
3    push ebp
4    mov ebp, esp
5    sub esp, 28h
6    mov eax, [ebp+arg_0]
7    and eax, 1
8    mov [ebp+var_C], eax
9    cmp [ebp+var_C], 0
10   jz short loc_804844C
11   mov eax, [ebp+arg_0]
12   mov [esp+4], eax
13   mov dword ptr [esp], offset format ; "odd"
14   call _printf
15   mov eax, 1
16   jmp short locret_8048451
17   loc_804844C:
18   mov eax, 0
19   locret_8048451: 
20   leave
21   retn

//Line 6 reads the argument value 185
I        185

//Line 9 are comparison opcodes and operands
CC    1 0 EQ
//Line 11 reads the argument value 185
I        185
// Line 13 is the data read from .rodata section 
I        "odd"
LC    _printf  //Line 14 is a library call
O      1  //Line 15  is the return value 

Figure 3: The semantic signature recorded by VulSeeker-Pro.

The semantic signature of VulSeeker-Pro consists of four parts:
input values, output values, comparison opcodes/operands, and library
function calls. Figure 3 illustrates an assembly function and its
semantic signature generated at the end of the emulation. Here
the function argument is assigned to 185. Input values contain the
data read from both the assigned argument values and the data
sections (e.g., .rodata, .data). The instructions of lines 6, 11 and 13
in Figure 3 contain data reads, and their semantic information is

marked “I value”. Output values consist of the return value of the
function and memory write values whose addresses are outside
the range of the function stack. Line 15 in Figure 3 is the output
value of the function when 185 is used as the function argument.
The output values are represented as “O value” in the semantic
signature. Comparison opcodes refer to the condition that controls
the jump of basic blocks, and comparison operands mean the two
values used for comparison. Its example is line 9 in Figure 3, denoted
as “CC operands opcode”. Library function calls record the uses of
C language standard library functions in the process of function
emulation. Its semantic information is recorded as “LC name”, such
as line 14 in Figure 3.

3.2.3 Reordering Calculation. After obtaining semantic signa-
tures of the vulnerable function and each function in the top-M
candidate functions, VulSeeker-Pro uses the Jaccard similarity coeffi-
cient to calculate the similarity between them. The similarity score
is calculated as follows: J (A, B) = |A

⋂
B | / |A

⋃
B |, where A and B are

semantic signature sequences of the vulnerable function and the
target function. By descending the similarity scores, VulSeeker-Pro
reorders the top-M candidate functions and outputs more accurate
top-N functions as the suspected vulnerabilities.

4 EXPERIMENTAL RESULTS
Experiment Setup. We conducted unbiased experiments for

Gemini and VulSeeker-Pro in the same environment. All experi-
ments were conducted on an 8-core 3.60GHz Intel i7 machine with
8G memory, an NVIDIA GeForce 1070 GPU and Ubuntu 14.0LTS.
We apply the pre-training model of Gemini as the semantic learning
predictor in VulSeeker-Pro. The training epoch for Gemini is 120,
and other configurations are the same as the description in [16].
The values of M and N in VulSeeker-Pro are 200 and 25, respectively.

Table 1: Benchmark programs for vulnerability search

CVE No. Program Module Version

CVE-2018-11212 libjepg jmemmgr
9a

CVE-2018-11213 libjepg rdppmCVE-2018-11214 libjepg

CVE-2018-0494 Wget wget 1.19.1CVE-2017-6508

CVE-2015-1791

OpenSSL openssl 1.0.1f
CVE-2014-3508
CVE-2016-6302
CVE-2016-6303
CVE-2016-2842

CVE-2014-9471 Coreutils date 8.13

CVE-2017-7407 curl curl 7.53.1

CVE-2015-3237
curl libcurl 7.40.0CVE-2015-3145

CVE-2015-3144

Benchmark Programs. To evaluate the accuracy and efficiency
of VulSeeker-Pro, we select 15 known vulnerabilities from the Com-
mon Vulnerabilities and Exposures (CVE) website [3] as the bench-
mark for vulnerability search. As shown in Table 1, the benchmark
consists of 6 widely used programs which involve a total of 15 ran-
domly selected vulnerabilities at function granularity level. Column
1 gives the vulnerability number provided by the CVE organization.
Columns 2 and 3 indicate which module the vulnerability exists
in the corresponding program. Column 4 is the program version
number affected by the vulnerability.
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Each program is compiled into four optimization level versions
(O0-O3) of the X86 architecture using the GCC-4.8.4 compiler. We
treat the vulnerable function in theO3 version of the program as the
source to search for it from the other three versions of the program.
So we will perform 3 different searches for each vulnerability. In
total, there are 45 different searches in the experimental evaluation.
All the compiled programs and experimental results are available1.

4.1 Accuracy Of Vulnerability Search
For each search of the vulnerable function, we obtain the top-
200 candidate functions and the top-25 candidate functions from
outputs of the VulSeeker-Pro. The top-200 candidate functions are
Gemini’s rankings to the searched functions in the target program
based on the descending order of similarity scores with the vulnera-
ble function. And the top-25 candidate functions are the rankings of
VulSeeker-Pro which aims at improving the predictive accuracy of
the semantic learning approach (such as Gemini). Here we mainly
focus on whether VulSeeker-Pro can identify vulnerabilities across
compilation optimization options more accurately than Gemini.

In the experiment, we treat O3 optimization level vulnerabilities
as sources to perform search tasks from other three optimization
level programs. Table 2 shows the search rankings of Gemini and
VulSeeker-Pro on 15 vulnerabilities. Columns 2 and 6 are the search
rankings for vulnerabilities in the O0 optimization level programs
by Gemini and VulSeeker-Pro, respectively. Columns 5 and 9 are
the average rankings for vulnerabilities on the three optimization
levels of O0-O2.

Table 2: The rankings of two tools on 15 vulnerabilities.

CVE No. Gemini VulSeeker-Pro

O0 O1 O2 Average O0 O1 O2 Average

CVE-2018-11212 79 84 87 83 1 1 1 1
CVE-2018-11213 8 3 1 4 1 1 1 1
CVE-2018-11214 15 79 1 32 1 1 1 1
CVE-2018-0494 61 40 3 35 1 1 1 1
CVE-2017-6508 33 4 3 13 1 1 1 1
CVE-2015-1791 32 43 48 41 2 2 5 3
CVE-2014-3508 2 85 58 48 1 1 1 1
CVE-2016-6302 32 55 99 62 1 1 1 1
CVE-2016-6303 58 160 5 74 22 1 1 8
CVE-2016-2842 178 110 42 110 1 1 1 1
CVE-2014-9471 5 1 3 3 1 1 1 1
CVE-2017-7407 4 7 11 7 1 1 1 1
CVE-2015-3237 14 52 71 46 1 1 1 1
CVE-2015-3145 95 48 81 75 23 1 1 8
CVE-2015-3144 151 113 91 118 1 1 1 1

Average 51 59 41 50 4 1 1 2

From the last row of columns 5 and 9 in Table 2, we can see
that VulSeeker-Pro ranks the vulnerable functions 2nd on average,
whereasGemini ranks 50th on average. In the top-1 candidate result
among 45 searches, Gemini ranks only 3 vulnerabilities 1st, which
results in a 6.67% accuracy. However,VulSeeker-Pro identifies 40 real
vulnerabilities with an 88.89% accuracy, which is 12.33× higher than
Gemini. Similarly, in the top-5 candidate functions, VulSeeker-Pro
ranks 43 vulnerabilities 1st, leading to a 2.58× higher accuracy than
Gemini (the value is 12). All vulnerabilities are ranked in the top-
25 candidate functions by VulSeeker-Pro. In contrast, the value for
Gemini is 17. On 12 vulnerabilities, VulSeeker-Pro consistently ranks
the vulnerabilities 1st in the three optimization levels of programs.
No vulnerability Gemini can always rank it 1st.
1They are available at https://github.com/buptsseGJ/VulSeeker-Pro

By counting the rankings from column 2 to column 4, we find that
5 out of 45 searches,Gemini ranks the vulnerabilities behind 100.We
look at the assembly functions of the corresponding vulnerability
and summarize two reasons that can lead to this situation. One is
that function inlining exists in the higher optimization level binary
functions during compiling, which affects the instruction features
of function. The other reason is that the CFGs of the same function
are changeable under different optimization configurations, which
is reflected in the semantic embedding vector of the function. These
two reasons lead to inaccurate prediction results. For VulSeeker-Pro,
two vulnerabilities are ranked outside the top-10 candidate results
in O0 optimization level searches. This is because constant integers
in programs are treated as memory references to constant data
sections (e.g., .rodata section) in the O0 optimization level, and is
directly used as immediate values in the O3 optimization level. It
means that the compiler can use different instruction addressing
modes to accomplish the same purpose at different optimization
levels. Due to this situation is common, it affects semantic signatures
of functions to a certain extent, so VulSeeker-Pro achieves a poor
ranking in rare cases.

In summary, VulSeeker-Pro significantly outperforms Gemini
with a 24× ranking improvement on average in terms of vulnerabil-
ity search accuracy. This improvement consists in the integration
of function emulation at the back end of the semantic learning
approach to generate accurate function semantics.

4.2 Time Efficiency
We evaluate how much time VulSeeker-Pro needs to complete a
vulnerability search on 6 open source programs. This will have a
direct bearing on whether VulSeeker-Pro can be used in industry.
Table 3 shows the time cost of the two tools for each program to
which vulnerabilities belong. Column 2 lists the number of functions
in each program. Columns 3 and 4 are the time for Gemini and
VulSeeker-Pro to complete a vulnerability search.

Table 3: Time cost of the two tools on each program.

Program #Functions Gemini/s VulSeeker-Pro/s

libjpeg 580 81.20 176.45
Wget 804 116.28 241.34
OpenSSL 5995 849.40 1029.44
Coreutils 119 19.78 38.41
curl-7.53.1 1113 166.95 306.84
curl-7.40.0 2760 469.20 659.35

AVG 1895 283.80 408.64

In this experiment, each program contains an average of 1895
functions. It spends 283.80 seconds and 408.64 seconds on average
respectively for Gemini and VulSeeker-Pro in completing a vulner-
ability search. Gemini and VulSeeker-Pro need an average of 0.15
seconds and 0.22 seconds to calculate the similarity between a tar-
get function and a vulnerable function. Looking closely at columns
2 through 4 of Table 3, we find that the time cost of Gemini in-
creases linearly with the number of functions roughly. However,
the time cost of VulSeeker-Pro violates this phenomenon. The main
reason is that Gemini needs to extract features, generate semantic
embeddings, and compute similarity to the vulnerability for all
functions of the program. But VulSeeker-Pro only needs to perform
the emulation for the top-200 candidate functions. Therefore, the
more the number of functions is in the program, the closer the time
spent by VulSeeker-Pro is to Gemini.
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In summary, for a single function, although the time cost of
VulSeeker-Pro is 0.07 seconds more than Gemini on average, we
can always achieve a higher search accuracy in a reasonable time.
This is valuable to reduce the amount of time needed to manually
confirm lots of fake vulnerabilities by adding a little time for more
accurate vulnerability predictions.

5 DISCUSSION
In the experimental evaluation, we have demonstrated the high
efficiency and accuracy of VulSeeker-Pro in vulnerability search.
However, we also identify some clone-based search limitations
and related requirements in industry and discuss some possible
solutions to satisfy those requirements.

Engineers Prefer Tools Without Manually Identification.
By integrating function semantic emulation on the back end of
the semantic learning approach, we greatly improve the prediction
effectiveness of the vulnerability and reduce the human efforts
to identify the true positive vulnerable functions from the top-N
search results. Engineers are positive and are willing to apply this
automatic support even with about 21.20% time overhead. Further-
more, the performance of this approach depends on the top-M
candidate functions output by the semantic learning approach. If
we can reduce the value of M without losing accuracy, the total vul-
nerability search time required by VulSeeker-Pro will be shortened.
We list several ways to increase efficiency as follows:

• When training the deep neural network (DNN) model in the
semantic learning approach, we can enhance the generaliza-
tion ability of the model by increasing the discrete training
samples frommultiple binary programs. In general, the DNN
model with a larger training epoch will have stronger vulner-
ability prediction ability. However, we need to pay attention
to preventing model over-fitting.

• The data flow graph (DFG) of the function depicts the trans-
fer and use of data within the function. Including both CFG
and DFG in function semantic embedding vector genera-
tion will effectively mitigate the negative impact of the CFG
structure changing at different optimization levels on the
prediction results.

High Accuracy Cross-Platform Search Is Greatly Needed.
With the popularity of terminal devices, software programs on tra-
ditional X86 architecture are gradually being compiled and ported
to other architectures (e.g., ARM, MIPS). Therefore, the proposed
tool should also support cross-architecture vulnerability search and
still remain a high search accuracy. Since the approach involved in
VulSeeker-Pro are universal, this goal is not difficult to achieve.

VulSeeker-Pro contains two main modules, for which we need to
make appropriate extensions. For the semantic learning predictor
module, we only need to provide cross-architecture support in the
feature extraction part. The 8 types of features used inVulSeeker-Pro
need not be changed, but the instructions contained in each feature
need to follow the corresponding architecture. This extension can be
easily accomplished by referring to the software developer’s manual
of a specific architecture. For the emulation engine module, since
we execute function emulation on an architecture-independent
intermediate representation (specifically, VEX-IR), the main content
of this module need not be changed. We only need to extend the
argument recognition part slightly. The number and naming of
register arguments used in different architectures are significantly

different. For example, EAX, EDX and ECX are register arguments
for the X86 architecture. However, they are R0, R1, R2 and R3 for
the ARM architecture. We need to identify register arguments and
stack arguments following the calling conventions of the specific
architecture before emulating functions.

6 CONCLUSION
In this paper, we presentVulSeeker-Pro, a binary vulnerability seeker
that integrates function emulation at the back end of semantic
learning. With fast filtering of semantic learning and dynamic trace
generation of function emulation, we can achieve more accurate
search results with low time overhead. Experimental results show
that VulSeeker-Pro ranks vulnerabilities in the target programs at
the 2nd on average with a 24× ranking improvement than the
most recent and related work Gemini. In a total of 45 searches,
VulSeeker-Pro finds 40 and 43 real vulnerabilities in the top-1 and
top-5 candidate functions, which are 12.33× and 2.58× more than
Gemini. Performing a vulnerability search task on the OpenSSL
binary containing 5995 functions takes only 1029.44 seconds with
an average of 0.17 seconds per function. For all of the 6 programs
with 11,371 functions, VulSeeker-Pro needs an average of 0.22s to
calculate the similarity between a target function and a vulnerable
function, which is only 0.07 seconds slower than Gemini. These
demonstrate that VulSeeker-Pro is suitable for vulnerability search
of large-scale code in industry.
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