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ABSTRACT
Deep learning (DL) systems are increasingly applied to safety-
critical domains such as autonomous driving cars. It is of significant
importance to ensure the reliability and robustness of DL systems.
Existing testing methodologies always fail to include rare inputs in
the testing dataset and exhibit low neuron coverage.

In this paper, we propose DLFuzz, the first differential fuzzing
testing framework to guide DL systems exposing incorrect behav-
iors. DLFuzz keeps minutely mutating the input to maximize the
neuron coverage and the prediction difference between the original
input and the mutated input, without manual labeling effort or
cross-referencing oracles from other DL systems with the same
functionality. We present empirical evaluations on two well-known
datasets to demonstrate its efficiency. Compared with DeepXplore,
the state-of-the-art DL whitebox testing framework, DLFuzz does
not require extra efforts to find similar functional DL systems for
cross-referencing check, but could generate 338.59% more adver-
sarial inputs with 89.82% smaller perturbations, averagely obtain
2.86% higher neuron coverage, and save 20.11% time consumption.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
In the past few years, deep learning (DL) systems have demonstrated
its competitiveness on a wide range of applications, such as im-
age classification [4, 7], natural language processing [15] and even
reconstruction of brain circuits [5]. These encouraging accomplish-
ments inspired wide deployments of DL systems in safety-critical
domains, such as autonomous driving [1], drones and robotics [11]
and malware detection [20], and it is in great demand to test and
improve the robustness of DL systems.

For DL testing, the classical approach is to gather sufficient man-
ually labeled data to assess the accuracy of DL systems. However,
the input space of testing is so huge that it is extremely hard to
collect all the possible inputs to trigger every feasible logic of a
DL system. It is demonstrated that state-of-the-art DL systems can
be fooled by adding small perturbations to the test inputs [16].
Although DL systems exhibit impressive performance on image
classification tasks, the classifiers can also be easily led to incor-
rect classifications by applying imperceptible perturbations [12], as
shown in Figure 1. Therefore, DL testing is quite challenging but
essential to ensure the correctness of those safety-critical practices.

Several approaches have been proposed to improve the testing
efficiency of DL systems. Some of them leverage solvers like Z3
to generate adversarial inputs under the formalized constraints
of the DL models [3, 6]. These techniques are accurate, but work
in a heavy whitebox manner and are resource-consuming for con-
straint solving. Some blackbox methods exploit heuristic algorithms
to mutate the inputs until the adversarial inputs acquired [19].
These methods are time-consuming and rely heavily on the manu-
ally supplied ground truth labels. Other approaches of adversarial
deep learning focus on fooling the DL systems by applying im-
perceptible perturbations to the inputs mostly in a gradient-based
manner [12, 16]. They work efficiently but are shown to have low
neuron coverage [13]. Recently, DeepXplore [13] was presented as
the state-of-the-art whitebox testing framework for DL systems
and first introduced the concept of neuron coverage as a testing
metric. Meanwhile, it requires multiple DL systems with similar
functionality as cross-referencing oracles to avoid manual check-
ing. Nevertheless, cross-referencing suffers from the scalability and
difficulty of finding similar DL systems.

In this paper, we propose DLFuzz1, the first differential fuzzing
testing framework aiming to maximize the neuron coverage and
1https://github.com/turned2670/DLFuzz
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Figure 1: An adversarial input for DL model AlexNet[7].
(Left) is correctly predicted as "school bus", (center) perturba-
tion applied to the left to obtain the right, (right) adversarial
input predicted as "ostrich".

generate more adversarial inputs for a given DL system, without
cross-referencing other similar DL systems or manual labeling.
First, DLFuzz iteratively selects neurons worthy to activate for
covering more logic, and mutates the test inputs by applying minute
perturbations to guide the DL systems exposing incorrect behaviors.
During the mutation process, DLFuzz keeps the mutated inputs
which contribute to a certain increase of the neuron coverage for
the subsequent fuzzing, and the minute perturbation is restricted to
be invisible and ensures that the prediction results of the original
input and the mutated inputs should be the same. In this way,
DLFuzz is able to obtain rare inputs, and can automatically identify
the erroneous behaviors with differential testing that an error is
triggered when the prediction result of the mutated input is not the
same with the original input.

To evaluate the efficiency of DLFuzz, we conducted empiri-
cal studies on six DL systems trained on two popular datasets,
MNIST [8] and ImageNet [2]. The DL systems and the datasets
are exactly the same as those used by DeepXplore. Compared
with DeepXplore, DLFuzz does not need extra efforts to collect
similar functional DL systems for cross-referencing label check,
but could generate 135% − 584.62% more adversarial inputs with
79.56% − 96.77% smaller perturbations, and obtain 1.10% − 5.59%
higher neuron coverage. For the time efficiency, it saves 20.11% time
consumption in average with one exceptional case on ImageNet
costing 59.42% more than DeepXplore.

2 MOTIVATION
There exists a large gap between DL testing and traditional soft-
ware testing, owing to the totally distinct internal structures of
deep neural networks (DNN) and software programs. Researchers
have devoted many efforts to applying software testing to DL test-
ing in both whitebox and blackbox manner [3, 6, 19]. We aim to
break the resource consumption limitation of blackbox testing
techniques[19] and the cross-referencing obstacles of whitebox
testing techniques[13] with DLFuzz, the first differential fuzzing
testing framework leveraging imperceptible perturbations to en-
sure the invisible difference between the inputs and the mutated
inputs.

Fuzzing testing [10, 18, 21] has been recognized as one of the
most effective methodologies for vulnerability detection in software
testing, demonstrated by the huge amount of vulnerabilities caught.
The core idea is to generate random inputs to execute as many
program paths as possible so as to lead the program to expose
violations and crashes. It can be seen that fuzzing testing and DL

testing share similar goals of achieving higher coverage as well as
getting more exceptional behaviors. In general, we combined the
knowledge in key stages of fuzzing into DL testing as below:

(1) Optimization Goal. The goal of reaching higher neuron
coverage and exposing more exceptional behaviors can be
treated as a joint optimization problem. This optimization
problem can be implemented in the gradient-based manner.

(2) SeedMaintenance.While fuzzing, themutated inputswhich
contribute to a certain increase of the neuron coverage are
kept in the seed list, based on the potential to improve neuron
coverage continuously in the subsequent fuzzing.

(3) Diversity inMutation Strategies.We designed many neu-
ron selection strategies to select neurons that are possible
to cover more logic and trigger more incorrect outputs. Fur-
thermore, multiple mutation ways for test inputs have been
already practiced, and are easy to be integrated.

3 DLFUZZ APPROACH
3.1 Architecture
The overall architecture of DLFuzz is depicted in Figure 2. In this
paper, we implement DLFuzz to work on image classification, a
popular task in DL domains to demonstrate its feasibility and effec-
tiveness. The adaptions in other tasks such as speech recognition
are straightforward and also follow the same workflow in Figure 2.
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Figure 2: Architecture of DLFuzz

To specify, the given test input t is an image to be classified, the
DNN is a particular convolutional neural network (CNN) under
test, such as VGG-16 [14]. The mutation algorithm applies tiny
perturbation to t and gets t ′, which is visibly indistinguishable
from t . If the mutated input t ′ and the original input t are both fed
to the CNN but classified to be of different class labels, we treat this
as an incorrect behavior and t ′ to be one of the adversarial inputs.
The inconsistent classification results before and after mutation
indicate that at least one of them is wrong so that manually labeling
effort is not required here. In contrast, if the two are predicted of
the same class label by the CNN, t ′ will continue to be mutated by
the mutation algorithm to test the CNN’s robustness.

3.2 Algorithm
The mutation algorithm is the main component of DLFuzz. It is
completed by solving a joint optimization problem of both maxi-
mizing the neuron coverage and the number of incorrect behaviors.
Based on the demonstration that covering more neurons could
potentially trigger more logic and more erroneous behaviors [13],
DLFuzz also leverages the same definition and computing way of
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neuron coverage as DeepXplore [13]. Neurons with output values
larger than the set threshold are regarded as activated (covered).

The core process of the mutation algorithm is in Algorithm 1.
The algorithm contains three key components to discuss in detail.

Algorithm 1Mutation Algorithm
Input: input_list← unlabeled inputs for testing

dnn← DNN under test
k← top k labels different from the original label
m← number of neurons to cover
strategies← strategies for neuron selection
λ← hyperparameter for balancing two goals
cov_tracker← tracks information of neurons
iter_times← iteration times for each seed

Output: set of adversarial inputs, neuron coverage
1: adversarial_set = []
2: for x in input_list do
3: seed_list = [x] //seeds for each input
4: while len(seed_list) > 0 do
5: xs = seed_list[0] //grab the head element
6: seed_list.remove(xs )
7: c, c_topk = dnn.predict(xs )
8: neurons = selection(dnn, cov_tracker, strategies, m)
9: obj = sum(c_topk) - c + λ · sum(neurons)
10: grads = ∂obj/∂xs //gradient obtained
11: for iter=0 to iter_times do
12: /*gradient processed to get the perturbation for mutation*/
13: perturbation = processing(grads)
14: x ′ = xs + perturbation //mutated input obtained
15: c ′ = dnn.predict(x ′) //label after mutation
16: update cov_tracker //update coverage information
17: l2_distance = distance(x ′, x) //measure the perturbation
18: if coverage improved by x ′ is desired and l2_distance

is small then
19: seed_list.append(x ′)
20: if c ′ != c then
21: adversarial_set.append(x ′)
22: break

Optimization Problem.As discussed in Section 1, the gradient-
based adversarial deep learning outperforms the other approaches
in several aspects, especially in time efficiency. It founds perturba-
tions by optimizing the input to maximize the prediction error [16],
which is opposite to optimizing the weights to minimize the pre-
diction error while training the DNN. It is easy to implement by
customizing the loss function as our objective and maximizing the
loss by gradient ascent.

The loss function of DLFuzz is defined as the following equa-
tion (Algorithm 1 line 9), which is also the optimization objective:

obj =
k∑
i=0

ci − c + λ ·
m∑
i=0

ni (1)

where the objective consists of two parts. In the first part
∑k
i=0 ci −c ,

c is the original class label of the input, ci (i = 0, ...,k) is one of top
k class labels with confidence just lower than c (Algorithm 1 line
7). Maximizing the first part guides the input to cross the decision

boundary of the original class and lie in the decision space of top k
other classes. Such modified inputs are more likely to be classified
incorrectly [12]. In the second part

∑m
i=0 ni , ni is a target neuron

intended to activate. These neurons are selected considering many
strategies to improve neuron coverage (Algorithm 1 line 8). The
hyperparameter λ is used for balancing the two objectives.

Fuzzing Process. The fuzzing process reveals the overall work-
flow of Algorithm 1. When given a test input x , DLFuzz maintains
a seed list for keeping the intermediate mutated inputs which con-
tribute to neuron coverage. At first, the seed list only has one input
which is exactly x . Next, DLFuzz traverses each seed xs and obtains
the elements making up its optimization objective. Then, DLFuzz
computes the gradient direction for later mutation. In the mutation
process, DLFuzz iteratively applies the processed gradient as the
perturbation to xs and obtains the intermediate input x ′. After each
mutation, the intermediate class label c ′, coverage information, l2
distance of x and x ′ are acquired. If the neuron coverage improved
by x ′ and l2 distance are desired, x ′ will be added into the seed
list. Finally, if c ′ is already different from c , mutation process for
seed xs terminates and x ′ will be included in the set of adversarial
inputs. Therefore, DLFuzz is able to generate multiple adversarial
inputs for a certain original input and explore a new way to further
improve neuron coverage.

For the iterative mutation process, first, various processing meth-
ods are available to generate perturbations when the gradients ob-
tained, including just keeping the sign [16], imitating the realistic
situations [13, 17], etc. These mutation strategies for the input are
easy to be extended to DLFuzz. Second, DLFuzz adopts l2 distance
to measure the perturbation with the same computation as [12],
so as to ensure the distance between x and x ′ is imperceptible. As
for the conditions of seed keeping in line 18, DLFuzz limits our
desired distance to a relatively small range (less than 0.02) to ensure
the imperceptibility. As the neuron coverage improvement of one
input declines with time, the corresponding threshold for keeping
the seed also decreases with running time. In addition, the inputs
and hyperparameters configuring DLFuzz have certain effects to
the performance and need some exploration efforts. Furthermore,
we can increase the thresholds of seed keeping to reserve more
mutated inputs with greater distance.

Strategies for Neuron Selection. To maximize neuron cover-
age, we propose four heuristic strategies for selecting neurons more
likely to improve coverage as listed below. For each seed xs ,m neu-
rons will be selected utilizing one or multiple strategies, which can
be customized in strateдies of the algorithm inputs.

(1) Strategy 1. Select neurons covered frequently during past
testing. Inspired by practical experience in traditional soft-
ware testing that code fragments often or rarely executed are
more possible to introduce defects. Neurons covered often
or rarely perhaps can result in unusual logic and activate
more neurons.

(2) Strategy 2. Select neurons covered rarely during past testing
due to the considerations stated above.

(3) Strategy 3. Select neurons with top weights. It is presented
based on our assumption that neurons with top weights
maybe have larger influence on other neurons.
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(4) Strategy 4. Select neurons near the activation threshold. It is
easier to accelerate if activating/deactivating neurons with
output value slightly lower/larger than the threshold.

4 EXPERIMENT
4.1 Experiment Setup
We implemented DLFuzz based on the widespread frameworks
of DL systems, Tensorflow 1.2.1 and Keras 2.1.3. Tensorflow and
Keras provide the efficient interfaces for gradient computations
and support the process of recording the intermediate output of
all neurons after each prediction of the DNN. We developed and
evaluated DLFuzz on a computer with 4 cores (Intel i7-7700HQ
@3.6GHz), 16GB of memory, a NVIDIA GTX 1070 GPU and Ubuntu
16.04.4 as the host OS.

We selected two datasets (MNIST and ImageNet) and the corre-
sponding CNNs used by DeepXplore for image classification tasks
to evaluate DLFuzz. MNIST [8] is a large database of handwritten
digits consisting of 60000 training images and 10000 testing im-
ages. ImageNet [2] is a large visual database containing over 14
million images for object recognition. The same as DeepXplore,
DLFuzz tested three pre-trained models for each dataset, that is,
LeNet-1 [9], LeNet-4 [9], LeNet-5 [9] for MNIST and VGG-16 [14],
VGG-19 [14], ResNet50 [4] for ImageNet. Considering the fairness,
we also randomly choose 20 images from the dataset for each CNN
as test inputs in the same way with DeepXplore. As for the hyper-
parameters configured in the input, we tried lots of combinations
of possible settings. If not specified, the default settings of those hy-
perparameters k ,m, strateдies , iter_times are 4, 10, ”strateдy 1”, 3
respectively for their good performance on many DNNs.

4.2 Result
Table 1 presents the effectiveness of DLFuzz compared with DeepX-
plore. DLFuzz exhibits its advantages in improving neuron coverage,
generating more adversarial inputs within the same time limit and
restricting imperceptible perturbations. First, as presented in the
third column of the table, for the tested six CNNs, DLFuzz achieves
1.10% to 5.59% higher neuron coverage than DeepXplore in dif-
ferent settings in average. For the best setting, DLFuzz is able to
acquire 13.42% higher neuron coverage.

Table 1: Effectiveness ofDLFuzz comparedwithDeepXplore.

DataSet Model
(#Neurons)

NC
Imp.1

l2 Distance #Adv.2 Adv. Time3

MNIST LeNet-1(52) 2.45% 8.2637/0.2708 20/53 0.7078/0.5623
LeNet-4(148) 5.59% 8.2637/0.2812 20/47 0.7078/0.6344
LeNet-5(268) 2.23% 8.2637/0.2670 20/54 0.7078/0.5870

ImageNet VGG16(14888) 3.52% 0.0817/0.0167 13/89 10.473/3.4537
VGG19(16168) 2.28% 0.0817/0.0154 13/81 10.473/3.6606
ResNet50(94056) 1.10% 0.0817/0.0097 13/72 10.473/16.6958

Comparisons represented by content in format a/b, where a denotes the result
of DeepXplore and b denotes the result of DLFuzz.

1 Average neuron coverage improvement.
2 Number of adversarial inputs generated.
3 Average time of generating per adversarial input.

Original: 9 1-DeepXplore:4 1-DLFuzz: 4 2-DLFuzz: 4

Original:
rule

1-DeepXplore:
harmonica

1-DLFuzz:
paper

2-DLFuzz:
pencil box

Figure 3: Cases of adversarial inputs annotated with the
framework and the predicted label. The above row for
MNIST and the below for ImageNet.

Next, adversarial inputs generated by DLFuzz have much smaller
perturbations. As the cases in Figure 3, the perturbations generated
by DeepXplore are visible while those generated by DLFuzz are
invisible and imperceptible. In this way, DLFuzz provides stronger
guarantee for the consistence of the image’s identity before and
after mutation. As shown in the fourth and fifth column of table
1, DLFuzz averagely generated 338.59% more adversarial inputs
with 89.82% smaller perturbations. Moreover, DLFuzz spent 20.11%
shorter time on generating each adversarial input on these DL
systems. An exceptional case is that DLFuzz cost more time on
generating adversarial inputs than DeepXplore for ResNet50, which
is owing to more time needed for neuron selection when testing a
DL system consisting of a huge amount of neurons (94056).

We also tried all the proposed neuron selection strategies on
two CNNs and depicted the results in Figure 4. All strategies are
shown to contribute more to neuron coverage improvement than
DeepXplore while have similar performance among themselves.
It seems that "strategy 1" performs slightly better. In addition, to
prove the practical use of DLFuzz, we incorporated 114 adversarial
images into the training set of three CNNs on MNIST and retrained
them to see if their accuracy is able to increase. Finally, we improve
their accuracy by up to 1.8% within 5 epochs. More improvement
is expected if more adversarial inputs included in the retraining
process.
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Figure 4: Neuron coverage with number of images tested
when different strategies applied in DLFuzz.
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4.3 Discussion
Applicability of Fuzzing to DL Testing. The effectiveness of
DLFuzz demonstrates that applying the knowledge of fuzzing to
DL testing is feasible and can greatly improve the performance of
existing DL testing techniques such as DeepXplore. The gradient-
based solution of the optimization problem guarantees the easy
deployment and high efficiency of the framework. The mechanism
of seed maintenance provides diverse directions and larger space
for improving neuron coverage. As the cases shown in Figure 3, it is
also capable to obtain incremental adversarial inputs for one input.
Various strategies combined for neuron selection proved to be good
at finding neurons beneficial for increasing neuron coverage.

Without Manual Effort. For confirmation, we checked all the
366 adversarial inputs generated by DLFuzz, though DLFuzz main-
tains quite small l2 distance by the restricted threshold. We haven’t
found any adversarial inputs that have already changed their iden-
tities after mutation. The adversarial inputs are nearly the same as
the original input, and the perturbations are imperceptible.

Future Work. Encouraged by the impressive effects of DLFuzz
on image classification tasks, we will work on the deployments
of DLFuzz on other popular tasks in DL domains, such as speech
recognition. The specific constraints for input mutation of the cor-
responding task will be added into the common workflow. Also,
some domain knowledge can be leveraged to provide more efficient
mutation operations and increase the the efficiency of DLFuzz.

5 CONCLUSION
We design and implement DLFuzz as an effective fuzzing testing
framework of DL systems. DLFuzz first combines the basic ideas
of fuzzing testing into DL testing and demonstrates its efficiency.
Compared with DeepXplore, DLFuzz averagely obtained 2.86%
higher neuron coverage and generated 338.59% more adversarial
examples with 89.82% smaller perturbations given the same amount
of inputs. DLFuzz also overcomes the trouble of relying on multiple
DL systems of the similar functionality in DeepXplore. Additionally,
DLFuzz exhibits its practical use by incorporating these adversarial
inputs to retrain the DL systems and to steadily improve their
accuracy. The premiere results present its potential usage to expose
the incorrect behaviors of DL systems at an early stage, and ensure
the reliability and robustness.
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