
Design and Optimization of Multi-clocked Embedded
Systems using Formal Technique

Yu Jiang2,Zonghui Li4,Hehua Zhang1,Yangdong Deng4,Xiaoyu Song3,Ming Gu1,Jiaguang Sun1

School of Software, Tsinghua University,TNLIST, KLISS, Beijing, China1

Department of Computer Science and Technology, Tsinghua University, TNLIST, KLISS, Beijing, China2

Department. ECE, Portland State University, Oregon, USA.3
Institute of Microelectronics, Tsinghua University, Beijing, China.4

ABSTRACT
Today’s system-on-chip and distributed systems are com-
monly equipped with multiple clocks. The key challenge in
designing such systems is that heterogenous control-oriented
and data-oriented behaviors within one clock domain, and
asynchronous communications between two clock domains
have to be captured and evaluated in a single framework.
In this paper, we propose to use timed automata and syn-
chronous dataflow to capture the dynamic behaviors of multi-
clock embedded systems. A timed automata and synchronous
dataflow based modeling and analyzing framework is con-
structed to evaluate and optimize the performance of multi-
clock embedded systems. Data-oriented behaviors are cap-
tured by synchronous dataflow, while synchronous control-
oriented behaviors are captured by timed automata, and in-
ter clock-domain asynchronous communication can be mod-
eled in an interface timed automaton or a synchronous data
flow module with the CSP mechanism. The behaviors of
synchronous dataflow are interpreted by some equivalent
timed automata to maintain the semantic consistency of the
mixed model. Then, various functional properties can be
simulated and verified within the framework. We apply this
framework in the design process of a sub-system that is used
in real world subway communication control system.

Categories and Subject Descriptors
B.3.3 [Performance Analysis and Design Aids]: Formal
models, Simulation

General Terms
Formal models, Simulation

Keywords
multi-clock, embedded system, data-oriented behavior, control-
oriented behavior, timed automata, synchronous dataflow

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’3, August 18-26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08... ...$15.00.

Embedded systems are being widely used in all kinds of
applications, and are traditionally designed and optimized
using synchronous languages with single clock. Such an as-
sumption of global synchronization greatly helps reduce the
complexity of the design. The class of synchronous lan-
guages contains mainly Esterel [5], Lustre [7], Signal [11]
and Statecharts [8]. Those languages and the correspond-
ing tools are good for compact single-clocked hardware and
software design, including modeling, simulation, verification,
and synthesis. The Esterel and Statecharts are suitable for
specifying control-oriented systems. The Lustre and Sig-
nal are good for specifying data-dominated systems. The
control-oriented systems control large amounts of decision
logic that has to quickly produce outputs in response to in-
put events, while in the data-dominated systems, intensive
computations have to be performed on samples that usually
arrive in regular intervals. Very often, an embedded system
contains both data-oriented and control-oriented parts. For
example, the cell-phone must contain the control-oriented
network communication protocols running on the proces-
sor and the data-dominated algorithms for dealing with the
voice signal. Furthermore, today’s embedded systems are
increasingly adopting multi clock solution due to the low-
power requirement and the pervasive usage of IPs from dif-
ferent vendors. Hence, there has been a recent surge in
demand for methods to design multi-clocked embedded sys-
tems.

In this paper, we present a timed automata [1] and syn-
chronous dataflow [2, 12] based design framework to address
the above-mentioned problem in modeling and validating the
heterogenous behaviors of multi-clocked embedded systems.
In our framework, a system is modeled as a combination net-
work of timed automata and synchronous dataflow, which is
a collection of local synchronous domains and asynchronous
communications. The main novelties of our framework are
three fold: (1) First, with the help of different clock re-
mapping based guards on each transition of automata, each
local system component can be modeled as a purely syn-
chronous node analogous to a synchronous reactive program
in a language like Esterel. (2) Second, with the help of
shared variables, special synchronize input/output actions
and parallel composition operator, the inter clock-domain
asynchronous communication through hand-shake protocol
can be modeled in an interface timed automaton without
clock or a synchronous dataflow module. (3) Third, the
control-oriented parts can be modeled by timed automata,
the data-oriented parts can be modeled by synchronous data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2494575

703

flow, and the behaviors of each synchronous dataflow module
are represented as equivalent timed automata to maintain
the semantic consistency of the mixed model. We apply our
framework to the design of a real world subway system and
find a safety-critical bug caused by out of sync in the original
design that cannot be detected by traditional techniques.

2. RELATED WORK
A large body of work has been dedicated to modeling and

validation of multi-clocked systems. In the literature, the
formal language based approach (e.g., CRP [3], MC-Esterel
[4], SHIM [6]) is appealing because it provides a unified ba-
sis for formal analysis to achieve expected correctness. The
CRP language combines the synchronous reactive model
of Esterel [10] with the asynchronous coupling of CSP [9]
to offer a mathematically elegant framework. Locally syn-
chronous Esterel modules communicate through rendezvous
channels. The problem is that it is hard to support data-
driven operations and rendezvous protocol through asyn-
chronous coordinators. Its variants such as CRSM, ECRSM
[13] have similar properties and limitations. The MC-Esterel
language was specifically developed for the design of multi-
clocked digital systems. The designer is responsible for cre-
ating communication mechanisms among different clock do-
mains. Every Esterel module needs an explicit clock and a
designer has to construct low-level synchronizers to guaran-
tee the synchronization among these modules. While MC-
Esterel provides a powerful mechanism for modeling asyn-
chronous and multi-rate systems, the main problem is that
a designer has to work at a relatively low abstraction level
and the productivity is limited. In addition, its support for
data-driven operations is quite limited due to its reliance on
Esterel.

3. PROPOSED MODELING AND VALIDA-
TION FRAMEWORK

To model multi-clock embedded systems with both data-
oriented behaviors and control oriented behaviors, a set of
timed automata and synchronous dataflow modules are com-
posed into a network over a set of clocks and actions with
parallel composition operators. This kind of mixed data-
oriented, control-oriented, and multi-clock domains compo-
sitions make the proposed model more close to the real im-
plementation. In the design process, we can validate the
design, compare different design models, avoid some wrong
solutions that may lead to rework, and choose the best so-
lution. In the implementation process, we can abstract the
model from the implemented system, and apply formal veri-
fication techniques to validate whether the system meets the
requirements or not. The overall framework is depicted in
Figure 1.

It is clear in the above framework that all the control-
oriented parts are modeled as timed automata, which are
connected in parallel. Each automaton is equipped with
an extra synchronous clock to control the local behaviors.
When a time based guard becomes true, the automaton
will make a transition. Although the increasing speed of all
clocks are synchronous, we provide mechanisms for different
time based guards to support multiple clock domains. The
asynchronous communication between two timed automata
is realized by rendezvous CSP style. All the data-oriented
parts are modeled as synchronous dataflow. The actors rep-

Local
synchronous

Local
synchronous

p
o

p
osynchronous

system
y
system

o
r
t

clock clock

o
r
t

COMMUNICATION

E)I,,A,C,l(L, 000),,,,)||(,,(10iterface EIAAlLSLN ∪),,,,,(111 EICAlL

ch1

Timed Automata
Clock1

1

Timed Automata
clock2

C
A

ch111

1

12
s3s1

ch2

ch3
Ch1!
clk1

Ch2!
clk1

Ch3?
clk2

clk2

B1
1

s4s2

Figure 1: Modeling framework for multi-clock em-
bedded systems with heterogenous behaviors.

resent the data related computations, the firing rules specify
the number of tokens that the actor consumes and produces,
and the schedule defines the firing sequences of actors in a
single iteration. Similar to the parallel connection of timed
automata, we need to define the parallel composition op-
erator to connect a timed automaton with a synchronous
dataflow module. The synchronous dataflow module has to
communicate with the timed automata to accomplish two
functions: (1) The first is reading tokens from the connected
automata through the input channel to prepare for the fir-
ing of actors. (2) The second is sending tokens produced
by the previous firing of actors to the connected automata
through the output channel. The local synchronize model-
ing and communication between automata and synchronous
dataflow are described below.

Figure 2: The mapping mechanism from the real
clock value to the action of local clock in the timed
automata to ensure synchronous reaction behavior.

Local synchronization modeling: Each component of lo-
cal synchronization system has two kinds of reactions: inner
reactions within a component and communication reactions
cross two components. Both of them are controlled by its
own clock. If the component is modeled as a timed automa-
ton, the inner reaction can be described as regular transition
edge with update action (A,Einner). The communication re-
action can be described as a transition edge with special syn-
chronize action (A,Ecommu) on channel n. The input action
n? represents receiving an event from the channel n sending
by the other component, while the output action n! repre-
sents sending an event on the channel n. The control clock
of the real system component is modeled by a clock variable
(C). Then, we add an extra guard and an extra update ac-
tion on each transition edge (A,Einner

⋃
Ecommu, G). The

guards are defined on the period and interval of the real

704

control clock. The update action is to reset the clock vari-
able. The mapping mechanism from the real control clock
value to the behavior in the local timed automata clock is
described in Figure 2. Because a transition represented by
an edge can be triggered when the clock values satisfy this
guard, the mechanism that each reaction will be triggered
at the upper edge of the clock are captured in our timed
automata. If the component is modeled as a synchronous
dataflow, the inner reaction can be described as regular fir-
ings of the actors with the consumed and produced tokens
(N,Linner). The communication reaction can be described
as regular link (Lcommu) with special synchronization ac-
tions on channel n. Because the model is executed in a peri-
odic fashion, we can add a period for each iteration similar to
the run-time implementation of Ptolemy, regardless of each
firing inside an iteration. This period will be interpreted by
the clock variable of the equivalent timed automata in the
semantic definition part.

Asynchronous communication modeling: The hand-shake
asynchronous communication between two local system com-
ponents M1 and M2 can be abstracted as an interface timed
automaton or a synchronous dataflow module M3. The two
system components will transfer control message and data
through bus to each other. If M3 is a timed automaton, we
can use some empty state transitions in M3 to model the
stochastic factors such as packet loss. When M1 wants to
send some data to M2, it will send the data onto the bus
and produce the special synchronization signal send D!. The
interface automata will be synchronized by receiving the sig-
nal send D?, and will produce the special signal rec D! with
a transmission delay. Then, M2 can be synchronized by re-
ceiving the signal rec D?. If the data packet is lost, the M3

will switch back to the initial state without sending the sig-
nal rec D!. The control message transfer is similar to the
data message. With the interface automata M3 consisting
of transitions that do not depend on clock 1 and clock 2,
the asynchronous communication mechanism is captured di-
rectly. If M3 is a synchronous dataflow module, it will also
read data from M1 through the read action send D?, and
send the produced token during the firing of actors through
the write action rec D!. If M1(M3) attempts to write when
M3(M2) is not ready, M1(M3) will be blocked. If M3(M2)
attempts to read when M1(M3) is not ready, M3(M2) will
be blocked. They can communicate with each other when
both sides are in the corresponding states. If not, the com-
munication will be blocked.

Semantic of the proposed model: In the original timed
automata, all parallel connected automata are combined to-
gether to get a single flat finite state machine, whose be-
havior is equivalent to the original modules. In order to in-
tegrate synchronous dataflow, we translate the synchronous
dataflow into an equivalent timed automata. The transla-
tion procedure is modular. Each atomic element is repre-
sented by a timed automaton with channels to read tokens
and output tokens. Additionally, a timed automaton may
contain internal variables and functions, depending on the
computation carried by the corresponding actor. The three
timed automata presented in Figure 3 show three basic ele-
ments in the synchronous dataflow. The first is for the link
between two actors and the link at the margin communicat-
ing with another module. It will read the tokens from the
producer and pass it to the consumer without any computa-
tion. The second is for the actors which consume one token

(x) and produce a token (y), with the function (func()) to
finish the computation of the actor. The third is for the ac-
tor that consume two tokens (x, y) from two channels (c1, c2)
and produce a single token (z). We use two local variables
to denote the status of c1 and c2. When both of them have
tokens, the transition will take, and the output tokens will
be produced after the computation function. Other atomic
elements connecting with arbitrarily multiple channels can
be translated in the similar way of the third example. Af-
ter all elements being translated, those timed automata will
be connected in parallel. A synchronous dataflow module
will be translated into a network of timed automata, whose
behavior is the same as the original module.

s1

Cha1? x := in

s1

Chb1? x := in
s1

Chc1? x := in
s2

Chc2? y := in

a:=1

s3

b:=1

s2

s2

y := func (X)

s4

Chc1? x := in

z := func (x, y)

Chc2? y := in

a := 0

a&b==1

s3

Cha2! Out := x s3

Chb2! Out := y
s3

Chc3! Out := z
b := 0

s3 s3

Figure 3: The translation from the synchronous
dataflow to the timed automata.

4. EVALUATION EXAMPLE
We conduct some experiments on a train communication

control system that is used in real world subway systems
to describe how our framework enables the design of multi-
clock embedded systems. The train communication con-
trol system is a safety-critical embedded system and is im-
plemented as a network card as shown in the left side of
the Figure 5. There are two processors on the card: the
FPGA processor (big white cycle on the figure), and the
ARM processor (small white cycle on the figure). The two
components are controlled by their own clock, and commu-
nicate with each other through data bus in asynchronous
manner. Some main time-critical functions are implemented
by VHDL module running on the FPGA processor, and the
and other functions are implemented by C code running on
the ARM processor. When we embed a card into a vehicle,
we need to initialize the card with the device configuration
information. The ARM component will pass those data to
the FPGA component. The data transfer is controlled by
the GPIO of the ARM component. It will send a pulse at
the frequency of 10MHZ, and then put 16 bit data on the
bus. When the FPGA component samples the pulse from
ARM, it needs 58 pulses to finish all the data transfer.

ARMG G
FPGA

Processor
ARM

Processor
G
P
I
O

G
P
I
OVHDL data

write start

O
clock1 clock2

Synchronous DataflowTimed automata 1 Timed automata 2

Figure 4: An abstraction model of the function that
initialize the card with the device configure infor-
mation. ARM will pass those data to the FPGA.

705

Figure 5: The left side of the figure is our imple-
mented experiment platform of the control system.
The right side are the results run-time comparison
for different design, 58, 33 pulses sampled for 24
MHZ, 12 MHZ, respectively.

Because the clock frequency of GPIO on ARM is 10MHZ,
the clock frequency of FPGA should be higher than 10MHZ
to sample all pulses sent by GPIO on ARM. According to the
static analysis, the clock frequency of FPGA is set as 12MHZ
to meet the power constraint and hardware constraint in the
original design. The prototype implemented by SystemC
is simulated correctly. But the corresponding implemented
VHDL code on FPGA based on this clock frequency fails
to finish the initialization process at times. This is a very
interesting phenomenon that motivates our work.

We build a model of this function which is presented in
Figure 4 based on our framework. We build the mixed timed
automata and synchronous dataflow based on the behavior
model of the two components, the asynchronous communi-
cation of GPIO, and the two clock frequencies of the pro-
cessors. Then, we performed formal verification on the con-
structed module, and find that the property that every pulse
should be sampled correctly is violated. We use the random
simulation mechanism provided in UPPAAL [1], and find
a counter-example after 200 initialization times. When the
clock of FPGA starts later than the ARM component for
about half of the period, it will loss some pulses. We sim-
ulate the original code on the implemented platform again
and set the running environment according to the counter-
example, the waveform get by chipscope demonstrates that
the FPGA component only obtain 33 pulses because of the
out of sync. This bug is not easy to find because the occur-
rence rate is low and it is hard to trigger. We need to reduce
the corresponding clock period of the guard of the timed
automata. The property is satisfied when the frequency of
FPGA is set as 24MHZ. The waveform get by chipscope for
the new design is also demonstrated on the right side of the
Figure 5. We can find the number of pulses is right. With
the help of formal modeling, we make a contribution to avoid
potential error of the subway system.

5. CONCLUSION
In this paper, we present the timed automata and syn-

chronous dataflow based design framework for modeling and
validating the dynamic behaviors of multi-clock embedded
systems. Each local component of the system is modeled
as a timed automata with a local synchronous control clock
or a synchronous dataflow. The hand-shake asynchronous
communication between two local components is realized by
shared variables. Input and output actions are modeled as
an interface automata or synchronous dataflow. After that,
we present a mechanism to integrate the semantics of syn-
chronous dataflow into the semantics of timed automata.

Then, all the timed automata can be executed concurrently,
and various properties can be simulated and verified with
UPPAAL. Initial experiments results applied to a real sys-
tem design encourage us. We are carrying out more experi-
ments to check the scalability of our framework and imple-
menting a tool to abstract timed automata network from
cooperated VHDL modules and C functions.

6. ACKNOWLEDGEMENT
This research is sponsored in part by NSFC Program (No.

61202010, 91218302), National Key Technologies R&D Pro-
gram (No.SQ2012BAJY4052) and 973 Program (No.2010CB
328003) of China.

7. REFERENCES
[1] R. Alur and D. Dill. A theory of timed automata.

Theoretical computer science, 126(2):183–235, 1994.

[2] P. Amagbégnon, L. Besnard, and P. Le Guernic.
Implementation of the data-flow synchronous language
signal. In Proceeding of the ACM SIGPLAN PLDI,
volume 30, pages 163–173. ACM, 1995.

[3] G. Berry, S. Ramesh, R. Shyamasundar, et al.
Communicating reactive processes. In Proceedings of
the ACM SIGPLAN-SIGACT symposium on POPL,
volume 20, pages 85–98. ACM, 1993.

[4] G. Berry and E. Sentovich. Multiclock esterel.
Proceedings of the Correct Hardware Design and
Verification Methods, pages 110–125, 2001.

[5] F. Boussinot and R. De Simone. The esterel language.
Proceedings of the IEEE, 79(9):1293–1304, 1991.

[6] S. Edwards and O. Tardieu. Shim: A deterministic
model for heterogeneous embedded systems. IEEE
Transactions on Very Large Scale Integration Systems,
14(8):854–867, 2006.

[7] N. Halbwachs, F. Lagnier, and C. Ratel. Programming
and verifying real-time systems by means of the
synchronous data-flow language lustre. IEEE
Transactions on Software Engineering, 18(9):785–793,
1992.

[8] D. Harel. Statecharts: A visual formalism for complex
systems. IEEE Transactions on Software Engineering,
8(3):231–274, 1987.

[9] C. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[10] L. Ju, B. Huynh, S. Chakraborty, and
A. Roychoudhury. Context-sensitive timing analysis of
esterel programs. In Proceeding of the 46th
ACM/IEEE Design Automation Conference, 2009.,
pages 870–873, 2009.

[11] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Transactions on Computers,
100(1):24–35, 1987.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.

[13] S. Ramesh, S. Sonalkar, V. D ↪aŕsilva, N. Chandra R,
and B. Vijayalakshmi. A toolset for modelling and
verification of gals systems. In Proceedings of the
International Conference on Computer Aided
Verification, pages 385–387. Springer, 2004.

706

