
57

Polar : Function Code Aware Fuzz Testing of ICS Protocol

ZHENGXIONG LUO, FEILONG ZUO, YU JIANG∗, and JIAN GAO, KLISS, BNRist, School of
Software, Tsinghua University, China

XUN JIAO, Department of Computer Science and Engineering, Villanova University, USA

JIAGUANG SUN, KLISS, BNRist, School of Software, Tsinghua University, China

Industrial Control System (ICS) protocols are widely used to build communications among system components.

Compared with common internet protocols, ICS protocols have more control over remote devices by carrying

a specific field called “function code”, which assigns what the receive end should do. Therefore, it is of vital

importance to ensure their correctness. However, traditional vulnerability detection techniques such as fuzz

testing are challenged by the increasing complexity of these diverse ICS protocols.

In this paper, we present a function code aware fuzzing framework — Polar, which automatically extracts

semantic information from the ICS protocol and utilizes this information to accelerate security vulnerability

detection. Based on static analysis and dynamic taint analysis, Polar initiates the values of the function code

field and identifies some vulnerable operations. Then, novel semantic aware mutation and selection strategies

are designed to optimize the fuzzing procedure. For evaluation, we implement Polar on top of two popular

fuzzers — AFL and AFLFast, and conduct experiments on several widely used ICS protocols such as Modbus,

IEC104, and IEC 61850. Results show that, compared with AFL and AFLFast, Polar achieves the same code

coverage and bug detection numbers at the speed of 1.5X-12X. It also gains increase with 0%-91% more paths

within 24 hours. Furthermore, Polar has exposed 10 previously unknown vulnerabilities in those protocols, 6

of which have been assigned unique CVE identifiers in the US National Vulnerability Database.

CCS Concepts: • Security and privacy → Domain-specific security and privacy architectures; Vul-
nerability scanners; • Computer systems organization→ Embedded and cyber-physical systems.

Additional Key Words and Phrases: Fuzz Testing, Industrial Control System Protocol, Function Code, Vulnera-

bility Detection

ACM Reference Format:
Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Jiaguang Sun. 2019. Polar : Function Code

Aware Fuzz Testing of ICS Protocol. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 57 (July 2019), 23 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Industrial Control System (ICS) is widely used in industrial production. As a general term, it is

used to describe the combination of hardware and software with network connectivity, supporting

∗
Yu Jiang is the correspondence author.

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on

Embedded Software (EMSOFT) 2019.

Authors’ addresses: Zhengxiong Luo, luozx19@mails.tsinghua.edu.cn; Feilong Zuo, zuofl19@mails.tsinghua.edu.cn; Yu Jiang,

jiangyu198964@126.com; Jian Gao, gaojian094@gmail.com, KLISS, BNRist, School of Software, Tsinghua University, Beijing,

China; Xun Jiao, Department of Computer Science and Engineering, Villanova University, USA, xun.jiao@villanova.edu;

Jiaguang Sun, KLISS, BNRist, School of Software, Tsinghua University, Beijing, China, sunjiaguang@126.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/7-ART57 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

57:2 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

operation or automation on industrial processes. ICS protocol plays an important role in building

communications among components of ICS. Different from common internet protocols, ICS proto-

cols are designed to have more control over remote devices for industrial practice. They carry a

specific field called “function code” to assign what the receive end should do, e.g., start, stop, and

report self status. As such, it is vital to guarantee the correctness of those protocols. However, a

large number of severe security vulnerabilities have been revealed in widespread industrial control

system protocols. For instance, the well-known Heartbleed [33] vulnerability (CVE-2014-0160) in

the OpenSSL library has affected a wide distribution of devices.

There are many fuzzing tools suitable for ICS protocol vulnerability detection such as American

Fuzzy Lop (or simply AFL) [43], Sulley [1], Peach [30], and so on. Those fuzzers have been widely

used to detect security vulnerability such as application crash, buffer overflow, memory leaks, and

double free. They can be roughly classified into two categories based on how test cases are produced:

generation-based and mutation-based. Mutation-based fuzzers, such as AFL, generate new inputs

by randomly mutating existing inputs. Those fuzzers are popular due to their ease-of-use and

fantastic vulnerability-detecting power. In contrast, generation-based fuzzers, including Peach,

require format specification and construct inputs by leveraging the knowledge of this format.

In practice, even as these fuzzers have detected lots of vulnerabilities, there remain two challenges

heavily limiting their effectiveness: (i) it is not easy to obtain the format specification of ICS

protocol and initialize the corresponding values, which requires significant manual efforts to read

the documentation and the source code; and (ii) it is difficult for existing fuzzers to reach deep

paths in program state space and achieve high code coverage at fast speed because invalid test

input mutation and generation result in meaningless repetitions and dramatically affect the speed

of fuzzing.

In this paper, we present Polar, a function code aware fuzzing framework which requires

no extra format specification of protocol packet and is scalable to discover vulnerabilities faster.

Instead of optimizing the input generation process to produce more inputs in some existing fuzzing

approaches, we extract protocol features and utilize them to produce fewer but higher quality

inputs. Through investigation of different ICS protocols, we found that function code field plays an

important role in service realization and we can enhance the efficiency of traditional fuzzers by

equipping them with function code information. From the perspective of the source code, the value

of function code usually determines subsequent execution track, thus, making fuzzers aware of

function code information can help them determine where and how to mutate. Meanwhile, we also

found that some security-sensitive points in protocol (e.g., dynamic memory allocation malloc, we
define them as vulnerable operations) can be obtained to assist fuzzers in generating more inputs

so as to exercise those vulnerable operations more often.

We utilize static code analysis to filter some candidates of function code parameters and identify

some vulnerable operations. Then byte-level taint analysis is applied to further verify those can-

didates. It assigns each byte in input with a unique label when input data is accessed, tracks the

propagation of these labels and verifies how data flows in each variable associated with function

code. After obtaining those semantic information, Polar makes the best of them to accelerate

fuzzing phase. Based on lightweight instrumentation of the source code, Polar is able to obtain

some feedback during program execution for a given input I , such as whether the function code

related statements or vulnerable operations are executed. If so, the further fuzzing process of

I will take the feedback into consideration, which we define as guided fuzzing. This has three

advantages: (i) it utilizes function code information to help exploring new paths by synchronizing

useful mutation information between seed inputs that have different values of function code; (ii)

it efficiently reduces the size of the mutation space because the legal values of function code are

taken from a fixed small set where enumerating exhaustively would be unnecessary and inefficient;

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:3

and (iii) the malformed inputs generated by guided fuzzing are more likely to exercise vulnerable

operations in the program and expose security vulnerabilities.

For evaluation, we augmented AFL and AFLFast with Polar and evaluated their performance

on several widely used open-source implementations of ICS protocols – Modbus [22, 37], IEC104

[9, 36] and IEC61850 [13, 34]. Experiment results show that Polar can help to achieve high code

coverage at a faster speed (an average of 3.6X and 1.5X for AFL and AFLFast respectively) and

can gain sustained increases in paths covered (an average of 19.9% and 18.8% increase for AFL

and AFLFast respectively) after 24 hours. Meanwhile, Polar has already exposed 10 previously

unknown vulnerabilities, 6 of which have been assigned with unique CVE identifiers in the US

National Vulnerability Database.

To the best of our knowledge, most ICS protocols are function code-oriented. Apart fromModbus,

IEC104, and IEC 61850, many other ICS protocols can also be applied with Polar, such as IEEE

C37.118 [2], Profinet [41], DNP3 [38], ICCP [39], and IEC101 [40]. In conclusion, our paper makes

the following contributions:

• We propose a novel lightweight approach that combines static and dynamic code analysis to

infer where an ICS protocol program processes function code field of packet without manual

effort.

• We propose a novel semantic information aware fuzzing strategy to accelerate fuzzing speed

and improve path coverage so as to expose more vulnerabilities.

• We implement Polar, evaluate it on several ICS protocols, and have detected many previously

unknown vulnerabilities. Polar1 is open source for public use and can be augmented to

existing fuzzers for further improvement.

The rest of this paper is organized as follows: necessary background is introduced in Section 2
and a motivating example is given in Section 3. Then we detail the method and implementation of

Polar in Section 4 and the performance results in Section 5. Last, we introduce some related work

in Section 6 and summarize the paper in Section 7.

2 BACKGROUND
2.1 Industrial Control System and Protocol
Industrial control system (ICS) is a general term used to describe the combination of hardware

and software with network connectivity so as to support critical infrastructure, such as energy,

transportation, and communications. However, the increasing number of ICS components available

over the Internet makes ICS easy prey for attackers. In the design of this system structure, ICS

protocol plays an important role in building communications among system components. Those

ICS protocols such as Modbus, IEC104, and IEC 61850 have been used in a wide range of industrial

domains. Their correctness directly affects the safe operation of ICS, thus, vulnerability detecting

techniques for ICS protocols are clearly needed.

Unlike the common internet protocols, ICS protocols are designed to acquire measurements and

status and to control other devices. In order to do this, the ICS protocol packet usually carries a

special field, called the function code field, to specify what is received and what should be responded.

Figure 1 shows an example of electrical ICS running protocol Modbus. In this example, a device

in the Control Center of the ICS plays the role as “Modbus Master” and two remote terminal units

(RTUs) serve as the “Modbus Slave”s. Each RTU has direct control over a mass electric net, which

has a great influence on people’s daily life. The whole ICS builds communication among devices

with protocol Modbus. A function code field is applied in Modbus to assign what the receive end

1
https://github.com/fouzhe/Polar-Fuzz

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

https://github.com/fouzhe/Polar-Fuzz

57:4 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

should do. As shown in this example, the master sends a packet with function code value a to slave

1, which means the slave should read its coil value. So after receiving this packet, slave 1 reads its

own coil, gets the value and responses to the master. Similarly, slave 2 gets a packet with function

code value b, which orders it to write some values in the packet to its inner registers to change

the operation of the electric net. Relaying on protocol Modbus, this ICS performs smoothly and

normally.

... a ...

RTU
"Modbus Slave1"

Coil

Response

Read
Coil value

RTU
"Modbus Slave2" Inner

Registers
Write

Inner Register

Response

... b ...

Control Center of
Electric ICS

"Modbus Master"

Modbus packet

Modbus packet

Control

Mass
Electric Net

Mass
Electric Net

Control

... Func. ...

Modbus packet

Fig. 1. Electrical ICS running Modbus protocol.

As an example, Figure 2 shows the simplified format of an ICS protocol packet: The Header
field declares information about protocol and packet, which usually contains protocol signature,

transaction identifier, unit identifier, etc; Length field means the number of remaining bytes in

this frame; Func. field represents the function code field; Data field indicates the data content

associated with function code; CRC field is short for cyclic redundancy check, which is an error

check mechanism to ensure the reliability of data. In this format, the Func. field is just the special

field designed for transmitting orders.

DataHeader Length Func. CRC

 3 bytes 2 bytes 1 byte 1 byte n bytes

Fig. 2. An example of ICS protocol packet.

Figure 3 shows a simplified process of packet analysis in ICS protocol. We found that different

values of the function code in the packet direct the program to exercise different code paths. In

detail, assuming that an ICS protocol packet is received, the program first checks its integrity

through such filed as CRC (stage I). If valid, the program further processes the packet based on the

Func. field. The value indicated by the function code specifies the following trace. (stage II). Then,

the program will execute the corresponding trace with predefined libraries (stage III).

2.2 Fuzz Testing
As an automated software testing technique, fuzzing has emerged as one of the most effective

techniques for detecting bugs and security vulnerabilities in real-world software [7, 10, 12, 16, 20, 26].

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:5

Library

Function
Code

Validity
Verification

Value II

Execution
Trace
II

Value X

Execution
Trace
X

Value I

Execution
Trace
I

Value X

Exception
Handling

End

Not Valid

Stage I

Stage II

Stage III

...

...

Fig. 3. Overview of Packet Analysis in ICS Protocol.

It is first developed by Miller et al. [21] in 1990 and has, since then, been widely adopted in practice.

A number of serious security vulnerabilities in some important software programs have been

exposed by fuzzing [28].

Based on the utilization degree of internal program structure, fuzzers can be classified into

whitebox, blackbox and greybox. A whitebox fuzzer [4, 14, 15] utilizes source code analysis to better

understand the structure of program, while a blackbox fuzzer [1, 30] only requires access to the

program. A greybox fuzzer is an intermediate solution, and it employs some approaches to obtain

feedback from under-test-program and leverages those information to guide their fuzzing strategy.

Coverage-based greybox fuzzing (CGF) is a typical greybox fuzzing technology that employs

lightweight instrumentation to obtain coverage information. Taking AFL for example, it injects

instrumentation at branch points of the program under test and gets the coverage information as

follows:

cur_location = <COMPILE_TIME_RANDOM >;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

The value of cur_location is generated randomly during compile time and is used to specify the

basic block. The shared_mem[] array is a 64 kB shared memory region used to track coverage. Each

byte set at (A >> 1) ⊕ B in shared_mem[] records hits of transition from basic block A to B. CGF

leverages coverage information to guide seed mutation. A general sketch is shown in Algorithm 1.

At the beginning, the fuzzer is provided with a set of seed inputs S and they are added to the

seed pool Queue (lines 1-3). The seeds in Queue are chosen in a continuous loop unless timeout

or aborted (line 4). In each loop iteration, the fuzzer first chooses a seed from Queue (line 5) and

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:6 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

Algorithm 1: Coverage-based Greybox Fuzzing (CGF)

Input: S : initial seeds
Input: P : program under test

Output: Crashes: test cases that make program crash

Output: Hanдs: test cases that make program hang

1 Queue ← S

2 Crashes ← ∅
3 Hanдs ← ∅
4 while true do
5 seed ← PickSeed(Queue)

6 score ← CalculateScore(P , seed)

7 for 1 ≤ i ≤ score do
8 seed ′← Mutate(seed)

9 Results ← RunTarget(P , seed ′)

10 if Crash(Results) then
11 Crashes ← Crashes

⋃
{seed ′}

12 else if Hang(Results) then
13 Hanдs ← Hanдs

⋃
{seed ′}

14 else if isInteresting(Results) then
15 AddToQueue(Queue, seed ′)

calculates the performance score of seed (line 6) as implemented in CalculateScore(). This is also

where the power schedule is implemented because score is then used to determine the amount of

time to spend mutating seed (line 7). In the implementation of AFL, CalculateScore() makes use

of the performance reports of seed such as execution time, block transition coverage, and program

depth achieved. Then, the fuzzer generates new inputs by randomly mutating seed as implemented

in Mutate() (line 8). The new input seed ′ is then used to run the under-test-program (line 9). If it

crashes or hangs the program, then it will be added to the corresponding set (lines 10-13). When

seed ′ achieves new program coverage, it will be marked as interesting seed and added to Queue for
further fuzzing (lines 14-15).

3 MOTIVATIONAL EXAMPLE
As a motivating example for the proposed fuzzing framework, Listing 1 shows a simplified sample

code snippet that parses packets from the example format shown in Figure 2. In order to point out the

problem, we omit the verification code snippet of Header and CRC. First, the code reads the Length
and Func. fields (lines 9-10), and then takes further measures according to the value of function code

(line 12-30). In the sample code of Listing 1, the various operations supported by the function code

can be classified into two classes: Data Access and Diagnostics. The former means some operations

involved with the data in the internal register or other storage devices in the programmable logic

controller (PLC) devices, including WRITE_REGISTERS (line 16), READ_REGISTERS (line 23) and

WRITE_AND_READ_REGISTERS (line 25); the latter usually refers to a series of operations about

getting the status or event log of PLC, such as REPORT_SLAVE_ID (line 13). In general, Data Access

is more vulnerable than Diagnostics because Data Access involves access to the storage device

while Diagnostics is just a response to query without further action. The sample code has a “deep”

heap buffer overflow bug in the function write in line 20 because the write function uses the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:7

write_len value from the packet without sanitization, and the corresponding function code is

WRITE_REGISTERS.

Listing 1. An example code snippet of decoding packet

1 #define REPORT_SLAVE_ID 0x01
2 #define READ_REGISTERS 0x0F
3 #define WRITE_REGISTERS 0x16
4 #define WRITE_AND_READ_REGISTERS 0x17
5

6 void decode_packet(char *buf){
7 ...
8 char rsp[MAX_MESSAGE_LENGTH]; /* response message */
9 int length = get_length(buf);
10 char function_code = get_function_code(buf);
11 // further action according to function code
12 switch (function_code) {
13 case REPORT_SLAVE_ID:
14 report(rsp);
15 break;
16 case WRITE_REGISTERS:
17 char* register_t=get_register_address(buf ,length);
18 int write_len = get_write_len(buf ,length);
19 // Bug: function with heap buffer overflow
20 int status=write(register_t ,buf ,length ,write_len);
21 response_after_write(rsp , status);
22 break;
23 case READ_REGISTERS:
24 ...
25 case WRITE_AND_READ_REGISTERS:
26 ...
27 default:
28 error ();
29 break;
30 }
31 ...
32 }

Traditional mutation-based fuzzers, like AFL, do not adequately expose such heap buffer overflow

vulnerability in Listing 1. Since mutation-based fuzzers are unaware of the packet format, random

mutation operations on the Func. field will cause most of the generated packets to be rejected

in line 27. Furthermore, with equal treatment for each seed, the lack of awareness of vulnerable

operations and pertinence of more vulnerable traces would result in a low probability of triggering

the error in line 20. Traditional fuzzing methods would require significant effort applying blind

and meaningless repeated modifications to explore the whole space.

In contrast, Polar leverages static and dynamic program analysis to detect function code (line 12)

information and vulnerable operation (line 20) information, and thenmakes use of those information

during fuzzing. In detail, function code information (function_code) can be used to accelerate the

fuzzing process by exploiting the information to synchronize useful mutation information between

seeds and avoid invalid mutation on this field. Furthermore, vulnerable operation information

(status = write()) can be applied to help fuzzer select more seeds to exercise those operations

more frequently, which makes triggering vulnerabilities faster and more likely.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:8 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

4 SYSTEM DESIGN
In this section, we first introduce the overview of Polar using the motivation example above, and

then present details of the design.

4.1 Polar Overview
To achieve the proposed fuzzing framework, one of the most critical steps in the process is to

acquire pertinent information such as which byte offsets in the packet belong to the function code

field. Therefore, Polar requires byte-level taint tracing. But taint tracing is relatively expensive for:

(i) tracking each variable individually; and (ii) taint tracing in the fuzzing stage. Our key insight is

that taint tracing is unnecessary for the execution of the program during fuzzing. We can conduct

pre-processing before the fuzzing phase to obtain function code information. Furthermore, static

analysis can be applied for reducing the number of variables to be tainted. At its highest level,

Polar contains three components: static analysis, function code locator, and guided fuzzing, as

shown in Figure 4. We use the program in Listing 1 to illustrate Polar ’s basic workflow.

Inputs

funcinfo

Vulnerable
Operations

Bug	Report

Original	Program

Instrument		Program	I

Execution	Monitor

Function	Code
						Locator Guided	Fuzzing

Instrument		Program	II

Guided	Fuzzer

Original	Program

Abstract	Syntax	Tree

Source	Code

Analyzer

Static	Analysis

funcinfo
Candidates

Fig. 4. Polar System Overview. It mainly consists of three components: Static Analysis for detecting function
code candidates and vulnerable operations; Function Code Locator for function code verification; Guided
Fuzzing for novel fuzzing strategy.

Static Analysis Module. Given an ICS protocol program P , Polar first uses a lightweight static
analysis to obtain: (i)funcinfo candidates; by scanning the source code of ICS protocol, static analyzer

extracts specified code structures that function code processing statement may conform to and

records their information in the file funcinfo candidates; (ii) Vulnerable Operations; simultaneously,

static analyzer will also collect information about security-sensitive operations such as dynamic

memory allocation functions (e.g., malloc, realloc) and a set of functions implementing operations

on strings (e.g. memcpy, strcpy, strcat).

In the example of Listing 1, the funcinfo candidates will include:

Source File: decoder.c
Position: line 12
Variable: function_code

Values: [0x01 , 0x0F , 0x16 , 0x17]

which means the variable function_code in line 12 of decoder.c may record the value of the

function code and its possible values are 0x01, 0x0F, 0x16, and 0x17. Similarly, if there is a memcpy

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:9

function call in function write in line 20 and a malloc function call in line 31, the Vulnerable

Operations report will include entries as follows:

decoder.c: 20: memcpy
decoder.c: 31: malloc

which means there are vulnerable operations in line 20 and 31 of decoder.c, and their related

functions are memcpy and malloc respectively.
Function Code Locator Module. The first step may identify many funcinfo candidates with

potential false positive, which need to be further verified. In this phase, Polar applies taint analysis
to monitor the flow of data in protocol program P for a given input I . More specifically, the execution

monitor records which input bytes of I determine the value of candidate funcinfo variable. In this

example, the byte that influences the value of candidate funcinfo variable function_code is the
sixth byte (see Figure 2). Through that taint information collected during the preliminary run-time

execution, the funcinfo can be further confirmed. The final output version of funcinfo is as below:

Source File: decoder.c
Position: line 12

Starting Byte: 6
Ending Byte: 6

Variable: function_code
Values: [0x01 , 0x0F , 0x16 , 0x17]

Guided Fuzzing Module. In the third phase, the traditional fuzzer is improved based on the

identified funcinfo and Vulnerable Operations. Polar’s main optimization in the fuzzing strategy

is designed for ICS protocols based on our investigation of their features. Polar incorporates

lightweight synchronization mechanism to share useful path information, avoids invalid repetition

on different values of the function code field and tries to exercise vulnerable traces more often. For

example, the test input seeds that cover line 12 and 31 would be selected and mutated with more

possibilities. The mutation information of interesting seeds with the function code of value 0x0F

would be partially synchronized to seeds with the function code of value 0x17 by Polar’s fuzzing
procedure.

4.2 Static Analysis
The static analysis module is used to detect suspicious function code statements and vulnerable

operations in the source code. Since the function code field in the ICS protocol is usually the key

point designed for a variety of control demands, the function code processing statement is usually

a multi-branch statement that determines the following execution directions. As shown in line 12

in Listing 1, different functions are represented as different values of the Func. field in Figure 2.

For instance, the set of legal values that the variable function_code in Listing 1 can have is {0x01,

0x0F, 0x16, 0x17}, designed for different demands respectively.

Algorithm 2 shows the detail of this module. We first translate the source code into abstract

syntax tree (AST) for better understanding and analysis (line 2). Compared to the source program,

AST provides a more structured and precise format for analyzing the code construction and logic

component during the static analysis period. In the tree format, each node of the tree represents

one syntax structure in the source program and the children of the node correspond to the units

forming this syntax structure.

Then, we use the Depth First Search (DFS) algorithm to traverse the abstract syntax tree and

locate the potential source code related to the function code field (lines 3-13). As mentioned

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:10 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

Algorithm 2: Extract funcinfo candidates
Input: P : program under test

Output: f : funcinfo candidates
1 Algorithm
2 AST ← CompileAst(P)

3 root ← GetRoot(AST)

4 DFS(root)

5 Procedure DFS(tree_node)
6 if tree_node equals null then
7 return
8 else
9 if IsMultipleBranch(tree_node) then

10 f ← f
⋃

ExtractFuncinfo(tree_node)

11 Children ← GetChildren(tree_node)

12 for child ∈ Children do
13 DFS(child)

before, a function code judging statement usually tends to be multiple branch statement. From the

perspective of source code, it may be switch-case statement or if-then statements. Correspondingly,

the function IsMultipleBranch() can be designed to filter multi-branch subtree based on their

feature. We can dive into the details for those two structures: (i) Switch-case statement. In the

format of AST, the whole information of a switch-case structure is recorded in the subtree with the

root of the “SwitchStmt” tree node. As a result, to locate a switch-case structured multiple branch

statement, we argue that when a “SwtichStm” tree node is found during DFS, the subtree with root

of this node can be marked as what we want. (ii) In addition, when facing protocols with structures

like if-then statements, we can use similar ways to extract funcinfo candidates. Based on the feature

of function code in ICS protocol, we list two screening conditions for IsMultipleBranch(): (1)

the depth of corresponding if-then AST should be greater than a threshold; and (2) the condition

params of all “if” must be the same one, which should be recorded as funcinfo candidate variable

and the corresponding values of conditions will be marked as legal values of this variable. Once

obtaining a multi-branch subtree, we can extract its information such as variable name, position of

this multi-branch, legal value set, and so on (line 10). Meanwhile, when traversing AST, we can

collect the position information of vulnerable operations in the source code.

4.3 Function Code Locator
After obtaining the information of potential function code related statements, Polar works as

follows to reduce false positives and verify their authenticity.

Dynamic Taint Tracing. In order to monitor the data flow of under-test-program for given

input, Polar uses dynamic taint analysis (DTA). DTA can keep track of tainted input and deter-

mine which memory locations and registers are dependent on it. Furthermore, based on different

granularity, DTA can be extended to trace the derivation of the taint values to individual offsets

in the input. Polar implements a byte-level taint tracing and tracks the label propagation during

program execution based on LLVM DataFlowSanitizer (DFSan) [8].

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:11

To implement DTA for ICS protocol analysis, there are two problems that need to be solved: (i)

How to identify the taint source to assign taint labels? (ii) How to extract the label information

of the target variables? For the first problem, the taint source is the sampled ICS protocol packet,

and the data read from the packet should be marked for further taint label assignment. To do

this, Polar makes use of the ABI List in DFSan to intercept relevant function calls and replace

them with the corresponding custom wrapper. For example, for a packet transmitted via socket,

Polar intercepts function calls such as socket, recv, read, and close. When a socket is created,

Polar records the file descriptor fd. Each time the program reads from this socket, Polar records

the offset and assigns different labels for each byte in the buffer. The value of offset can be updated

in accordance with the return value of recv. Furthermore, Polar stops tracking fdwhen the socket

is closed. For the second problem, Polar instruments the original source code with calls to the

taint source library, and the position for instrumentation is the code point where the funcinfo

candidate variable is used, such as line 12 in the Listing 1. The taint library is used to extract the

label information for those target variables and pass it to the execution monitor.

Function Code Verification. In this step, the execution monitor is used to verify funcinfo

candidates and delete false positives. Algorithm 3 provides the overview of the process.

Algorithm 3: Verify Function Code Information

Input:M: set of funcinfo candidates

Input: seeds: initial inputs for the program
Input: P : program under test

Output:M ′: subset of funcinfo candidates after verification(true funcinfo)
Output: O: set of offset information for each funcinfo inM

1 for e ∈ M do
2 Oe ← ∅
3 M ′←M

4 for seed ∈ seeds do
5 taint_in f ormation ← RunTarget(P , seed)

6 for e ∈ M do
7 I ← GetOffsets(taint_in f ormation, e)

8 if Oe is empty then
9 Oe ← I

10 else if not Equal(Oe ,Oe
⋂
I) then

11 M ′←M ′ − e

For Algorithm 3 in detail,M represents the set of funcinfo candidates. Then, for each iteration,

the execution monitor fetches an input seed from the initial test inputs, runs the target programwith

seed, and collects the taint_information simultaneously during the execution (lines 4-5). The initial

test inputs are packets randomly sampled on network in real industrial production environment.

Then, for each candidate e inM, the execution monitor extracts the offsets of bytes in the seed

that taint the target variable of e from the taint_information through the Polar’s taint source
library (lines 6-7). Let the offsets of e be Oe . The execution monitor records Oe after each run and

monitors whether it is always the same for each seed. More specifically, if Oe is always the same,

the execution monitor retains e . Otherwise, it discards e fromM ′ (lines 8-11). This is based on the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:12 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

observation that, for a given function code func. (there maybe multiple function codes in some ICS

protocols), the byte offsets of func. in the protocol packets are fixed.

After running the program with all the initial seeds, we assume that the remaining funcinfo

candidates inM ′ are true function code information, and record their information along with byte

offsets in the file funcinfo. A piece of funcinfo consists of the source file, variable position, starting

offset of byte, ending offset of byte and legal values as shown in the Section 4.1. Those information

is used for guided fuzzing.

4.4 Guided Fuzzing
The guided fuzzing module of Polar incorporates that information into the traditional coverage-

based greybox fuzzing (CGF) shown in Algorithm 1. In simple terms, the original CGF generates

malformed inputs by mutating existing inputs, feeds them to the under-test-program and records

the inputs when the program crashes or hangs. In Polar, we devise a novel fuzzing strategy for ICS
protocol fuzzing to increase the efficiency based on the funcinfo and Vulnerable Operations obtained

in the above steps. Our modifications are mainly reflected in three aspects: (i) First, we modify

the way of calculating a seed’s performance score, so that vulnerable operations are exercised

more frequently; (ii) Second, we modify the way mutations are imposed on seeds, avoiding blind

modification on some key areas; (iii) Third, based on the feature of ICS protocol, we design a

lightweight synchronization mechanism between seeds with different values of the function code to

help explore new paths faster. The first two aspects are addressed in the function CalculateScore()

and Mutate() of Algorithm 1. The third aspect is addressed in Algorithm 4.

Guided Seed Prioritization and Mutation. Given the original program, we first instrument

the program based on the funcinfo and Vulnerable Operations. Unlike the instrumentation of CFG

presented in Section 2.2, we use a more precise instrumentation to record whether the function

code statements or vulnerable operations are executed. A sketch of the code that is inserted at each

target point in the program is shown in Listing 2 (lines 2,7):

The variable Func_ID identifies the current function code statement. It is assigned by the exe-

cution monitor in the function code locator module, and the variable Vul_Op_Index is assigned a

constant value. Hence, the shared memory of existing fuzzers such as AFL could be expanded to

collect those information easily. The execution trace of the under-test-program on a given input is

collected as a set of pairs of the form (Func_ID, hit_counts) and a pair of the form (Vul_Op_Index,

hit_counts), where hit_counts means the hit times of the corresponding statement for a single

execution. Due to the small number of funcinfo and Vulnerable Operations, the overhead of our

instrumentation can be roughly ignored.

Listing 2. Polar ’s Instrumentation

1 // function code statement
2 do{shared_mem[Func_ID]++; } while (0)
3 switch(function_code) {...}
4 ...
5 // vulnerable operation
6 malloc (...);
7 do{shared_mem[Vul_Op_Index]++; } while (0)

Secondly, Polar implements a power schedule that not only considers those indexes mentioned

in Section 2.2, but also brings vulnerable operations into the analytical scope. Let E(I) denotes
energy of seed I , and the original energy of I calculated by base fuzzer is Eini (I). The times of

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:13

vulnerable operations CountI is recorded during execution. Polar computes E(I) as Formula (1):

E(I) =min

(
Eini (I)

β
h(CountI),M

)
(1)

h(x) is an increasing function and E(I) increases as CountI increases. β balances the relation

between the base fuzzer energy assignment value and Polar’s energy assignment value. The

constant M provides an upper bound on the number of mutations per fuzzing iteration. Hence, the

higher the value of CountI is, the more energy will be assigned to I for further mutation. Thus, the

chance to exercise those vulnerable operations is much higher.

Thirdly, Polar optimizes the mutation strategy used by traditional CGF that takes each bit/byte

into consideration. For a given seed I , let PI represents the set of Func_ID hit by I during execution,
that is to say, for each Func_ID ∫ ∈ PI , the value of hit_counts of ∫ is non-zero. If I achieves new
program coverage and is marked as interesting seed (Algorithm 1, line 14), PI will be taken into

consideration during I ’s mutation. In particular, if a byte of I belongs to [start_byte∫ , end_byte∫]
for some ∫ ∈ PI in the funcinfo, it is then protected against being mutated. This approach can

effectively reduce the cardinality of mutation space. We have found empirically that more than 90%

of seeds in the Queue (Algorithm 1, line 5) hit one or more function code branches. Therefore, it

makes sense to protect the Func. field because blind mutation will cause too many invalid seeds,

and feeding them to the target program is time-consuming (especially for large programs that run

slowly) and meaningless. In addition, due to random mutation of CGF, many seeds produced are

likely to be rejected during Validity Verification (Figure 3, stage I). Assuming that seed I 0 can
pass the verification, blindly mutating the Func. field of I 0 will increase the probability of being

rejected during Function Code Verification (Figure 3, stage II), making it more difficult for

fuzzers to reach deep places in a program.

Guided Seed Synchronization. Last, we add a novel synchronization strategy called replace
to traditional CGF, aimed to synchronize useful mutation information between seeds with differ-

ent values of the function code. As mentioned before, different function code values will cause

different execution traces. However, for different values, we also observe that there are many

similar operations between some traces and they tend to include the same code snippet or call the

same functions in some library as shown in Figure 3. Taking the function code in Modbus [37] for

example, the function code value specified to write single coil has almost the same operations

as the function code value specified to write single register. They all need to calculate the

mapping address, calculate the data to write and construct a response message. The only difference

between them is the place to write. In addition, the function code specified to write single coil
performs a subset of the operations carried out with the function code write multiple coil.
Hence, an input with one value of the function code that achieves new program coverage can

be used to guide the mutation of inputs with other values of the function code. Based on those

features, we implement the following synchronization strategy.

Algorithm 4 describes this strategy. Given a seed I to mutate, when set PI of I is not empty, the

mutation strategy replace will be applied to generate new inputs (lines 3-11). For each Func_ID

∫ ∈ PI , the detailed information will be extracted from funcinfo (lines 4-6) and the bytes of I in
range [start_byte∫ , end_byte∫] will be replaced with legal candidate values (lines 7-11).

This synchronization strategy is lightweight and efficient for fuzz testing of ICS protocol. Due to

the similarity between some traces for different values of the function code, the test cases generated

in this phase satisfy many primitive constraints and have a high likelihood of exploring new paths,

making trigger potential vulnerabilities more likely. Through the experiment, we found that this

synchronization mechanism can sustainably and efficiently provide interesting seeds during the

fuzzing of ICS protocol.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:14 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

Algorithm 4: Synchronization Mechanism between different values of the Function Code

Input: I : seed to mutate

Input: PI : set of Func_ID hit by I during execution
Input: funcinfo: function code information obtained

Output: F : test cases generated by mutating I in replace phase

1 F ← ∅
2 if PI is not empty then
3 for ∫ ∈ PI do
4 X∫ ← GetSpecific(funcinfo, ∫)

5 C ← GetCandidates(X∫)

6 start_byte, end_byte ← GetRange(X∫)

7 for c ∈ C do
8 I ′← I
9 for start_byte ≤ i ≤ end_byte do

10 I ′← Replace(I ′, c, i)

11 F ← F
⋃
{I ′}

4.5 System Implementation
Polar consists of three modules: the static analyzer, the function code locator and the guided fuzzer.

The static analyzer exploits Clang compiler to obtain the AST information from the ICS protocol

source program during the period of compiling. In the function code locator, to support fine-grained

byte-level taint tracing described in Section 4.3, we implement taint tracing for Polar based on

LLVM DataFlowSanitizer (DFSan) [8]. To identify taint sources, we make use of the ABI List in
DFsan to intercept relevant function calls. Furthermore, we implement a taint library to extract

label information for the execution monitor.

The guided fuzzer module is based on AFL 2.52b/AFLFast [3] (called Polar-AFL and Polar-
AFLFast respectively). We extend the shared memory segment to store hits of function code

branches and times of vulnerable operations. To support source code instrumentation, we extend

afl-clang-fast [29] and use it as the compiler of our tool chain. Moreover, we add a new mutation

strategy named replace and modify the existing mutation strategy in AFL/AFLFast, making

use of funcinfo. Meanwhile, the power schedule takes Vulnerable Operations into consideration.

Implementation details are available through the Github page reported at Footnote 1.

5 EVALUATION
In order to measure the effectiveness of Polar, this section presents an evaluation of the program.

First, we evaluated the accuracy of Polar’s function code identification (for the module Static

Analysis and Function Code Locator) in Section 5.2. Then we evaluated the efficiency of our novel

fuzzing strategy (for the module Guided Fuzzing) in Section 5.3. We implemented our framework

on AFL and AFLFast (called Polar-AFL and Polar-AFLFast separately) and compared their results

to demonstrate the acceleration in fuzzing and improvement in coverage. Last, in Section 5.4, we

list the previously unknown vulnerabilities detected by Polar.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:15

5.1 Experiment setup
We evaluated the performance of Polar on several open-source implementations of some widely

used ICS protocols. We chose libmodbus [22, 37], IEC104 [9, 36] and libiec61850 [13, 34]. Those ICS

protocols are both typical and widely used in industrial practice. Table 1 shows the description of

those protocols.

We tested our framework on the top of two popular fuzzing tools, AFL and AFLFast. AFL is

a state-of-art coverage-base greybox fuzzer that has exposed vulnerabilities in a widespread of

programs including OpenSSL, PHP, tcpdump [35]. AFLFast is an enhancement of AFL. It extends

AFL by collecting path frequency and utilizing it to prioritize seeds exercising low-frequency paths.

It, thus, achieves high code coverage and exposes vulnerabilities faster than AFL [3]. To analyze

the code coverage achieved by different fuzzing tools, we chose the commonly used path coverage

as the main metric. A new path in AFL means a new program execution state. Therefore, the more

paths a fuzzing tool explores, the higher probability it will detect a vulnerability.

Our experiments were conducted on a 64-bit machine with 80 cores (Intel(R) Xeon(R) Gold 6148

CPU @ 2.40GHz), 128GB of main memory, and Ubuntu 16.04.6 LTS as the host OS. We ran each

fuzzing tool on each program for 24 hours (on a single CPU core).

Table 1. Description of Selected ICS Protocols

Protocol Description

Modbus

Modbus protocol has turned into the de facto standard for building

communications between industrial devices since it was

presented in 1979. It is a serial network protocol based on TCP/IP.

IEC104

IEC104 is an international standard widely used in electric power,

urban rail transit and other industries. It ensures the power supply

systems operating safely and reliably.

IEC61850

IEC61850 protocol is one of the most important protocols in the

field of electric power system automation. It realizes the engineering

operation standardization of intelligent substation.

5.2 Accuracy on Function Code Identification
Since accurately locating the function code processing statements is critical in our proposed

framework, we ran Polar on the above three ICS protocols to evaluate its accuracy.

The results of Polar ’s function code identification are summarized in Table 2. There are two

steps for Polar to identify function code: a screening process and a verification process. In the first

step, Polar uses static analysis to filter some funcinfo candidates. It scans the whole program and

extracts multi-branch information. As Table 2 shows, the column |M| represents the number of

funcinfo candidates detected by module Static Analysis. For the project libiec61850, |M| is large

because it is complex and applies many switch statements to process other data. In the second step,

to refine the setM, Polar instruments the program with calls to Polar taint library at the detected
candidate points, runs the program with malformed packets and monitors how data flows in each

point. The third column |funcinfo| indicates the number of pieces in the final funcinfo. Additionally,

the fourth column lists the legal values detected by Polar corresponding to each funcinfo piece.

After manual inspection with the ground-truth, the fifth column shows whether Polar successfully
detected true function code processing statements, where “✓” means success and “×” means failure.

As an example shown in Table 2, in libmodbus, Polar detected 11 suspected function code

statements after static analysis. After the Polar taint analysis stage, only onewas left as true funcinfo

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:16 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

and the legal value set is [01,02,03,04,05,06,07,0F,10,11,16,17] for the hexadecimal. This funcinfo was

further verified to be true after we referred to the source code [22] and the documentation [37].

Table 2. Function Code Identification Results

Project |M| |funcinfo|

Set of Legal Values (hexadecimal)

True?

for Each funcinfo Piece

libmodbus 11 1 [01,02,03,04,05,06,07,0F,10,11,16,17] ✓

IEC104 12 2

[07,13,43,0B,23,83,64] ✓
[83,64,67,30,32,80,81] ✓

libiec61850 174 1 [02,80,A1,82,A4,A5,A6,AB,AC,AD] ✓

In conclusion, the results show that Polar can successfully detect the function code statement

pieces and extract the precise legal values corresponding to each Func. field. These pieces of

information will be made use of in the following guided fuzzing stage.

5.3 Acceleration on Fuzzing

(a) libmodbus (b) IEC104 (c) libiec61850-MMS

(d) libmodbus (e) IEC104 (f) libiec61850-MMS

Fig. 5. Number of paths covered by different fuzzing techniques averaged over 25 runs with different seeds

Results Overview. After obtaining the funcinfo of each ICS protocol, we further evaluated our

novel fuzzing strategy based on those semantic information. We ran each fuzzing tool for 24 hours

(on a single core) on each selected project based on 5 different sets of starting seeds (including the

empty seed). What’s more, we repeated each 24-hour experiment 5 times to establish statistical

significance of results [18]. Each project is accompanied with Google AddressSanitizer (ASan)[25].

Figure 5 plots, for each project and technique, the average number of paths covered over all 25 runs

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:17

at each time slot (dark central line) and 90% confidence intervals in paths covered at each time slot

(shaded region around line) over the 25 runs for each 24-hour experiment.

From Figure 5, we can see that with Polar, AFL and AFLFast are able to achieve higher path

coverage at a faster speed. Meanwhile, in our 24-hour experiments, we find that most fuzzers

eventually became convergent, what we describe as the fuzzer reaching a “saturation” state. On

average, Polar-AFL reaches the “saturation” state 3.6X faster than AFL and 1.5X faster than AFLFast.

For a dedicated number of covered path, for example, 55 paths, Polar-AFL is about 4x, 1.1x, and

9x faster than AFL on libmodbus, IEC104 and libiec61850 respectively. Polar-AFLFast is about
5x, 1.2x, 12x faster than AFLFast on libmodbus, IEC104 and libiec61850 respectively. Furthermore,

for libmodbus, Polar-AFL covered 9.1% more paths than AFL. Polar-AFLFast covered 12.7% more

paths than AFLFast. For IEC104, Polar-AFL covered 19.5% more paths than AFL. Polar-AFLFast
covered 24.1% more paths than AFLFast. For libiec61850, Polar-AFL achieves 31.0% more paths

than AFL and Polar-AFLFast achieves 19.6% more paths than AFLFast.

To further illustrate the effectiveness of our fuzzing strategy and experiment result impartially,

we introduce two definitions as below.

Definition 1. A(Q). For a seed queueQ (Algorithm 1, line 1),A(Q) represents the set of interesting
seeds generated by mutation operation replace in Q .

Definition 2. B(Q). For a seed queue Q , B(Q) represents the set of interesting seeds that are

generated by some seed S ∈ A(Q) through one or more mutation operations (including replace).

seed	queue	

"replace"
operation

"replace"
operation

mutation
(exclude	"replace")

1 2

34

Fig. 6. Illustration for A(Q) and B(Q).

To better understand those two definitions, Figure 6 gives an illustration. It shows four stages of

seed queue Q . The little circles in Q represent seeds and different colors of them represent their

different classes as listed in the top left corner. For stage i , it may go through several mutation

iterations to move to stage i + 1.

Definition 3. N(Q). For a seed queue Q in Polar, N(Q) means the impact factor about how our

novel fuzzing strategy contributes to providing interesting seeds during the fuzzing process.

Intuitively, we can calculate N(Q) by Formula (2).

N(Q) =
|A(Q)| + |B(Q)| − |A(Q)

⋂
B(Q)|

|Q |
(2)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:18 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

Definition 4. W(Q). For a seed queue Q in Polar , Q− means the seed queue discards those seeds

that appear in the seed queue of the base fuzzer (AFL/AFLFast).W(Q)means the impact factor similar

to N(Q), and it only takes seeds in Q− into account.

Analogously,W(Q) is computed by Formula (3).

W(Q) =
|A(Q−)| + |B(Q−)| − |A(Q−)

⋂
B(Q−)|

|Q |
(3)

Then, within the limited time budget, N(Q) reflects the improvement of fuzzing speed.W(Q)
describes the increment of path covered.

Once an interesting seed (Algorithm 1, line 14) is generated, Polar will use guided seed prioriti-

zation and mutation, and apply lightweight synchronization strategy (Algorithm 4) to synchronize

useful seed information, leading to the earlier appearance of more interesting seeds. Therefore,

compared to the base fuzzer, Polar can achieve higher speed. In addition, the approach of protecting
Func. field during mutation can also speed up the process of discovering new paths. Taking those

interesting seeds that cannot be generated by the base fuzzer (|Q−|) within the limited time budget

into count,W(Q) objectively describes the ability of Polar to discover new paths.

Detail Analysis. To evaluate Polar using the above two indicators, we selected 1 run from 25

runs for each project and calculated N(Q) andW(Q) for them. Table 3,4 present the details of

N(Q) andW(Q) results for Polar-AFL and Polar-AFLFast.

Table 3. N(Q) for Each Project(Polar-AFL/Polar-AFLFast)

Project |Q | |A(Q)| |B(Q)| |A(Q)
⋂
B(Q)| N(Q)

libmodbus 60/66 11/18 37/17 0/7 80.0%/42.4%

IEC104 225/236 14/15 195/197 4/5 91.1%/87.7%

libiec61850-MMS 65/72 7/11 6/9 4/8 13.8%/27.8%

Table 4. W(Q) for Each Project(Polar-AFL/Polar-AFLFast)

Project |Q | |Q−| |A(Q−)| |B(Q−)| |A(Q−)
⋂
B(Q−)| W(Q)

libmodbus 60/66 14/31 0/6 0/8 0/6 0.0%/12.1%

IEC104 224/236 208/226 5/11 189/173 3/3 84.9%/77.1%

libiec61850-MMS 65/72 62/69 7/11 6/9 4/8 13.8%/27.8%

Statistics on libmodbus. Modbus is a stable and relatively simple ICS protocol compared with

others both in format and size of the code base. Therefore, as illustrated in Figure 5, most fuzzers

tend to reach the “saturation” state in an early phase. As shown in Table 2, the legal values of funcinfo

are close to each other, which means it is easy for AFL/ AFLFast to achieve the extra-legal values

through simple mutation operations such as bit flips, byte flips, and arithmetics. Consequently,

the base fuzzer can generate almost the same interesting seeds as Polar did, which contributes to

the small value of |Q−| andW(Q) in Table 4. Nevertheless, through our semantic aware mutation,

Polar is able to generate those seeds earlier, which optimizes the fuzzing process as reflected at

N(Q) in Table 3.

Statistics on libiec61850-MMS. Compared to Modbus, libiec61850-MMS owns more complex packet

structures and larger variation of legal funcinfo values. The seeds generated by Polar have few
similarities with the base fuzzer (|Q−| is basically equal to |Q |). Furthermore, as shown in Figure 5,

Polar achieves more paths covered on account of our synchronization mechanism (W(Q)), and
explores paths at a higher speed (N(Q)).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:19

Statistics on IEC104. The results of experiments conducted on IEC104 show Polar ’s excellence
not only in number of paths covered but also in the speed boost (as shown in Figure 5). The

synchronization mechanism sustainedly and effectively provides interesting seeds for fuzzing

course, shown in high value of N(Q) andW(Q).
In conclusion, the proposed fuzzing strategy is valuable and effective in practice. It makes a

significant contribution by accelerating fuzzing and exploring more paths within a limited time

budget. As the results on the three protocols show, Polar can accelerate fuzzing 3.6X and 1.5X for

AFL and AFLFast on average, ranging from 1.5X to 12X faster for each path instance. Polar gains

final increases in covered path with 19.9% and 18.8% for AFL and AFLFast on average, ranging from

0% to 91% for each time slot.

5.4 Previously Unknown Vulnerabilities
In real practice, Polar’s two implementations, Polar-AFL and Polar-AFLFast have already detected
several previously unknown security vulnerabilities in widely used implementations of libiec61850

and IEC104, 6 of which have been assigned with unique CVE identifiers. Table 5 summarizes those

vulnerabilities that have been confirmed and repaired. The column “Type” indicates the cause

of vulnerabilities, mainly including null pointer dereference, SEGV, heap-based buffer overflow,

stack-based buffer overflow and denial of service. The column “Advisory” shows vulnerability

identifier information. “CVE-xxx” means it is assigned a CVE identifier, while “bug-xxx-x” means

the vulnerability have been confirmed.

Table 5. Vulnerabilities Exposed by Polar

Project Type Advisory Total

libiec61850

heap buffer overflow CVE-2018-18834 , CVE-2018-19185

6NULL pointer dereference CVE-2018-18937, CVE-2018-19122

SEGV CVE-2018-19093, CVE-2018-19121

IEC104

stack buffer overflow Bug-2019-0312

4SEGV Bug-2019-0207, Bug-2019-0307

denial of service Bug-2019-0402

The bugs exposed by Polar can dramatically affect the service of devices running those ICS

protocols. Taking the denial of service vulnerability(Bug-2019-0402) of IEC104 in Table 5 as an

example, if this bug is made use of for destructive purposes, the server device will immediately

shut down, causing the whole system to crash.

We present the denial of service vulnerability in IEC104 in detail. We analyzed this vulnerability

with the GNU Project Debugger (gdb) as shown in Listing 4. It is caused by tending to call a

unimplemented function (function SaveFirmware) in line 1066 (Listing 3) when processing a

packet, which then leads to application crash (segmentation fault). In our experiment, Polar-AFL
exposed this vulnerability 18x faster than AFL and Polar-AFLFast exposed it 4x faster than AFLFast.

In conclusion, Polar achieves faster fuzzing speed and higher path coverage, and is more effective

in real vulnerability detection.

Listing 3. Code Snippet of IEC104
1065 for(i=0; i<3; i++){
1066 ret = IEC10X ->SaveFirmware

(DataLen ,DataPtr ,FirmwareType , Iec10x_Update_SeekAddr);
1067 if(ret == RET_SUCESS)
1068 break;
1069 }

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

57:20 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

Listing 4. A denial of service vulnerability in IEC104
Thread 2 "iec104_monitor" received signal SIGSEGV ,
Segmentation fault.
(gdb) bt
#0 0x0000000000000000 in ?? ()
#1 0x00000000004087a6 in Iec104_Deal_FirmUpdate

(asdu=0 x7ffff37fe896 , Len=20 '\024') at ..// IEC10X/Iec104.c:1066
#2 0x000000000040923f in Iec104_Deal_I

(Iec104Data =0 x7ffff37fe890 , len =20) at ..// IEC10X/Iec104.c:1208
#3 0x000000000040972c in Iex104_Receive

(buf=0 x7ffff37fe890 "h\022~\344\202\060\200\006\016" , len =41)
at ..// IEC10X/Iec104.c:1305

#4 0x000000000040b662 in Iec104_main (arg=0 x7fffffffe100)
at main.c:139

#5 0x00007ffff6a306ba in start_thread (arg=0 x7ffff37ff700)
at pthread_create.c:333

#6 0x00007ffff676641d in clone ()
at ../ sysdeps/unix/sysv/linux/x86_64/clone.S:109

6 RELATEDWORK
Protocol Fuzzing. There are some fuzzers that are highly optimized for protocol testing such

as Sulley [1], Defencis, and Peach [30]. However, most of them require format specification of

protocol under testing, which causes significant manpower expense. Also, those generation-based

fuzzers do not easily detect deep bugs in the source code. In contrast, given an ICS protocol to

test, Polar requires no extra format specification of the protocol packet, decreasing the amount

of manual work required to test implementations of ICS protocols. It extracts some protocol

information automatically and utilizes it during fuzzing, giving it a wide applicability.

Grammar based fuzzing. Several fuzzing techniques have been proposed based on grammar.

CSmith [42] is a fuzzer designed for C programming language and generates C programs based on

randomly selected production rule in the grammar. LangFuzz [17] leverages ANTLR grammars to

parse previously regression test input to code fragments and save them for recombination during

seed generation.

Symbolic Execution based fuzzing. This technique has been widely applied to optimize

fuzzing tools such as KLEE [4], Driller [27], SAFL [31], and CUTE [24]. Those tools apply symbolic

execution to maximize code coverage by collecting constraints along a program path and generating

inputs that satisfy unexplored path constraints. They are useful for generating valid packets for

protocols with simple format. However, the scalability of this technique cannot be guaranteed

because it can result in path explosion problem and requires strict execution of environmental

support. Hence, the application of symbolic execution remains a challenge for large programs such

as ICS protocols running in an industrial production environment [5].

Taint Analysis based fuzzing. Taint analysis based fuzzers exploit program data-flow features

by analyzing how the program processes an input during execution. There are also many fuzzing

tools that incorporate this technique. Considering how the data-flow features are used, those fuzzers

can be roughly divided into two categories: (i) Some fuzzers aim to trigger security-sensitive codes

or unexplored branches. For instance, Buzzfuzz [11] is directed for those components of input

that affect the values in “attack point”. Angora [6] utilizes taint analysis to analyze which byte

offsets in the input affect the predicate of unexplored branches, and then utilize those information

for targeting the unexplored branches. VUzzer [23] applies taint analysis to extract data-flow

features, which allows it to determine where and how to mutate. (ii) There are also some fuzzers

that apply this approach with the objective of detecting some critical points in the program at a

pre-processing stage like Polar. For example, TaintScope [32] uses taint analysis to locate checksum-

based integrity checks. After obtaining their information, TaintScope injects instrumentation to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:21

the target program at the corresponding points to help bypass those integrity checks. Therefore,

the control flow of program under fuzzing stage differs from the original one. Then if an input C

leads to crash, TaintScope needs to repair checksum fields in C by combined concrete and symbolic

execution and then feed it to the original program to verify its reproducibility. Polar uses the

similar techniques of combined static analysis and taint analysis to locate function code. However,

the main difference between Polar and TaintScope reflects in fuzzing stage. TaintScope makes

modification to the target program while Polar leverages funcinfo to optimize fuzzing strategy.

What’s more, TaintScope needs additional verification to reduce false positives when crashes

are discovered. Actually, Polar can be applied to TaintScope to make further improvements in

vulnerability detection. The detail comparison between Polar and TaintScope are listed in Table 6.

Table 6. Comparison between Polar and TaintScope

Comparison Polar TaintScope

Goal of Static Analysis

Filter funcinfo candidates and

vulnerable operations

Filter checksum-based integrity check

candidates and vulnerable operations

Goal of Taint Analysis Verify funcinfo

Verify checksum-based integrity checks and

identify hot bytes for vulnerable operations

Fuzzing Strategy

Add two strategies for function code aware

and one strategy for vulnerable operations

Add one strategy for vulnerable

operations (hot bytes)

Logic of Under-test-program Unchanged Changed

Crash Verification No need Required

Goal of Instrumentation

Obtain the coverage information of function

code statements and vulnerable operations

Change the control flow of under-test-program

to bypass integrity checks

7 CONCLUSION
In this paper, we present Polar, a function code aware fuzzing framework for ICS protocol vulner-

ability detection. Based on static code analysis and dynamic taint analysis techniques, Polar can
locate the function code processing statement and some security-sensitive points automatically,

and then utilizes those information to guide the fuzzing process. We augmented AFL and AFLFast

with Polar and evaluated them on three widely used implementations of libmodbus, IEC104 and

libiec61850. Polar-AFL and Polar-AFLFast achieve higher path coverage at a faster speed and have

exposed 10 previously unknown bugs, 6 of which have been assigned with unique CVE identifiers.

Polar is fully automatic and can also be applied to many other fuzzers, such as FairFuzz[19], for

further improvement, especially when the format of protocol packet is unavailable. Currently, our

present implementation of Polar relies on the source code of ICS protocols. Theoretically, it can

be also extended to test binary forms of ICS protocols, and we leave it as our future work.

REFERENCES
[1] Pedram Amini and Aaron Portnoy. 2012. Sulley. (2012). https://github.com/OpenRCE/sulley Accessed August 22nd,

2017.

[2] IEEE Standards Association. Accessed June 3rd, 2019. IEEE C37.118. Website. https://standards.ieee.org/standard/

C37_118_1-2011.html.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing as Markov Chain.

In ACM Conference on Computer and Communications Security.

[4] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs. In OSDI.

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM 56

(2013), 82–90.

[6] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search. 2018 IEEE Symposium on Security and

Privacy (SP) (2018), 711–725.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

https://github.com/OpenRCE/sulley
https://standards.ieee.org/standard/C37_118_1-2011.html
https://standards.ieee.org/standard/C37_118_1-2011.html

57:22 Z Luo, F Zuo, Y Jiang, J Gao, X Jiao, and J Sun

[7] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Zhuo Su, and Xun Jiao. 2018. EnFuzz:

Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers. arXiv preprint arXiv:1807.00182 (2018).

[8] Clang. Accessed April 5th, 2019. LLVM dataFlowSanitizer. Website. https://clang.llvm.org/docs/DataFlowSanitizer.html.

[9] dj chen. Accessed April 5th, 2019. IEC104. Website. https://github.com/airpig2011/IEC104.

[10] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang, Huizhong Li, and Xiang Shi. 2019. EVMFuzzer: Detect

EVM Vulnerabilities via Fuzz Testing. (2019).

[11] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-based directed whitebox fuzzing. 2009 IEEE 31st International

Conference on Software Engineering (2009), 474–484.

[12] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, Heyuan Shi, and Jiaguang Sun. 2018. Vulseeker-pro: enhanced semantic learning

based binary vulnerability seeker with emulation. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 803–808.

[13] MZ Automation GmbH. Accessed April 5th, 2019. libiec61850. Website. https://github.com/mz-automation/libiec61850.

[14] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based whitebox fuzzing. In PLDI.

[15] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated Whitebox Fuzz Testing. In NDSS.

[16] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Differential fuzzing testing of deep

learning systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ACM, 739–743.

[17] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In USENIX Security Symposium.

[18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In ACM

Conference on Computer and Communications Security.

[19] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy for increasing greybox fuzz testing

coverage. In ASE.

[20] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang Sun. 2018. Pafl: extend fuzzing

optimizations of single mode to industrial parallel mode. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 809–814.

[21] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the Reliability of UNIX Utilities. Commun.

ACM 33 (1990), 32–44.

[22] StÃľphane Raimbault. Accessed April 5th, 2019. libmodbus. Website. https://github.com/stephane/libmodbus.

[23] Sanjay Rawat, Vivek Jain, Ashish Jith Sreejith Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017.

VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.

[24] Koushik Sen, Darko Marinov, and Gul A. Agha. 2005. CUTE: a concolic unit testing engine for C.

[25] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast

Address Sanity Checker. In USENIX Annual Technical Conference.

[26] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao, Houbing Song, Yu Jiang, and Jiaguang Sun.

2019. Industry Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing. (2019).

[27] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Krügel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.

In NDSS.

[28] Michael J. Sutton, Adam Greene, and P. Amini. 2007. Fuzzing: Brute Force Vulnerability Discovery.

[29] Tool. Accessed April 5th, 2019. AFL-Clang-Fast. Website. https://github.com/mirrorer/afl/blob/master/llvm_mode/

README.llvm.

[30] Tool. Accessed April 5th, 2019. Peach Fuzzing Platform. Website. https://www.peach.tech.

[31] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Hao Liu, Xibin Zhao, and Jia-Guang Sun. 2018. SAFL:

Increasing and Accelerating Testing Coverage with Symbolic Execution and Guided Fuzzing. 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion) (2018), 61–64.

[32] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-Aware Directed Fuzzing Tool for

Automatic Software Vulnerability Detection. 2010 IEEE Symposium on Security and Privacy (2010), 497–512.

[33] Website. 2017. Heartbleed - A vulnerability in OpenSSL. (2017). http://heartbleed.com/ Accessed: 2017-05-13.

[34] Website. Accessed April 5th, 2019. IEC 61850. Website. http://libiec61850.com/libiec61850/.

[35] Website. Accessed April 5th, 2019. vulnerabilites detected by American Fuzzy Lop. Website. http://lcamtuf.coredump.

cx/afl/.

[36] Wikipedia. Accessed April 5th, 2019. IEC104. Website. https://en.wikipedia.org/w/index.php?title=IEC104&redirect=no.

[37] Wikipedia. Accessed April 5th, 2019. Modbus. Website. https://en.wikipedia.org/wiki/Modbus.

[38] Wikipedia. Accessed June 3rd, 2019. DNP3. Website. https://en.wikipedia.org/wiki/DNP3.

[39] Wikipedia. Accessed June 3rd, 2019. ICCP. Website. https://en.wikipedia.org/w/index.php?title=Inter-Control_Center_

Communications_Protocol&redirect=no.

[40] Wikipedia. Accessed June 3rd, 2019. IEC101. Website. https://en.wikipedia.org/wiki/IEC_60870-5.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://github.com/airpig2011/IEC104
https://github.com/mz-automation/libiec61850
https://github.com/stephane/libmodbus
https://github.com/mirrorer/afl/blob/master/llvm_mode/README.llvm
https://github.com/mirrorer/afl/blob/master/llvm_mode/README.llvm
https://www.peach.tech
http://heartbleed.com/
http://libiec61850.com/libiec61850/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://en.wikipedia.org/w/index.php?title=IEC104&redirect=no
https://en.wikipedia.org/wiki/Modbus
https://en.wikipedia.org/wiki/DNP3
https://en.wikipedia.org/w/index.php?title=Inter-Control_Center_Communications_Protocol&redirect=no
https://en.wikipedia.org/w/index.php?title=Inter-Control_Center_Communications_Protocol&redirect=no
https://en.wikipedia.org/wiki/IEC_60870-5

Polar : Function Code Aware Fuzz Testing of ICS Protocol 57:23

[41] Wikipedia. Accessed June 3rd, 2019. Profinet. Website. https://en.wikipedia.org/wiki/PROFINET.

[42] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI.

[43] Michal Zalewski. 2015. American Fuzzy Lop. (2015).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 57. Publication date: July 2019.

https://en.wikipedia.org/wiki/PROFINET

	Abstract
	1 Introduction
	2 Background
	2.1 Industrial Control System and Protocol
	2.2 Fuzz Testing

	3 MOTIVATIONAL Example
	4 System Design
	4.1 Polar Overview
	4.2 Static Analysis
	4.3 Function Code Locator
	4.4 Guided Fuzzing
	4.5 System Implementation

	5 Evaluation
	5.1 Experiment setup
	5.2 Accuracy on Function Code Identification
	5.3 Acceleration on Fuzzing
	5.4 Previously Unknown Vulnerabilities

	6 Related Work
	7 Conclusion
	References

