
Finding Correctness Bugs in eBPF Verifier with
Structured and Sanitized Program

Hao Sun
Tsinghua University

Yiru Xu
Tsinghua University

Jianzhong Liu
Tsinghua University

Yuheng Shen
Tsinghua University

Nan Guan
City University of Hong Kong

Yu Jiang
Tsinghua University

Abstract
eBPF is an inspiring technique in Linux that allows user
space processes to extend the kernel by dynamically inject-
ing programs. However, it poses security issues, since the
untrusted user code is now executed in the kernel space.
eBPF utilizes a verifier to validate the safety of the provided
programs, thus its correctness is of paramount importance
as attackers may exploit vulnerabilities within it to inject
malicious programs. Bug-finding tools like kernel fuzzers
currently can detect memory bugs in eBPF system calls, but
they experience difficulties in finding correctness bugs in
the verifier, e.g., incorrect validations that allow the load-
ing of unsafe programs. Because, unlike detecting memory
bugs, where sanitizers can capture such errors once observed,
automatically uncovering correctness bugs is very difficult,
without an effective test oracle that determines if the verifier
behaves correctly for given programs.
In this paper, we propose an effective approach to au-

tomatically detect the verifier’s correctness bugs. Our core
observation is that since the verifier aims to ensure that eBPF
programs do not affect the security of the kernel, any illegal
behaviors in verified programs are indicators of correctness
bugs in the verifier. Indeed, we can convert the detection of
logical errors in the verifier to traditional bug finding in eBPF
programs. Based on such insight, we devise two indicators
for correctness bugs and propose corresponding sanitation
mechanisms to capture them, both of which naturally form
an effective test oracle. We implemented our idea in a tool,
namely BVF, which generates structured eBPF programs to
pass the verifier, and subsequently, it finds correctness bugs

∗Yu Jiang is the corresponding author of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629562

by detecting runtime errors in verified programs with the
indicators. Experiments show that although the verifier has
received extensive scrutiny and has been intensively tested
by tools like Syzkaller and Buzzer, BVF still found 11 pre-
viously unknown vulnerabilities in eBPF, of which six are
correctness bugs of critical severity in the verifier.

CCS Concepts: • Security and privacy→ Operating sys-
tems security.

Keywords: Testing, OS Kernel, eBPF Verifier

ACM Reference Format:
Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu
Jiang. 2024. Finding Correctness Bugs in eBPF Verifier with Struc-
tured and Sanitized Program. In European Conference on Computer
Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3627703.3629562

1 Introduction
eBPF [14] is a kernel extension technology that supports
the injection of user-written programs into almost every
kernel module. Utilizing such programmability, the user
space processes can achieve various goals and extend the
kernel at runtime. Currently, eBPF is widely adopted by in-
dustry and academia [27]. Data centers, for instance, use
eBPF to perform efficient packet filtering with far better per-
formance than iptables-based mechanisms [13, 39, 48]; some
researchers have used eBPF to implement kernel probing [37,
50] and security monitoring [12]; and most recently, eBPF
has been integrated to optimize the scheduler in Linux [20],
where new scheduling policies can be expressed as eBPF
programs, thus achieving flexible scaling.
To ensure that eBPF programs from user space do not

affect the security and stability of the operating system, the
kernel utilizes a verifier to check the program’s integrity, e.g.,
validating that the program only accesses restricted mem-
ory in a legal way. Specifically, the eBPF verifier performs a
sophisticated analysis, consisting of more than 27,000 lines
of C code, on the programs to collect relevant states and
verify the correctness of sensitive operations before load-
ing them. Hence, the verifier has become the most complex
and error-prone component in the eBPF subsystem. Such
complexity introduces a diverse set of vulnerabilities [1, 2],

1

https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3627703.3629562

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

which are attractive to attackers given that eBPF has pro-
vided code execution ability in the kernel. Exploiting such
vulnerabilities, attackers are likely to inject malicious pro-
grams, perform arbitrary accesses, and achieve local privilege
escalation (LPE),. Take CVE-2022-23222 [3] for instance. As
shown in Listing 1, the verifier incorrectly allows ALU on
nullable pointers, resulting in out-of-bound access. The vul-
nerability can be further exploited to achieve LPE, which is
demonstrated with a working proof-of-concept [4]. There-
fore, detecting and fixing the verifier’s correctness bugs is
of paramount importance for the entire kernel’s security.

0: r1 = map_fd0
1: call map_lookup_elem
2: r8 = r0 ; R8=map_value(ks=4, vs=4096)
3: r1 = map_fd1
4: r2 = 8192
5: call ringbuf_reserve
6: r1 = r0
7: r1 += 1 ; ALU on nullable pointer here

; Verifier believes r0 = 0 and r1 = 0
; However, r1 = 1 at runtime.

8: r1 *= -1024
9: r8 += r1
10: r0 = *(u64 *)(r8 + 0) ; Out-of-bounds access here

Listing 1. CVE-2022-23222. The program (simplified) trig-
gers an out-of-bounds access after loaded, due to an improper
checking that allows arithmetic operations on nullable point-
ers. After #2 and #6, the verifier marks R8 as a pointer to
the map value and marks R1 as a nullable pointer. At #8, the
verifier believes R1 equals zero, which is incorrect due to #7,
leading to the invalid access at #10.
Existing works on security testing of the eBPF verifier

mainly focus on manual testing and kernel fuzzing. eBPF
maintainers have built a test engine [6] for the verifier that
supports automatic test case loading and results checking.
The kernel developers have created a large number of self-
tests, which contain eBPF programs that cover a variety of
scenarios and can effectively test if the verifier works as
expected. However, manually-written tests are incapable of
keeping up with the development of the verifier, and numer-
ous corner cases and their combinations are not yet covered.
Indeed, despite that eBPF is one of themost sufficiently tested
components in the kernel, security vulnerabilities within
which continue to surface. As one of the most effective bug-
finding approaches, kernel fuzzing has also been adopted
for eBPF testing. For instance, Syzkaller [43] has been inte-
grated into eBPF upstream and has proven to be effective in
detecting memory errors in eBPF system calls. Nevertheless,
the eBPF programs generated by kernel fuzzers are easily re-
jected by the complicated checks of the verifier, and they can
hardly reach and discover correctness bugs, prompting the
need for a better approach towards correctness bug finding
in the verifier.

However, automatically uncovering correctness bugs in
the verifier is very difficult without effective approaches.
Specifically, in traditional dynamic testing or fuzzing, erro-
neous behaviors in a software system can be triggered by
generated inputs and captured by inserting runtime checks
on certain operations. For instance, fuzzers can automat-
ically detect memory bugs with the assistance of existing
sanitizers, which hook relevant load/store instructions to col-
lect memory states and check whether the access is within
bounds at runtime. The aforementioned automatic check
is feasible mainly because the property to check is rela-
tively trivial, i.e., essentially the memory sanitizer inserts
assert(valid-access) statements. However, in the case of
correctness bug finding in the verifier, even though fuzzers
can randomly generate eBPF programs, devising runtime
checks to capture correctness bugs is hard, because the veri-
fier performs comprehensive validations on eBPF programs
to check a huge set of properties. Automatically checking
correctness, i.e., assert(valid-analysis), requires insert-
ing extensive assertions into various locations of the verifier,
thus demanding domain knowledge of the verifier and in-
tensive manual efforts. For instance, Agni [41] generates
verification conditions of the verifier from source code and
utilizes SMT solvers for checking, successfully advancing the
verifier’s correctness. However, its approach mainly consid-
ers range tracking, a relatively small portion, which would
require further efforts to extend. Another relevant work
CSmith [47] generates undefined-behavior-free programs
and performs differential testing for compiler bugs. However,
applying such an approach is hard as it requires reference im-
plementations that are as mutual and precise as the current
verifier in Linux.

Therefore, a key challenge for correctness bug finding
is to devise an effective test oracle [21] that automatically
determines if the verifier’s judgment is correct for a given
program. Since directly determining the correctness is hard
as demonstrated, we adopt an alternative view: in essence,
correctness bugs in the verifier are errors that incorrectly
load eBPF programs capable of affecting kernel stability, thus
we can convert such detection into bug finding in verified
programs. Specifically, erroneous eBPF programs loaded into
the kernel may lead to invalid kernel states in two funda-
mental ways: either through executing invalid load/store
instructions in the program or by executing kernel routines
invoked by the program indirectly. The implication is that if
we can trigger and capture either of the two abnormal behav-
iors in verified programs, then we have found a correctness
bug. This view is beneficial because we now do not need to
directly check each possible kind of incorrect behavior in
the verifier, which would otherwise be extremely complex
if not even possible. Instead, the verifier’s correctness bugs
are eventually reflected as two kinds of abnormal behavior
in eBPF programs. For instance, the improper check in CVE-
2022-23222 (Listing 1) collected incorrect registers’ states

2

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

propagated to the following validation, thus eventually ap-
pearing as an out-of-bounds access. These behaviors act as
two indicators for correctness bugs, and we capture them
with sanitation mechanisms. Consequently, the indicators
and sanitation naturally form an effective test oracle.
We implemented our idea in a tool, namely BVF, which

utilizes the following steps to detect correctness bugs in the
verifier. First, in order to trigger the indicators, BVF needs to
generate complex eBPF programs while passing the verifier
efficiently, for which, we propose a lightweight structure
that partitions programs into multiple fundamental sections,
thereby guiding input synthesis. Second, to capture the indi-
cators, we utilize a dispatch-based sanitation and perform
instrumentation upon verified programs, which is conducted
entirely at the eBPF instruction level and thus is efficient and
architecture-independent. Finally, BVF detects correctness
bugs by continuously executing and triggering bugs in sani-
tized programs. Consequently, we discovered 11 previously
unknown vulnerabilities in the eBPF subsystem, of which six
are the verifier’s correctness bugs. Although Syzkaller and
Buzzer have been testing eBPF with extensive computing
resources and the verifier has been checked by numerous
manual tests, those six bugs have never been detected before.
Most of the uncovered correctness bugs are critical, which
can result in out-of-bounds access, deadlock, kernel panic,
etc. All the vulnerabilities have been confirmed and fixed by
corresponding patches proposed by maintainers and us. This
demonstrates that our technique is highly effective in finding
correctness bugs. Our key contributions are as follows:

• Compared to existingworks, whichmainly targetmem-
ory bugs in eBPF, we propose an effective test oracle
for correctness bug detection in the verifier. The ora-
cle is formed by two indicators and a corresponding
sanitation mechanism and is practical and effective for
capturing a wide range of correctness bugs.

• To effectively test the verifier and trigger the test or-
acle, we propose a lightweight structure to guide the
generation of the eBPF program. Such a technique is
capable of synthesizing interesting eBPF programs and
improving the success rate of passing the verifier.

• We implemented our approach in BVF, and we have
discovered and reported 11 previously unknown vul-
nerabilities in eBPF, of which six are correctness bugs
in the verifier of critical severity.

2 Background
eBPF Subsystem. Extended Berkeley Packet Filter (eBPF)
is a kernel extension technique that provides a RISC-like in-
struction set [5], program verifier, just-in-time compiling en-
gine (JIT) [30], and execution environment inside the Linux
kernel. The instruction set of eBPF is relatively minimal, con-
sisting of mainly four types of instructions: load, store, jump,
ALU, and related variants; however, user space processes can

build feature-rich programs with eBPF by constructing in-
struction sequences directly or using a front language, such
as C language. The verifier, the most complicated component
of eBPF, validates the security of the program. Once the pro-
gram passes the verification, eBPF utilizes the internal JIT
engine to compile it to native code for execution. Although
an interpreter is available, in practice, JIT is the default op-
tion that many important features require, e.g., calling kernel
functions, and the interpreter is disabled for security con-
cerns. eBPF also provides an execution environment, includ-
ing mount points, helper functions, data structures accessible
for the programs, etc. For instance, eBPF programs can com-
municate with the kernel via helper functions or a limited
set of kernel functions, and the eBPF map allows programs
to interact with user space processes. Finally, the JITed pro-
grams can be mounted to various places in the kernel, and
almost every kernel location can be extended when used in
conjunction with the kprobe [25] mechanism.

Table 1. Example of the verifier’s workflow. The verifier
tracks the state of each register (R0 ∼ R10), where R1 is
a pointer to context, R10 is a pointer to stack, and other
registers are not initialized at the start. The first instruction
loads the address of the map to R1, and the verifier changes
its state to a pointer to the map and records corresponding
information, e.g., key size. The following three instructions
store value to the stack; the verifier requires that all the
memory must be properly initialized before use. With R1
storing a map pointer and R2 containing a pointer to a key
value located on the stack, the last instruction invokes the
helper call to look up the value in the map, after which R0
stores a nullable pointer to the map value.

BPF Insns Description Register State

func entry initial state of regs R0 = not_init
r1 = map_fd load map fd to R1 R1 = map_ptr (ks=8...)
r2 = r10 mov stack pointer (fp) to R2 R2 = ptr_to_stack
r2 += -8 add offset -8 to R2 R2 = ptr_to_stack (off=-8)

*(u64 *) r2 = 0 store 0 (eight bytes) to stack fp-8 = 0
call map_lookup_elem call bpf map helper func R0 = map_value_or_null

eBPF Verifier. The eBPF verifier [7, 17, 40] utilizes static
analysis to conduct validation on the safety of the provided
programs. Specifically, it models all the possible register
states in the abstract domain and collects program infor-
mation by simulating the execution of each instruction in
different paths. The verifier checks the correctness of each in-
struction based on the collected states, and programs contain-
ing illegal operations, such as using uninitialized registers
and out-of-bounds accesses, are rejected. For instance, after
simulating the execution of a map file descriptor loading
instruction, the verifier marks the corresponding register’s
state to CONST_PTR_TO_MAP and validates the following op-
erations on the register with relevant information of the
map. At a high level, the state of each register is classified

3

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

into three categories: uninitialized, scalar value, and pointer.
Registers are uninitialized before any valid loading, and for
non-pointer values, the verifier uses scalar values to repre-
sent accurate ranges. The objects to which registers may
point are also detailed modeled. For instance, the verifier
currently supports more than ten types of pointers, e.g., map
pointer, packet pointer, kernel data structure pointer, etc.
Table 1 demonstrates a simple workflow of the verifier.

The correctness of the eBPF verifier is essential because
bugs in it could potentially result in malicious programs be-
ing loaded into the kernel. Such abnormal behaviors are less
difficult to exploit than vulnerabilities in other subsystems
given that the attackers have already gained the ability, al-
though restricted, to execute code in the kernel, exploiting
which further arbitrary accesses have a high probability of be-
ing achieved.While some Linux desktop distributions choose
to disable unprivileged eBPF, many data centers/servers uti-
lize unprivileged eBPF to conduct more strict checks, e.g., the
verifier enforces more restrictions on programs loaded by
unprivileged users. From a kernel development perspective,
maintainers do not make any assumption about user space,
i.e., regardless of the users of eBPF, any verifier’s correct-
ness bugs can potentially lead to erroneous programs being
loaded, affecting kernel stability. Therefore, detecting and
fixing correctness bugs in the verifier is of great importance
for kernel security.

Verifier Testing. Existing works on eBPF verifier testing
mainly focus on manual testing and fuzzing. Specifically,
eBPF maintainers utilize a test engine for the verifier to
automatically execute test cases and check results. They have
also created a large amount of eBPF programs covering a
variety of use cases to effectively test the verifier’s algorithm.
However, manual testing is less scalable compared to the
rapid changes that occurred in the eBPF subsystem, and
therefore we mainly focus on automated test approaches.

Fuzzing is a promising vulnerability detection technique [9,
28, 51]. Its idea is to generate or mutate inputs to trigger
abnormal program behaviors and observe such anomalies
with the assistance of sanitizers [34–36]. Fuzzing has also
been adopted in assisting kernel testing, where the primary
workflow is similar to that in user space fuzzing [15, 16,
22, 29, 45, 49], but each step is optimized for kernel scenar-
ios [26, 31, 33, 37, 38, 46]. To automatically test the kernel,
the fuzzer generates system call sequences, where the input
structures are carefully constructed to pass the basic param-
eters validation of the kernel. After invoking the system
calls, the execution feedback, e.g., code coverage [8], is col-
lected, which is then consumed by the fuzzer to improve its
effectiveness. Take Syzkaller [43] (syzbot) as an example, it
generates system call sequences based on predefined system
call descriptions [44] and has already found thousands of
bugs in the Linux kernel with the assistance of many kernel
sanitizers [18, 19].

However, existing testing tools experience difficulties in
the verifier’s correctness bug finding. For instance, while
Syzkaller can test eBPF by randomly generating eBPF in-
structions, its approach mainly targets memory bugs during
the execution of system calls but does not perform any cor-
rectness checks or utilize any test oracles. We will discuss
more about related works in Section 7.

3 Correctness Bug Indicators
In this work, we intend to detect the verifier’s correctness
bugs by utilizing bugs in eBPF programs as indicators and
capturing them with effective mechanisms. The ensuing
problems are 1) what kinds of bugs in eBPF programs need
to be considered as indicators for correctness bugs; 2) how
to trigger and capture those indicators during runtime.

Kernel
State

eBPF
Instruc�on

Invalid
State

Kernel
Rou�nes

Kernel
State

Invalid
State

Call
Instruc�on

(1)

(2)

Figure 1. Two kinds of abnormal behaviors are two major
indicators for correctness bugs in the verifier. The first is that
eBPF programs affect the kernel directly when executing
their instructions in an illegal way. The second is when
programs execute kernel routines after invoking the call
instructions in an unexpected manner.

For the first problem, we need to analyze the intrinsic be-
haviors of eBPF programs. In essence, erroneous programs
loaded into the kernel due to correctness bugs in the verifier
can cause invalid kernel states in two fundamental ways as
depicted in Figure 1. The first is that programs directly affect
the kernel’s correctness when executing their instructions.
For instance, programs with out-of-bounds accesses can lead
to invalid kernel states after executing the corresponding
memory access instructions. The second way is when pro-
grams execute kernel routines after the call instructions in
an unexpected manner that indirectly impacts the kernel.
For example, a program may cause kernel deadlock during
running in the kernel functions, despite that the instructions
of the program do not affect the kernel states directly. In
principle, the majority kinds of correctness bugs in the veri-
fier are eventually appeared and reflected as those two kinds
of abnormal behaviors in eBPF programs. Therefore, we can
utilize those two types of illegal behaviors in eBPF programs
as two effective indicators for correctness bug finding.
To efficiently trigger the indicators for correctness bug

finding, BVF should be capable of generating complicated
programs that can pass the verifier. To accomplish this, the

4

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

generated programs must satisfy various basic properties,
e.g., ensuring all the generated instructions are correctly
encoded and registers are initialized before being used, to
bypass early validations. BVF should also be capable of gen-
erating complex behaviors, such as function calls and nested
jumps. We observe that eBPF programs have certain con-
struction patterns, indicating that we can divide programs
into fundamental sections with different kinds of behaviors,
and construct complex programs by combining them. We
defer to Section 4.1 for a detailed description.

To capture the indicators during runtime, different mecha-
nisms are required, and we demonstrate this in the following
explanation of the indicators.

3.1 Indicator#1
The scope of the first indicator mentioned above involves
each kind of instruction in eBPF programs, and we can refine
it by further analyzing the semantics of eBPF instruction.
Indicator Definition. As mentioned in Section 2, the

eBPF instruction set is minimal by design, containing mainly
four types of instructions. However, not all of them can im-
pact the kernel. Specifically, 1) the arithmetic operations
cannot lead to kernel errors directly because they do not
access the kernel states, meaning the side effects are lim-
ited within the programs; 2) the offset operand of jump
instructions in eBPF can only be a constant value, indicating
that each jump in a verified program can only be performed
within the program’s boundary, and such an instruction can
not impact the kernel either. Therefore, the guilty instruc-
tions are mainly load/store operations. Ideally, the verifier
performs sophisticated analysis to collect the registers’ states
and validate the access, thus ensuring the programs’ memory
safety. Practically, the verifier may make mistakes in differ-
ent analysis phases and propagate inaccurate information
to the memory access validation. In fact, the first step an at-
tacker takes when exploiting correctness bugs is to construct
illegal memory access. The insight here is that load/store are
the major sources for the first kind of abnormal behavior,
i.e., invalid load/store is the indicator#1 for correctness bugs.

In order to effectively capture the indicator#1, we need to
perform runtime checks on these instructions, specifically
validating memory accesses in eBPF programs.

Indicator Capture. To capture invalid load/store instruc-
tions, we need to perform memory sanitation in eBPF pro-
grams. Although Linux has Kernel Address Sanitizer (KASAN)
to validate memory access in itself, such a mechanism can
not be applied in eBPF programs directly. Specifically, in or-
der to perform memory checking, KASAN first instruments
sensitive operations in the kernel and records metadata of all
the allocated memory in a separated region named shadow
memory, thus the instrumentation and the shadow mem-
ory are prerequisites for memory sanitation. However, eBPF
programs passing the verifier are compiled to native code at
runtime by the eBPF JIT engine without any instrumentation,

indicating that KASAN is incapable of detecting memory
bugs in them. Nevertheless, we observe that all the memory
accessible to eBPF programs is either preallocated before the
execution or constructed by the kernel functions, implying
that KASAN has already recorded that memory into shadow
memory. Consequently, to capture invalid memory access
in eBPF programs, we can dispatch necessary load/store in-
structions to kernel functions that have been instrumented
for memory sanitation to achieve indirect checking. Further-
more, the dispatch can be performed by instrumenting the
programs passing the verifier entirely at the eBPF instruction
level, thus being efficient and architecture-independent. We
illustrate our memory sanitation in Section 4.2.

0: r1 = map_fd ; R1=map_ptr(ks=4, vs=4)
1: r6 = *(u64 *)(r1 + 8) ; R6=bpf_map->inner_map_data

; PTR_TO_BTF_ID, null at runtime
2: r2 = r10
3: r2 += -4
4: *(u32 *)(r2 + 0) = 0
5: call bpf_map_lookup_elem ; R0=map_value_or_null
6: if r6 != r0 goto pc+1 ; Incorrectly mark R0 as non-null
7: r0 = *(u32 *)(r0 + 0) ; FLAW: trigger runtime check here
8: exit

Listing 2. The program constructed by BVF triggers invalid
memory access due to a correctness bug in the verifier. After
#1, the verifier marks R6 as PTR_TO_BTF_ID, which is a
pointer to a kernel object that programs do not need to
perform a null check. After #5, R0 is a nullable pointer to
the map value. During validating #6, the verifier incorrectly
marks R0 as non-null due to a correctness bug, leading to
the following invalid memory access. BVF can discover this
vulnerability because the generated program triggered our
runtime checks.

Correctness Bug Example. As shown in Listing 2, an
eBPF program constructed by BVF can trigger invalid mem-
ory access during execution after passing the verifier. The
program is an indicator of a verifier’s correctness bug be-
cause its load can affect the kernel and can potentially be
exploited by the attackers. The root cause of this correctness
bug is due to the incorrect nullness propagation analysis, as
explained in Section 6.2. Such an analysis pass collected in-
correct register states, which are propagated to the following
memory access validation, resulting in the loading of such
a memory-unsafe program. In addition, BVF is also capable
of uncovering CVE-2022-23222 by generating an eBPF pro-
gram that contains out-of-bounds access to the eBPF map
as shown in Listing 1. The aforementioned two programs,
both containing invalid load/store instructions, effectively
reflect two different correctness bugs in the verifier, and BVF
can detect these illegal accesses by leveraging our sanitation.
This demonstrates the effectiveness of indicator#1 and our
sanitation for reflecting and capturing various correctness

5

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

bugs; otherwise, it would be difficult to detect such bugs by
simply executing native code generated by the JIT engine.

3.2 Indicator#2
Indicator#1 reflects bugs caused by eBPF programs directly,
while indicator#2 represents bugs caused by loaded programs
indirectly. Both indicators complement each other, and cor-
rectness bugs eventually appear as one of them.

Indicator Definition. eBPF supports function invocation
with the call instruction (a special kind of jump operation)
and provides programs with hundreds of helper functions,
thus enabling flexible interaction between the programs and
the kernel. However, the flexibility presents corresponding
complexity to the verifier. The verifier needs to ensure that
eBPF programs invoke the helpers in a correct manner by suf-
ficiently checking if the input states in the programs match
the requirements of the helpers’ prototypes. In practice, the
verifier may incorrectly reason about registers’ states or an-
alyze the safety of certain helpers’ invocation; thus the pro-
grams may break the kernel during the execution of helper
functions. Consequently, bugs caused during kernel routines’
execution invoked by loaded eBPF programs are the indica-
tor#2 for correctness bugs and the major reason for such a
bug is that eBPF programs invoke kernel routines with un-
expected inputs that the verifier cannot detect. Indicator#2
in conjunction with indicator#1 covers eBPF programs that
impact the kernel directly and indirectly, thus constituting a
wide range of correctness bugs.

conten�on_begin eBPF
Program

Helper
Func�on

A�atch

Trigger

Invoke

Trigger

1

2

3

4

Figure 2. Another correctness bug found by BVF allows
programs that may lead to kernel deadlock to be loaded.
The program for this vulnerability is attached to the trace-
point contention_begin, and then the program is triggered
whenever the tracepoint is reached. After calling the helper
function that attempts to acquire a lock, the tracepoint and
the eBPF program are triggered again, leading to the recur-
sion and inconsistent lock state kernel errors.

Indicator Capture. In order to capture indicator#2, we
need to uncover bugs that occurred during the kernel rou-
tines’ execution. The scope of such bugs is huge, including
memory errors, data racing, etc., and different mechanisms
are required to capture them correspondingly. However, un-
like eBPF programs, which are compiled after loading by the
JIT engine, the routines that the programs can invoke are
part of the kernel, i.e., they are compiled alongside the rest
of the kernel code, not at runtime. Consequently, different

from indicator#1, we can adopt self-check mechanisms in
the kernel to capture indicator#2 and existing mechanisms
can catch the majority of runtime bugs in these routines. For
instance, since the routines are compiled with the kernel,
KASAN has already instrumented their code for state col-
lection and sanitation and the runtime locking correctness
validator [11] in Linux is also capable of detecting data races
in those routines. To efficiently utilize indicator#2 for cor-
rectness bug finding, BVF should be capable of generating
complicated programs that can pass the verifier effectively.
Correctness Bug Example. Take another correctness

bug found by BVF for example. BVF synthesized an eBPF pro-
gram, and its program type is kprobe. As shown in Figure 2,
the program calls an eBPF helper function that attempts to
acquire a local lock during execution. When the program is
attached to the tracepoint contention_begin, a deadlock
would potentially occur. This is because the program is trig-
gered once the tracepoint is reached, after which the helper
function invoked by the program would trigger the trace-
point again due to the acquisition of the lock. This, in turn,
triggers the program again and leads to the recursion and in-
consistent lock state errors, thereby revealing a correctness
bug in the verifier. We can find this vulnerability because
the generated program can pass the verification and trigger
indicator#2, which can be effectively captured by runtime
locking correctness validator in Linux. For other bugs that
may be triggered during the execution of kernel routines
invoked by eBPF programs, we can trigger them by continu-
ously generating interesting programs and capturing them
with different kernel mechanisms.

4 BVF Design

eBPF Verifier Test RunProgram
Instrument

Correctness
Bugs

Indicator
Triggered

Sani�zed
Program

Structured
Program

Verified
Program

Indicator
Triggered

Figure 3. Overall workflow. First, BVF generates eBPF pro-
grams with a structured design. The generated programs
are forwarded to the verifier for checking, during which the
verifier rewrites the programs for various purposes. BVF
performs instrumentation for memory accessing checking
at runtime on verified programs at the end of the rewriting
phase. Finally, BVF detects correctness bugs in the verifier
by triggering bugs in the sanitized programs.

We implemented our idea in BVF and Figure 3 illustrates
its overall workflow. In order to generate complicated eBPF

6

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

programs while passing the verifier to trigger the indica-
tors, BVF utilizes a lightweight structured design to guide
the program synthesis. The generated program is then for-
warded to the verifier by BVF via the bpf() system call. The
verifier conducts the complete validation of the program.
To effectively capture indicator#1 in the program, BVF per-
forms instrumentation on the verified program at the end of
eBPF’s rewriting phase. The instrumentation dispatches all
the necessary load/store operations in the programs to the
functions we proposed in the kernel that have already been
instrumented by KASAN, thus achieving memory access
sanitation in eBPF programs. Finally, the sanitized program
can be used to detect correctness bugs in the verifier. BVF
performs test runs on the loaded program, and a correctness
bug is discovered once the indicators are triggered.

4.1 Structured Program Generation

Jmp Frame

Call Frame

Basic Frame

Map Load

Value Load

Rand Imm

Init Header

Framed Body

End

Call Insn
Args Load

Jmp Insn

Framed Body

(1) (2) (3) (4)

Figure 4. Program structure. At the top level, each eBPF
program is partitioned into three parts: the init header, the
framed body, and the end section. The init header selects
a set of loading instructions, e.g., map loading and random
value loading, to initialize registers. The framed body fur-
ther divides the programs and contains a set of lower-level
sections: the call frame, the jump frame, and the basic frame.
This enables BVF to generate complex programs.

In order to trigger the two indicators efficiently, BVF
should be capable of generating interesting eBPF programs
that can pass the verifier. The insight of BVF’s program gen-
eration is that we can partition eBPF programs into several
fundamental sections, and sophisticated behaviors can be
composed by combining the sections. In BVF, except to en-
sure the validity of the instructions, we utilize a structured
design as shown in Figure 4 to guide the generation of the
program. The structure partitions an eBPF program into
three sections at the top level as shown in (2) of the figure:
the init header, the framed body, and the end section. The init
and end sections assist the generated programs in passing
early validations in the verifier, thus allowing interesting
behaviors contained in the framed body to be verified and
loaded. Specifically, as aforementioned, eBPF requires that all
the registers need to be initialized before any accessing and
the program must contain valid exit instructions. The init
header and end section enable the generated programs to sat-
isfy these basic constraints. Overall, the program generation
follows the proposed structure. BVF first emits instructions

in the init header and end frame and then keeps selecting one
of the frame kinds in the main body with equal probability
and emits instructions in the selected frame accordingly. The
following are the details of each top-level section:

• Init Header: performing initialization of registers by
selecting register value loading instructions.

• Framed Body: the major part of the eBPF program,
and further contains a set of lower-level sections, sup-
porting complex program generation.

• End Section: this section is used for proper program
ending and currently contains valid exit instructions.

Except for passing the basic checks, the init header also
sets registers to various interesting initial states, thereby
facilitating the construction of the complex operations on
them. Specifically, as shown in (1) of the figure, the can-
didates for loading instructions in this section are all the
possible objects that the programs can access, e.g., map file
descriptors, map value, BTF file descriptors, and random 64-
bit immediate. BVF constructs the corresponding resources
in the kernel before execution if the generated programs
intend to load and operate on them. In addition, registers
used for parameter passing are skipped in this section be-
cause they already have complex states, e.g., R1 in eBPF is
initialized as a pointer to the context data.
We observe that the behaviors of eBPF programs can be

essentially classified into three categories: operations on the
accessible objects that occur inside the program, interactions
with the kernel achieved by call instructions, and selections
of these actions through jumps, implying that we can break
down the framed body to three intrinsic components cor-
respondingly. Specifically, we utilize a linear structure as
shown in (3) in Figure 4 to represent programs given that
only bounded loops are allowed in eBPF. All four types of
instructions are classified into three main sections: the basic
frame, the jump frame, and the call frame. The framed body
contains a set of those frames. Instructions that do not cause
changes in the control flow of the programs are arranged
in the basic section, and various operations on kernel ob-
jects or accessible memory are combined in this section. The
call instruction is a special kind of jump that enables eBPF
programs to communicate with outside, and it is capable
of triggering complicated logic in the verifier. Hence, we
utilize the call frame to devise such a behavior. Finally, since
the jump instruction can effectively demarcate the program
state, the jump frame is adopted to achieve this effect and
ensure the validity of the jump target. The following are the
details of each section:

• Call Frame: contains loading instructions used for
setting the value of R1 to R5, which are the registers
used for parameters passing; the target of the call can
be helper functions, kernel functions, and pseudo eBPF
functions.

7

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

• Jump Frame: starts or ends with a jump instruction,
the body contains multiple other frames; the offset of
the jump is the number of instructions in the body,
thus ensuring the correctness of the control flow.

• Basic Frame: contains instructions that do not af-
fect the control flow of eBPF programs, all the load-
/store/ALU instructions, and special operations, e.g.,
atomic arithmetic, are in this section.

In the basic frame, various basic operation patterns on all
the accessible objects are generated. We achieve this by first
recording the registers’ states in different program points,
and then synthesizing operations according to the states. For
instance, for registers pointing to maps or context, we gen-
erate direct map value updating or map access, and context
accessing, thus a variety of different behaviors are formed. In
the loading part of the call frame as shown in (4) in Figure 4,
the states required for interaction with the kernel or user
space are filled into parameter passing registers (R1 to R5),
and the call instruction is subsequently issued. eBPF supports
hundreds of helper functions and many kernel functions,
with the call frame, BVF can explore them continuously dur-
ing the testing campaign. Furthermore, for back-edge jumps,
i.e., the offset operand of the jump instruction is negative,
we restrict the two operand types to register and constant
and utilize a loop block variable that changes per iteration
in the jump condition and bound it with an immediate value,
thus reducing the occurrence of unbounded loops, i.e., loops
with infinite iterations. BVF is capable of devising interesting
control flow behaviors, e.g., nested jumps, when used in con-
junction with other frames in the jump body, and simulating
unrolled loops by utilizing the fuzzer’s mutation operations
to duplicate adjacent instructions.

4.2 Memory Access Sanitation
To capture the triggered indicators for correctness bug find-
ing, we need to sanitize the load/store instructions in the
generated programs. Specifically, eBPF programs are allowed
to access a fixed-size stack, context states, kernel objects, and
eBPF data structures, and the verifier conducts complicated
validations upon these operations. Hence, if illegal access to
those states, e.g., out-of-bounds write, occurs and is captured
during execution, then, corresponding correctness bugs are
uncovered. Although KASAN is incapable of performing
sanitation on eBPF programs as illustrated in Section 3, we
observe that the metadata corresponding to all the states
mentioned are well recorded in the shadow memory. For
instance, the context and the stack of eBPF programs are
pre-allocated before execution, and all other objects are con-
structed by kernel routines that are already instrumented by
KASAN. Based on the above observation, we can accomplish
memory sanitation for eBPF programs effectively.
The workflow of our mechanism is as follows. First, the

target address and the size of the memory that load/store

instructions access are intercepted, and such information
is dispatched to the sanitizing functions via the eBPF call
instruction, i.e., the dispatching can be realized entirely at
the eBPF instruction level. The sanitizing functions are lo-
cated in the kernel and are instrumented with the KASAN
sanitation during kernel compilation. The validity of the
memory access is checked by comparing the target address
with the information recorded in the shadow memory when
the sanitizing functions are invoked, thereby achieving mem-
ory access sanitation in eBPF programs. This procedure is
performed when the verifier rewrites the programs that pass
the checks.

Figure 5 illustrates the instrumented eBPF instructions for
sanitizing the eight-byte loading. First, since R1 is used in
eBPF for passing the first parameter of functions, we back
up the original state of R1 and load the target address of
the memory access into it, and an auxiliary register named
R11 in eBPF that is only visible internally (only R0 to R10
are visible to the program) is adopted for the backup. For
other registers, e.g., R0 is overwritten for the function return
value, we back up their states into an extended stack space
that is also invisible to the program. Then, BVF selects the
sanitizing functions based on the accessing size and mode,
e.g., a double word size access corresponds to a function
called bpf_asan_load64(). Finally, the accessing check is
triggered when the sanitizing function performs the actual
load/store, after which the registers’ states are restored and
the original instruction is appended.

// Instrumented during compilation
// Perform the actual sanitation
void bpf_asan_load64(u64 *addr)
{
 shadow_addr = to_shadow(addr);
 if (*shadow_addr != 0)
 reportAndCrash(shadow_addr);
 …
}

r11 = r1 ; back up r1
r1 = r3 + offset ; store addr
call bpf_asan_load64 ; check here
r1 = r11 ; restore r1
r2 = *(u64 *) (r3 + offset) ; original

r2 = *(u64 *) (r3 + offset) ; load

Figure 5. Instrumentation for eight bytes sized memory
accessing. First, since R1 is adopted for parameter passing,
the original state of R1 is backed up to an auxiliary register
named R11, and the target address is stored in R1. Then, the
call instruction that invokes the sanitizing function corre-
sponding to the access size and mode is emitted, and the
function performs the actual sanitation. Finally, R1 is re-
stored and the original instruction is emitted.

8

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

Besides, BVF also instrument checks on some sensitive
ALU operations invoked between a pointer and a scalar based
on the verifier’s knowledge. Specifically, the verifier classifies
ALU operations based on the value types of the involved reg-
isters. For arithmetic instructions conducted on a pointer and
a scalar, the verifier calculates a limit value called alu_limit
to verify that the scalar contained in the register is a legal
offset to the pointer. The alu_limit is a relative value cal-
culated based on the ALU kinds and the sign of the offset
operand, i.e., for r0 += offset, the alu_limitwould be the
lower bound if the offset is negative and vice versa. For ALU
instructions with this information, BVF emits instructions
in the sanitized program to check if the value of the register
at runtime is within the alu_limit as the verifier expects;
otherwise, an accessing error is reported. Essentially, the
functionality of the instrumented instructions is equivalent
to the assertion expression: assert(offset < alu_limit).

In addition, we utilize the following strategy to reduce the
amount of instructions injected. First, the load/store instruc-
tions that use R10 as the source or target register are skipped.
Specifically, R10 stores the stack pointer and is read-only,
which means that any program that attempts to modify it
will be rejected. Since the offset operand in load/store in-
structions is a constant, the target address R10 + offset can
be calculated during verification. For instance, for the load
instruction r0 = *(u64 *) (r10 + -8), the target address
(R10 + -8) is a constant value known during verification.
Since the stack size of eBPF programs is fixed at 512 bytes,
the correctness of such load/store instructions can be vali-
dated by comparing the two constants: the target address
and the stack size, thus we do not instrument these accesses.
Second, instructions emitted by other rewrite passes in the
verifier are omitted. Specifically, other rewrite passes may
transform some load/store instructions into multiple ones,
e.g., direct packet access instructions, and we only instru-
ment the original instruction once to reduce the footprints.

5 Implementation
The implementation involves two major parts: the fuzzer
and the modifications to the Linux kernel. We implement
the aforementioned structured program generation by modi-
fying Syzkaller. Specifically, our program generation routine
consists of the following. We leverage system call generation
techniques in the fuzzer. The top-level structures of the eBPF
programs are represented in the system call descriptions [44],
where the init header, the framed body, and the end frame
are in type definitions. Possible instructions are represented
as specific types. For other complex structures, we leave
dummy structure definitions and fill them by extending the
fuzzer’s generation with custom generators and mutators.

The memory sanitation of eBPF programs is implemented
in three patches for the Linux kernel. The first patch intro-
duces the sanitizing functions and the instrumentation of

store instructions in the kernel. All the sanitizing functions
named bpf_asan_store() are added and the whole instru-
mentation is conducted in the bpf_misc_fixup() phase in
conjunction with other rewrites passes so that no additional
ad-hoc phase is required. Furthermore, the first patch also fil-
ters and detects instructions emitted by other rewrite passes
to reduce the amount of instrumented instructions in the
fixup phase. The second patch presents the sanitation of
load instructions and the corresponding checking functions
named bpf_asan_load(), similar to the first one. The last
patch modifies the existing rewrite of alu_limit by adding
runtime checks when such information is available and sani-
tation is enabled. The above modifications can be turned on
with Kconfig in the case that KASAN is also available.

In addition, we follow the design of Syzkaller, the state-
of-the-art kernel fuzzer, to best utilize its testing capability.
For instance, we reuse its feedback mechanism, which col-
lects coverage information and comparison operations, but
we only instrument eBPF during compilation. The coverage
information enables BVF to preserve interesting eBPF pro-
grams triggering new verifier’s checking behaviors so that
the following generation can base on the saved programs,
thereby exploring the verifier iteratively.

6 Experiment
In this section, we evaluate the correctness bug-finding capa-
bility of BVF on recent versions of Linux by deploying BVF
to conduct verifier testing for two weeks. At the same time,
we also deploy and compare the bug-finding capability of
BVF with that of Syzkaller and Buzzer to demonstrate the
effectiveness of the proposed indicators. We chose Syzkaller
because it is the state-of-the-art kernel fuzzer that has been
integrated into the eBPF upstream testing and Buzzer is also
a representative eBPF fuzzer. In addition, we also evaluate
the effectiveness of the proposed program structure and the
overhead of the sanitation mechanism. For the former, since
the structure is used to cover more verifier’s code, we com-
pared the testing performance of BVF to that of Syzkaller and
Buzzer. To evaluate the overhead of sanitation, we utilized
manually-written test cases in eBPF self-tests as datasets to
calculate the execution time and instruction footprints before
and after sanitation. In summary, we design experiments to
address the following questions:

• RQ1: Can BVF uncover previously unknown correct-
ness bugs in the verifier?

• RQ2: How effective is the program structure in im-
proving the bug-finding capability of BVF?

• RQ3: How much overhead does sanitation present?
Experiment Setup. We describe the setup adopted in

the following experiments. All the experiments were con-
ducted on a Linux server with a 40-core Intel Xeon Silver
4210R CPU and 32 GiB of memory. Each version of the ker-
nel uses the same compilation configuration. Specifically,

9

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

CONFIG_BPF_SYSCALL and CONFIG_BPF_JIT were enabled
for the eBPF subsystem. The JIT is required for many im-
portant features in eBPF programs, e.g., calling kernel func-
tions. We enabled CONFIG_KASAN for memory sanitation and
CONFIG_KCOV to collect the code coverage. We extended
Syzkaller with our design and applied our patches to the
corresponding version of Linux for memory sanitation in the
eBPF program. All the experiments were configured with
the same parameters in QEMU configurations and base sys-
tem call descriptions. Specifically, we started all experiments
simultaneously and distributed the resources evenly, includ-
ing 8 cores and 8 GiB of memory for each virtual machine.
To reduce statistical errors, each experiment was repeated
three times and executed over a period of 48 hours, and the
average results were reported.

6.1 Bug Finding
To answer RQ1 and evaluate the effectiveness of BVF in
finding correctness bugs, we deploy Syzkaller, Buzzer, and
BVF to conduct testing on the Linux upstream and bpf-next
repository for two weeks. bpf-next contains the latest code-
base for the eBPF subsystem and is actively developed by
the maintainers. We chose those kernel versions because
testing the upstream kernel is currently the best practice
for bug finding, and Linux maintainers also encourage the
community to conduct tests on upstream. The reasons are: 1)
bugs uncovered in those latest versions are likely previously
unknown and should be fixed immediately; 2) one can detect
bugs that may impact various past stable versions by testing
upstream; 3) testing upstream prevents bugs from impacting
future releases. Furthermore, only bugs with stable repro-
ducers that received explicit confirmations from maintainers
are reported and listed. We determine a correctness bug after
confirming that it is triggered either by indicator #1 or #2
and captured by our sanitation or kernel mechanisms.

As a result, Syzkaller and Buzzer did not trigger any valid
correctness bugs within the two weeks, while BVF found six
previously unknown correctness bugs in the verifier. In real-
ity, the verifier has received an extensive amount of scrutiny
over the years as a security-sensitive kernel component, and
therefore, finding bugs in it, especially correctness bugs, is
challenging for existing tools, which is the major reason
for the results of Syzkaller and Buzzer. On the other hand,
despite those manual efforts and numerous test cases con-
structed by eBPF maintainers, BVF is still capable of un-
covering six new correctness bugs, demonstrating the ef-
fectiveness of the proposed indicators. Specifically, three
correctness bugs (#1-3) can lead to a load of invalid eBPF
programs that contain memory bugs in the kernel, BVF can
detect them by leveraging the memory sanitation proposed
for indicator#1. The remaining correctness bugs (#4-6) can
lead to kernel deadlock or direct kernel panic after the corre-
sponding programs are loaded, BVF can trigger those bugs
efficiently because of the improved quality of the generated

Table 2. BVF found 11 new vulnerabilities in total, six of
them are correctness bugs in the verifier. The first column
shows the component in the eBPF subsystem that contains
the bug and the rest of the columns illustrate the root cause
and the status of the vulnerabilities respectively.

Component Description Status

1 Verifier Incorrect nullness propagation of pointer
comparisons causes invalid memory access Fixed

2 Verifier Incorrect task struct access validation
leads to out-of-bound access Confirmed

3 Verifier Incorrect check on kfunc call operations
causes verifier backtracking bug Fixed

4 Verifier Missing check on programs attached to
bpf_trace_printk causes deadlock Fixed

5 Verifier Missing validation on contention_begin
causes inconsistent lock state error Fixed

6 Verifier Missing strict checking on signal sending
of programs causes kernel panic Fixed

7 Dispatcher Missing sync between dispatcher update and
execution leads to null-ptr-deref Fixed

8 Syscall Incorrect using of kmemdup() leads to failure
in duplicating xlated insns Fixed

9 Map Incorrect bucket iterating in the failure case
of lock acquiring causes oob access Fixed

10 Helper Incorrect using of irq_work_queue in a helper
function leads to lock bug Fixed

11 XDP Incorrect execution env, attempt to run device
eBPF program on the host Confirmed

programs utilizing the proposed program structure, thus trig-
gering indicator#2 effectively. Furthermore, the correctness
bugs found have a wide impact, e.g., Bug#4 has existed for 4
years, and Bug#6 was fixed in upstream, and the correspond-
ing patches were backported to Linux v6.1, v5.15, v5.10, etc.
All the vulnerabilities have been confirmed and nine of them
have been fixed by the maintainers and us.

BVF also found five vulnerabilities (#7-11) in related com-
ponents in the eBPF subsystem. For instance, an improper use
of kmemdup() in an eBPF system call that intends to dupli-
cate rewritten instructions to user space processes would fail
when the size of instructions exceeds the allocation limita-
tion of kmalloc(). We submitted two patches to fix the bug.
The first one introduces a new primitive called kvmemdup()
that utilizes kvmalloc() to allocate memory, i.e., switch to
vmalloc() in the failure case of kmalloc(), and the patch
has been accepted by the mm maintainers; the second patch
modifies the corresponding system calls in eBPF to utilize
the new primitive, thus effectively addressing the bug. BVF
is capable of detecting those five vulnerabilities because the
programs generated are complex, thereby facilitating the
testing of related operations on them.

6.2 Case Study
Nullness Propagation (Bug#1).After the change from com-
mit befae75856ab of Linux, the verifier propagates nullness
information while analyzing jump instructions as demon-
strated in Listing 3. Specifically, for jump operations with
equality comparison whose operands are both pointers, the

10

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

verifier marks the nullable pointer as non-null if it is aware
that the other is not null in the corresponding equal path.
For instance, for if r0 == r1 goto +1 instruction where
r0 is nullable while r1 is non-null, the verifier would mark
r0 as non-null in the equal path.
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -11822,10 +11822,17 @@ static int check_cond_jmp_op(struct

bpf_verifier_env *env,↩→
* register B - not null
* for JNE A, B, ... - A is not null in the false branch;
* for JEQ A, B, ... - A is not null in the true branch.

+ *
+ * Since PTR_TO_BTF_ID points to a kernel struct that does
+ * not need to be null checked by the BPF program, i.e.,
+ * could be null even without PTR_MAYBE_NULL marking, so
+ * only propagate nullness when neither reg is that type.

*/
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&

__is_pointer_value(false, src_reg) &&
__is_pointer_value(false, dst_reg) &&

- type_may_be_null(src_reg->type) !=
- type_may_be_null(dst_reg->type)) {
+ type_may_be_null(src_reg->type)!=
+ type_may_be_null(dst_reg->type) &&
+ base_type(src_reg->type) != PTR_TO_BTF_ID &&
+ base_type(dst_reg->type) != PTR_TO_BTF_ID) {

eq_branch_regs = NULL;
switch (opcode) {
case BPF_JEQ:

Listing 3. This patch fixes the correctness bug #1 directly by
filtering the jump instructions with PTR_TO_BTF_ID pointer
type. In this way, the verifier would propagate nullness in-
formation for register-to-register comparisons in jump in-
structions only if neither register is that pointer type.

However, the filter condition in the verifier is incomplete,
leading to an error that incorrectly allows programs with
invalid memory access to be loaded into the kernel. Specif-
ically, a special kind of pointer in eBPF programs named
PTR_TO_BTF_ID points to kernel structures that the pro-
grams do not need to conduct a null check before using,
i.e., the verifier does not mark such pointer as maybe_null
even though the pointer could be, and the null dereference
of such pointers is properly handled by the kernel [10]. In
the case that one pointer is maybe_null and the other is a
pointer to BTF, the former is incorrectly marked as non-null
if the latter equals zero at runtime. Listing 2 demonstrates
the program generated by BVF that triggers an invalid mem-
ory access due to the mentioned flaw. After #1, the verifier
tracks r6 as PTR_TO_BTF_ID without maybe_null marking,
which, however, actually equals null at runtime. After #5, r0
is marked as a pointer to a map value that may be null by
the verifier, meaning that it cannot be dereferenced without
a null check. After #6, however, r0 is incorrectly marked as
non-null due to the aforementioned nullness propagation.
Both r0 and r1 are null pointers at runtime, leading to invalid
memory access at #7.

We proposed two patches for this bug. The first one shown
in Listing 3 fixes the bug by filtering the corresponding
pointer type, and the second patch presents one test case

that illustrates the correct behavior. BVF can uncover this
vulnerability because the generated program passed the ver-
ifier but triggered our instrumented runtime checks, which
demonstrates the effectiveness of the indicators.

6.3 Program Structure Effectiveness
To address RQ2 and evaluate whether the proposed pro-
gram structure can assist BVF in improving the quality of
the generated eBPF programs, we deploy Syzkaller, Buzzer,
and BVF, and compare their testing performance. Three ver-
sions of Linux are adopted, including 5.15, 6.1, and bpf-next
branch. We choose bpf-next because it is upstream of the
eBPF subsystem, and Linux v6.1 and Linux v5.15 are the two
representing release versions used by many distributions. All
the tools invoke the same set of eBPF system calls and only
the eBPF source code is instrumented during compilation
by kcov [8] for coverage collection so that the testing range
of all the tools is the same. Finally, each testing campaign is
repeated three times, and we report the final average value
over a period of 48 hours.
Figure 6 illustrates the comparison of branch coverage

among Syzkaller, Buzzer, and BVF. As shown in the figure,
BVF can achieve the highest coverage compared to Syzkaller
and Buzzer in the same amount of time. Specifically, all tools
show significant growth in the first eight hours, where the
improvement of BVF is not obvious. After testing for eight
hours, the coverage growth of Syzkaller and Buzzer starts to
slow down and tends to saturation, while BVF is significantly
faster than them. This is because the proposed mechanism
does not promote the throughput directly, but rather enables
the fuzzer to reach more code by generating complicated
eBPF programs. Therefore, all tools perform a similar rate
before eight hours since they have yet to cover the code
reachable using the previous mechanism. They diverge after
eight hours as the random instruction selection adopted by
Syzkaller and Buzzer cannot provide more low-hanging fruit,
while BVF is capable of covering more code in the verifier
continuously by generating interesting programs. Table 3
lists the detailed statistics of the covered branches achieved
by Syzkaller, Buzzer, and BVF.

Table 3. Coverage statistics of Syzkaller, Buzzer, and BVF
on Linux over 48 hours. The improvements of BVF over
Syzkaller and Buzzer are shown in the parenthesis.

Version BVF Syzkaller Buzzer
v5.15 50192 41433 (+17.5%) 9176 (+447.0%)
v6.1 67348 56458 (+16.2%) 10059 (+569.5%)
bpf-next 65176 52295 (+19.8%) 9271 (+603.0%)
Overall 60905 50062 (+17.8%) 9502 (+541.0%)

Compared to Syzkaller, BVF is capable of covering 17.8%
more of the verifier’s code. To reason about the result, we

11

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

8 16 24 32 40 48

1

2

3

4

5

6 ·104

Time [h]

Co
ve
re
d
Br
an
ch
es

Linux v5.15

BVF Syz Buzzer

8 16 24 32 40 48

1
2
3
4
5
6
7
8 ·104

Time [h]

Co
ve
re
d
Br
an
ch
es

Linux v6.1

BVF Syz Buzzer

8 16 24 32 40 48

1
2
3
4
5
6
7
8 ·104

Time [h]

Co
ve
re
d
Br
an
ch
es

Linux bpf-next

BVF Syz Buzzer

Figure 6. Branch coverage on Linux 5.15, 6.1, and bpf-next branch of Syzkaller, Buzzer, and BVF over 48 hours on average
of 3 repetitions. In all three kernel versions, BVF achieves the highest coverage statistics, demonstrating that the program
structure can assist BVF to synthesize effective programs to cover the verifier’s code.

further evaluated the acceptance rate, i.e., comparing the pro-
grams passing the verifier with all the generated programs.
As a result, the acceptance rate of BVF is more than twice
higher than that of Syzkaller, where Syzkaller archives 23.5%
while BVF reaches 49%. We also collected and inspected the
reasons for the rejection of Syzkaller-generated programs by
collecting the error code returned. The reasons are various,
and the two most returned errno are EACCES and EINVAL.
Therefore, the key factor of Syzkaller’s lower acceptance rate
is its random instruction generation, which generates many
invalid instructions that perform illegal registers or memory
access. In essence, the difference between BVF and Syzkaller
is whether the tool utilizes the proposed structure to gen-
erate programs or not. Therefore, the results indicate that
the program structure can facilitate more effective program
generation, thereby achieving a higher acceptance rate and
exploring more verification logic.

In comparison with Buzzer, BVF achieved 5.41× improve-
ment in the verifier’s code coverage. We also evaluated the
acceptance rate of Buzzer. Specifically, since Buzzer contains
two testing modes, we collected the acceptance rates accord-
ingly and calculated their respective values, specifically 1%
and 97%. However, these values should not be interpreted di-
rectly for the following reasons. For the former mode, Buzzer
generates highly random programs to an extent such that
very few programs pass the verifier, thus greatly hinder-
ing testing effectiveness. For the latter mode, Buzzer mainly
involves ALU and JMP instructions, thus the generated pro-
grams are relatively simple (88.4%+ instructions are ALU and
JMP), consequently failing to trigger bugs requiring more
sophisticated logic. Unlike Buzzer, both Syzkaller and BVF
consider all kinds of instructions. For instance, the programs
generated by BVF may access all the accessible objects, in-
cluding different map types and kernel objects, with various
load/store instructions, and invoke the available eBPF helper
functions. In addition, BVF achieves a 49% acceptance rate
with these capabilities, therefore, the generated programs of

BVF are much more expressive while comparably successful
in acceptance, resulting in coverage improvement.

Therefore, BVF’s program structure allows for generating
interesting programs, thereby achieving higher coverage and
triggering more correctness bugs.

6.4 Sanitation Overhead
To address RQ3 and evaluate the overhead of our memory
sanitation, we measure the execution time and the num-
ber of instructions before and after instrumentation. The
datasets used in this experiment contain the manual-written
eBPF programs in the verifier’s self-tests. Those programs
are representative given that they are carefully encoded by
eBPF maintainers to cover a wide range of scenarios. Also,
tests without any load/store are skipped since they cannot
trigger our instrumentation, and the final number of eBPF
programs for evaluation is 708. Finally, the measurements are
performed three times and the average results are reported.
As a result, the average slowdown in execution speed is

90% and the increase in instruction footprints is 3.0x caused
by the instrumentation. This is mainly due to the additional
instructions instrumented for sanitation. We compare our
approach to ASAN [34], as eBPF programs are fairly self-
contained, and thus more similar to user programs than a ker-
nel. Based on the extensive evaluation of ASAN, the average
slowdown caused by its instrumentation on CPU2006 bench-
marks is 73% and the average memory consumption caused
by the instruction footprints is 3.37x. The average slowdown
introduced by BVF’s sanitation is relatively higher than that
of ASAN. This is mainly because BVF relies on KASAN run-
time to collect memory states and perform sanitation, which
is more complex than ASAN runtime designed for user space
programs. The amount of instrumented instructions caused
by BVF’s sanitation is lower than that of ASAN because the
instruction set designed for eBPF programs is much simpler
than that of programs compiled to different hardware archi-
tectures. We conclude that the overhead introduced by BVF’s
instrumentation is well within expectations and reasonable,

12

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

given its ability to capture bugs in eBPF programs and assist
in correctness bug finding.

6.5 Discussion
False Positives/Negatives. As mentioned in Section 5, we
implement memory sanitation by dispatching the load/store
to the kernel functions instrumented by KASAN. Since all
the bugs are detected dynamically, BVF experiences a low
probability of false positives and we didn’t find such cases
during the experiment. On the other hand, the possible ex-
istence of false negatives in KASAN may be propagated to
the testing campaign of BVF, potentially leading to missed
correctness bugs in the verifier. At present, we are unable to
address this issue with effective solutions within BVF itself,
and it requires future improvements to KASAN.
Detectable Bug Types. As is the general situation in

dynamic testing, we do not claim completeness, but BVF is
capable of capturing various exceptional behaviors caused
by erroneous instructions generated through incorrect anal-
ysis for the following reasons: 1) Correctness bugs in load
and store analysis can lead to programs with memory bugs
being loaded, thus captured by BVF’s sanitation, e.g., Bug#2;
2) Incorrect analysis of ALU operation can be propagated
to load/store or jump, thus being detected, e.g., Bug#6 and
CVE-2022-23222; 3) Bugs of jump analysis mainly consist
of incorrect branch analysis and insufficient function call
checking, where the former leads to illegal register states
and thus can be propagated to load/store and captured, e.g.,
Bug#1, and the latter can be captured during execution in
kernel routines, e.g., BUG#4.
Bug Triage. Although BVF can detect correctness bugs

automatically, we still rely on manual methods for locating
and analyzing the verifier’s bugs. Specifically, the amount of
effort required to identify the verifier bug given an eBPF pro-
gram that has an error but passes the verifier is as follows. In
practice, we triage the bugs triggered, manually inspect the
erroneous eBPF programs to pinpoint the guilty instruction,
and then reason the preceding instructions to collect related
operations that produce the operands for the guilty instruc-
tion. The guilty instruction and related operations together
enable us to locate the possible incorrect verifying logic ac-
cording to their instruction kinds. Finally, maintainers and
we will look into those parts of the verifier and analyze the
root cause.

Reachable Code. In essence, the program generation of
BVF can cover a wide range of possible programs because:
1) all possible instruction types are supported; 2) all possible
combinations of instructions can be constructed in different
parts of the framed body. The second holds because while
BVF encodes certain operation patterns, it also supports sto-
chastic instruction selection. Meanwhile, we also intention-
ally choose not to generate certain kinds of programs, e.g.,
programs using uninitialized registers or consisting of out-
bound jump, because these programs can be rejected easily.

Therefore, BVF is capable of covering various functionali-
ties of the verifier. The functionalities not covered mainly
consist of 1) basic instruction validity checks since we avoid
generating such programs; and 2) verifier logging code since
we currently do not parse the log.

Future Applicability.While maintainers modify eBPF
with new verifier algorithms and data structures, the idea
of converting the correctness bug detection into the bug-
finding in the eBPF program is generalizable as the two
major sources for correctness bugs (indicators#1 and #2)
are already captured. Therefore, correctness bugs included
in the newly added code will eventually appear as the two
indicators, thus captured by the corresponding mechanisms.
For API changes, we can support them once the relevant
system call descriptions (actively maintained by the kernel
community) are added.

7 Related Work
Fuzz testing is an effective bug-finding approach, and many
works in this area are relevant to our work. Specifically,
Syzkaller [43], the state-of-the-art kernel fuzzer, is capable
of testing the eBPF subsystem by generating random bpf()
system calls. It has been integrated into eBPF upstream test-
ing [42] and has demonstrated promising capability in un-
covering memory errors. However, the inputs generated by
syzbot are likely to have invalid bytes, and valid instruc-
tions in them can violate simple rules of eBPF programs, e.g.,
using registers without initialization thus would be early
rejected by the verifier. Furthermore, even if an eBPF pro-
gram that passes the verifier’s checks is generated, detecting
correctness bugs is challenging for syzbot or similar testing
tools. Because, unlike detecting memory errors, where the
sanitizers can signal the fuzzer once capturing such bugs, cor-
rectness bugs typically do not result in direct kernel crashes
or observable outputs, and therefore can be omitted due to
the absence of checking mechanisms.
Another relevant work [23] proposed by iovisor is dedi-

cated to testing the verifier. It first ports the verifier from
kernel space to user space by substituting related kernel rou-
tines with simplified versions, and then, tests the verifier
with libfuzzer [32] by generating random byte sequences. As
a result, it reported one memory bug in the verifier. How-
ever, the porting approach is hardly compatible with eBPF
development, e.g., each change in dependent kernel routines
requires modifications. In addition, it aims to detect memory
errors, not verifier’s correctness bugs. Buzzer [24] is a recent
work that also targets the verifier. It randomly constructs
eBPF programs containing certain map operations and tests
the verifier by checking relevant map states. However, its
generation algorithm mainly involves simple ALU and JMP
instructions, leaving much of the sophisticated checking
logic in the verifier less tested. As a result, Buzzer only found

13

EuroSys ’24, April 22–25, 2024, Athens, Greece Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang

one bug in the verifier’s backtracking procedures by the
community after a prolonged time of testing.

Unlike the aforementioned works, we propose BVF to de-
tect the verifier’s correctness bugs rather than traditional
bug finding in the eBPF subsystem. To achieve this, an effec-
tive test oracle is proposed. Specifically, we first propose a
lightweight structure to guide the generation of eBPF pro-
grams, thereby bypassing the verifier efficiently. We then
devise two indicators for correctness bugs based on eBPF pro-
grams’ intrinsic behaviors and capture the indicators with
the corresponding mechanisms.

In addition to the aforementioned works, we further clas-
sify related works into the following categories.
Formal Verification. Formal verification checks each

possible execution of a program against the specification,
thus providing the strongest guarantee of correctness. Re-
cent works apply such a technique in different components
of the eBPF subsystem. Specifically, Agni [41] generates for-
mulas representing the verifier’s range analysis from source
code and utilizes SMT solvers for correctness checking. Jit-
terbug [30] encodes specifications and semantics to check
the correctness of the eBPF JIT compiler. Both advance the
correctness of the eBPf subsystem significantly. Neverthe-
less, despite the strong guarantees of formal verification,
dynamic testing is able to perform continuous testing and
discover numerous bugs along with the program evolving
and changing with less manual effort, thus being practical
and scalable. Compared to the works mentioned, BVF is ca-
pable of continuously detecting various correctness bugs in
the entire verifier, not just range analysis (a small portion of
the verifier), without manual intervention.
Black Box Testing. Works in this category regard the

system under test as a black box, and conduct testing by con-
tinuously generating inputs of interest. Take CSmith [47] for
instance. It generates a subset of C programs that is free of
undefined behaviors such that the generated programs can
be utilized for differential testing to detect compiler bugs.
In comparison, BVF designs structured generation based on
intrinsic behaviors of eBPF programs, synthesizes programs
that contain various map/context/memory accesses and ac-
tive interactions with the kernel, and detects correctness
bugs using effective oracles without requiring any referenc-
ing implementations. Both the generating and bug-finding
approaches are different.
Sanitizer Design. Recent advances in sanitizer design

greatly facilitate bug finding for dynamic testing. Such a
technique is capable of automatically detecting certain kinds
of bugs by instrumenting the program under test. For in-
stance, Asan [34] captures memory bugs by collecting mem-
ory states and checking sensitive operations in a program
with the instrumented code. However, sanitizers only pas-
sively detect bugs. In BVF, we convert the correctness bug

finding into eBPF program bug detection by utilizing exist-
ing sanitizer infrastructure to capture anomalous behaviors
from erroneous programs proactively generated by BVF.

8 Conclusion
In this paper, we propose two indicators and correspond-
ing capturing mechanisms as effective test oracles for the
verifier’s correctness bugs. To trigger the indicators, BVF
leverages the proposed structure to synthesize complex pro-
grams. To capture the indicators, BVF executes the programs
and utilizes the memory sanitation and kernel mechanisms.
As a result, BVF detected 11 previously unknown vulnerabil-
ities in the eBPF subsystem, and six of them are correctness
bugs in the verifier, demonstrating that our technique is
highly effective in finding correctness bugs.

Acknowledgments
We would like to thank our shepherd, Pedro Fonseca, and
the anonymous Eurosys reviewers for valuable feedback
and input on this paper. This research is sponsored in part
by the National Key Research and Development Project
(No. 2022YFB3104000) and NSFC Program (No. 62022046,
92167101, U1911401, 62021002).

References
[1] CVE-2021-3490. https://nvd.nist.gov/vuln/detail/CVE-2021-3490.
[2] CVE-2021-4159. https://nvd.nist.gov/vuln/detail/CVE-2021-4159.
[3] CVE-2022-23222. https://nvd.nist.gov/vuln/detail/CVE-2022-23222.
[4] CVE-2022-23222 exploit. https://www.openwall.com/lists/oss-

security/2022/01/18/2.
[5] eBPF Instruction Set Specification. https://docs.kernel.org/bpf/

instruction-set.html.
[6] ebpf selftests. https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-

next.git/tree/tools/testing/selftests/bpf.
[7] eBPF Verifier. https://docs.kernel.org/bpf/verifier.html.
[8] kcov: code coverage for fuzzing. https://docs.kernel.org/dev-tools/

kcov.html.
[9] Oss-fuzz: continuous fuzzing for open source software. https://github.

com/google/oss-fuzz.
[10] PTR_TO_BTF_ID. https://github.com/torvalds/linux/blob/v6.2/

include/linux/bpf.h#L760.
[11] Runtime locking correctness validator. https://docs.kernel.org/locking/

lockdep-design.html.
[12] Andrea Arcangeli. Seccomp bpf (secure computing with

filters). https://www.kernel.org/doc/html/latest/userspace-api/
seccomp_filter.html?highlight=seccomp.

[13] Marco Bonola, Giacomo Belocchi, Angelo Tulumello, Marco Spaziani
Brunella, Giuseppe Siracusano, Giuseppe Bianchi, and Roberto Bifulco.
Faster software packet processing on FPGA NICs with eBPF program
warping. In 2022 USENIX Annual Technical Conference (USENIX ATC
22), pages 987–1004, Carlsbad, CA, July 2022. USENIX Association.

[14] Daniel Borkmann and Alexei Starovoitov. Linux eBPF. https://ebpf.io.
[15] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled

Search. In 2018 IEEE Symposium on Security and Privacy (SP), pages
711–725, 2018.

[16] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin
Zhou, Xun Jiao, and Zhuo Su. EnFuzz: Ensemble Fuzzing with Seed
Synchronization among Diverse Fuzzers. In 28th USENIX Security

14

https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-4159
https://nvd.nist.gov/vuln/detail/CVE-2022-23222
https://www.openwall.com/lists/oss-security/2022/01/18/2
https://www.openwall.com/lists/oss-security/2022/01/18/2
https://docs.kernel.org/bpf/instruction-set.html
https://docs.kernel.org/bpf/instruction-set.html
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/dev-tools/kcov.html
https://docs.kernel.org/dev-tools/kcov.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/torvalds/linux/blob/v6.2/include/linux/bpf.h#L760
https://github.com/torvalds/linux/blob/v6.2/include/linux/bpf.h#L760
https://docs.kernel.org/locking/lockdep-design.html
https://docs.kernel.org/locking/lockdep-design.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html?highlight=seccomp
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html?highlight=seccomp
https://ebpf.io

Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program EuroSys ’24, April 22–25, 2024, Athens, Greece

Symposium (USENIX Security 19), pages 1967–1983, Santa Clara, CA,
August 2019. USENIX Association.

[17] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
Simple and precise static analysis of untrusted linux kernel extensions.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 1069–1084, New
York, NY, USA, 2019. Association for Computing Machinery.

[18] Google. Kernel address sanitizer. https://www.kernel.org/doc/html/
latest/dev-tools/kasan.html.

[19] Google. Kernel concurrency sanitizer. https://www.kernel.org/doc/
html/latest/dev-tools/kcsan.html.

[20] Tejun Heo. sched: Implement BPF extensible scheduler class. https:
//lwn.net/Articles/916290/.

[21] W.E. Howden. Theoretical and empirical studies of program testing.
IEEE Transactions on Software Engineering, SE-4(4):293–298, 1978.

[22] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim,
and Byoungyoung Lee. Difuzzrtl: Differential fuzz testing to find cpu
bugs. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1286–1303, 2021.

[23] iovisor. bpf-fuzzer: fuzzing framework based on libfuzzer and clang
sanitizer. https://github.com/iovisor/bpf-fuzzer.

[24] Juan José López Jaimez and Meador Inge. Buzzer. https://github.com/
google/buzzer.

[25] Jim Keniston. Linux Kprobe. https://www.kernel.org/doc/html/latest/
trace/kprobes.html.

[26] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 147–161, New York,
NY, USA, 2019. Association for Computing Machinery.

[27] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin
Mohan, and Tianyin Xu. Verified programs can party: Optimizing
kernel extensions via post-verification merging. In Proceedings of the
Seventeenth European Conference on Computer Systems, EuroSys ’22,
page 283–299, New York, NY, USA, 2022. Association for Computing
Machinery.

[28] lcamtuf. American fuzzy lop, 2013. https://lcamtuf.coredump.cx/afl/.
[29] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun.

PATA: Fuzzing with Path Aware Taint Analysis. In 2022 2022 IEEE Sym-
posium on Security and Privacy (SP) (SP), pages 154–170, Los Alamitos,
CA, USA, may 2022. IEEE Computer Society.

[30] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Specifi-
cation and verification in the field: Applying formal methods to bpf
just-in-time compilers in the linux kernel. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’20, USA, 2020. USENIX Association.

[31] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Op-
timizing OS Fuzzer Seed Selection with Trace Distillation. In 27th
USENIX Security Symposium (USENIX Security 18), pages 729–743,
Baltimore, MD, August 2018. USENIX Association.

[32] LLVM Project. libfuzzer: a library for coverageguided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

[33] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX
Security 17), pages 167–182, Vancouver, BC, August 2017. USENIX
Association.

[34] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.

[35] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In Proceedings of the Workshop on

Binary Instrumentation and Applications, WBIA ’09, page 62–71, New
York, NY, USA, 2009. Association for Computing Machinery.

[36] Evgeniy Stepanov and Konstantin Serebryany. Memorysanitizer: fast
detector of uninitialized memory use in c++. In 2015 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO),
pages 46–55. IEEE, 2015.

[37] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. KSG:
Augmenting kernel fuzzing with system call specification generation.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
351–366, Carlsbad, CA, July 2022. USENIX Association.

[38] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, and Aiguo Cui. HEALER: Relation Learning Guided Kernel
Fuzzing, page 344–358. Association for Computing Machinery, New
York, NY, USA, 2021.

[39] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico,
Elerson R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M.
Vieira. Fast packet processing with ebpf and xdp: Concepts, code,
challenges, and applications. ACM Comput. Surv., 53(1), feb 2020.

[40] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and
Santosh Nagarakatte. Sound, precise, and fast abstract interpretation
with tristate numbers, 2021.

[41] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and
Santosh Nagarakatte. Verifying the verifier: ebpf range analysis verifi-
cation. In Constantin Enea and Akash Lal, editors, Computer Aided
Verification, pages 226–251, Cham, 2023. Springer Nature Switzerland.

[42] Dmitry Vyukov and Andrey Konovalov. Syzbot dashboard, 2015. https:
//syzkaller.appspot.com/upstream.

[43] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsuper-
vised coverage-guided kernel fuzzer, 2015. https://github.com/google/
syzkaller.

[44] Dmitry Vyukov and Andrey Konovalov. Syzlang: System Call De-
scription Language, 2015. https://github.com/google/syzkaller/blob/
master/docs/syscall_descriptions_syntax.md.

[45] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Cheng-
nian Sun, and Jiaguang Sun. RIFF: Reduced Instruction Footprint for
Coverage-Guided Fuzzing. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 147–159. USENIX Association, July
2021.

[46] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data race fuzzing for kernel file systems. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1643–1660, 2020.

[47] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in c compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’11, page 283–294, New York, NY, USA, 2011. Association
for Computing Machinery.

[48] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B.
Moss. Efficient packet demultiplexing for multiple endpoints and
large messages. In USENIX Winter 1994 Technical Conference (USENIX
Winter 1994 Technical Conference), San Francisco, CA, January 1994.
USENIX Association.

[49] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong Su.
SANRAZOR: reducing redundant sanitizer checks in C/C++ programs.
In Angela Demke Brown and Jay R. Lorch, editors, 15th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2021,
July 14-16, 2021, pages 479–494. USENIX Association, 2021.

[50] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. XRP: In-Kernel storage functions with
eBPF. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 375–393, Carlsbad, CA, July 2022.
USENIX Association.

[51] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A survey for roadmap. ACM Comput. Surv., 54(11s), sep 2022.

15

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://lwn.net/Articles/916290/
https://lwn.net/Articles/916290/
https://github.com/iovisor/bpf-fuzzer
https://github.com/google/buzzer
https://github.com/google/buzzer
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md

	Abstract
	1 Introduction
	2 Background
	3 Correctness Bug Indicators
	3.1 Indicator#1
	3.2 Indicator#2

	4 BVF Design
	4.1 Structured Program Generation
	4.2 Memory Access Sanitation

	5 Implementation
	6 Experiment
	6.1 Bug Finding
	6.2 Case Study
	6.3 Program Structure Effectiveness
	6.4 Sanitation Overhead
	6.5 Discussion

	7 Related Work
	8 Conclusion
	References

