
PAVFuzz: State-Sensitive Fuzz Testing of Protocols in
Autonomous Vehicles

Feilong Zuo†, Zhengxiong Luo†∗, Junze Yu‡, Zhe Liu§, Yu Jiang†
†KLISS, BNRist, School of Software, Tsinghua University,

‡Beijing University of Posts and Telecommunications, §Nanjing University of Aeronautics and Astronautics

Abstract—The rapid development of in-vehicle networks and protocols
brings efficient communication service but also increases the risk of
attack. Any vulnerability may be leveraged to cause serious consequences.
It is of vital importance to guarantee their security. However, the
vulnerability detection efficiency of traditional techniques such as fuzzing
is challenged by the complex relations among protocol states.

In this paper, we propose PAVFuzz, a state-sensitive fuzz testing
framework to secure those protocols used in autonomous vehicles. It
automatically learns relations between two data elements in different
protocol states. The relations will then be used to calculate and update
the mutation weight of each data element continuously. Accordingly,
PAVFuzz is able to select the target data elements and perform state-
sensitive mutation to boost the efficiency. Experiments show that, com-
pared with state-of-the-art fuzzers Peach and AFL, PAVFuzz increases
branch coverage by averagely 22.51% and 369.19% within 24 hours. It
has successfully exposed 12 serious previously unknown vulnerabilities
among several protocols that are widely used in autonomous vehicles,
such as RTPS and SOME/IP. We have reported them to the developers
and corresponding patches have been released.

Index Terms—State-sensitive Fuzzing, Protocol Testing, Vulnerability
Detection, Autonomous Vehicle

I. INTRODUCTION

The rapid development of autonomous vehicles puts forward higher
communication requirements and various protocols have been de-
veloped to achieve efficient communications among different system
components. However, these protocols also increase the risk of attack.
Attackers may leverage the vulnerabilities of the protocol to achieve
malicious purposes, such as deactivating ECUs and stealing the
control right. For example, the vulnerabilities in the Jeep Uconnect
system once gave the chance for attackers to control the whole
vehicle [11]. It is of significant importance to guarantee the security
of protocols in autonomous vehicles.

Recently, fuzz testing, as one of the most famous software testing
techniques for vulnerability detection, has been included in the
Society of Automotive Engineers J3061 standard [16] for cyber-
security guidance. Fuzzers usually generate large numbers of test
inputs for execution, and the system under test is monitored for
abnormal behaviors. According to the ways how new test inputs are
produced, fuzzers can be divided into two categories: mutation-based
and generation-based. Mutation-based fuzzers, such as AFL [24]
and LibFuzzer [6], start with some initial seeds and constantly
mutate them at byte/bit level to produce new inputs. Generation-
based fuzzers, represented by Peach [17] and Sulley [1], require user-
provided data models to stipulate the property of each specific data
element and combine all elements together into complete test inputs.
Both types of fuzzers have successfully detected a large number
of vulnerabilities in real-world software, such as common libraries,
utilities, browsers, etc.

However, when faced with the protocols in autonomous vehicles,
the complex relations among protocol states bring two challenges:

∗Zhengxiong Luo is the correspondence author.

How to capture relations across different states. Traditional
fuzzers are usually state-insensitive, and treat each iteration and state
equally and independently. But different from the traditional point-
to-point network protocols, protocols in autonomous vehicles need to
handle communication among various ECUs and sensors, therefore,
they tend to employ a de-centered structure with multiple states of
service discovery, service subscription, service request, and so on.
These states are in close-relationship, where packet in one state not
only defines the inner status of the protocol but also affects how
the packets of the following states will be handled. Though provided
with user-defined data models to describe the structure of packets of
each single state, traditional fuzzers cannot deal with the relationship
across different states, which can be leveraged to achieve a more
accurate fuzzing procedure.

How to perform targeted mutations in different states. Tradi-
tional fuzzers treat each data element or byte/bit equally with the
same probability to be mutated at each fuzzing iteration. However,
considering the complex relations across different protocol states,
the protocol state is influenced by previously sent packets. The
influenced data elements of the state should be given a higher
mutation opportunity. Therefore, to achieve a higher efficiency, the
mutation strategy over data elements should be state-sensitive, not
state-independent like in traditional fuzzers.

In this paper, we proposed a state-sensitive fuzzing framework
named PAVFuzz to secure protocols used in autonomous vehicles. It
mainly includes two components. First, the relation learning module
automatically learns the relationship between two data elements in
models of different states. The main idea is that, when a generated
packet covers a new branch, it identifies the data elements contribut-
ing to this coverage increment and updates their relationship with
the data elements of the following state. Second, the state-sensitive
mutation module will perform targeted mutation on data elements. It
no longer treats each data element with equal mutation weight, but
calculates the mutation weight of each data element based on the
continuously updated relation table. In this way, PAVFuzz is able
to smartly recognize the target data elements that may trigger new
branches, thus improving the efficiency of fuzzing.

We evaluated PAVFuzz on several popular open-source protocols
used in autonomous vehicles: RTPS, SOME/IP, and ZeroMQ. Ex-
perimental results show that, compared with state-of-the-art fuzzers
Peach and AFL, PAVFuzz improves the branch coverage averagely
by 22.51% and 369.19%, respectively. Moreover, PAVFuzz exposed
12 previously unknown vulnerabilities that may cause serious conse-
quences among these widely used in-vehicle protocols.

II. BACKGROUND

A. Protocols in Autonomous Vehicles

In autonomous vehicles, various sensors and ECUs work together
to collect environmental information and conduct control over vehicle
components. Fundamental vehicular network systems connect them978-1-6654-3274-0/21/$31.00 ©2021 IEEE

together and serve as the carrier for information exchange. The tradi-
tional and most widely-used vehicular network system is Controller
Area Network (CAN). With the information getting richer and the
requirement of bus speed getting higher, other systems came into
existence, such as Local Interconnect Network (LIN), FlexRay, Media
Oriented System Transport (MOST).

In recent years, 100BASE-T1 automotive Ethernet has been gradu-
ally used in autonomous vehicles. The automotive Ethernet uses two
twisted-pair wires and provides the ability of information transmis-
sion up to 100Mb/s. Figure 1 shows the protocol stack of automotive
Ethernet. Based on the basic Ethernet, many kinds of protocols
are supported, like common TCP/IP on layer 3-4, Scalable service-
Oriented Middleware on IP (SOME/IP) on layer 5-7, etc. Moreover,
modern communication middleware like Real-time Publish-Subscribe
Protocol (RTPS) and ZeroMQ are adopted to achieve high-throughput
and low-latency communication in not only intra-vehicle but also
inter-vehicle network systems, which also provide the possibility to
be attacked maliciously if any security vulnerability exists in their
implementations.

Layer 5~7

Layer 4

Layer 3

Layer 2

Automotive Ethernet PHY: 100BASE-T1

IEEE Ethernet MAC + VLAN (802.1Q)

IPv4/IPv6

SOME/IP

TCP/UDP

Layer 1

RTPS ZeroMQ ...

Fig. 1. Example Protocol Stack of Automotive Ethernet.

B. Generation-based Fuzzing

For protocols, generation-based fuzzers are more suitable than
mutation-based ones, because network packets are highly structured
and the mutation-based ones often bog down without the help of data
models. Specifically, the byte/bit-level mutation of mutation-based
fuzzers tends to destroy the structure of packets and thus they will
be rejected by the protocol at the early processing stage. Generation-
based fuzzers such as Peach have achieved great popularity in the
testing of many famous protocols such as FTP and Modbus, and
their main workflow of packets generation is shown in Algorithm 1.

Algorithm 1: Packets Generation of Generation-based Fuzzer
Input: SetD: Set of data models in order of states
Output: Seqp: Sequence of packets generated in this iteration

1 Seqp ← EMPTYSEQUENCE()
2 for Di ∈ SetD do
3 Setelem ← RANDOMCHOOSEELEMENTS(Di)
4 for elem ∈ Setelem do
5 Di ← CONDUCTMUTATION(Di, Setelem)

6 packet← GENERATEPACKET(Di)
7 Seqp ← Seqp

⋃
{packet}

8 return Seqp

The process starts with user-provided data models, each of which
represents the structure of packet that is sent to the under-test
endpoint (e.g., a server endpoint in C/S protocols or a subscriber
in P/S ones) at a specific state. Fuzzers traverse these data models
in order of states (lines 2-7). At each data model Di, several data

elements in Di are randomly selected to be mutated according to the
priorities of elements and the mutation rules (lines 3-5). Afterwards,
a new packet is generated and added to the sequence (lines 6-7).

III. MOTIVATION

Take the RTPS protocol [13], a commonly used communication
protocol in the automatic driving system like Adaptive Autosar [3]
and Baidu Apollo [2], as an example. To fuzz the implementation of
RTPS, testers will model the structure of packets to simulate the real
communication process. Several data models will be constructed, in-
cluding the participant discovery packet model (SPDP), the endpoint
discovery packet model (SEDP), the data publishing packet model
(PUB), and so on. Based on the specification of these data models,
fuzzers could continuously generate data packets and monitor the
system behaviours. During the fuzzing procedure, we find that the
efficiency of the traditional state-insensitive strategies are impeded
by the relations among those states.

GUID Prefix... ... Topic Type ...

GUID Prefix... ...

State: SEDP

Data Payload ...

Version

Version

Max Size

State: PUB

Fig. 2. Relations between data elements of different states in RTPS protocol.

Figure 2 presents some relations between data elements of two
states in RTPS protocol. For example, the Version and GUID
Prefix elements of PUB state should keep the same value as the
previous packet in SEDP state. Otherwise, this packet tends to be
rejected for being inconsistent with the system. In this situation, the
mutation probability of these elements should be reduced to avoid
useless mutation and execution. Another relation instance is more
complicated, it is clear that the Data Payload element is the
detailed content of the attributes Topic, Type and Max Size,
which are stipulated in the previous packet in SEDP state. The change
of values in the attribute elements will greatly influence the way
how the protocol processes the content element. In this situation, the
mutation probability of these elements should be increased to explore
more possibilities. Besides these two relations, there are various other
relations between states in RTPS. However, none of the traditional
fuzzers capture those relations to improve fuzzing.

UDP
Header

RTPS Message
Header

Magic Version Vender GUID
Prefix

Submessage
Header

Submessage:DATA
Elements

ID Flags Length

Extra
Flags QoS Reader Writer SeqNum Data Payload

Fig. 3. Structure of RTPS packet used to publish data.

More specifically, Figure 3 shows the packet structure of PUB
state that will be sent from an RTPS publisher to a subscriber. The
structure is complex and this figure only describes the basic data
elements. Indeed, some elements can be further subdivided, like the
Flags, GUID Prefix, Data Payload, etc. Traditional generation-based
fuzzers, like Peach, first generate initial seeds. Then, at each fuzzing
iteration, randomly choose some data elements and mutate them to
new values. At a superficial level, it seems reasonable as it does work
in producing new test inputs. Nevertheless, considering the complex

relations between states in RTPS, this mutation strategy is inefficient
because it treats all elements in the data model equally. In fact, in the
logic of packet analyzing, these data elements have different levels
of significance. More specifically, the significance of each element is
up to the former packets of SPDP and SEDP states.

IV. PAVFUZZ DESIGN

We present the design of PAVFuzz in Figure 4. The whole system
starts with a set of user-provided data models of the under-test
protocol implementation. Each data model D represents the structure
of the packet which is sent to the endpoint under-test (EUT, usually
a server in C/S protocols or a subscriber in P/S protocols).

XML
Data

Models

State-sensitive
Mutation Relation Table Relation

Learning

new input Execution In EUT

Next Data ModelXML
Data
Model

Choose

Bug
Report

Protocol
Under Test

Coverage
Collection

Fig. 4. Design of PAVFuzz. A relation table is dynamically maintained.
When a generated packet covers new code, the relation learning module
updates the relation table. The state-sensitive mutation module leverages the
dynamic weight to preform target mutation over data elements.

At each iteration of the fuzzing loop, PAVFuzz traverses the data
models in the order of states. When a specific data model D is chosen,
it conducts state-sensitive mutation on target data elements according
to the dynamic mutation weight calculated on the relation table to
generate new input. Afterwards, the newly generated input is fed to
the EUT and PAVFuzz monitors the status of the input processing.
If any crashes are detected, it implies the possible existence of
vulnerabilities in the code logic of the implementation, and PAVFuzz
will report the related information of these crashes for reproducing
and repairing. Otherwise, if no crashes arise, PAVFuzz moves to
the coverage collection stage and decide whether new code in the
protocol are covered during the packet processing just now. If new
codes are covered, PAVFuzz leverages a light-weight strategy to
learn the relations between the elements mutated in D and the
elements in next data model D′. The learned relations are quantified
in the form of value in the relation table, whose content grows as the
fuzzing goes on. After that, D′ turns into the chosen data model to be
mutated. When all data models have been traversed, PAVFuzz moves
to the next iteration.

A. Relation Table

The relation table in PAVFuzz describes the relations between data
elements in data models of adjacent states. As Figure 5 shows, each
cell in the table represents a structure of triple <Element_ID_P,
Element_ID, Value>, where Element_ID_P uniquely iden-
tifies the element of the data model in the previous state and

Element_ID has a similar meaning in the current data model. To
achieve the uniqueness, a tuple structure of <Model, Element>
is employed as the inner data structure of Element_ID_P and
Element_ID in case of element conflict. Value in each cell
dynamically reflects the relation between Element_ID_P and
Element_ID. Taking the two globally unique element ids as IDp

and IDc, briefly speaking, Value means the amount of new code
coverage that is achieved when combining the previous data model
with newly discovered value in IDp and the following data models
with all existing values in IDc into packet sequences. Detailed
design of the algorithm to calculate Value is introduced in the
relation learning module. The bigger Value in the triple, the higher
probability IDc will be mutated when IDp has been mutated in the
previous packet.

Element_ID ValueElement_ID_P

Model_Name Element_Name Model_Name Element_Name

Fig. 5. Cell structure in Relation Table.

B. Relation Learning

To construct the relation table in Section IV-A, PAVFuzz adopts
a lightweight relation learning algorithm to quantify the relations
between elements in different states. This module is triggered when
a packet with mutated elements achieves new code coverage.

Algorithm 2: Relation Learning
Input: D: Current data model to generate packets
Input: D′: Next data model
Input: Sid: Set of elements mutated in D
Output: Tr: Relation Table

1 Sid ← ELEMENTPRUNING(Sid,D)
2 for elem ∈ Sid do
3 m← CURPACKETREGENERATION(D, elem)
4 S ′

id ← ANALYZEDATAMODEL(D′)
5 for elem′ ∈ S ′

id do
6 tempvalue← 0
7 M′ ← COLLECTPACKETS(D′, elem′)
8 for m′ ∈M′ do
9 seq ← GENERATEPACKETSEQ(m,m′)

10 res← INJECTTOEUT(seq)
11 if CHECKRES(res) = NewCov then
12 tempvalue← tempvalue+ 1

13 Tr ← UPDATETAB(elem, elem′, tempvalue)

14 return Tr

Algorithm 2 illustrates with details how PAVFuzz learns the
relations between elements. The algorithm starts with three inputs: 1)
current data model D whose corresponding generated packet triggers
the algorithm, 2) the next data model D′ which is subsequent to D,
and 3) the set of element ids Sid that were just now mutated in D
in this iteration. At the beginning, since not all data elements in Sid
contribute to the new code coverage, in order to improve the accuracy
of relation learning, PAVFuzz needs to do pruning on Sid (line 1).

During pruning, PAVFuzz attempts to remove the mutation on some
elements in Sid successively in the order of mutation weight in this
iteration and checks whether this packet could still cover the same
code as the initial one. If so, the pruning continues until the minimum
subset of Sid that is able to achieve the same result. Thereafter, for
each element elem in Sid, PAVFuzz learns the relation between
elem and all elements in D′ (lines 2-13). Taking the element in
D′ as elem′, to calculate the relation between elem and elem′,
PAVFuzz first collects all packets satisfying the following three
requirements into setM′: 1) they improved the code coverage before,
2) they were generated based on D′, 3) elem′ is one of their mutation
elements (line 7). Then it combines the packet m that is re-generated
based on each elem in Sid after pruning with each packet m′ inM′

into new sequences (line 9). Finally, the sequences are fed into the
EUT and PAVFuzz checks the execution results. Once a sequence
covers new code, the value of relation in corresponding cell of Tr
increases a unit (lines 10-12).

With the fuzzing procedure goes on, more code will be covered
and more times of relation learning will be triggered, resulting in
the more complete relation table and more high-quality generated
packets. This is a positive cycle that increases the overall efficiency
when fuzzing those protocols used in autonomous vehicles.

C. State-sensitive Mutation

With the help of relation table, PAVFuzz implements a state-
sensitive mutation strategy. Those elements with higher mutation
weight are more likely to be mutated with new values in the generated
packets. Compared with the traditional element chosen strategy,
dynamic mutation weight smartly identifies the key elements in
current state, avoiding the situation where large amount of time and
computing resources are wasted to mutate elements that are irrelevant.

Algorithm 3: State-sensitive Mutation
Input: D: Current data model to generate packets
Input: mp: Previous packet sent to EUT
Input: Tr: Relation Table
Output: m: Output packet after mutation with dynamic

weight
1 Dp ← GETDATAMODEL(mp)
2 Sid p ← GETMUTATIONSET(mp,Dp)
3 Sid ← ANALYZEDATAMODEL(D)
4 Dict← ∅
5 for elem ∈ Sid do
6 weight← 0
7 for elemp ∈ Sid p do
8 weight←

weight+ GETRELATIONVALUE(Tr, elemp, elem)

9 Dict← Dict
⋃

< elem,weight >

10 Sid ← CHOOSEBYWEIGHT(Sid, Dict)
11 m← MUTATION(D,Sid)
12 return m

Detail of the state-insensitive mutation stragety is presented in
Algorithm 3. In each iteration, data models of corresponding states
are used to serve as the base of mutation and they are orderly
traversed by the fuzzer. To calculate the current mutation weight of
each element elem in this data model D, PAVFuzz needs to refer to
the previous packet mp that was sent to the EUT. PAVFuzz analyzes
mp, then it gets its data model Dp and the after-pruning set of

mutated elements Sid p (lines 1,2). The mutation weight of elem
can be calculated with the following formula:

Welem =
∑

elemp

Tr < elemp, elem > , elemp ∈ Sid p

The calculation sums the value in relation table Tr with the two se-
quential indexes elemp and elem, where elemp means each element
in Sid p (lines 5-8). The results are kept in an enumerable dictionary
whose key is element id and value is the corresponding mutation
weight of the element (line 9). Thereafter, PAVFuzz chooses the set
of elements to be mutated Sid according to the weights of elements
in the dictionary (line 10). Finally, a new packet is generated based
on the data model D and the mutation set Sid (line 11).

V. EVALUATION

We implemented PAVFuzz using C# and utilized the mutation
engine of Peach (community version 3.0.202) [17], which is one of
the most widely used protocol fuzzers. To instrument the EUT and
collect run-time code coverage information for relation learning, we
designed and implemented a compiler wrapper on top of the compiler
Clang based on the features of LLVM [14].

We conducted comparative experiments on PAVFuzz and other
state-of-the-art fuzzers to answer the following research questions:

1) Is PAVFuzz more efficient in fuzzing protocols used in au-
tonomous vehicles than start-of-the-art fuzzers?

2) Can PAVFuzz effectively expose previously unknown vulnera-
bilities in those widely used protocols in autonomous vehicles?

A. Experiment Setup

We chose three famous in-vehicle protocols, namely RTPS [13],
SOME/IP [21], and ZeroMQ [26], as the evaluation subjects. Ta-
ble I briefly introduces their application in autonomous vehicles.
They are all widely used in both academic and industrial commu-
nity. Therefore, we believe that they are representative for evalu-
ating PAVFuzz. Specifically, we chose open-source FastRTPS [5],
GENIVI vsomeip [8], and libzmq [25] as the concrete implemen-
tations corresponding to these three protocols. Each program is
hardened by Google Address Sanitizer [10] when compiled.

TABLE I
DESCRIPTION OF SELECTED PROTOCOLS

Protocol Description

RTPS
RTPS is the standard wire protocol used in Data Distribution

Service (DDS [12]), which is adopted in many automatic driving
systems such as Adaptive AutoSar [3], Baidu Apollo [2], etc .

SOME/IP
SOME/IP is a famous application protocol used in Ethernet-based

in-vehicle network systems for service discovery and
communication control over ECUs, carmers, radars, and so on.

ZeroMQ
ZeroMQ is a lightweight protocol for distributed communication.

It has been adopted as alternative protocol in ROS2 (Robot
Operating System [20]), a prototype system for automotive driving.

We compared PAVFuzz with two widely used fuzzers: AFL and
Peach, which are representatives of mutation-based and generation-
based fuzzers respectively. They have been able to uncover security
flaws in a large range of real-world protocol programs. For com-
parison, we used the branch coverage achieved and the number of
unique bugs detected as metrics. The first metric is commonly used to
measure the effectiveness of fuzzers while the second metric indicates
the ability to detect vulnerabilities.

Br
an

ch
es

 C
ov

er
ed

(a) RTPS - FastRTPS (c) ZeroMQ - libzmq(b) SOME/IP - vsomeip
0 3 6 9 12 15 18 21 24

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 24
0

2000

4000

6000

8000

10000

12000

14000

16000

PAVFuzz
Peach
AFL

PAVFuzz
Peach
AFL

0 3 6 9 12 15 18 21 24
0

20000

40000

60000

80000

100000

120000

140000

PAVFuzz
Peach
AFL

Fig. 6. Average number of code branches achieved by different fuzzing tools in 24 hours.

B. Efficiency of Fuzzing

To assess the efficiency, we compared the covered branches within
the same time. The more branches a fuzzer covers, the more efficient
it is. We ran each experiment for 24 hours and repeated each
experiment for 5 times to establish statistical significance of results.
Detailed results of each protocol are presented in Figure 6 and the
overall improvements are summarized in Table II, where IA and IP
indicate the improvement compared to AFL and Peach respectively.

TABLE II
AVERAGE NUMBER OF CODE BRANCHES ACHIEVED

BY EACH FUZZER WITHIN 24 HOURS.

Subject AFL Peach PAVFuzz IA IP
FastRTPS 14034 17107 23784 +69.47% +39.03%
vsomeip 14562 115147 138548 +851.44% +20.32%
libzmq 5621 14894 16114 +186.67% +8.19%

AVERAGE +369.19% +22.51%

From Figure 6, we can observe that at the beginning of each exper-
iment, all the three fuzzers covered new code branches at rapid speed.
Then, AFL first slowed down, gradually bogged down and finally
reached a saturation state where the improvement of branch coverage
turned extremely hard for it. It demonstrates that for mutation-based
fuzzers, without the help of data models for under-test protocols,
their bit/byte level mutations over network packets are not efficient
as they tend to destroy the legal structure of packets. Therefore,
AFL finally achieved the least branch coverage in the selected three
in-vehicle protocols. As for Peach, it performed better than AFL
with the help of user-provided data models of each state. However,
the coverage improvement became slower and slower. PAVFuzz
performed the best and achieved the highest branch coverage in all
of the three protocols. Because of the novel relation learning and
state-sensitive mutation with dynamic weight, PAVFuzz kept a faster
speed of branch improvement. Specifically, compared with Peach and
AFL, PAVFuzz increases branch coverage by averagely 22.51% and
369.19% within 24 hours.

C. Previous Unknown Vulnerabilities

Besides efficiently improving branch coverage, PAVFuzz has also
exposed 12 serious previously unknown vulnerabilities in these three
protocols, while AFL and Peach only detected 1 and 6 of them
respectively. These vulnerabilities have been confirmed and may
cause serious hazards. We present these vulnerabilities in Table III.

Figure 7 illustrates a heap-buffer-overflow vulnerability exposed by
PAVFuzz in vsomeip. This bug occurs in function look_ahead,

TABLE III
STATISTICS ON PREVIOUSLY UNKNOWN BUGS EXPOSED BY PAVFUZZ .

Subject Vulnerability AFL Peach PAVFuzz

FastRTPS stack-buffer-overflow-1 7 3 3
stack-buffer-overflow-2 7 3 3
stack-buffer-overflow-3 7 7 3
stack-buffer-overflow-4 7 3 3
stack-buffer-overflow-5 7 3 3
stack-buffer-overflow-6 7 7 3
heap-buffer-overflow-1 7 7 3
heap-buffer-overflow-2 7 7 3
heap-buffer-overflow-3 7 7 3

vsomeip allocate-out-of-memory 7 3 3
heap-buffer-overflow 7 7 3

libzmq allocate-memory-failure 3 3 3

Total 12 1/12 6/12 12/12

137 bool deserializer::look_ahead(std::size_t _index,
 uint8_t &_value) const {
138 if (_index >= data_.size())
139 return false;
140
141 _value = *(position_ + static_cast<std::
 vector<byte_t>::difference_type>(_index));
142
143 return _value;
144 }

./implementation/message/src/deserializer.cpp

Fig. 7. Previously unknown vulnerability exposed by PAVFuzz in vsomeip

127 inline bool CDRMessage::readDataReversed(CDRMessage_t msg,
 octet* o, uint32_t length)
...
132 for (uint32_t i=0;i < length; i++)
133 {
134 *(o + i) = *(msg->buffer + msg->pos + length -1 -i);
135 }
136 msg->pos += length;
...
183 readDataReversed(mst,dest,8);

./include/fastdds/rtps/messages/CDRMessage.hpp

Fig. 8. Previously unknown vulnerability exposed by PAVFuzz in FastRTPS

where the protocol wants to deserialise a field from the packet stream.
The bug is triggered in line 141 and the variable position is a
global iterator of the packet. The developers made a mistake to merely
check that _index does not exceed the limit in line 138-139. Once
the result of position add _index exceeds the size limit, the
heap-buffer-overflow bug occurs. Figure 8 presents a stack-buffer-
overflow vulnerability exposed by PAVFuzz in FastRTPS. The cause

of this stack-buffer-overflow is similar with the one in Figure 7. It
occurs in function readDataReversed with the key paramters of
msg and length. However, the developers fail to check whether
the address to read in line 134 is legal or not. These buffer overflow
vulnerabilities are common in protocols and they are likely to be
leveraged to perform attacks such as code execution.

VI. RELATED WORK

Recently, mutation-based fuzzers [24] have been widely adopted
in practice for traditional software testing due to their scalability and
efficiency. However, being unaware of file format, trivial mutation-
based fuzzers suffer from the difficulty in generating valid inputs
and covering large regions of code, especially for those protocol
programs that process highly-structured packets. To cope with this,
some techniques, such as taint analysis [15] and symbolic execu-
tion [22], are applied to explore the program implementation to
uncover packet structure. However, due to their problems such as
under/over-taint or path exploration [4] when scaled to large program
bases, the awareness of the packet format is heavily limited. Our work
focuses on optimizing generation-based fuzzers which are capable of
providing well-formed packets.

Grammar-based fuzzers generate inputs by leveraging the given
context-free grammar thus embrace the capability to produce valid
inputs within the grammar model [9]. For example, CSmith [23],
a fuzzer designed for C programming language, generates C pro-
grams based on randomly selected production rules in the grammar.
Radamsa [19] leverages regular and context-free formal languages to
represent the structures of input data. However, due to the limitation
of context-free grammar, these fuzzers tend to encounter the difficulty
in encoding integrity constraints, which are widely used in protocol
programs. Moreover, these fuzzers are unaware of the state space of
those stateful programs like protocol implementation, thus are mainly
utilized to produce inputs for stateless programs (e.g., file processing
programs), where no internal state is taken into account.

To better fuzz protocol programs that feature a massive state space,
some fuzzers augment additional protocol information to guide packet
generation. AFLNet [18] makes automated state model inference
by leveraging the server’s response codes, which does not scale to
those protocols without response code. Pulsar [7], a fuzzer combined
with automatic protocol reverse engineering, infers the model for
message formats and protocol states by observing the network traffic
of the protocol. However, the accuracy of the constructed state model
remains a challenge for those complex protocols used in autonomous
vehicles. These approaches take the protocol state into consideration
when generating new inputs but lose the sight of the relation between
different data elements to be generated in different protocol states.
Our work takes the relation into account and dynamically adjusts the
mutation weight of each data element, biasing the input generation
towards a higher probability of maximizing code coverage.

VII. CONCLUSION

In this paper, we proposed PAVFuzz, a state-sensitive fuzzing
framework for securing protocols used in autonomous vehicles. It
is equipped with a novel relation learning strategy that is able
to automatically learn relations between data elements in different
protocol states during fuzzing. Using the learned relations, PAVFuzz
smartly recognizes the key elements in the data model of each
state and chooses them to mutate with dynamic weight. Compared
with the random element selection strategy used by traditional
generation-based fuzzers, dynamic mutation weight avoids the waste
of limited time and computing resources, improving the efficiency of

fuzzing greatly. Experiments show that, within the same time budget,
PAVFuzz covered more code branches than state-of-the-art fuzzers
Peach and AFL in selected protocols SOME/IP, RTPS, and ZeroMQ.
It has also found 12 serious previously unknown vulnerabilities.

Our future work will mainly focus on the following three aspects:
1) apply and adjust PAVFuzz to secure protocols in other in-
vehicle network systems, such as CAN; 2) improve the efficiency
of PAVFuzz by optimizing the mutation operators to better suit in-
vehicle protocols; 3) support more features or oracles of in-vehicle
protocols such as the vulnerabilities in terms of the real-time feature.

ACKNOWLEDGMENT

This research is sponsored in part by the NSFC Program (No.
62022046, U1911401, 61802223), National Key Research and Devel-
opment Project (Grant No. 2019YFB1706200), the Huawei-Tsinghua
Trustworthy Research Project (No. 20192000794).

REFERENCES

[1] Pedram Amini and Aaron Portnoy. Sulley. 2012.
[2] ApolloAuto. apollo. Website. https://github.com/ApolloAuto/apollo.
[3] Autosar. Adaptive autosar. Website. https://www.autosar.org/standards/

adaptive-platform/.
[4] Cristian Cadar and Koushik Sen. Symbolic execution for software

testing: three decades later. Commun. ACM, 2013.
[5] eProsima. Repository of eprosima fastrtps/fastdds project. Website.

https://github.com/eProsima/Fast-DDS/.
[6] Fiware.org. Libfuzzer. Website. https://llvm.org/docs/LibFuzzer.html.
[7] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, D. Arp, and

K. Rieck. Pulsar: Stateful black-box fuzzing of proprietary network
protocols. In SecureComm, 2015.

[8] GENIVI. vsomeip. Website. https://github.com/GENIVI/vsomeip.
[9] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based

whitebox fuzzing. In PLDI, 2008.
[10] Google. Google address sanitizer. Website. https://github.com/google/

sanitizers/tree/master/address-sanitizer.
[11] Andy Greenberg. Hackers remotely kill a jeep on the high-

way—with me in it. Website. https://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/.

[12] Object Management Group. Data distribution service. Website. https:
//www.omg.org/spec/DDS/1.4/.

[13] Object Management Group. Dds interoperability wire protocol. Website.
https://www.omg.org/spec/DDSI-RTPS.

[14] llvm.org. Clang: a c language family frontend for llvm. Website. http:
//clang.llvm.org/.

[15] Zhengxiong Luo, Feilong Zuo, Y. Jiang, J. Gao, Xun Jiao, and J. Sun.
Polar: Function code aware fuzz testing of ics protocol. ACM Trans.
Embed. Comput. Syst., 18:93:1–93:22, 2019.

[16] Society of Automotive Engineers. Cybersecurity guidebook for cyber-
physical vehicle systems. Website. https://www.sae.org/standards/
content/j3061 201601/.

[17] PeachTech. Peach fuzzing platform. Website. https://www.peach.tech.
[18] Van-Thuan Pham, Marcel Böhme, and A. Roychoudhury. Aflnet: A

greybox fuzzer for network protocols. 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
pages 460–465, 2020.

[19] OUSPG’s Protos Genome Project. Radamsa. Website. https://gitlab.
com/akihe/radamsa.

[20] ros.org. Ros 2. Website. https://index.ros.org/doc/ros2/.
[21] Dr. Lars Völker. Scalable service-oriented middleware over ip. Website.

http://www.some-ip.com/.
[22] Mingzhe Wang, J. Liang, Yuanliang Chen, Y. Jiang, Xun Jiao, H. Liu,

X. Zhao, and J. Sun. Safl: Increasing and accelerating testing coverage
with symbolic execution and guided fuzzing. 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion), pages 61–64, 2018.

[23] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in c compilers. In PLDI ’11, 2011.

[24] Michal Zalewski. American fuzzy lop. 2015.
[25] zeromq.org. libzmq. Website. https://github.com/zeromq/libzmq/.
[26] zeromq.org. Zeromq project. Website. https://zeromq.org/.

