
KSG: Augmenting Kernel Fuzzing with System Call Specification Generation

Hao Sun

Tsinghua University

Yuheng Shen

Tsinghua University

Jianzhong Liu

Tsinghua University

Yiru Xu

Tsinghua University

Yu Jiang ∗

Tsinghua University

Abstract

Kernel fuzzing is a dynamic testing technique that has suc-

cessfully found numerous kernel vulnerabilities. However,

existing kernel fuzzers, such as Syzkaller, depend on system

call specifications to generate test cases. Writing such specifi-

cations requires an immense amount of domain knowledge

while being extremely laborious. Meanwhile, automated gen-

eration of the specification is still an open problem due to the

complexity of the kernel, including entry function extraction

and input type identification. As a result, the current amount

of system call information is insufficient to test the entire

kernel code base thoroughly. Syzkaller covers an average of

38% of Linux kernel code with current Syzlang specifications

for a prolonged time of fuzzing.

In this paper, we propose KSG to generate system call

specifications for kernel fuzzers automatically. First, it uti-

lizes probe-based tracing to extract entry functions accurately.

Then, it uses path-sensitive analysis to collect precise in-

put types and range constraints in each execution path of

entry functions. Based on the aforementioned information,

KSG generates specifications in the domain language Sy-

zlang, which is used by most kernel fuzzers. We evaluated

KSG on several versions of the Linux kernel. It automatically

generated 2433 unique specifications. Leveraging the newly

generated specifications, Syzkaller and Moonshine achieved

coverage improvements of 22% and 23% respectively. Fur-

thermore, our approach assisted fuzzers to discover 26 pre-

viously unknown bugs, where 13 and 6 bugs were fixed and

assigned with CVEs, respectively.

1 Introduction

The operating system kernel is one of the most complex com-

ponents and forms the foundation of the software system. It is

responsible for core functionalities, such as communication

and IO of userspace applications. The security of the kernel

is crucial as kernel bugs can lead to huge impacts easily, e.g.,

∗Yu Jiang is the corresponding author of this paper.

causing userspace applications to be unresponsive [24] and

allowing an attacker to completely compromise a target sys-

tem [22]. Fuzz testing [19] is a popular technique for automati-

cally discovering security vulnerabilities and has already been

applied to the kernel domain. For instance, Syzkaller [33], one

of the most widely used kernel fuzzers, has been integrated

into Linux testing pipeline. It has reported thousands of kernel

bugs [31] up until now, demonstrating the effectiveness of

applying fuzzing to kernel testing.

The driving force of the kernel fuzzer’s bug discovery capa-

bility is system call specifications, which provide a rich set of

system call information. As shown in Figure 2, a system call

can accept parameters with different types based on underly-

ing submodules’ requirements. The prototype of system calls

are written in C, a weakly typed language, that does not pro-

vide much information of system calls’ arguments, e.g., many

parameters are defined as void*. Therefore, it is difficult for

fuzzers to generate inputs that satisfy the submodules’ struc-

tural constraints without additional information, resulting in

low fuzzing efficiency. To address this issue, existing kernel

fuzzers, such as Syzkaller, use a domain language called Sy-

zlang [34] to encode system call specifications. Syzlang is a

strongly typed language and can specialize system calls to

specific submodules with precise input types, as shown in

Figure 1. With this domain knowledge, fuzzing efficiency can

be improved significantly. Meanwhile, the amount of specifi-

cations has a significant impact on the performance of fuzzers.

Fuzzers can generate inputs to test kernel submodules that

are well-encoded in the specifications, but they have difficulty

reaching kernel code that is not encoded. Therefore, many

researchers have to manually write numerous specifications

to test the kernel thoroughly.

However, encoding system call specifications requires an

immense amount of domain knowledge, resulting in signif-

icant time costs and insufficient number of specifications.

Many system calls in the Linux kernel are an abstraction over

corresponding functionalities of kernel submodules, which

are responsible for dispatching the user input to submodules’

operations. The actual types of the system call’s parame-

ters depend on the specific invoked submodule. Therefore,

most specifications are encoded for specific submodules, e.g.,

dev_loop.txt in Syzkaller is specifications for loop device. In

order to encode specifications manually, the following differ-

ent aspects of domain knowledge are required: (1) the precise

input types of system call used by the submodule; (2) the

range constraints on specific input parameters; (3) the domain

language used by fuzzers for specifications. However, the

large amount of kernel submodules and the complexity of the

input types make it difficult to encode specifications for a wide

range of kernel functionalities. Consequently, most specifica-

tions are written by kernel experts, but the extensive manual

effort required has caused specification shortage. Based on the

coverage data reported by Syzbot’s dashboard [32], Syzkaller

covers an average of 38% of Linux kernel code with the cur-

rent Syzlang specifications for a prolonged time of fuzzing.

Several recent works perform automatic specification gen-

eration [4, 6, 11], but they are either designed for particular

system calls or close-sourced scenarios. In order to further

reduce manual efforts, we need to generate specifications for

more system calls and their corresponding submodules.

Source code analysis can be used to generate specifications

effectively, but several challenges need to be addressed due to

the complexity of the Linux kernel. First, extracting entries

that should be analyzed is difficult because entries can be

registered dynamically. In order to generate specifications for

specific submodules, we need to analyze submodules’ opera-

tions invoked by system calls, and we refer to these operations

as entries. However, entries can be registered dynamically

in many scenarios, for instance, during kernel initialization

and module loading. Consequently, it is challenging to ex-

tract entries using current static analysis methods. Second, the

input types of entries can vary in different execution paths, re-

sulting in difficulties identifying them. The functionalities of

kernel submodules are complex, while the number of entries

for accessing them is limited. In consequence, the submod-

ules’ entries can accept different input types across execution

paths. We need to collect input types and corresponding range

constraints in each execution path of every entry, which poses

significant complexity to the analysis. Finally, to generate

specifications in domain languages used by kernel fuzzers,

we need to perform syntax mapping and semantic encoding

based on the collected information.

To address the aforementioned challenges, we propose

KSG (Kernel Specification Generator) to automatically gener-

ate system call specifications for kernel fuzzers. KSG mainly

contains three steps. First, in order to extract submodules’

entries without being bound to their implementation details,

KSG utilizes a probe-based tracing with Linux eBPF [2] and

kprobe [13]. Based on the extracted entries, KSG uses path-

sensitive analysis to collect precise input types and range

constraints in each execution path of entries, which is based

on Clang Static Analyzer (CSA) [20]. Finally, based on the

gathered information, KSG generates system call specifica-

tions in domain language Syzlang, which is used by most

kernel fuzzers, to improve the fuzzing efficiency. We evalu-

ated KSG on multiple versions of Linux kernel. It generates

8 specialized calls per minute, with a total of 2433 special-

ized calls generated in 5 hours, 1460 of which are new to

existing specifications. Leveraging the generated specifica-

tions, Syzkaller and Moonshine’s [23] coverage are improved

by 22% and 23%, respectively. Furthermore, KSG assisted

fuzzers to discover 26 previously unknown bugs, with 13 and

6 were fixed and assigned with CVEs, respectively.

Overall, we make the following technical contributions:

• We propose an analysis approach for system call speci-

fication generation. It incorporates multiple techniques

to precisely collect submodules’ entries and their types

and range constraints on each execution path.

• We designed and implemented KSG, which extracts sub-

modules’ entries with eBPF and kprobe and performs

path-sensitive analysis based on Clang Static Analyzer.

Leveraging the collected information, KSG generates

specifications in Syzlang for kernel fuzzers.

• The evaluation result shows that KSG generated 2433

specifications in total, which can improve the coverage of

Syzkaller and Moonshine by 22% and 23% respectively,

and assisted fuzzers to find 26 new bugs.

2 Background and Related Works

2.1 Kernel Fuzzing

Fuzz testing is an automated vulnerability discovery approach.

Its idea is to continuously generate input to trigger program

crashes with the assistance of various sanitizers [27, 28].

Within each fuzz loop, the fuzzer selects the seed from the

given corpus with certain guided strategies [5, 25]. Then, it

mutates the seed by combining multiple mutation operators,

and feeds the generated input to the target program for ex-

ecution [7, 16]. Meanwhile, the fuzzer collects interesting

program behavior, e.g., coverage [3], to determine whether an

input is valuable for further mutations, thus continuously opti-

mizing the fuzzing campaign. Take AFL [15] for instance. It

is a coverage-guided userspace program fuzzer that has found

hundreds of vulnerabilities in widely-used libraries. Many

works optimize each part of the fuzz loop [1, 17, 18, 36, 40].

For instance, RIFF [37] moves computations done originally

at runtime to instrumentation time, thus reducing the instru-

mentation code while utilizing vector instructions to improve

throughput. Consequently, its coverage measurement mecha-

nism can reduce fuzzing overhead significantly.

The overall process used in kernel fuzzing is similar to

that used in userspace, but each specific part can be different

due to the complexity of the kernel. Specifically, the idea

of kernel fuzzing is to generate high-quality input to trigger

kernel crash assisted with kinds of kernel sanitizers [8, 9],

which is the same as a standard fuzz loop. However, unlike

userspace fuzzing, the input structure of system calls can be

complicated, and the cost of each test case execution is expen-

sive.Therefore, the inputs generated by kernel fuzzers need

to satisfy the structural and range constraints; otherwise, it

would be rejected early by input validation, thus wasting huge

amounts of fuzzing time. Existing fuzzers use specifications

to encode input information of system calls to address this.

Based on this domain knowledge, the performance of kernel

fuzzers can be improved considerably.

Syzkaller is a state-of-the-art kernel fuzzer developed by

Google. In order to generate high-quality input, it utilizes

the domain language Syzlang to encode system call spec-

ifications manually. Although the encoding process brings

substantial costs, they enable Syzkaller to discover thousands

of bugs in the Linux kernel. Meanwhile, many works improve

each part of kernel fuzzing [12, 14, 21, 26, 29, 35, 38]. Take

Moonshine [23] as an example, it proposes a seed distilla-

tion algorithm to collect system call sequences from real-

world applications and provide initial seeds for kernel fuzzers.

Healer [30] optimizes input synthesis with system call influ-

ence relations and utilizes a dynamic learning algorithm to

identify such relation between calls. Although both works

improve the fuzzing performance significantly, their perfor-

mance, like Syzkaller, depends on the quality and abundance

of Syzlang specifications.

2.2 System Call Specification

Many system calls in Linux are an abstraction over corre-

sponding functionalities of kernel submodules, and they are re-

sponsible for dispatching the user input to submodules’ opera-

tions. A system call can accept parameters with different types

based on submodules’ expectations. As shown in Figure 1, the

input types of socket-related calls can vary for different under-

lying protocols. The type of parameter val in setsockopt

is void*, where it becomes struct tcp_repair_window

when protocol is TCP, while other protocols can define dif-

ferent types. The structure of val can be very complex since

each protocol supported by the Linux kernel can utilize differ-

ent types. Besides, the original type of val (void*) does not

provide any structural information to fuzzer. Without further

input information, fuzzer cannot test setsockopt effectively

since most generated inputs do not satisfy the requirements

of specific protocols and will be rejected by input validation.

Kernel fuzzers utilize specifications written in domain lan-

guage to generate input. For instance, Syzkaller utilizes Sy-

zlang to encode specifications for specific submodules. Within

each submodule’s specification, kernel experts first define the

resource type corresponding to the submodule. The re-

source type in Syzlang infers that the value of a parameter

can only be constructed by the kernel and represents a kind of

kernel resource. Then, kernel experts specialize system calls

resource sock_tcp[sock_in]

tcp_repair_window {

snd_wl1 int32

snd_wnd int32

…

}

socket$TCP(domain const[AF_INET], type const[SOCK_STREAM],
protocol const[0]) sock_tcp

setsockopt$TCP(sock sock_tcp, level const[IPPROTO_TCP],
opt_name const[TCP_REPAIR_WINDOW],

val ptr[tcp_repair_window], len len[val])

Simple program using TCP

// setup TCP

sock_tcp = socket(AF_INET, SOCK_STREAM, 0);

...

// setup fields of tcp_repair_window

struct tcp_repair_window window = { .snd_wll = ...};

...

// set socket option

setsockopt(sock_tcp, IPPROTO_TCP, TCP_REPAIR_WINDOW,

&window, sizeof(window));

Syzlang specification for TCP

int socket(int domain, int type, int protocol);

int setsockopt(int socket, int level, int option_name,
const void *val, socklen_t len);

Socket system call prototype

用

Figure 1: The input types of socket-related calls can vary for

different protocols. The type of parameter val is void*, it

becomes struct tcp_repair_window when the protocol

is TCP, and other protocols can define different types. With

Syzlang (the bottom part), calls can be specialized to specific

protocol with range constraints (highlighted in red) and pre-

cise types (highlighted in blue).

that can access the submodule to multiple simplified calls via

adding range constraints and qualifying the input type. Take

Figure 1 as an example, it demonstrates parts of specifications

written for TCP. The resource type sock_tcp represents a

created TCP socket. Each parameter of the specialized call

socket$TCP is qualified as a constant value (highlighted in

red), which guides kernel fuzzers to set up TCP socket cor-

rectly. The parameter val of setsockopt$TCP is qualified as

tcp_repair_window, which is the correct type correspond-

ing to TCP_REPAIR_WINDOW option. Using Syzlang, these

socket-related calls can be specialized to specific protocols

with range constraints and precise types. Kernel fuzzers can

use specialized calls to considerably improve their efficiency.

However, manually encoding specifications can be time-

consuming due to the required domain knowledge mentioned

in Section 1. Several works propose to generate specifications

for specific system calls or particular scenarios. DIFUZE [6]

is dedicated to generating specifications for system call ioctl

of Android drivers and is the most relevant work to ours. It

first finds all uses of file_operations related structures to

identify the handle of ioctl. DIFUZE then tries to extract

the device name from specific registration functions in the

kernel. Finally, it detects the command values and correspond-

ing parameter structures with LLVM’s analysis capabilities,

e.g., range analysis. With the above steps, DIFUZE can gener-

ate correct usages of ioctl from different drivers. However,

most submodules’ operations are registered dynamically with

unpredictable manners, which results in false negatives in DI-

FUZE. Besides, its pattern-based method can only be used to

analyze ioctl. Meanwhile, Syzgen [4] and IMF [11] propose

to generate specifications for close-sourced components of

macOS. They capture system calls issued by userspace appli-

cations and generate specifications by analyzing the parame-

ters’ value of captured calls. Nevertheless, both approaches do

not utilize the available source code in open source scenarios

to generate more effective system call specifications.

3 Challenges

3.1 Extracting Entries of Submodules

In order to generate specifications for specific submodules,

we need to analyze the submodules’ entries that are invoked

by system calls. Specifically, Linux defines the operations

that submodules should implement with structures containing

function pointers, e.g., file_operations and proto_ops

as shown in Figure 2. Submodules implement these opera-

tions and register them to the kernel. We refer to these op-

erations as entries. The responsibility of many system calls

is to dispatch the input to the registered operations via in-

direct function call; thus, they do not contain much input

information of the specific submodules. The submodules’ en-

tries define the input types to the system calls for accessing

themselves. Therefore, we need to analyze specific entries to

obtain concrete input types to generate high-quality specifica-

tions. Take Figure 1 as an example, val’s type is void* and

the system call setsockopt does not make any restriction

on its concrete type. In TCP scenarios, setsockopt passes

val to the entry tcp_setsockopt, which requires val’s type

should to be struct tcp_repair_window* when the op-

tion is TCP_REPAIR_WINDOW. We need to analyze the entry

tcp_setsockopt to generate specifications for setsockopt

in TCP scenarios.

However, the submodules’ entries can be registered dy-

namically in many situations, making it difficult to extract

them. Submodules implement operations and store the func-

tion pointers in the corresponding structures, which are regis-

tered to the kernel with kinds of registration functions. The

process mentioned above occurs at various times, such as

kernel initialization and module loading. However, identi-

fying the pointer’s target is challenging with current static

analysis approach. The various registration points further in-

crease the engineering efforts. For example, Figure 2 shows

the definitions of file_operations and proto_ops, which

contain the operations for kinds of files and sockets. Device

drivers can implement file_operations according to their

needs and register the structure to VFS during module loading.

struct proto_ops {

listen(…);

setsockopt(…);

sendmsg(…);

connect(…);

…

};

Socket Operations

Socket VFS

tcp_listen(…)

tcp_connect(…)

…

TCP

caif_listen(…)

caif_connect(…)

…

vcs_open(…)

vcs_read(…)

…

tty_open(…)

tty_read(…)

…

CAN TTY VCS

Submodules

Register ops Indirect call

struct file_operations {

open(…);

read(…);

write(…);

unlocked_ioctl(…);

…

};

File Operations

… …

用

Figure 2: The definitions of file_operations and

proto_ops contain the operations for files and sockets. De-

vice drivers can implement file_operations as their needs

and register this structure to VFS. Different protocols can reg-

ister their own operations to socket layer in different ways.

Different protocols can register their proto_ops operations

to the socket layer in different ways during kernel initializ-

ing. In order to generate specifications for submodules, we

need to extract their entries and address the aforementioned

dynamism.

3.2 Identifying Input Types of Entries

The second challenge is that each entry’s input type can be

different across execution paths, which further increases the

complexity of the analysis. As mentioned above, the kernel

defines the operations that submodules need to implement via

various structures containing function pointers. The number

of such function pointers in each specific structure is limited,

while each submodule can be very complex. Consequently,

many submodules’ entries accept different input types in dif-

ferent execution paths to satisfy their functional requirements.

In other words, the input type to the submodule’s entry is not

fixed; some of the input parameters are responsible for con-

trolling the execution path, while other parameters or fields

have different types depending on the value of the former.

Figure 3 shows the TCP submodule’s implementation of sys-

tem call setsockopt, which is registered with proto_ops

structure. The value of the parameter optname is mainly used

to determine the different execution paths, while optval has

different types based on the value of the former. In order

to generate specifications, we need to identify the parame-

ters’ type and collect corresponding range constraints in each

execution path of the entries.

However, variables can be aliased with each other and cast

to different types by different means, resulting in the difficulty

in identifying their types and collecting corresponding range

constraints in each execution path. To demonstrate the former

static int do_tcp_setsockopt(struct sock *sk, int level,

int optname, sockptr_t optval, unsigned int optlen)

{

struct tcp_sock *tp = tcp_sk(sk);

...

switch (optname) {

case TCP_CONGESTION: {

char name[TCP_CA_NAME_MAX];

// type of `optval` is char[TCP_CA_NAME_MAX]

strncpy_from_sockptr(name, optval, …);
}

case TCP_MAXSEG:

int val;

// type of `optval` is int*

copy_from_sockptr(&val, optval, sizeof(val));

tp->rx_opt.user_mss = val;

case TCP_REPAIR_WINDOW:

struct tcp_repair_window opt;

// type of `optval` is tcp_repair_window*

if (copy_from_sockptr(&opt, optval, sizeof(opt)))

return -EFAULT;

}

return err;

}

Path1:

Path2:

Path3:

Figure 3: do_tcp_setsockopt is TCP’s implementation of

proto_ops. The type of parameter optval varies for differ-

ent value of optname. This demonstrates that the input type

of submodule’s entry can be different across execution paths

case, the value of variable p0 with scalar type can be assigned

to another variable p1. Meanwhile, p1 can be cast to a pointer,

which infers that p0 represents an address. We will miss this

kind of information without handling the alias between vari-

ables. To demonstrate the latter case, as shown in Figure 3,

although parameter optval is declared as sockptr_t type, it

is converted to different types under different cases of switch

statement using different cast methods. For instance, optval

is cast to void* type with C-style cast expression before the

switch statement. optval is treated as int* type on Path

2, because copy_from_sockptr calls copy_from_user to

copy sizeof(val) bytes from userspace, while variable val

is int type. The above pattern is common in the kernel, thus

we need to adequately handle the aliasing issue and type

casting to properly collect types and ranges constraints.

4 Key Techniques

Figure 4 shows the overall workflow of KSG. First, the kernel

source code is compiled based on the given configuration,

which outputs a bootable kernel image and a series of files

containing the Clang AST. The AST provides the kernel with

code information for each stage of the analysis. When the ker-

nel boots, the entry extraction module hooks multiple probes

dynamically before and after specific kernel functions. KSG

then scans various device files and network protocols, thus

triggering the execution of hooked kernel functions, which can

be captured by the probes. Consequently, the probes can detect

and extract the submodules’ entries. Based on the AST and

entries, KSG analyzes the range constraints and input types in

Clang

Compiler

Entry

Extraction

Kernel

Source

Kernel

Image

Spec

Generation

Kernel

AST

Submodule

Entries
Specifications

Type

Collection

Constraint

Collection

Variable

Types

Range

Constraints

用

Figure 4: Workflow of KSG. The kernel code is compiled to

a bootable image and files containing the clang AST. Sub-

modules’ entries can be detected and extracted by the entry

extraction module. Based on the AST and entries, KSG col-

lects the range constraints and input types in each execution

path of each entry with path-sensitive analysis. Finally, KSG

generates specifications based on the collected information.

each execution path of each entry with path-sensitive analysis.

Finally, based on the collected information, KSG generates

specifications in domain language Syzlang for fuzzers, where

the syntax mapping and semantics encoding are performed.

The specifications can be generated with the aforementioned

process, and the effectiveness of fuzzers can be improved with

the generated specifications.

4.1 Entry Extraction

As mentioned above, we need to analyze the submodules’ en-

tries for specification generation. However, the entries can be

registered in many scenarios, causing difficulties in locating

them. To address this, KSG utilizes a probe-based tracing

to extract the entries. Although entries of different submod-

ules can be registered with unpredictable manners, they are

eventually stored into the specific data structures’ fields in

the kernel. For instance, entry file_operations is stored

into the f_ops field of struct file, which is maintained by

virtual file system (VFS). In another instance, different pro-

tocols of the net subsystem store entry proto_ops into field

ops of struct socket. Therefore, instead of analyzing the

entries’ registration points, KSG extracts entries by capturing

data structures containing the respective submodules’ entries,

which we refer to as target structures.

Figure 5 shows the workflow of entry extraction. When the

kernel boots, KSG hooks multiple probes before and after spe-

cific kernel functions utilizing Linux eBPF and kprobe (1).

eBPF and kprobe enable KSG to hook our custom functions

into any kernel function. We refer to these extended functions

as probes and to hooked kernel functions as target functions.

The target functions we choose are a mandatory part to access

the submodules and are responsible for constructing target

structures, thus they enable the probes to capture the execution

of them and access target structures. Then, KSG scans the ker-

nel resources corresponding to submodules from userspace.

Register

Probes

System

call

Dump

Entries

Runtime Probes

do_filp_open()

… …

struct

proto_ops

Hooked functions Operation struct

Extracted Entries

Scan Devices

Scan Protos

…

User Space Kernel Space

1

2

3

5

4

8

6

7
9

10

struct

file_operations

__sock_create()

Figure 5: Workflow of entry extraction. KSG hooks probes

before and after the target kernel functions. Then, it scans

resources and traps into kernel space. The target functions are

executed, and the whole process is captured by the probes,

which extract submodules’ entries and save their addresses.

Finally, KSG symbolizes addresses of the entries in userspace.

For instance, KSG opens device files and specific network

protocols via system calls open and socket to access VFS

and net submodules (2 & 3). After trapping into kernel

space, these system calls invoke the target functions, which

construct the target structures (4). Then the whole process

is captured by the probes, which extract the submodules’ en-

tries via accessing certain field of the target structures (5 &

6). The entries are then stored into data structures provided

by eBPF so that the extracted entries can be accessed from

userspace (7 & 8). Finally, KSG reads the entries via bpf

system call, and symbolize entries to the corresponding ker-

nel symbols with Linux /proc/kallsyms. The above process

enables KSG to extract submodules’ entries accurately.

Take device drivers for instance, the probes will be hooked

after the execution of kernel function do_filp_open, which

is called by system call open and is responsible for opening

files used by VFS. Then, KSG accesses files in specific direc-

tories of the system recursively, e.g., /dev and /proc. After

capturing the execution of do_filp_open, the probe first fil-

ters the threads, thus ensuring that only KSG’s execution is

captured. The probe accesses the kernel data struct file,

which represents the state of an opened file, and reads the

field f_ops of it. Field f_ops is filer_operations type

and contains the submodule’s entries. KSG saves f_ops into

eBPF maps so that entries can be read and symbolized in

userspace. Since Linux treats almost everything as a file and

most submodules are accessible from VFS, the above proce-

dure can extract most submodules’ entries. For sockets, KSG

scans all the protocols supported by the kernel and captures

the kernel function __sock_create, which is called by sys-

tem call socket. KSG extracts the entry proto_ops of each

protocol by accessing the field ops in the struct socket.

4.2 Types and Constraints Collection

With submodules’ entries being extracted, KSG needs to col-

lect input information from them for specification generation.

However, the parameters’ types of each entry can vary across

execution paths. To identify parameters’ types of each exe-

cution path, KSG needs to check if a parameter, originally

declared in scalar type, is cast to pointer, and collect the most

precise type of each pointer. Overall, KSG utilizes the sym-

bolic execution of Clang Static Analyzer (CSA) to perform

intra-procedural, path-sensitive analysis on submodules’ en-

tries. During symbolic execution, KSG checks all expressions

that can determine the parameters’ types of each execution

path and associate the most precise type with each parameter

using the comparison rules in Table 1. When the symbolic

execution of a path is finished, all the needed type information

is collected and the range constraints are recorded in the CSA.

To correctly identify parameters’ types, KSG first needs

to handle the alias between variables. CSA associates vari-

ables with unique symbolic values and allocates a memory

region for each variable based on its memory model [39].

Aliasing issue can be handled with this mechanism because

CSA guarantees that variables that are aliased with each other

either have the same symbol or point to the same memory

region during symbolic execution. Specifically, if the sym-

bolic value of a variable is sym0, then the symbolic value of

variables that are assigned with the former will also be sym0.

Variables with pointer type that have the same address during

concrete execution always point to the same memory region

during symbolic execution. CSA itself associates the gath-

ered range constraints to symbolic value instead of particular

variables. Since symbolic value is associated with variables

and is updated accordingly during symbolic execution, range

constraints can be collected and propagated by CSA.

Based on the mechanism mentioned above, we associate

the type information with symbols and memory regions to

collect and propagate them properly. Specifically, for vari-

ables that are originally declared in scalar type but are cast

to pointers, KSG maps the symbolic value of these variables

to the memory regions of pointers in SymRegionMap (Line 1)

as shown in Algorithm 1. For pointers, KSG associates the

most precise type that is known with the best effort in specific

program point with their memory regions, which is stored in

RegionTypeMap (Line 2). A special map RegionMap (Line 3)

is used to record the connections between regions in a pointer

to pointer cast. RegionMap is needed because CSA creates

new element region for this kind of cast, while these regions

represent the same variable semantically. The above three

global maps can be used to record and propagate the collected

type information during symbolic execution.

KSG collects input types in each execution path during

CSA’s symbolic execution procedure. Specifically, whenever

CSA executes the type cast expression, including explicit C-

style casts and implicit casts, and kernel functions with copy

Algorithm 1: Collecting Types

1 SymRegionMap := /0

2 RegionTypeMap := /0

3 RegionMap := /0

4 for CastExpr ∈ Entry do

5 S := SourceSym(CastExpr)
6 T := TargetSym(CastExpr)
7 if IsIntegerToPtr(CastExpr) then

8 R := Region(T)
9 SymRegionMap[S] := R

10 continue

11 if !IsPtrToPtr(CastExpr) then

12 continue

13 R0 := Region(S)
14 R1 := Region(T)
15 Record(R0,R1,RegionMap)
16 STy := KnownType(R0,RegionTypeMap)
17 T Ty := KnownType(R1,RegionTypeMap)
18 if IsMorePrecise(STy,T Ty) then

19 updateRegionType(R1,STy)

20 else

21 updateRegionType(R0,T Ty)

semantics, such as copy_from_user, KSG obtains the type

information from the expressions and updates the global maps

mentioned above based on the comparison rules shown in Ta-

ble 1. As shown in Algorithm 1, KSG records the mapping

between the symbolic value of the scalar and the memory re-

gion of the pointer, which handles the integer to pointer casts

(Lines 8 to 10). The recorded mapping can be used to retrieve

the region of a pointer that is declared in scalar type. For a

pointer to pointer cast, the algorithm first gets the respective

regions of the source pointer and the target pointer (Lines 13

to 14), and records the connection between these regions into

RegionMap (Line 15). Then it identifies the current known

type of regions with RegionTypeMap, and the declared type

of region is used if it has not been recorded (Lines 16 to 17).

Based on the rules in Table 1, the algorithm updates the re-

gions with the more precise type (Lines 18 to 21). For kernel

functions with copy semantics, KSG utilizes a similar ap-

proach. Take copy_from_user as an example, KSG gets the

current known type of the source pointer and the target pointer,

and performs the type comparison first. Then, it checks if the

last parameter is an unary expression sizeof, if so, KSG

performs an additional comparison with the corresponding

type. KSG updates the RegionTypeMap with the most precise

type. Furthermore, KSG records the data flow direction of

pointers based on the analyzed kernel functions. For example,

copy_from_user infers the In direction and KSG associates

this information with the corresponding memory region.

To associate the memory region with the most precise type

in each execution path, KSG utilizes type comparisons. As

shown in Table 1, the algorithm divides the types into four

categories. First, void or void* is less precise than all other

types because they do not encode any structural information.

Scalar type that has longer bit width is more precise than

another scalar type. Both scalar and compound type are less

precise than pointer type, because it’s a common use case in

kernel to store the pointer value to scalar or pointer-sized com-

pound type. For pointer types, the algorithm applies the above

rules to the underlying type recursively. With the procedure

above, KSG can identity the concrete type of each parameter

and field of compound type.

Table 1: Rules for comparison between source type and target

type. ‘>’ represents that the source type is more precise than

the target type, ‘<’ is the opposite. Size means that the result

depends on the size of comparison types. Underlying means

comparing the underlying type recursively.

Void Scalar Compound Ptr

Void = < < <

Scalar > Size < <

Compound > > Size <

Ptr > > > Underlying

Figure 6 shows a running example of do_tcp_setsockopt

with Algorithm 1. First, CSA marks the input parame-

ter optname and optval as symbol sym0 and sym1, re-

spectively. After the first case condition, it collects range

constraint of sym0, indicating that optname equals to

TCP_REPAIR_OPTIONS on the current execution path. Al-

gorithm 1 is invoked when CSA enters the kernel func-

tion copy_from_sockptr since it calls copy_from_user

eventually. Symbolic value sym1 is associated with mem-

ory region region0, which is recorded in SymRegionMap,

because optval (integer type) is cast to a pointer. The map-

ping from region0 to struct tcp_repair_opt is also

recorded in RegionTypeMap. Finally, CSA captures another

range constraint of opt’s field opt_code. In this way, KSG

knows the concrete type of sym1 based on the information in

SymRegionMap and RegionTypeMap. This example demon-

strates that the types and range constraints can be collected

properly and the second challenge can be addressed by com-

bining CSA and type collection.

4.3 Specification Generation

Leveraging the above approach, KSG can collect parameters’

types and range constraints in each execution path of submod-

ules’ entries. Based on the collected information, KSG gen-

erates specifications in domain language Syzlang for kernel

fuzzers. The generation procedure needs to accomplish two

do_tcp_setsockopt(optname,

optval, …)

case: TCP_REPAIR_OPTIONS

copy_from_sockptr(opt, optval, …)

opt.opt_code ==

TCP_REPAIR_OPTIONS

Symbols:

optname: sym0

optval: sym1

Constraints:

sym0 == TCP_REPAIR_OPTIONS

SymRegionMap:

sym1 => region0

RegionTypeMap:

region0 => struct tcp_repair_opt

Symbols:

opt.opt_code: sym2

Constraints:

sym0 == TCP_REPAIR_OPTIONS

sym2 == TCP_REPAIR_OPTIONS

Execution Path Types and Constraints

Figure 6: Running example for Algorithm 1. CSA first marks

optname and optval as symbolic value sym0 and sym1. Then

it captures range constraint on symbolic value sym0. Algo-

rithm 1 maps sym1 to memory region region0 since optval

is cast to pointer type. Finally, CSA further captures an-

other range constraint of sym2, symbolic value of opt’s field

opt_code.

major goals: syntax mapping and semantic encoding. The for-

mer performs the mapping from C language AST to Syzlang

AST and the latter encodes the collected range constraints

into the generated specifications.

KSG divides the generation process into two steps. The first

step generates the definitions of Syzlang resource type corre-

sponding to the submodule, and the system calls that are re-

sponsible for creating the former. As mentioned in Section 4.1,

KSG scans device files and protocols to extract submodules’

entries. Meanwhile, the needed information for accessing the

submodule is recorded. For instance, the file paths are saved

for device drivers and the domain, type and proto are saved

for specific sockets. Based on this information, KSG defines

resource type for each submodule, and the name of the defined

resource type follows specific rules. For example, resource

types for device and socket are prefixed with fd and sock, re-

spectively. For TCP submodule shown in Figure 1, sock_tcp

is defined in this step. Then, KSG generates the correspond-

ing system calls that create the resource type. For example,

KSG generates the system call open for device drivers, and

the input path of open is qualified to the file path of the device.

The specialized version of system call socket is generated

for each protocol, e.g., socket$TCP shown in Figure 1.

The second step generates the specialized calls for the re-

maining entries of a submodule. Specifically, KSG generates

a specialized call for each execution path of each entry. The

duplicated calls are filtered, and the parameters’ types of each

generated specialized call are qualified to the corresponding

type in the execution path. Specifically, for a variable de-

clared in scalar type, KSG first checks if it is a pointer via

querying SymRegionMap and maps it to Syzlang pointer if so;

otherwise, KSG obtains its bit size according to the AST in-

formation and maps it to the corresponding numeric type with

same bit size in Syzlang. Meanwhile, KSG checks whether

the symbol of the scalar has range constraints by querying

the program state of CSA. The corresponding constraint is

represented as Syzlang’s const type or ranged integer type.

For array type, KSG first maps its element type to Syzlang

type recursively, then queries CSA whether its length has

range constraints. KSG constructs the corresponding Syzlang

array type based on the mapped element type and length infor-

mation. For pointer type, KSG first gets the memory region

of the pointer from CSA, and queries the concrete type as-

sociated with the region from RegionTypeMap. KSG then

maps the type of pointee recursively, and queries data flow

direction associated with the memory region. KSG constructs

the Syzlang pointer type with the mapped pointee’s type and

collected data flow direction. Finally, KSG maps each field of

compound type to Syzlang type and generates the correspond-

ing compound type in Syzlang. Based on the above mapping

rules, KSG can generate specifications for submodules’ en-

tries based on the collected types and range constraints.

Take Figure 1 as an example, KSG generates three special-

ized system calls for each path of do_tcp_setsockopt. The

type of optname is mapped to const type in Syzlang based

on range constraints of each path. In the meantime, the type of

optval is mapped to array, int32, and struct, respectively.

Listing 1 in the Appendix shows part of generated specifica-

tions for driver /dev/pts, which manual specifications do

not cover. Listing 2 shows part of generated specifications for

the socket X25.

5 Implementation

Entry extraction. We implement eBPF programs based on

BCC [10] and hook them as kprobe into target kernel func-

tions. Two probes are used to capture the entries of device

drivers’ and protocols’ operations, respectively. We currently

utilize a userspace program to trigger the extraction process.

The program first attaches the probes to the kernel. It then

scans kernel-provided resources, such as opening files in /dev,

mounting all the supported file systems, opening files in dif-

ferent file systems, and creating all the supported sockets of

the kernel. These operations allow us to extract the imple-

mentation of the corresponding file operations and socket

operations for different submodules.

Types and Constraints. We implement the types and con-

straints collection based on Clang13. Algorithm 1 is imple-

mented as multiple CSA checkers that are hooked after each

time CSA simulates execution of cast expression and be-

fore the execution of functions with copy semantics, e.g.,

copy_from_user. These checkers read the symbol values

and memory regions of the expressions in the hooked opera-

tions from current program state, and update the type informa-

tion stored in the global maps based on the type comparison

rules in Table 1. For better intra-procedure analysis, we utilize

the cross translation unit (CTU) analysis of CSA based on

pre-dumped AST and compilation database. We customized

the analysis configuration, e.g., increasing the max number of

imported translation units, limiting the loop time since it does

not provide new information for specification generation but

reduces efficiency. Besides, we also modeled a larger number

of kernel library APIs via implementing CSA checkers for

better symbolic execution, including kmalloc, string manip-

ulation functions, etc. These checkers observe the symbolic

execution of the kernel and actively participate in modeling

the program behavior via modifying the region bindings and

range constraints stored in the program state.

Specification Generation. The generation procedure is

implemented as plugins too that are hooked into CSA at the

end of each execution path’s simulation. We first implement

AST to fully support Syzlang language. Based on the type in-

formation stored in the global maps and the range constraints

of each symbol in the CSA, the translation of KSG maps the

C language AST to Syzlang AST. In order to generate the

specifications, the mapped AST is serialized into text format

that conforms to the syntax rules of Syzlang, thus allowing

kernel fuzzers to use the generated specifications and speed

up the entire fuzzing campaign.

6 Evaluation

In this section, we evaluate the effectiveness of KSG on re-

cent versions of Linux and fuzzers. Specifically, we chose

Linux-5.15, 5.10, and 5.4 as our target versions. Linux 5.15

is the latest version prior to submission, whereas 5.10 and 5.4

are widely used by many distributions. To evaluate the effec-

tiveness of the generated specifications in improving fuzzers’

performance, we took the generated specifications as input

to Syzkaller and Moonshine, and compared the code cover-

age and bug finding capabilities to their original version. We

chose Syzkaller because it is the state-of-the-art kernel fuzzer.

Moonshine improves Syzkaller’s fuzzing efficiency by distill-

ing high-quality seeds for it and is a representative fuzzer. We

design experiments to address the following questions:

• RQ1: How does KSG perform in generating system call

specifications in terms of efficiency and quality?

• RQ2: How effective are the generated specifications in

improving the coverage of kernel fuzzers?

• RQ3: How effective are the generated specifications in

assisting kernel fuzzers to find bugs?

Experiment Settings The experiments were conducted on

a Linux server with a 16-core Intel i7-10700K CPU and

32 GiB of memory. Each version of the kernel uses the

same compilation configuration. Specifically, CONFIG_BPF

and CONFIG_KPROBE were enabled for entry extraction. We

also enabled CONFIG_KCOV to collect code coverage. We ex-

tended fuzzers with the generated specifications, and we refer

to those extended fuzzers as Syzkaller+ and Moonshine+,

respectively. All 4 fuzzers were configured with the same pa-

rameters in terms of QEMU configurations and base system

call specifications. Specifically, we started all experiments

simultaneously and distributed the resources evenly, includ-

ing 2 cores and 4 GiB of memory for each virtual machine.

All 4 fuzzers adopted the same base version of the Syzlang

specifications. To reduce statistical errors, each experiment

was repeated 3 times and executed over a period of 72 hours,

and the average results were reported.

6.1 Specification Generation

We executed KSG on three versions of the Linux kernel and

the whole process of specification generation is automatic. Ta-

ble 2 shows the results of this process. During entry extraction,

KSG scanned 1098 unique device files and 78 different sock-

ets in total, and extracted 572 and 222 entries, respectively.

Note that the number of entries is not equal to the number of

scanned files and sockets multiplied by the number of func-

tion pointers defined in file_operations and proto_ops.

This is because: first, the registered operations of different

files and sockets can be the same; second, each submodule

does not need to implement all the operations; finally, KSG

de-duplicates the extracted entries and verifies the extracted

addresses. Besides, we manually verified the correctness of

extracted entries by reading the source code corresponding

to the submodule. The result shows that KSG can correctly

extract the entries of all files and sockets that are accessible

from userspace. Furthermore, since KSG performs entry ex-

traction dynamically based on eBPF after kernel booted and

all submodules loaded, the correctness of the extracted entries

can also be guaranteed.

Table 2: KSG extracted 792 entries by scanning 78 sockets

and 1098 device files. After path-sensitive analysis in 5h,

KSG generated specifications containing 2433 specialized

calls, and 1460 of them are new to existing specifications.

Scanned Entries Specs New Specs

Socket 78 222 923 +586
Driver 1098 572 1510 +874
Overall 1176 794 2433 +1460

By performing path-sensitive analysis on submodules’ en-

tries, KSG generates 8 specialized calls per minute, with a to-

tal of 2433 specialized calls generated in 5 hours. Of this total,

1510 specialized calls are generated from device drivers while

923 specialized calls corresponded to sockets. Specifically, for

64% of the extracted entries, the number of generated special-

ized calls is less than 2. This is because the input types remain

consistent across the execution paths. For instance, KSG gen-

erates one specialized call for system call bind of each type

of socket. The input address is qualified to the type defined

by the corresponding socket type, while the type of such pa-

rameter in C prototype does not constrain the input structure.

Although the number of specialized calls for this 64% of the

entries is limited, encoding specifications for them requires

extensive domain knowledge, whereas KSG can automate

this process leveraging the source code analysis. For 36%

of the extracted entries, the number of generated specialized

calls is more than 2 because the input types of these entries

can vary in different execution paths. The average number

of specialized calls for these entries is 4, and KSG generates

up to 29 specialized calls for system call getsockopt of X25

socket. For those 36% of the entries, the manual efforts of

writing specifications would be vast, while the automation of

KSG can significantly reduce the time cost of this process.

Compared with the existing specifications that contains

1204 specialized calls for the drivers and sockets scanned by

KSG, 1460 generated calls are new, of which 586 and 874 are

generated from the analyzed sockets and drivers, respectively.

In order to further verify the correctness of the generated

specifications, we manually checked if the range constants

match the collected parameter types by reading the source

code of submodules. The final result shows that KSG can

correctly extract the input types and the corresponding range

constraints in each execution path of submodules’ entries.

6.2 Coverage Improvement

To answer RQ2, we took 1460 new specialized calls as input

to Syzkaller and Moonshine, while monitoring the fuzzing

process and sampling each fuzzer’s statistics in the 72-hour

run. Figure 7 shows the comparison of branch coverage be-

tween fuzzers and Table 3 lists detailed statistics. The base

specifications used by Syzkaller and Moonshine contain 4144

specialized calls in total, including specifications encoded for

submodules that have not been handled by KSG. With 1460

new specialized calls, Syzkaller+ and Moonshine+ achieved

22% and 23% coverage improvement, respectively.

As shown in Figure 7, both Syzkaller+ and Moonshine+

can achieve higher coverage statistics than their original ver-

sion in the same amount of time. Specifically, all tools show

significant growth in the first 8 hours, where the advantage of

the generated specifications is not obvious. After fuzzing for 8

hours, the coverage growth of Syzkaller and Moonshine starts

to slow down, whereas that of Syzkaller+ and Moonshine+

is significantly faster than the former. This is because KSG

does not improve kernel fuzzers’ throughput or efficiency,

but rather enables fuzzers to reach more modules and code

with additional generated specifications. Therefore, all fuzzers

perform at similar rates before 8 hours since they have yet

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.15

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.15

Moonshine+

Moonshine

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.10

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.10

Moonshine+

Moonshine

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.4

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.4

Moonshine+

Moonshine

Figure 7: Coverage growth of Syzkaller and Moonshine with

generated system call specifications on three versions of Linux

kernel over 72 hours. In all kernel versions, Syzkaller+ and

Moonshine+ achieve the higher coverage statistics.

to cover the code reachable using manually-written specifi-

cations. They diverge after 8 hours as the manually-written

specifications cannot provide the kernel fuzzers with more

low hanging fruit, while the generated specifications allow

the fuzzers to continue finding more code in more modules.

In principle, fuzzers utilize the generated specifications to

generate test cases. In order to further demonstrate the reason

behind the improvement, we analyzed the output corpus of

all fuzzers and calculated the percentage of test cases that

contain the newly generated calls in the whole corpus. At the

end of 72-hour experiment, the average percentage of such

inputs in the corpus is 28%. Therefore, the reason behind the

coverage improvement is that the generated specifications pro-

vide new test portals for fuzzers. Syzkaller+ and Moonshine+

can synthesize test cases based on the new specifications

thus covering kernel code that used to be unreachable. Mean-

while, the improvement can demonstrate the quality of the

generated specifications, since specifications with low quality,

e.g., range constraints mismatch input types, can even hinder

fuzzers’ capabilities. The above results prove that the gener-

ated specifications can assist fuzzers in exploring more code

in the kernel.

Table 3: Coverage statistics of fuzzers compare to their origi-

nal versions. Columns “min-impr” and “max-impr” present

the minimum / maximum improvement.

(a) Syzkaller+ vs. Syskaller

Version min-impr max-impr Average

5.15 +18% +24% +21%
5.10 +19% +25% +22%
5.4 +20% +28% +24%

Overall +19% +25% +22%

(b) Moonshine+ vs. Moonshine

Version min-impr max-impr Average

5.15 +19% +24% +22%
5.10 +20% +25% +23%
5.4 +20% +26% +24%

Overall +19% +25% +23%

6.3 Bug Finding and Case Studies

To answer RQ3, we tested the Linux kernel with Syzkaller+

and Moonshine+ for two weeks. As a result, we found 138

unique vulnerabilities in total and 26 were confirmed by main-

tainers as previously unknown bugs, of which 13 and 6 were

fixed and assigned with CVEs, respectively. Table 4 lists the

details of those vulnerabilities. Most of these vulnerabilities

are critical. For instance, KSG assisted fuzzers to discover

a vulnerability with a 7.0 CVSS score (CVE-2021-4028).

Although Syzkaller has been testing the Linux kernel contin-

uously with large amounts of computing resources, these 26

vulnerabilities have not been reported. The reason why KSG

assisted Syzkaller+ and Moonshine+ to discover 26 previously

unknown vulnerabilities is that the generated specifications

provide fuzzers with more information of system calls. Based

on this domain knowledge, Syzkaller+ and Moonshine+ can

generate test cases to test kernel code that used to be difficult

for fuzzers to reach. The above result shows that the speci-

fications automatically generated by KSG can improve the

fuzzers’ vulnerability detection capabilities.

Case Study: CVE-2021-4148 KSG assisted fuzzers to

discover a vulnerability in VFS. As shown in Figure 8,

block_invalidatepage() would throw BUG due to asser-

tion failure if stop is greater than PAGE_SIZE. However, the

input generated by the fuzzer is a huge page, and the length

is the size of the huge page due to the read-only FS THP sup-

port. This triggers kernel crash directly and Figure 8 shows

a fix for this. However, the root cause of this vulnerability is

complicated. Specifically, the kernel isn’t supposed to get a

writable file descriptor on a file that has huge pages added

to the page cache without the filesystem’s knowledge. VFS

should have truncated the page cache when it found THPs

in the cache. Except for the fix mentioned, this vulnerabil-

Table 4: KSG assisted fuzzers to discover 26 previously un-

known vulnerabilities. All of these vulnerabilities have been

confirmed by maintainers; 13 of these bugs have been fixed

by corresponding patches and another 6 have been assigned

with CVEs.

Operation Risk Status

sk_stream_kill_queues logic bug Fixed

__init_work use after free CVE-2021-4150

truncate_inode_page logic bug Fixed

__folio_mark_dirty logic bug Fixed

kvm_arch_vcpu_create logic bug CVE-2021-4032

cma_cancel_listens use after free Fixed

io_wq_submit_work logic bug CVE-2021-4023

btrfs_alloc_tree_block logic bug Fixed

__btrfs_tree_lock deadlock CVE-2021-4149

smp_call_function soft lockup Confirmed

block_invalidatepage dereference null CVE-2021-4148

rdma_listen use after free CVE-2021-4028

ext4_block_write_begin logic bug Confirmed

io_ring_exit_work task hung Fixed

skb_try_coalesce task hung Confirmed

btrfs_search_slot deadlock Fixed

__set_page_dirty logic bug Confirmed

__kernel_read logic bug Fixed

xlog_cil_commit dereference null Fixed

hub_port_init task hung Confirmed

hci_cmd_timeout logic bug Confirmed

cgroup_rstat_flush_locked data race Fixed

btrfs_free_tree_block logic bug Confirmed

io_uring_cancel_generic task hung Fixed

hci_uart_tx_wakeup logic bug Fixed

blk_mq_get_tag logic bug Fixed

ity was fixed properly with additional patches. Leveraging

the newly generated specifications, the fuzzer synthesized the

corresponding test cases thus triggering the assertion failure.

7 Discussion and Limitations

During the experiments, we found a total of 231 specialized

calls from existing specifications that are encoded for the

submodules scanned by KSG, but are nonexistent in the gen-

erated specifications. We believe there are three major reasons

for this. First, KSG mainly considers range constraints while

handwritten specifications encode other parameters seman-

tics, e.g., defining parameters that are checksums of other

fields as instances of the csum type in Syzlang. Second, ker-

nel experts can redefine original input types from system call

definitions to other types with the same memory layout to

generate argument values more efficiently. For instance, some

submodules use the high 16 bits and low 16 bits of a u32 num-

ber for different purposes, and kernel experts redefine them as

two u16 types so that fuzzer can generate and mutate values

for them individually. For these two limitations, we can im-

prove KSG further by hooking more kernel functions during

diff --git a/fs/buffer.c b/fs/buffer.c
index ab7573d72dd7..4bcb54c4d1be 100644
--- a/fs/buffer.c
+++ b/fs/buffer.c
@@ -1507,7 +1507,7 @@ void block_invalidatepage(struct
page *page, unsigned int offset,

/*
* Check for overflow
*/

- BUG_ON(stop > PAGE_SIZE || stop < length);
+ BUG_ON(stop > thp_size(page) || stop < length);

head = page_buffers(page);
bh = head;

@@ -1535,7 +1535,7 @@ void block_invalidatepage(struct
page *page, unsigned int offset,

* The get_block cached value has been
unconditionally invalidated,

* so real IO is not possible anymore.
*/

- if (length == PAGE_SIZE)
+ if (length >= PAGE_SIZE)

try_to_release_page(page, 0);
out:

return;

Figure 8: When the size of the stop is greater than

PAGE_SIZE, block_invalidatepage() would throw BUG.

Fuzzer triggered this crash by passing a huge page, where

the length is the size of huge page due to FS THP support.

This figure shows a direct fixing patch for CVE-2021-4148.

path-sensitive analysis to collect more parameters’ semantics

as well as redefining input types based parameters’ usage.

Finally, the kernel code contains low-level operations, e.g.,

inline assembly, which may not be well modeled by CSA,

thus leading to the range constraints and type information

being missed during the analysis procedure. To address this,

we can construct checkers to simulate common low-level op-

erations so that the related information can be collected and

propagated properly.

Currently, we mainly apply KSG to generate specifications

for drivers and sockets. Since many resources in Linux are rep-

resented as files in VFS , using file-operation-relevant system

calls allows us to extract entry information for many submod-

ules. Meanwhile, in principle, KSG is generalizable. For other

multiplexing system calls, we can adapt entry extraction to

the target through a slight analysis of the internal implementa-

tion to find the kernel functions that need to be injected; then,

we can apply the rest of KSG. For other system calls, we can

directly execute the collecting algorithm of KSG and generate

specifications based on gathered information since these steps

only depend on the source code information. Take system

call prctl() as an example, KSG can collect the argument

constraints directly from sys_prctl().

8 Conclusion

In this paper, we propose KSG to automatically generate

system call specifications for kernel fuzzers based on entry

extraction and types and constraints collection. The evalua-

tion shows that KSG generates 8 specialized calls per minute,

with a total of 2433 specialized calls generated in 5 hours.

Leveraging the generated specifications, Syzkaller and Moon-

shine’s coverage were improved 22% and 23%, respectively.

Furthermore, KSG assisted fuzzers to discover 26 previously

unknown bugs. The above result demonstrates that KSG is

effective in generating system call specifications, and the gen-

erated specifications can improve the fuzzers’ performance.

For future work, we will extend KSG to other system calls

or submodules to generate more specifications since some

submodules are not covered by KSG yet, and submodules

like drivers can change over time, which potentially involves

making modifications to entry extraction. More importantly,

we can augment KSG to infer semantic information of system

calls’ parameters, thus significantly improving the generated

specifications, which can be implemented with multiple CSA

checkers encoded carefully with domain knowledge.

Acknowledgments

We sincerely appreciate the guidance from our shepherd.

We would also like to thank the anonymous reviewers

for their valuable comments and input to improve our

paper. This research is sponsored in part by the NSFC

Program (No. 62022046, 92167101, U1911401, 62021002,

62192730), National Key Research and Development Project

(No. 2019YFB1706200, No2021QY0604).

References

[1] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo

Ivančić, Tim King, Markus Kusano, Caroline Lemieux,

László Szekeres, and Wei Wang. FUDGE: Fuzz Driver

Generation at Scale. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2019, page 975–985,

New York, NY, USA, 2019. Association for Computing

Machinery.

[2] Daniel Borkmann. Linux eBPF. https://ebpf.io.

[3] Peng Chen and Hao Chen. Angora: Efficient Fuzzing

by Principled Search. In 2018 IEEE Symposium on

Security and Privacy (SP), pages 711–725, 2018.

[4] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun

Qian. SyzGen: Automated Generation of Syscall Speci-

fication of Closed-Source MacOS Drivers. In Proceed-

ings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’21, page 749–763,

New York, NY, USA, 2021. Association for Computing

Machinery.

https://ebpf.io

[5] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang,

Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su.

EnFuzz: Ensemble Fuzzing with Seed Synchronization

among Diverse Fuzzers. In 28th USENIX Security Sym-

posium (USENIX Security 19), pages 1967–1983, Santa

Clara, CA, August 2019. USENIX Association.

[6] Jake Corina, Aravind Machiry, Christopher Salls, Yan

Shoshitaishvili, Shuang Hao, Christopher Kruegel, and

Giovanni Vigna. Difuze: Interface aware fuzzing for

kernel drivers. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’17, page 2123–2138, New York, NY, USA, 2017.

Association for Computing Machinery.

[7] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.

Grammar-Based Whitebox Fuzzing. In Proceedings of

the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, page

206–215, New York, NY, USA, 2008. Association for

Computing Machinery.

[8] Google. Kernel address sanitizer. https:

//www.kernel.org/doc/html/latest/dev-tools/

kasan.html.

[9] Google. Kernel concurrency sanitizer. https:

//www.kernel.org/doc/html/latest/dev-tools/

kcsan.html.

[10] Brendan Gregg’. BPF Compiler Collection. https:

//www.iovisor.org/technology/bcc.

[11] HyungSeok Han and Sang Kil Cha. IMF: Inferred

Model-Based Fuzzer. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS ’17, page 2345–2358, New York, NY,

USA, 2017. Association for Computing Machinery.

[12] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar,

Byoungyoung Lee, and Insik Shin. Razzer: Finding

Kernel Race Bugs through Fuzzing. In IEEE Symposium

on Security and Privacy, pages 754–768. IEEE, 2019.

[13] Jim Keniston. Linux Kprobe. https://www.kernel.

org/doc/html/latest/trace/kprobes.html.

[14] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim,

Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:

Hybrid Fuzzing on the Linux Kernel. In NDSS, 2020.

[15] lcamtuf. American fuzzy lop, 2013. https://lcamtuf.

coredump.cx/afl/.

[16] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-

geted mutation strategy for increasing greybox fuzz test-

ing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software En-

gineering, ASE 2018, page 475–485, New York, NY,

USA, 2018. Association for Computing Machinery.

[17] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu,

Z. Liu, and J. Sun. PATA: Fuzzing with Path Aware Taint

Analysis. In 2022 2022 IEEE Symposium on Security

and Privacy (SP) (SP), pages 154–170, Los Alamitos,

CA, USA, may 2022. IEEE Computer Society.

[18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang,

Chijin Zhou, and Jiaguang Sun. PAFL: Extend Fuzzing

Optimizations of Single Mode to Industrial Parallel

Mode. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, ESEC/FSE 2018, page 809–814, New York,

NY, USA, 2018. Association for Computing Machinery.

[19] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang,

and Renwei Zhang. Fuzz testing in practice: Obstacles

and solutions. In 2018 IEEE 25th International Confer-

ence on Software Analysis, Evolution and Reengineering

(SANER), pages 562–566, 2018.

[20] LLVM Developer Group. Clang Static Analyzer. https:

//clang-analyzer.llvm.org/.

[21] Dominik Maier, Benedikt Radtke, and Bastian Har-

ren. Unicorefuzz: On the Viability of Emulation

for Kernelspace Fuzzing. In Proceedings of the

13th USENIX Conference on Offensive Technologies,

WOOT’19, page 8, USA, 2019. USENIX Association.

[22] Andy Nguyen. CVE-2020-12352, 2020. https://nvd.

nist.gov/vuln/detail/CVE-2020-12352.

[23] Shankara Pailoor, Andrew Aday, and Suman Jana.

MoonShine: Optimizing OS Fuzzer Seed Selection with

Trace Distillation. In 27th USENIX Security Symposium

(USENIX Security 18), pages 729–743, Baltimore, MD,

August 2018. USENIX Association.

[24] Manfred Paul. CVE-2021-3490, 2021. https://nvd.

nist.gov/vuln/detail/CVE-2021-3490.

[25] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,

Jonathan Foote, David Warren, Gustavo Grieco, and

David Brumley. Optimizing Seed Selection for Fuzzing.

In 23rd USENIX Security Symposium (USENIX Secu-

rity 14), pages 861–875, San Diego, CA, August 2014.

USENIX Association.

[26] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-

lik, Sebastian Schinzel, and Thorsten Holz. kAFL:

Hardware-Assisted Feedback Fuzzing for OS Kernels.

In 26th USENIX Security Symposium (USENIX Secu-

rity 17), pages 167–182, Vancouver, BC, August 2017.

USENIX Association.

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://nvd.nist.gov/vuln/detail/CVE-2020-12352
https://nvd.nist.gov/vuln/detail/CVE-2020-12352
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-3490

[27] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: A

Fast Address Sanity Checker. In Proceedings of the

2012 USENIX Conference on Annual Technical Confer-

ence, USENIX ATC’12, page 28, USA, 2012. USENIX

Association.

[28] Konstantin Serebryany and Timur Iskhodzhanov.

Threadsanitizer: Data race detection in practice. In

Proceedings of the Workshop on Binary Instrumentation

and Applications, WBIA ’09, page 62–71, New York,

NY, USA, 2009. Association for Computing Machinery.

[29] Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao

Yang, and Wanli Chang. Rtkaller: State-Aware Task

Generation for RTOS Fuzzing. ACM Trans. Embed.

Comput. Syst., 20(5s), sep 2021.

[30] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu,

Yu Jiang, Ting Chen, and Aiguo Cui. HEALER: Rela-

tion Learning Guided Kernel Fuzzing, page 344–358.

Association for Computing Machinery, New York, NY,

USA, 2021.

[31] Dmitry Vyukov and Andrey Konovalov. Syzbot, 2015.

https://syzkaller.appspot.com/upstream.

[32] Dmitry Vyukov and Andrey Konovalov. Syzbot Dash-

board, 2015. https://storage.googleapis.com/

syzkaller/cover/ci-qemu-upstream.html.

[33] Dmitry Vyukov and Andrey Konovalov. Syzkaller:

an unsupervised coverage-guided kernel fuzzer, 2015.

https://github.com/google/syzkaller.

[34] Dmitry Vyukov and Andrey Konovalov. Sy-

zlang: System Call Description Language, 2015.

https://github.com/google/syzkaller/blob/

master/docs/syscall_descriptions_syntax.md.

[35] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun

Qian, Srikanth V. Krishnamurthy, and Nael Abu-

Ghazaleh. SyzVegas: Beating Kernel Fuzzing Odds

with Reinforcement Learning. In 30th USENIX Security

Symposium (USENIX Security 21), pages 2741–2758.

USENIX Association, August 2021.

[36] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang,

Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun.

SAFL: Increasing and Accelerating Testing Coverage

with Symbolic Execution and Guided Fuzzing. In Pro-

ceedings of the 40th International Conference on Soft-

ware Engineering: Companion Proceeedings, ICSE ’18,

page 61–64, New York, NY, USA, 2018. Association

for Computing Machinery.

[37] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui

Wang, Chengnian Sun, and Jiaguang Sun. RIFF:

Reduced Instruction Footprint for Coverage-Guided

Fuzzing. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 147–159. USENIX Associa-

tion, July 2021.

[38] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-

soo Kim. Krace: Data Race Fuzzing for Kernel File

Systems. In 2020 IEEE Symposium on Security and

Privacy (SP), pages 1643–1660, 2020.

[39] Zhongxing Xu, Ted Kremenek, and Jian Zhang. A mem-

ory model for static analysis of c programs. In Proceed-

ings of the 4th International Conference on Leveraging

Applications of Formal Methods, Verification, and Vali-

dation - Volume Part I, ISoLA’10, page 535–548, Berlin,

Heidelberg, 2010. Springer-Verlag.

[40] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng

Zhang, and Yu Jiang. Intelligen: automatic driver syn-

thesis for fuzz testing. In 2021 IEEE/ACM 43rd Interna-

tional Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pages 318–327.

IEEE, 2021.

https://syzkaller.appspot.com/upstream
https://storage.googleapis.com/syzkaller/cover/ci-qemu-upstream.html
https://storage.googleapis.com/syzkaller/cover/ci-qemu-upstream.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md

9 APPENDIX

9.1 Generated Specifications

Listing 1 shows part of generated system call specifications

for /dev/pts. During entry extraction, KSG extracts struct

file_operation of device /dev/pts via accessing device

files under /dev/pts directory. KSG then performs path

sensitive analysis on each extracted entry to collect types

and range constraints. During the first step of generation,

KSG defines the resource type fd_dev_pts_0, where the

name of resource type is generated based the accessed file.

openat$dev_pts_0_0 is also generated during this step and

the target file path is qualified to /dev/pts/0. After the sec-

ond step of the generation, the rest of specialized calls and

related types were generated based on the collected types and

range constraints.

Listing 1: Generated specifications for /dev/pts driver

resource fd_dev_pts_0[fd]

openat$dev_pts_0_0(fd const[AT_FDCWD], file

ptr[in, string["/dev/pts/0"]], flags flags

[open_flags], mode flags[open_mode])

fd_dev_pts_0

...

ioctl$dev_pts_0_16(fd fd_dev_pts_0 , cmd const

[0x5413], arg ptr[in, winsize])

ioctl$dev_pts_0_11(fd fd_dev_pts_0 , cmd const

[0x80045440], arg ptr[in, int32])

ioctl$dev_pts_0_3(fd fd_dev_pts_0 , cmd const[0

x541f], arg ptr[in, serial_struct])

ioctl$dev_pts_0_5(fd fd_dev_pts_0 , cmd const[0

x545d], arg ptr[in, serial_icounter_struct

])

...

serial_icounter_struct {

cts int32

dsr int32

rng int32

dcd int32

rx int32

tx int32

frame int32

overrun int32

parity int32

brk int32

buf_overrun int32

reserved array[int32 , 9]

}

serial_struct {

...

closing_wait2 int16

iomem_base ptr[out, array[int8]]

...

}

winsize {

ws_row int16

ws_col int16

ws_xpixel int16

ws_ypixel int16

}

Listing 2 shows part of generated system call specifica-

tions for socket X25. During entry extraction, KSG extracts

struct proto_ops of X25 via invoking system call socket

with address family AF_X25. KSG then performs path sen-

sitive analysis on each extracted entry to collect types and

range constraints. During the first step of generation, KSG

defines the resource type sock_X25_SeqPacket, where the

name of resource type is generated based the address family

and socket type. socket$X25_SeqPacket is also generated

during this step and the parameters are qualified to corre-

sponding constant. After the second step of the generation,

the rest of specialized calls and related types were generated

based on the collected types and range constraints.

Listing 2: Generated specifications for X25 socket

resource sock_X25_SeqPacket[sock]

socket$X25_SeqPacket(domain const[0x9], type

const[0x5], proto const[0x0])

sock_X25_SeqPacket

bind$X25_SeqPacket_0(sock sock_X25_SeqPacket ,

addr ptr[in, sockaddr_x25], len bytesize[

addr])

...

setsockopt$X25_SeqPacket_0(sock

sock_X25_SeqPacket , level const[0x106],

opt_name const[0x1], buf ptr[in, int32],

len ptr[in, int32])

...

ioctl$X25_SeqPacket_6(fd sock_X25_SeqPacket ,

cmd const[0x89e5], arg ptr[in,

x25_calluserdata])

ioctl$X25_SeqPacket_4(fd sock_X25_SeqPacket ,

cmd const[0x89ec], arg ptr[in,

x25_causediag])

ioctl$X25_SeqPacket_9(fd sock_X25_SeqPacket ,

cmd const[0x89ea], arg ptr[in,

x25_dte_facilities])

ioctl$X25_SeqPacket_10(fd sock_X25_SeqPacket ,

cmd const[0x89e3], arg ptr[in,

x25_facilities])

...

sockaddr_x25{

sx25_family const[0x9, int16]

sx25_addr x25_address

}

x25_address{

x25_addr array[int8 , 16]

}

x25_calluserdata {

cudlength int32

cuddata array[int8 , 128]

}

x25_causediag {

cause int8

diagnostic int8

}

x25_dte_facilities {

...

}

x25_facilities {

...

}

	Introduction
	Background and Related Works
	Kernel Fuzzing
	System Call Specification

	Challenges
	Extracting Entries of Submodules
	Identifying Input Types of Entries

	Key Techniques
	Entry Extraction
	Types and Constraints Collection
	Specification Generation

	Implementation
	Evaluation
	Specification Generation
	Coverage Improvement
	Bug Finding and Case Studies

	Discussion and Limitations
	Conclusion
	APPENDIX
	Generated Specifications

