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ABSTRACT
Coverage-guided fuzzing is one of the most popular software test-
ing techniques for vulnerability detection. While effective, current
fuzzing methods suffer from significant performance penalty due
to instrumentation overhead, which limits its practical use. Existing
solutions improve the fuzzing speed by decreasing instrumenta-
tion overheads but sacrificing coverage accuracy, which results in
unstable performance of vulnerability detection.

In this paper, we propose a coverage-sensitive tracing and sched-
uling framework Zeror that can improve the performance of ex-
isting fuzzers, especially in their speed and vulnerability detection.
The Zeror is mainly made up of two parts: (1) a self-modifying
tracing mechanism to provide a zero-overhead instrumentation for
more effective coverage collection, and (2) a real-time scheduling
mechanism to support adaptive switch between the zero-overhead
instrumented binary and the fully instrumented binary for better
vulnerability detection. In this way, Zeror is able to decrease col-
lection overhead and preserve fine-grained coverage for guidance.

For evaluation, we implement a prototype of Zeror and evaluate
it on Google fuzzer-test-suite, which consists of 24 widely-used
applications. The results show that Zeror performs better than ex-
isting fuzzing speed-up frameworks such as Untracer and INSTRIM,
improves the execution speed of the state-of-the-art fuzzers such as
AFL and MOPT by 159.80%, helps them achieve better coverage (av-
eragely 10.14% for AFL, 6.91% for MOPT) and detect vulnerabilities
faster (averagely 29.00% for AFL, 46.99% for MOPT).

KEYWORDS
Coverage-guided Fuzzing, Coverage-Sensitive Tracing, Scheduling
∗Yu Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE 2020, 21 - 25 September, 2020, Melbourne, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Coverage-guided fuzzing is one of the most popular software test-
ing techniques for bug detection. In the past few years, it has gained
significant traction in academic research as well as in industry prac-
tice. Most notably, Google’s OSS-Fuzz [18] adopts American Fuzzy
Lop (AFL) [25], honggfuzz [21] and libFuzzer [34] to continuously
test open source applications. Over 16,000 bugs in 250 open source
projects are discovered by OSS-Fuzz.

A coverage-guided fuzzer feeds a program with random test
cases, collects coverage-increasing test cases (such test cases are
called interesting seeds), and generates new test cases by mutating
those seeds. The key goal of coverage-guided fuzzers is to maximize
coverage and explore deeper paths as fast as possible. Many fuzzing
optimizations have been proposed to maximize coverage, including
the ones that improve seed selection strategy [5, 14, 41, 42] or
mutation strategy [6, 28, 29, 36], the ones that integrate multiple
fuzzing optimizations [9, 30, 32], and the ones that leverage taint
analysis [2, 7, 8, 41], symbolic execution [40, 46, 49, 52, 53], human
knowledge [1, 45, 54], or machine learning [10, 16, 44] to assist
fuzzing.

While those above optimizations greatly improve performance,
especially in coverage improvements, they do not take fuzzing over-
head into consideration, which may hinder them from achieving
better scalability. For example, the overhead caused by coverage
collection is costly. We conduct experiments on AFL using real-
world programs of Google fuzzer-test-suite [17] to investigate the
overhead of collecting coverage. To our surprise, AFL spends an
average of 71.85% and up to 98.5% of its runtime to trace coverage.
Some related works try to decrease overheads from instrumenta-
tion. INSTRIM [22] reduces instrumentation cost by instrumenting
a part of basic blocks and reconstructing coverage information. Un-
tracer [39] avoids tracing coverage of non-coverage-increasing test
cases by removing visited instrumentation points. They can effec-
tively decrease overhead but cannot preserve fine-grained coverage
guidance, which limits their vulnerability detection.

To speed up fuzzing and further improve vulnerability discovery,
the main challenge is to keep a good balance between instrumenta-
tion overheads and the granularity of the collected coverage. Those
existing overhead reduction methodologies decrease the overhead
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with sacri�cing coverage accuracy. For example, our experiments
demonstrate that compared with AFL, although improves the speed
by 155.75%, Untracer decreases coverage by 8.31%, which results
in an unstable ability of vulnerability discovery. Therefore, it is
not easy to keep a good balance between overhead reduction and
coverage accuracy.

In this paper, we propose a coverage-sensitive tracing and sched-
uling frameworkZeror , which aims at increasing fuzzing speed
with diversely-instrumented binaries. The main idea is switching
to a self-modifying based zero-overhead-instrumented binary for
fuzzing when the normal instrumented binary fails to make better
progress.Zeror is mainly made up of two parts: (1) A self-modifying
tracing mechanism to provide a zero-overhead instrumentation for
coverage collection. The self-modifying tracing mechanism reduces
the coverage collection overhead by restricting coverage tracing
to only coverage-increasing test cases. (2) A real-time scheduling
mechanism to support adaptive switch between the zero-overhead
instrumented binary and the fully instrumented binary. To choose
the optimal binary, it estimates the probabilities of discovering
interesting seeds for each binary by Bayesian inference. Instead
of doing a tradeo� between fuzzing speed and coverage accuracy
within a single binary, the scheduler helps fuzzers achieve both by
taking advantages of diversely-instrumented binaries.

We implemented the prototype ofZeror and applied it to sev-
eral state-of-the-art fuzzers, including AFL [25] and MOPT [36].
We evaluated them on Google fuzzer-test-suite, which consists
of 24 widely-used real-world applications. The evaluation results
demonstrate thatZeror performs better than existing fuzzing speed
up frameworks such as Untracer and INSTRIM. Compared with
Untracer, it covers 20.84% more branches with almost the same
execution time. Compared with INSTRIM, it covers 6.82% more
branches with 50.72% less execution time. It improves the execution
speed of original AFL instrumentation, which is also adopted in
MOPT, by 159.80%, helps them achieve better coverage (averagely
10.14% for AFL, 6.91% for MOPT) and exposure vulnerabilities faster
(averagely 29.00% for AFL, 46.99% for MOPT).

In summary, this paper makes following contributions:

� We propose a coverage-sensitive tracing and scheduling frame-
work, which integrates diversely-instrumented binaries and sup-
ports adaptive switch between them, to speed up fuzzing as well
as maintain the vulnerability detection ability.

� We propose a self-modifying tracing mechanism to reduce cov-
erage collection overhead. By using this mechanism, fuzzers will
be sensitive to edge-level coverage granularity and only trace
coverage of coverage-increasing test cases.

� We propose a real-time scheduling mechanism, which is able to
dynamically choose a proper instrumented binary for fuzzing
execution to achieve both speed and accuracy.

� We implemented the prototype ofZeror , which could be applied
to most of the state-of-the-art fuzzers such as AFL and MOPT.
The results show thatZeror could help boost execution speed
and discover vulnerabilities faster than the existing speed-up
framework such as Untracer and INSTRIM.

This paper is organized as follows: Section 2 introduces the back-
ground of coverage-guided fuzzing and coverage tracing. Section 3
illustrates the motivation of this work through an empirical study

on e�ciencies of di�erent coverage collection methods. Section 4
elaborates the idea and design ofZeror . Section 5 presents the im-
plementation and evaluation. Section 6 shows some related works
and the main di�erences, and we get the conclusion in Section 7.

2 BACKGROUND
2.1 Coverage-guided Fuzzing
Coverage-guided fuzzing is currently one of the most e�ective
and e�cient vulnerability discovery solution. It aims to automati-
cally generate proof of concept (PoC) exploits by maximizing code
coverage. AFL [25], libFuzzer [34] and honggfuzz [21] are some
well-recognized coverage-guided fuzzers.

Figure 1 shows the general work�ow of a coverage-guided fuzzer.
Given a target program and initial inputs, fuzzing works as follows:
(1) compile target program into target binary, where coverage in-
strumentation are injected; (2) execute the binary and spawn target
process; (3) queue initial inputs into seeds generator; (4) generate
test cases as input; (5) trace coverage to evaluate the test case; (6)
save the test case to corpus if there is coverage growth (i.e. the
test case is interesting), and goto step 4. During the fuzzing exe-
cution loop, performance is highly impacted by execution speed
during runtime. Fuzzer's runtime consists of two parts, coverage
tracing and fuzzer's internal logic (including child process estab-
lishment, seed selection and mutation, coverage comparison, etc.).
A simple-but-practical optimization for fuzzer's internal logic is
AFL persistent mode, where a long-live process can be reused to
try out multiple test cases, eliminating the need for repeatedfork()
calls and the associated OS overhead [26].

Figure 1: The general work�ow of coverage-guided fuzzing

2.2 Coverage Tracing
Coverage-guided fuzzers utilize coverage information to guide
fuzzing. They track coverage of each execution, compare the cover-
age with preserved coverage, and check whether current test case is
coverage-increasing. The most common approach to gain coverage
information for fuzzing is instrumentation, which is taken vari-
ously by di�erent fuzzers. For OS kernel fuzzing, Syzkaller [47] and
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kAFL [43] instrument target kernel by hardware-assisted mecha-
nisms (e.g. Intel PT [23]). For blackbox (source-unavailable) applica-
tions fuzzing, VUzzer [41] uses PIN [35] to dynamically instrument
black-box binaries. For whitebox (source-available) applications
fuzzing, libFuzzer and honggfuzz use SanitizerCoverage [19] in-
strumentation method provided by Clang compiler, and AFL im-
plements instrumentation by hardcoding basic-block keys into the
assembly �le of target programs.

(a) code (b) basic-block level (c) edge level

Figure 2: Di�erent coverage granularities provided by Sani-
tizerCoverage. Basic-block level focuses on the coverage of
each node, while edge level focuses on the coverage of the
edge. Furthermore, an empty �dummy� block is inserted to
denote a critical edge between two basic blocks.

Di�erent instrumentation mechanisms provide di�erent cov-
erage granularities. SanitizerCoverage and AFL instrumentation
method are two most widely-used coverage instrumentation mech-
anisms. SanitizerCoverage o�ers basic-block level and edge level
instrumentation. Figure 2 illustrates the mechanisms in a brief ex-
ample. Basic blocks are the nodes of program's control-�ow graph,
denoting a piece of straight line code (i.e. there is no jump in or
out of the middle of a block). SanitizerCoverage extracts control-
�ow graph of target program and instruments each basic block in
LLVM IR when the basic-block level instrumentation is activated.
To enhance instrumentation from basic-block level to edge level,
SanitizerCoverage adds �dummy� blocks to denote critical edges,
which is neither the only edge leaving its source block, nor the
only edge entering its destination block. Unlike SanitizerCover-
age, AFL instrumentation method tracks edge coverage directly.
It assigns random keys to target program's basic blocks during
static instrumentation, dynamically calculates edge keys through
previousbasic-block keys andcurrentbasic-block keys, and tracks
edge counters in a 64K hash table by edge keys [14, 25]. AFL is also
compatible with SanitizerCoverage [26].

3 MOTIVATIONS
Di�erent coverage collection mechanisms trace di�erent cover-
age granularities. The more accurate information gains through
tracing coverage, the more overheads fuzzing faces. However, it is
unclear how granularity relates to tracing coverage and overhead.
An intuitive impression is that, fuzzers guided by di�erent cover-
age granularities have di�erent strengths when fuzzing di�erent
target programs. To verify our hypothesis, we conducted a prelim-
inary experiment on di�erent coverage granularities to evaluate
each granularity's e�ciency. Three di�erent coverage collection
instrumentation mechanisms are chosen in our experiment:

� AFL (edge): the fuzzer is AFL and target programs are instru-
mented by original AFL's edge level instrumentation.

� AFL (basic-block): the fuzzer is AFL and target programs are
instrumented by SanitizerCoverage, using basic-block level in-
strumentation.

� AFL (coarse-basic-block): the fuzzer is AFL and the target pro-
grams are instrumented by Untracer [39], which decreases time
on handling discarded test cases but only obtains coarse basic-
block level coverage without accumulating hit count.
We run above three mechanisms on Google fuzzer-test-suite [17]

for 6 hours and select partial results for preliminary illustration (all
experiment settings are in line with Section 5.1). From the result of
Figure 3 and Table 1, we have the following observations:

Observation 1: tracing accurate coverage is costly . As illus-
trated in Section 2.1, coverage tracing and internal logic execution
are two constituent part of fuzzer's runtime. We record AFL internal
logic execution time during each iteration, and calculate edge level
coverage tracing time by comparing each test case's execution time
in instrumented version and non-instrumented version. As Figure 3
shows, time spent in tracing coverage accounts for averagely 71.85%
of AFL's whole runtime. The ratio is even up to 98.5% when fuzzing
openssl-1.0.1f .

Figure 3: Percentage of internal logic execution time and
edge level coverage tracing time in AFL.

Observation 2: the e�ciency of each coverage granularity
varies with target programs . We record the time spent in trig-
gering known vulnerabilities for each mechanism, and the result
is shown in Table 1. Due to the limitation of Dyninst [13], Un-
tracer is incompatible with some projects (denote as N/A). From
Table 1, we can see that: AFL (edge) exposes known vulnerabilities
faster than others onopenssl-1.0.1f andopenssl-1.0.2d ; AFL
(coarse-basic-block) exposes known vulnerabilities faster than oth-
ers onguetzli . AFL (basic-block) exposes known vulnerabilities
faster than others onlcms, pcre2.

Focus of this Paper: From the observation 1, we �nd that trac-
ing coverage is costly. In search for coverage-increasing test cases,
fuzzing is based on genetic algorithm, which makes its e�ectiveness
highly impacted by execution speed. Thus, we focus on improving
fuzzing e�ciency by reducing the coverage collection overhead.
We propose a novel self-modifying tracing mechanism to eliminate
needless coverage collection. Besides, inspired by the observation
2, instead of doing a tradeo� between fuzzing speed and coverage
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Table 1: Time taken to trigger known bugs for fuzzers guided
by di�erent coverage granularities. 1 denotes the fuzzer
cannot expose known bugs in 6 hours. N/A denotes compat-
ibility issues of Untracer on speci�c programs.

Project
Average Reaching Time (seconds)

AFL AFL AFL+Untracer
(edge) (basic-block) (coarse-basic-block)

c-ares 5 5 842
guetzli 1 1 16257
json 5 6 5
lcms 20679 4084 11827

openssl-1.0.1f 19 31 N/A
openssl-1.0.2d 8716 10407 N/A

pcre2 822 413 6095

accuracy, we propose a scheduling scheme, which helps fuzzers
achieve both goals by integrating diversely-instrumented binaries.

4 ZEROR DESIGN

Figure 4: Overview of Zeror , which mainly includes the
self-modifying tracing mechanism implemented with mul-
tiple instrumentation and coverage tracer, and the real-
time scheduling mechanism implemented with the binary-
switching scheduler. Multiple instrumentation means the
self-modifying tracing based instrumentation and the full
instrumentation of the integrated original fuzzer.

Figure 4 depicts the basic work �ow and main components of
Zeror . Di�erent from traditional coverage-guided fuzzing,Zeror
will choose a proper binary as fuzzing target (i.e. the running pro-
gram for fuzzing) among diversely-instrumented binaries.Zeror
consists of two main components :coverage tracerand binary-
switching scheduler. (1)Coverage tracercollects coverage informa-
tion from fuzzing target, stores seeds into corpus if the seeds are

interesting and sends statistical data tobinary-switching sched-
uler. It will self-adjust when fuzzing target changes: when fuzzing
AFL-instrumented binaries,coverage tracerwill read coverage from
edge-counters hash table; when fuzzing the binaries instrumented
by self-modifying tracing,coverage tracerwill monitor the status
of child process and modify the instructions of child process. (2)
Binary-switching schedulerrecords the statistical data fromcover-
age tracer, estimates e�ciency of each instrumented binary based
on the statistical data and choose the optimal binary as fuzzing
target when time to switch binary. Specially, we leverage empirical
Bayesian method to estimate e�ciency in a cost-e�ective way and
adopt exponential smoothing to smooth the time-varying e�ciency.

4.1 Self-modifying Tracing
As aforementioned, coverage-guided fuzzing spends the majority
of its runtime in collecting coverage. It is intuitive that restrict-
ing coverage tracing to only coverage-increasing test cases will
signi�cantly reduce the overhead. However, how to sense coverage-
increasing seeds and ignore discarded test cases is still an open
problem. Di�erent with static binary rewriting technique used in
Untracer [39], which is coverage-inaccurate, time-consuming and
not scalable on many complex programs, our solution, namely
self-modifying tracing, adopts self-modifying code technique to
address the problem. With the assistance of self-modifying trac-
ing, fuzzers could (1) dynamically remove visited instrumentation
points during fuzzing process; (2) sense �ne-grained coverage; (3)
barely introduce new overhead.

Self-modifying code (SMC) refers to the code that can modify its
own instructions during the execution of the program. It is widely
used in many of software systems to support runtime code gen-
eration [27, 37] and optimization [3], minimize the code size [11],
and reinforce dynamic code encryption and obfuscation [24]. There
are several advantages in SMC, such as fast paths establishment,
repetitive conditional branches reduction and algorithmic e�ciency
improvement. To apply SMC to coverage tracing, we need to obtain
the addresses of instrumentation points at compilation stage, and
self-modifying the addresses at runtime stage. A step-by-step ex-
ample is shown in Figure 5 to elaborate how our solution performs
self-modifying tracing with compilation stage and runtime stage.

At compilation stage , we need to generate a zero-overhead bi-
nary and obtain the addresses of instrumentation points. However,
there are two challenges to be addressed: (1)How to inject instrumen-
tation points into target program?Blackbox instrumentation will
obtain redundant and less-accurate coverage information, which im-
pair fuzzing performance. While instrumenting programs in a white-
box way like AFL instrumentation [25] or SanitizerCoverage [19]
will introduce costly overhead. Besides, using self-modifying code
based on AFL instrumentation also obtains coarse-grained coverage
because AFL only injects instrumentation points into basic blocks.
Thus, an instrumentation approach which obtains �ne-grained cov-
erage and introduces less overhead is demanded. (2)How to track
the addresses of instrumentation points?Compilers will deactivate
some code optimizations as soon as any address of basic block is
obtained, and the un-optimized binary will be executed at a low
speed. Thus, we need to track the addresses of instrumentation
points in a proper way.
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Figure 5: A step-by-step demonstration of self-modifying tracing. It eliminates needless overhead spent in tracing coverage of
non-coverage-increasing test cases with two stages. It �rst instruments target programs, obtains addresses of instrumentation
points and generates a non-instrumented executable binary �le at compilation stage. Then, it does fuzz testing on the binary,
detects whether instrumentation points are triggered and removes visited instrumentation points at runtime stage. (The seg-
ments in blue rectangles is the text segments of the program's memory layout, the addresses of instrumentation points are
highlighted in blue, the modi�ed instructions are highlighted in red, the recovered instructions are highlighted in orange.)

To generate a zero-overhead binary and track the addresses of
instrumentation points, it works as follows to compile a program
from source code to object �le:

� Inject instrumentation points. Before the compiler starts per-
forming platform-independent code optimizations, we con-
struct control �ow graph and inject an instrumentation point,
i.e. aCALLinstruction to invoke callback function, at the start
of each basic block. Note that, similar with SanitizerCover-
age, the instrumentation could be enhanced from basic-block
level to edge level by adding "dummy" blocks to denote crit-
ical edges as Section 2.2 illustrates. Instrumenting before
code optimizations allows control �ow graph to preserve
semantics of source code so that coverage information is
collected accurately.

� Record & Clear. We record the corresponding basic block
symbols of injectedCALLinstructions and erase all the in-
jectedCALLinstructions after compiler �nishes platform-
independent code optimizations at intermediate representa-
tion (IR) level. In this way, the generated IR could be non-
instrumented while the recorded basic block symbols inherit
the �ne-grained coverage information from instrumentation
points.

� Emit addresses. We obtain addresses of instrumentation points
through the recorded basic block symbols, allocate a memory
in the generated object �le and emit the addresses into the
memory after compiler �nishes platform-dependent code op-
timizations at machine-speci�c intermediate representation
(MIR) level. Note that, the addresses are a series of o�sets in
object �le and will be relocated to absolute addresses when a
linker generates executable binary. In this way, the addresses
of instrumentation points are written in generated binary
and could be accessed to perform self-modify tracing during
runtime.

In the text segments after step 2 of Figure 5, we highlight four
addresses (0x2b1980, 0x2b198d, 0x2b1994and0x2b1999) in blue
to denote the addresses of instrumentation points. For simplicity, we
only show basic-block level instrumentation; however, our solution
enhances instrumentation from basic-block level to edge level by
adding �dummy� blocks to denote critical edges. After compilation
stage, a zero-overhead binary is generated and prepared for fuzzing.

At runtime stage , the coverage tracer ofZeror will execute the
zero-overhead binary, inject breakpoints into it and perform fuzzing
on this target. Algorithm 1 details the actions of the coverage tracer.
First, as presented in lines 2-8, the fuzzer executes the binary, re-
ceives the addresses of instrumentation points, and replaces original
instructions with0xcc. The corresponding demonstration is shown
in step 3 in Figure 5, the binary codes of instrumentation points
are replaced with0xcc (we highlight the instructions in red). Once
the process executes0xcc, it will trigger SIGTRAPinterrupt, and
wait for parent process to resume it. After the injection, the fuzzer
performs fuzzing on the child process, and monitors the status of
it. Once receivingSIGTRAPfrom child process, the fuzzer stores
current input as interesting seed for further mutation, recovers the
instruction that belongs to the address, and resumes child process,
as presented in lines 11-18. The corresponding demonstration is
shown in step 4 in Figure 5.

Within the self-modifying tracing, we maintain a set of instru-
mentation points which have never been visited (unvisitedAddrs
in Algorithm 1) during fuzzing process. The set will tend to be
an empty set as the fuzzer explores target program's states more
deeply. Once a instrumentation point is visited, it will be removed
and never be collected again. Besides, the self-modifying tracing
does not introduce new overhead during fuzzing process. There-
fore, along with the fuzzing process, it can theoretically eliminate
coverage collection overhead almost down to zero.
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Algorithm 1: Action of self-modifying coverage tracer

Input : the target binary1
Executor�G42

/* A map to store (address, instruction) pairs */
1 033A.initial()
2 �G42.run(1)
3 033AB= receiveInstrumentedAddrs()
4 D=E8B8C43�33AB= 033AB

/* Inject breakpoints into child process */
5 foreach 033Ain 033ABdo
6 8=BCA= readInstrFromAddr(033A)
7 033A"0?.insert(033A, 8=BCA)
8 writeInstrIntoAddr(0G22, 033A)
9 end

10 async event loop
11 if receive SIGTRAP from child processthen
12 readSeedAndStore()

/* Recover the instruction */
13 033A= readRip()
14 8=BCA= 033A"0?.get(033A)
15 writeInstrIntoAddr(8=BCA, 033A)
16 D=E8B8C43�33AB= D=E8B8C43�33AB� f 033Ag
17 �G42.resume()
18 end
19 end

4.2 Binary-switching Scheduling
Section 3 reveals that the e�ciency of each coverage granularity
varies with target programs. Inspired by this, we believe that switch-
ing among diversely-instrumented binaries during fuzzing process
will improve fuzzing performance. However, estimating e�cien-
cies of diversely-instrumented binaries is challenging, because: (1)
program-dependent e�ciency: the e�ciency of each binary varies
with target programs, thus we cannot share one static set of pa-
rameters con�guration among di�erent programs; (2)time-varying
e�ciency: even for testing one target program, the e�ciency of
each coverage granularity changes over time as the fuzzer explores
target program's states more deeply; (3)cost-e�ective solution: the
solution should be cost-e�ective and less-frequent due to the high
throughput of fuzzing.

We propose a real-time scheduling mechanism to address above
problems. In short, it adaptively switches fuzzing binary among
diversely-instrumented binaries at set intervals. During fuzzing
process, it collects statistical data (i.e. the number of interesting
seeds, the number of executions and the time spent on fuzzing),
dynamically monitors the number of interesting seeds each binary
could discover, and choose an optimal binary as fuzzing target when
the switch time is up. We leverage empirical Bayesian method to
estimate e�ciency in a cost-e�ective way and adopt exponential
smoothing to smooth the time-varying e�ciency.

Estimate e�ciency . To simplify the time-varying problem, we
discretize continuous time into time periods and assume e�ciency
is invariant at each time period. For a binary, the e�ciency at time

periodCis de�ned as

4C=
�C
) C

=
�C
" C

�
" C

) C
= AC� B

(1)

where�Cdenotes the number of discovered interesting seeds during
the time periodC,) Cdenotes the time spent on fuzzing during the
time periodC, " Cdenotes the number of executions during the time
periodC, ACdenotes the quotient of�Cand" C(namely, interesting-
testcases rate,ITR), andBdenotes execution speed which can be
seen as a constant with respect to binary. Given a binary's statisti-
cal data»�1• �2•� � � • �C¼, ») 1•)2•� � � • )C¼and»" 1• " 2•� � � • " C¼before
current time periodC, we aim to estimate ITRŝAC, and further cal-
culate the estimation of e�ciency4̂Cof the binary at current time
periodCthrough equation (1).

With empirical Bayesian methods, the integrals over conditional
probability distributions are substituted by the empirical statistics
in the observed data, which allows us to estimate the posterior
probabilities, e.g. a binary's ITRs, by leveraging the information
from its statistical data. For each binary, there is an underlying prob-
ability distribution of ITR, and at each time periodC, the binary's
ITRACcould be regarded as a outcome of the distribution. We use
Beta distribution to parameterize the generative process, de�ned as
�4C0¹U• Vº. Besides, obviously, for each binary at time periodC, the
number of interesting seeds�Cobeys the Binomial distribution with
parameters" CandAC. Thus, we have a Beta-Binomial compound
distribution for the statistical data. The generative process of our
Bayesian model is described as follows:

� SampleA� �4C0¹U• Vº, ?¹AjU• Vº / � ¹U¸ Vº
� ¹Uº� ¹Vº AU� 1¹1 � AºV� 1
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where � is Gamma function. Therefore, the likelihood over all
number of interesting seeds is:
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=
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(2)

Then, the maximum likelihood can be calculated through the �x-
point iteration (FPI) [38, 50]:

UĢ 1 =UG

Í C
8=1»	 ¹�8 ¸ UGº � 	 ¹UGº¼

Í C
8=1»	 ¹" 8 ¸ UG ¸ VGº � 	 ¹UG ¸ VGº¼

VĢ 1 =VG

Í C
8=1»	 ¹" 8 � �8 ¸ VGº � 	 ¹VGº¼

Í C
8=1»	 ¹" 8 ¸ UG ¸ VGº � 	 ¹UG ¸ VGº¼

(3)

where	 ¹Gº is the digamma function, and can be quickly calculated
through Bernardo's algorithm [4].

With equation(3), theÛ and V̂ could be iteratively estimated,
furthermore, the posterior estimation of current time period's ITR
could be calculated aŝAC= �Ç Û

" Ç Û¸ V̂
. To accelerate the convergence
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speed of the iteration method, we use method of moments [20]
to calculate the initial valueŝU0 andV̂0. Besides, to smooth time-
varying observed data, we leverage exponential smoothing [15] to
calculate the smoothed number of interesting seeds:

�8 =
�

� 0
8 8= 1

W�08 ¸ ¹ 1 � Wº�8� 1 8¡ 1
(4)

where � 0
8 is the observed number of interesting seeds,�8 is the

smoothed number of interesting seeds which is used in equation(3),
W2 ¹0•1º is the smoothing factor. As time passes the smoothed
�8 becomes the exponentially decreasing weighted average of its
past observations, in this way, we can capture time relationship
between ITRs.

Once the posterior estimation of ITR̂ACof the binary is estimated,
the estimation of e�ciency 4̂Ccould be calculated through equa-
tion (1). Thus, at current time periodC, we can estimate e�ciencies
of every diversely-instrumented binaries»41

C• 42C•� � � • 4:C¼, and form
a probability distribution by normalizing these e�ciencies:

?¹- = 8º =
48
C

Í :
9=149

C

(5)

where 49
C denotes the e�ciency of binary9. When the time to

switch, we can select the target binary for fuzzing according to the
probability distribution.

Switch among binaries . Based on the e�ciency estimation,
we can implement the binary-switching scheduler, as detailed in
Algorithm 2. First, as presented in lines 1-3, the scheduler randomly
chooses several (in line with the con�gurations) binaries and per-
forms fuzzing on these binaries through executor. For each binary,
the executor willfork a child process to test them, which is simi-
lar to AFL's fork server [26]. Then, the scheduler asynchronously
listens events from executor and timer. Executor will periodically
report statistics (number of executions, number of interesting seeds,
time spent on fuzzing during the time period), and scheduler will
record these statistics when receive them from executor as pre-
sented in lines 5-8. As presented in lines 10-18, when it is time
to switch binary, the executor will stop its child processes, and
then, the scheduler will calculate the posterior estimation of each
binary's ITR and choose optimal binaries for fuzzing according to
the probability distribution of equation(5). Note that, the scheduler
supports not only running in single mode (i.e. single-core fuzzing)
but also running in parallel mode (i.e. multi-cores fuzzing), which
is more common in real industrial practice [31, 33].

5 EVALUATION
We implemented the frameworkZeror . The instrumentation mech-
anism in self-modifying tracing is implemented on the top of LLVM
10.0.0 [48]. TheRecord&Clearprocedure is implemented in the ini-
tialization of llvm::MachineModuleInfo and theEmit addresses
procedure is implemented in theEmitBasicBlockStart method
of llvm::AsmPrinter . We create a global variable to record the
mapping of MBB Symbol (MCSymbol*type) and MBB id (uint32_t
type). The runtime logic of monitoring status of process and mod-
ifying instructions of memory in self-modifying tracing is based
on ptrace . For scalability, the scheduler component contains the
self-modifying based zero-overhead binary and the original fully

Algorithm 2: Action of binary-switching scheduler

Input : List of diversely-instrumented binaries�
Executor�G42
Con�gurations �

1 B2�43D;4A.initial(� )
2 C0A64CB= B2�43D;4A.chooseRandom(� .numCores)
3 �G42.run(C0A64CB);
4 async event loop
5 if receive statistics from executorthen
6 18=0A~•BC0C8BC82B= �G42.read()
7 B2�43D;4A.record(18=0A~•BC0C8BC82B)
8 end
9 if time to switch binarythen

10 �G42.stop()
11 foreach 1 in � do

/* calculate the posterior estimation
of the binary's ITR */

12 U0• V0 = B2�43D;4A.calByMoment(1)
13 U• V= B2�43D;4A.calByFPI(1• U0• V0)
14 A= betaExpectation(U• V)
15 B2�43D;4A.update(1•A)
16 end
17 C0A64CB= B2�43D;4A.chooseOptimal(� .numCores)
18 �G42.run(C0A64CB);
19 end
20 end

instrumented binary of the integrated fuzzers such as AFL and
MOPT. The interval of switching binaries and reporting statistical
data are set to 600s and 60s respectively, which barely introduces
new overhead and brings best performance after multiple attempts
with di�erent values. Inspired by the AFL persistent mode [26], our
framework sets up a thread which runs aptrace task to monitor
the status of child process. Once the child process triggers a crash
or exceeds timeout limit, the thread will terminate and re-spawn
the child process.

We evaluatedZeror in three aspects. First, we appliedZeror
to AFL and compared the performance with two state-of-the-art
fuzzing speed up frameworks, Untracer [39] and INSTRIM [22], to
assess the e�ciency. Then, we generalizedZeror to MOPT [36], a
state-of-the-art fuzzer, to study the scalability. Finally, we evaluated
the e�ectiveness of each component ofZeror .

5.1 Experiment Settings
To reveal the practical performance ofZeror , the evaluation was
conducted on fuzzer-test-suite [17], a widely-used benchmark from
Google. This test suite consists of 24 popular real-world applications
which have interesting known vulnerabilities, hard-to-�nd code
paths, or other challenges for bug �nding tools. The initial seeds
were collected from the built-in test suite and each source code
inside the test suite was compiled with-O2 �ag. To reduce the
side e�ect caused by AFL's �le I/O overhead [51], all fuzzers were
running in tmpfs. All experiments were performed on a 64-bit
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Table 2: Fuzzing performances of di�erent AFL-based fuzzing-speed-up methods.

Project average execution time for each test case (`B) number of covered branches
AFL AFL+INSTRIM AFL+Untracer AFL+Zeror AFL AFL+INSTRIM AFL+Untracer AFL+Zeror

boringssl 96.69 69.68 N/A 33.05 2661 2694 N/A 2549
c-ares 43.34 25.42 13.95 16.32 57 57 55 57

freetype2 44.68 25.17 25.13 20.33 8255 9268 7007 10059
guetzli 99.92 67.98 45.80 41.00 4757 4845 4748 4987

harfbuzz 149.82 80.36 66.06 55.73 8148 8048 7195 9168
json 145.82 100.03 64.33 98.39 1315 1333 1152 1346
lcms 97.71 70.92 44.18 63.96 2115 2244 1436 2077

libarchive 193.44 112.50 112.90 112.72 1208 1119 1082 1618
libjpeg 1469.47 668.96 261.30 337.36 2364 2564 2399 2857
libpng 15.34 5.48 5.27 7.54 1092 1096 1029 1140
libssh 638.00 340.52 309.62 309.29 867 867 867 867

libxml2 268.07 135.05 N/A 88.13 4063 4318 N/A 4745
llvm-libcxxabi 137.61 81.61 43.75 42.04 6488 6005 6000 7012
openssl-1.0.1f 3418.66 1998.27 N/A 1948.43 4748 6745 N/A 7372
openssl-1.0.2d 161.09 92.48 N/A 63.23 1825 1828 N/A 1769
openssl-1.1.0c 210.70 89.74 N/A 50.60 1712 1711 N/A 1658
openthread 145.51 91.17 64.80 85.16 3561 3537 3279 3591

pcre2 199.12 102.21 53.86 49.11 6890 6888 6597 6890
proj4 23.22 14.24 8.47 7.86 2541 2584 2347 3886
re2 640.24 391.97 260.19 235.40 4608 4647 4533 4725

sqlite 221.18 160.84 136.01 141.40 1892 1997 1986 1972
vorbis 96.14 58.08 36.45 25.48 2035 2152 1817 2079
wo�2 31.55 20.12 11.80 8.67 2119 2152 1453 2157

wpantund 1921.02 2019.62 1544.89 1789.23 7959 7892 7802 8781
Zeror improvement +159.80% +50.70% -0.46% +10.14% +6.82% +20.84%

Table 3: Time to expose known bugs, 1 denotes the fuzzer
cannot expose the known bugs in 6 hours and the projects
whose bugs can not be triggered by any fuzzer are removed.

Project AFL AFL+INSTRIM AFL+Untracer AFL+Zeror
c-ares 8 26 842 8
guetzli 1 1 16257 6001
json 5 5 5 5
lcms 20679 1 11827 10953

llvm-libcxxabi 788 2197 2347 709
openssl-1.0.1f 19 19 1 21
openssl-1.0.2d 8716 6877 1 6013

pcre2 822 1375 6095 439
re2 1 1 1 8194

wo�2 3565 1535 1 3260

machine with 40 cores (Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz),
128 GiB of RAM and Linux 5.5.13. Due to the random e�ects in
fuzzing, we conducted each experiments for six hours and repeated
it ten times. And we reported average performance.

In terms of metrics, we evaluate the performance of fuzzers in
three aspects, namely execution time, branch coverage and time
to expose known bugs. The execution time is the average time the
LLVMFuzzerTestOneInputfunction consumed. Di�erent fuzzers
are guided by di�erent coverage granularity, for fair comparison,
we collect their generated seeds, feed the seeds to original AFL and
gather the number of covered branches through AFLBITMAP. The
time to expose known bugs is the time consumed by the fuzzer to
trigger the �rst crash.

5.2 E�ciency of Zeror
We appliedZeror to AFL (namely AFL+Zeror) by switching be-
tween AFL-instrumented binary and self-modifying tracing instru-
mented binary based on binary-switching scheduler. We evaluated
it on all the 24 programs of Google fuzzer-test-suite and compared

it with two state-of-the-art fuzzing speed-up techniques, INSTRIM
and Untracer. Speci�cally, for the baseline AFL, the version used
is 2.52b and the compilation tool chain isafl-clang-fast [26],
which is the most e�cient instrumentation method that AFL pro-
vide; for INSTRIM, we activate INSTRIM-APPROX mode, which
shows best performance in their evaluations [22].

The results are presented in Table 2 and Table 3. The 2-5 columns
of Table 2 show the average execution time per test case and the
Zeror improvement in the last row refers to the execution speed
increase. The 6-9 columns of Table 2 show the number of branches
covered by each fuzzer and theZeror improvement in the last
row refers to branch increase. Table 3 shows the time taken by
each fuzzer to expose known bugs, the projects whose bugs cannot
be triggered by all the fuzzers in 6 hours are removed from the
table. Note that, due to the limitation of Dyninst [13], Untracer is
incompatible with some projects (includingboringssl , libxml2 ,
openssl-1.0.1f , boringssl-1.0.2d and openssl-1.1.0c ), we
denote the corresponding table cell as N/A. From the two tables,
we can deduct the following conclusions:

� Zeror increases the execution speed of AFL. In Table 2, the av-
erage execution time of AFL+Zeror is less than AFL for every
benchmark projects. Speci�cally forlibjpeg , the average exe-
cution time of AFL and AFL+Zeror are 1469.47`Band 337.36̀B
respectively, which indicates thatZeror increases the execu-
tion speed of AFL by 335.58%. Averagely,Zeror increases the
execution speed of AFL by 159.80%.

� Zeror helps AFL cover more branches. In Table 2, AFL+Zeror out-
performs AFL on 17 out of 24 projects. Specially, AFL+Zeror im-
proves the number of covered branches by 55.27% onopenssl-1.
0.1f and 33.94% onlibarchive . Averagely, AFL+Zeror increases
the number of covered branches of AFL by 10.14%.

� Zeror helps AFL expose bugs faster. In Table 3, AFL+Zeror ex-
poses known bugs faster than original AFL on 8 out of 10 projects.
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Specially, AFL+Zeror is 1.87x faster than AFL in term of trigger-
ing the bug inpcre2, and exposes the bugs ofre2 andguetzli ,
which cannot be exposed by original AFL in 6 hours.

� Zeror shows better performances compared with other fuzzing
speed-up techniques. Compared with INSTRIM,Zeror is av-
eragely 50.70% faster for each execution, covers 6.82% more
branches and spends less time on bugs exposure. Compared
with Untracer,Zeror covers 20.84% more branches averagely
and spends less time on bugs exposure. Because of the real-time
scheduling,Zeror is averagely 0.46% slower than Untracer, which
is almost negligible.

Figure 6: The number of covered branches over time when
fuzzing harfbuzz. The x-axis is on a logarithmic scale.

Case study. Figure 6 visualizes the real-time change of covered
branches onharfbuzz when di�erent fuzzing speed-up methods
are applied on AFL. We can observe that AFL+Zeror covers more
branches than all the other methods most of the time. Speci�cally,
AFL+Zeror takes211seconds to achieve almost the same number of
covered branches as AFL and INSTRIM take214 seconds. Untracer
covers less branches most of the time compared with other methods,
even compared to the original AFL. As demonstrated in Table 2,
Untracer is the fastest for test case execution, but when it deletes
almost all the instrumentation points, it will also lose the �ne-
grained coverage information such as hit count of branches for
fuzzing guidance, and will greatly reduce the number of covered
branches. INSTRIM makes AFL faster, but not as fast as Untracer and
Zeror , and it reconstructs the coverage information for guidance
with instrumenting a part of basic blocks, to partially maintain the
ability to cover more branches.

From the above statistics, it is reasonable to draw the conclusion
that: with the aid ofZeror , fuzzers are able to gain higher speedup,
covers more branches, and exposes bugs faster. In addition,Zeror
shows better performance of coverage increase and vulnerability
discovery compared with other fuzzing speed-up techniques.

5.3 Scalability of Zeror
In addition to AFL, we also generalize our experiments to another
state-of-the-art fuzzer, MOPT [36], to study the scalability ofZeror .
MOPT is a fuzzer that improves fuzzing performance by optimizing
the e�ciency of mutation strategy. We appliedZeror to MOPT
(namely MOPT+Zeror) in the same way as AFL+Zeror and eval-
uated it on all the 24 programs of Google fuzzer-test-suite. The

results are shown in Figure 7 and Table 4. From Figure 7 we can ob-
serve that MOPT+Zeror improves the number of covered branches
in 17 out of 24 projects and averagely increases the number of cov-
ered branches by 6.91% compared with the original MOPT. Speci�-
cally, MOPT+Zeror improves the number by 64.95% onproj4 and
40.45% onlibarchive . Table 4 shows the time taken by MOPT and
MOPT+Zeror to expose known bugs, those projects whose bugs
cannot be triggered by them in 6 hours are removed from the table.
From Table 4 we can observe that with the aid of Zeror, MOPT
exposes known bugs faster. Specially, Zeror improves the speed of
bug exposure by 2.39x onllvm-libcxxabi , 2.01x onpcre2.

Figure 7: Relative covered branches improvement of
MOPT+Zeror compared with MOPT.

Table 4: Time to expose known bugs, and the projects whose
bugs cannot be triggered by them in 6 hours are removed.

Project MOPT MOPT+Zeror
c-ares 8 8
json 5 5

llvm-libcxxabi 1818 761
openssl-1.0.1f 31 21
openssl-1.0.2d 1633 1320

pcre2 1944 968
wo�2 3767 3196

In summary,Zeror is applicable to other fuzzing optimizations
like MOPT, and more importantly,Zeror can further improve
fuzzing vulnerability discovery performance on top of them. Al-
though we only use MOPT for illustration in the experiment, it
can be easily applied to other fuzzers such as AFLFast [5] and
FairFuzz [28].

5.4 Evaluation of Individual Components
Zeror consists of two main mechanisms: self-modifying tracing
and real-time scheduling. To analyze the e�ects of each individual
mechanism, we con�gure two variants of our framework:
� Zeror-represents the fuzzer which adopts AFL as seeds generator

and only integrates self-modifying tracing mechanism.
� Zerorrepresents the fuzzer which adopts AFL as seeds generator.

Besides, it integrates self-modifying tracing and AFL's instrumen-
tation to collect coverage, and dynamically switches between
the two instrumented binaries during fuzzing process based on
real-time scheduling mechanism.
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Evaluation of self-modifying tracing . Since Untracer [39]
shares the similar idea with our self-modifying tracing compo-
nent, we evaluate our tracing by comparison with Untracer, us-
ing 19 projects of fuzzer-test-suite (Untracer is incompatible to
the rest 5 projects). For speed improvement, both methods elimi-
nate the coverage-collecting time of non-coverage-increasing test
cases by erasing visited instrumentation points, but with di�er-
ent approaches. Figure 8a shows that, when considering erasing
instrumentation points, self-modifying tracing saves much more
time than Untracer on the average time consumed. Averagely, self-
modifying tracing is 13.74x faster than Untracer when erasing in-
strumentation points. The saved coverage tracing time can be used
for e�cient binary-switch scheduling. Additionally, self-modifying
tracing is edge-aware while Untracer is basic-block-aware. Figure 8b
shows the relative covered branches improvement of self-modifying
tracing, from which we can conclude that self-modifying tracing
mechanism helps fuzzer cover more branches compared with Un-
tracer. Speci�cally, self-modifying tracing improves the branch
coverage by 56.92% onproj4 , 48.43% onlibarchive , 43.80% on
lcms, 42.90% onfreetype2 .

(a) Average time taken for di�erent methods to erase instrumen-
tation points (lower is better).

(b) Relative covered branches improvement of Zeror- compared
with Untracer.

Figure 8: Comparison between Zeror- and Untracer.

Evaluation of real-time scheduling . Our scheduling mech-
anism integrates two binaries: the zero-overhead binary instru-
mented by self-modifying tracing and the original binary instru-
mented by the integrated fuzzer, and then dynamically switches
between them. To study the e�ectiveness of the scheduler, we com-
pareZerorwith Zeror-and AFL. The overall result is consistent
to Table 2, and for page limitation, we only visualize 2 projects to
demonstrate the coverage increase process of di�erent con�gura-
tions in Figure 9. BothZeror-andZerorcover more branches than

AFL, andZeroroutperformsZeror-. The visualization indicates that
integrating two di�erent instrumented binaries with the real-time
scheduling helps fuzzers achieve better performance.

(a) libjpeg (b) harfbuzz

Figure 9: Branches covered over time with di�erent con�gu-
rations. The x-axis is on a logarithmic scale.

5.5 Discussion
Although binary-switching scheduler is able to integrate multi-
ple diversely-instrumented binaries, we appliedZeror to fuzzers
by switching only between original instrumented binary and self-
modifying tracing instrumented binary in our evaluation, which
could not fully excavateZeror 's potentiality, but already demon-
strates the e�ectiveness of tracing and scheduling. Furthermore,
even with the scheduling of two binaries, it improves both speed
and coverage. Recently, Dinesh [12] proposed a novel approach of
instrumentation, we plan to integrate it in the future.

(a) Number of covered branches
over time.

(b) Chosen probabilities of dif-
ferent binaries over time.

Figure 10: Case study on sqlite of AFL- Zeror .

Another potential concern is whether the scheduling mechanism
can help fuzzer shift into proper binary. Figure 10 is the real-time
visualization of covered branches and the chosen probabilities of
diversely-instrumented binaries when AFL+Zeror is applied to test
sqlite . We can observe that the chosen probability of the binary
instrumented by AFL is in decline when the number of covered
branches reaches the plateau at the time of 30min-60min, andZeror
has high probability to shift into the faster binary (instrumented by
self-modifying tracing) when the AFL-instrumented binary cannot
make any process. The observation indicates that the scheduling
scheme do help fuzzer properly choose binary for execution. How-
ever, the scheduling scheme only collects execution statistical data,
which may not be su�cient enough to fully display its e�ciency.
It could be further improved by gaining more information from
data-�ow analysis and control-�ow analysis.
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6 RELATED WORKS
Optimize fuzzing strategies . Existing optimizations of fuzzing
reside in di�erent stages. For the preparation stage, CollAFL [14]
provides a solution to collect coverage feedback without bitmap
collision, DeepFuzzer [32] leverages symbolic execution to gener-
ate quali�ed initial seeds. For the seed selection stage, AFLFast [5]
gives more mutation times to valuable seeds which exercise low-
frequency paths, Cerebro [29] prioritizes seeds in corpus on the
basis of static analysis and dynamic scoring. For the seed mutation
stage, FairFuzz [28] mutates input seeds in a restricted way so that
they are more likely to still explore the rarest branch, MOPT [36]
�nds the optimal selection probability distribution of operators with
respect to fuzzing e�ectiveness. Specially, a number of seed muta-
tion optimizations leverage taint analysis such as REDQUEEN [2],
Angora [7] and Matryoshka [8]. REDQUEEN [2] uses a lightweight
input-to-state correspondence mechanisms as an alternative to
data-�ow analysis, Angora [7] adopts byte-level taint analysis
and a gradient-descent algorithm for constraint penetration, Ma-
tryoshka [8] identi�es nesting conditional statements by control
�ow and taint �ow and proposed three strategies for mutating the
input to solve path constraints.

Boost fuzzing speed. Xu et al. [51] design three new operating
primitives to solve the performance bottlenecks of parallel fuzzing
on multi-core machines. INSTRIM [22] reduces instrumentation
cost by selectively instrumenting a part of basic blocks and re-
constructing coverage information. Untracer [39] avoids tracing
coverage of non-coverage-increasing test cases by removing visited
instrumentation points.

Main di�erences . Optimizations of fuzzing strategies are or-
thogonal toZeror , and most of them could also bene�t fromZeror .
For example, the experiment results show that, with the aid of
Zeror , MOPT achieves better performance of coverage exploration
and vulnerability discovery. Di�erent from INSTRIM and Untracer,
our study aims to boost fuzzing speed while preserve �ne-grained
coverage collection. Although Untracer has a similar idea with
our self-modifying tracing component, rather than static binary
rewriting, our tracing relies on self-modifying code to erase visited
instrumentation points, which barely introduces new overheads
and provides more �ne-grained coverage collection. With the novel
binary-switching scheduler, more improvements can be achieved.

7 CONCLUSION
In this paper, we propose a coverage-sensitive fuzzing framework
Zeror , which integrates diversely-instrumented binaries to boost
fuzzing speed and further improve the vulnerability discovery.
Zeror is mainly made up of two parts: (1) a self-modifying tracing
mechanism to provide a zero-overhead instrumentation for cover-
age collection; and (2) a real-time scheduling mechanism to select
the proper instrumented binary for fuzzing on the basis of empirical
Bayesian inference. In the experiments of fuzzing projects from
Google fuzzer-test-suite, results show that with the aid ofZeror ,
fuzzers are able to gain higher speedup, cover more branches, and
more importantly, expose bugs faster than the existing speed-up
techniques. It can be applied to most of the existing fuzzers. In our
future work, we plan to complementZeror with other orthogonal
fuzzing optimizations.
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