A Language Model for Statements of Software
Code

Yixiao Yang, Yu Jiang, Ming Gu, Jiaguang Sun, Jian Gao, Han Liu
School of Software, Tsinghua University, TNLIST, KLISS, Beijing, China

Abstract—Building language models for source code enables
a large set of improvements on traditional software engineering
tasks. One promising application is automatic code completion.
State-of-the-art techniques capture code regularities at foken level
with lexical information. Such language models are more suitable
for predicting short token sequences, but become less effective
with respect to long statement level predictions.

In this paper, we have proposed PCC to optimize the token-
level based language modeling. Specifically, PCC introduced an
intermediate representation (IR) for source code, which puts
tokens into groups using lexeme and variable relative order.
In this way, PCC is able to handle long token sequences,
i.e., group sequences, to suggest a complete statement with
the precise synthesizer. Further more, PCC employed a fuzzy
matching technique which combined genetic and longest common
subsequence algorithms to make the prediction more accurate.
We have implemented a code completion plugin for Eclipse
and evaluated it on open-source Java projects. The results have
demonstrated the potential of PCC in generating precise long
statement level predictions. In 30%-60% of the cases, it can
correctly suggest the complete statement with only six candidates,
and 40%-90% of the cases with ten candidates.

Index Terms—Code Completion, Language Model, IR

I. INTRODUCTION

Programs, as natural languages, are highly repetitive and
predictable [4]. This observation opens a great opportunity
to transfer well-designed natural language processing (NLP)
techniques to traditional software engineering tasks. Recent
years have witnessed a class of researches on building lan-
guage models for source code [2] [13] [S5] [8] [9] [4] [1] [10]
[11] [6], which enables a large set of promising applications.
In this paper, we focus on automatic code completion, i.e.,
automatically generate a statement for code suggestion.

Completing one token each time needs users to keep
thinking and selecting tokens. Users need to perform many
keyboard operations. By comparison, completing a statemen-
t is more user-friendly. Previous works have used n-gram
language model to capture the regularity of source code [4]
[1] [10] [11] [6]. The insight is to perform model training
using grams, i.e., tokens of the source code. The previous
evaluations have shown the potential of n-gram model in
predicting short code, i.e., short token sequence. However,
in terms of long predictions, i.e., long complete statement
sequence, they become less effective since they only consider
token regularity within a specific bound, i.e., n as in n-gram.

Yu Jiang is the corresponding author, School of Software, Tsinghua
University (email: jy1989 @mail.tsinghua.edu.cn)

978-1-5386-2684-9/17$15.00 © 2017 IEEE

682

Our goal is to overcome such limitation by optimizing the
long sequence prediction. Unfortunately, to fulfill such a goal
in practice is facing the following challenges.

Challenge 1: Long Sequence Regularity. The key of per-
forming long complete statement predictions is to capture
long sequence regularity. In the n-gram setting, this requires
increasing the value of n, which may incur a large training
overhead and make the model less predictive.

Challenge 2: Large Prediction Space. Furthermore, predict-
ing long sequences leads to exploring on a large prediction
space, i.e., all possible subsequent code. The exploration often
amounts to something like trying all feasible method calls of
a given type, which is quite expensive.

Challenge 3: Complete Statement Synthesize. Finally, syn-
thesizing a complete statement leads to realtime compiling to
check whether the suggested statement is legal or not, which is
quite time consumption and make the suggestion less effective.

We have proposed PCC in this paper to address the afore-
mentioned challenges. The first ingredient of PCC is an
intermediate representation of source code. The intuition of the
IR is to group tokens together and capture regularity at group
level. In this way, we can use groups to cover more tokens
than techniques in the literature. Moreover, PCC introduces a
fuzzy matching algorithm to optimize the exploration on large
prediction sequence. Specifically, the contexts used to predict
are not exactly same as the code contained in training data, but
the patterns may be similar. Through searching similar but not
accurate matching contexts, we could migrate potential pat-
terns for synthesis. Then, we develop a precise synthesizer to
suggest the complete statement efficiently, which adopts real-
time compiling techniques to select context-sensitive variables
and recombines tokens into a legale complete statement.

For evaluation on open-source Java projects, in 30%-60%
of the cases, it can correctly suggest the complete statement
with only six candidates, and 40%-90% of the cases with ten
candidates, and yield the precision improvement from 34.62%
to 41.76% over the n-gram approach. The results demonstrated
the potential of PCC in predicting precise statements.

II. RELATED WORK

The statistical n-gram language model has been widely used
in capturing patterns in source code. Hindle et al. [4] used
n-gram model on lexical tokens to suggest the next token.
In SLAMC [6], they enhanced n-gram by associating code
tokens with roles, data types, and topics. In cacheca [11], they

ASE 2017, Urbana-Champaign, IL, USA
Technical Research - New ldeas

improved n-gram with caching for recently seen tokens in local
files to improve next-token suggestion accuracy. Allamanis et
al. [1] and Raychev et al. [10] captured common sequences of
API calls with per-object n-grams to predict next call.

Decision tree learning was applied to code suggestion,
based on which, Raychev et al. presented an AST-based
hybrid language model for source code [8]. Raychev et al.[9]
abstracted the code into DSL and kept sampling and validating
on a special kind of DSL until the good code suggestion was
obtained. Nguyen et al.[5] tried to train code on graphs, and
combined Naive-Bayes model and n-gram model to suggest
API usages. Recently, deep learning techniques were applied
to code suggestion [13] [2]. They found that recurrent neural
networks significantly outperform n-grams for doing code
suggestion. Given the amount of unstructured code available,
state-of-the-art approaches such as recurrent neural networks
can outperform existing code suggestion solutions.

Previous works focused on suggesting short token sequence
which often represents a method name or a field name. Our
work makes a step forward to predict a long statement level
sequence which represents a complete statement. We work at
the statement level, rather than the lexical level or API level.

III. PCC APPROACH

The overall architecture of PCC is presented in Figure 1.
First, for both training or prediction, the source code would
be parsed into our predefined IR, which is a sequence of
tokens. In previous works, the token was defined by splitting
the source code by white space or punctuation. In the token
of our IR, there are many differences. For example, variable
names are replaced by some symbols and lexical symbols such
as ’:” or '}’ are eliminated. Then, the n-gram trainer trains the
IR into n-gram model for statement prediction.

Source
Code

!

Scenario
Context

Prediction Training
IR /‘ IR L
v
Context n-gram
SealI:her Trainer
. Language
Synthesizer Model

Complete
Statement

Fig. 1. PCC architecture

For predicting code, the source code prior to the position
where users invoke the code completion is taken as the context.
The context will be translated to IR. In previous works using n-
gram model for prediction, the last few tokens of IR of the con-
text will be used to predict the next token, and the information
before the last few tokens is lost. If a value never seen before
is observed, the whole probability may be invalid instantly,
making it hard for complete statement prediction. For example
in 3-gram model, P(abcd) = P(a|bc)*P(bled)*P(c|d)*P(d),

if ¢ is not observed in training data, the whole probabil-
ity can not be computed because the values of P(albc),
P(bled) and P(c|d) are unknown. A compromise approach
to compute P(abed) is that P(abed) = P(alb)*P(b). Infor-
mation of d is lost. However, the training data may con-
tain bed or bhd instead of bed, P(abcd) could be com-
puted by P(abed) ~P(abed)=P(a|be)* P(bled)*P(e|d)*P(d)
or P(abcd)~P(abhd)=P(a|bh)*P(blhd)*P(h|d)*P(d). We
design the context searcher to find substitutable contexts when
some tokens in the origin context are not observed in training
data, as in the above example that bcd could be substituted by
bed or bhd. The context searcher is a long term memory link
to bond shattered token snippets. With the context searcher, n-
gram model could address the challenge of using long contexts
to predict next tokens for statement completion.

Finally, when context searcher infers n tokens v; to v,
from context h, for each vic (1. n}, Synthesizer judges whether
v; could form a statement without compilation errors. If so,
synthesizer pushes the generated statement onto the result set,
if not, synthesizer replaces the context h with v;h, searches
from v;h for each next token z;c(1..m}, and judges whether
z;v; could form a statement or not. Then synthesizer replaces
the context v;h with z;v;h and does similar searches, and a
threshold is set to limit the traversal steps.

A. Intermediate Representation

Intermediate representation(IR) is generated by traversing
the AST of source code in post-order. Our IR generation
algorithm is applied to the AST generated by Eclipse JDT
[12]. A simple example is presented in Figure 2. In Eclipse
JDT AST, each node has a type which corresponds to the
syntactic information of the node in the AST. There are over
50 types for nodes in Eclipse JDT AST such as Variable,
W hileStatement, MethodInvocation. We implement the
GetNodeldenti fier(node) function to return the type of the
node except for three types of nodes: Variable, Constant
and MethodInvocation. For type M ethodInvocation, the
function should return the name of the invoked method. For
type Constant, the function should return the concrete value
of that constant. For type Variable, the function should return
the symbol for the variable.

public void test(int a) { <#CO#5
while (a<5){ while#@Pmk
System.out.println(a); printIn#System.out#CO
a+=1; +=#CO#1

}
}

Field accesses such
as System.out are
taken as constants

Fig. 2. An example of translating Java source code to IR

Although we can select the suitable variable by type check-
ing and compiling during the code completion stage, we
cannot directly give every variable name an unified symbol.
Consider the following case. If we decide to choose a variable
of a specific type, but there are more than one variable of
that type in the context, we can not decide which variable

683

to choose. We observe that if a variable is recently declared,
there is a high probability that the variable will be used in
the following code. In another word, whether this variable is
recently declared could help us classify and choose variables.
Based on the observation, when translating a variable var to
IR, at each position the variable is used, we give that variable
a number which shows how recently the variable is declared
compared to other variables with their types declared as same
as the type of var. The more recently the variable is declared,
the smaller the number is. The minimum of that number is
0. We give every variable symbol a prefix C' to denote that
this is a symbol for a variable. Figure 3 shows the example
of variable translations.

public void main() { - sympol:
int a=0; co

At this statement, b is more recently declared than
System.out.println(a);

a, so the number of b should be smaller than the

int b=0; . number of a. That is why the symbol of b is CO and
System.out.printin(a+b); the symbol of a is C1 at this statement.
} Symbol: Symbol:
c1 co

Fig. 3. Example of variable translation

Algorithm 1 generates the IR token using post-order
traversal. If we are generating the token token for a node
node, we initialize token to the string gotten by invoking
GetNodeldentifier. We iterate child nodes of node from
left to right. If the encountered child node represents a variable
or a constant, append the separator # and the IR token of
that child to the end of token. If the encountered child node
does not represent a constant or a variable, we think the node
is complex and the token of that complex node should be
stand-alone without being grouped into any other tokens. So
we append the separator # and the string @Pmk to the end
of token. @QPmk can be thought as a placeholder for the
token of that complex AST node. Remember that we use post-
order traversal to traverse the AST, the tokens of child nodes
are generated before the tokens of parent nodes. Therefore,
@Pmk must refer to a previously generated token. The rules
about how to identify the token to which @QPmk refers are
as follows. For convenience, if a token contains QPmk,
we name the token token_with_ref. At the beginning, we
mark all tokens before token_with_ref as un-referred. We
iterate each @QPmk in token_with_ref from right to left.
For each encountered @Pmk, we find the nearest previous
un-referred token and mark the found token as referred.
The found token is the one to which the encountered @Pmk
refers. Then the token_with_ref and all referred tokens must
be taken as one token conceptually.

B. Model Training

We only make intra-procedural analysis, so each method in
Java files will be parsed into IR which is a token sequence.
The source code in Java files in the training data will be
parsed into many token sequences where each token sequence
corresponds to a Java method. All token sequences will be
trained into n-gram model. The model then serves as a server

Algorithm 1: GenerateI RToken(node)

Input: node
Output: token
token < GetNodeldentifier(node)
if IsVariable(node) || IsConstant(node) then
return token
end if
children < GetChildrenFromLe ftToRight(node)
for child : children do
if IsVariable(child) || IsConstant(child) then
token < token + “#" + Generatel RT oken(child)
else
token <« token + “#" + “QPmk"
end if
end for
return token

to provide the service of searching (inferring) next tokens and
the corresponding conditional probabilities given the token
sequence with the length not exceeding n-1. The length of a
token sequence means the number of tokens in the sequence.

C. Context Searcher

The source code prior to the position waiting to be code
completed is taken as the context. In order to obtain the
ability to handle unseen tokens, context searcher is to
find similar contexts according to given context. Algorithm
2 shows the details. In Algorithm 2, for each token in the
context, we search for all token sequences which start with
that token. At last, we could get a large number of token
sequences (possible contexts). Then, we use the function
SortAndMinimizeContexts to take similarities, probabili-
ties and lengths of token sequences into a comprehensive con-
sideration to help select suitable token sequences (contexts).

Algorithm 2: SearchForContexts(given_context)

Input: given_context (must be a token list)
Output: contexts
contexts < ()
for token : given_context do
first_token < token
list_set < {[first_token]}
depth < 0
max_depth < given_context.length() x 1.5
while depth < max_depth do
new_list_set < ()
for one_list : list_set do
next_token_set < Infer NextTokens(one_list)
for next_token : next_token_set do
new_list < one_list + next_token
contexts = contexts U new_list
new_list_set = new_list_set Unew_list
end for
end for
list_set < new_list_set
depth++
end while
end for
contexts < Sort AndMinimizeContexts(contexts)
return contexts

684

Function SortAndMinimizeContexts uses the longest
common subsequence algorithm (LCS) to compute the length
of common subsequences between the inferred contexts and
the original context. The longer the common subsequences, the
higher the priority. If the priorities are same for two inferred
contexts, the context with smaller length wins. If two contexts
still cannot tell the difference using two metrics above, the
context with the higher probability in n-gram model wins. Top
ranked sequences will be retained.

Searching for Similar Contexts Exact Context

[A A

s | ER c

- IEAIEAIE F

0 EDDD L ‘M w G
‘JGXV ZjDSDB PVDDN[UD K

Fig. 4. Example of searching contexts

Figure 4 gives an intuitive graphical representation about
this algorithm. For simplicity, complex IR tokens are replaced
by English alphabets. Assume that the IR of the context are
A, C, F, G, and K. In Figure 4, the algorithm starts at A, keeps
inferring next tokens of A to form multiple token sequences
which is a path from the root to the leaves. Then, we calculate
the LCS between the generated sequence and the original
context (A, C, F, G, K). The common subsequences has been
marked orange in Figure 4.

D. Synthesizer

Every context found by context searcher is fed into a
synthersizer. Given a context, the synthesizer uses the
Algorithm 3 to predict all possible token sequences and
integrate those token sequences into statements. Algorithm 3
is based on width-first-search. The operator + means concate-
nation. If a statement could be generated from a sequence
successfully, the statement would be appended to final results
and we stop exploring that sequence instantly. If not, we must
keep predicting next tokens from that sequence to form new
sequences to generate statements. The threshold mazTry is
set to avoid space explosions.

The key component in Algorithm 3 is GenerateStatement
which is responsible for generating statements from a token
sequence. It is implemented in Algorithm 4. The whole
mechanism is similar to the mechanism JVM uses to execute
its byte code. We use a stack to store the generated code.
We iterate each token and push the generated code onto
stack. A token contains the information of the corresponding
AST node and the child nodes of that node. These modules
are separated by the separator #. For a token, the function
GetInfoFromRightToLeft extracts the modules which are
separated by # from right to left. The uncertain modules
are the symbol of variables and the placeholder @QPmk.
Remember that the @QPmk in a token refers to the un-
referred nearest previous token. The code of previous tokens

Algorithm 3: Synthesize(context)

Input: context
Output: statements
statements <)
max_try < 200
try <0
context_set < { EmptySequence}
while try < maz_try do
new_set «—
for one : context_set do
next_tokens < Infer NextTokens(context 4+ one)
for token : next_tokens do
new_one < one + token
result = GenerateStatement(new_one)

if result == null then
new_set = new_set U new_one
else
AppendResult(result)
end if
try++
end for
end for
context_set < new_set
end while

return statements

had been pushed onto stack one by one. Therefore, the
@Pmk refers to the top of the stack. For each encountered
@Pmk, we pop the top of stack and replace @QPmk with the
popped content. Function SelectV ariables handles symbols
of variables such as CO, C1 or C2. We take C'0 as an example
to explain the mechanism. Remember that C0O represents the
most recently declared variable for a type. But in IR, the
symbol CO contains no information about which type this
symbol represents, so for each type in the context, the most
recently declared variable should be selected. There would be
multiple variables selected at the same time. After determining
all modules, the function CombineT ogether undertakes the
tasks of integrating modules together into Java code, checking
and compiling the generated code.

Algorithm 4: GenerateStatement(material)

Input: material
Output: statement
stack < new Stack<String>()
for token : material do
executed_parts < new LinkedList<String>()
for part: GetinfoFromRightToLeft(token) do
if IsVarableSymbol(part) then
executed_parts.add(SelectV ariables(part))
else if IsPmk(part) then
executed_parts.add(stack.pop())
else
executed_parts.add(part)
end if
end for
part_stmt < CombineT ogether(executed_parts)
stack.push(part_stmt)
end for
return stack.pop()

685

Function CombineT ogether integrates modules of a token
together according to the syntactic information of that token.
Remember that the first module of a token is the syntactic
information gotten by invoking GetNodeldentifier. That
syntactic information decides how to generate the Java code.
For example, for the token *#N#N, the syntactic infor-
mation shows that this token should be an infix expression
and the operator is *, so the generated code is N x V.
For the token N#N#ml(), the generated code could be
m1(N,N) or N.m1(N). There are over 50 kinds of the
syntactic information and each kind corresponds to its own
implementation about how to integrate modules together.
Function CombineT ogether also contains a type checking
system implemented by ourselves. There are three kinds of
checking. The first kind is to check whether the variable
is consistent with its involved arithmetic operator. For ex-
ample, given an IR token >#C0#2, variable CO must be
of type int, float, double, long or short. The second kind
is to check method specifications. For example, given an
IR token subString#CO0#C1, our system checks whether
subString can be found in local context. If subString is
a method declared in local file and CO, C1 are consistent with
parameter types declared by method subString, the check
is passed and the form of the generated statement will be
subString(C0,C1). If the check is not passed, our system
takes subString as the member function of CO and the form
of the generated statement will be C0.subString(C1). Then
our system checks CO must be the variable that contains a
method named subString, Cl1 must be consistent with the
corresponding parameter type. The third kind of checking is
to check whether the variable can be casted to the specific type.
Our type checking system cannot ensure the completeness and
soundness. In order to ensure that there are no compilation
errors in final results, we furtively append the statements we
generated to the tail of the Java file being code completed,
if the whole Java file can be compiled without errors, the
statement will be appended to final results. When generating
the code for variable declaration such as “T'ype t = new ...”,
CombineT ogether specifically checks whether the declared
type is consistent with the type of the right operand of the
assignment operator. If not, CombineT ogether will replace
the declared type with the actual type of the right operand.

IV. IMPLEMENTATION

The implementation consists of 28555 lines of codes. We
implement our system as an Eclipse plug-in named PCC
which does not influence the original functionality of code
completion in Eclipse. We train 8-gram model and store the
model in AeroSpike [3] distributed database. The Antlr4 [7]
library is used to parse the special IR. To use the plugin, Users
just need to press the hot key to invoke the code completion.
Figure 5 shows the screenshots of the running Eclipse with
PCC installed. The proposals prefixed by the apple icon are
generated by PCC. The lower the position, the higher the
priority. The tool PCC [14] is public on GitHub.

[J) fojava
private JTable table;
private JTextField newFileField;
char[] cStr = { 'a', 'b', 'c', 'd', 'e', ‘£, 'g', 'h'
W, v, W, kL, 2 s
protected String getClassName(Object o) {

String classString = o.getClass().getName();
int dotIndex = classString.lastIndexOf(".");

g = toarray - convert collection to array N

3 =l try_catch - try catch block

= try_finally - try finally b
publ [while - iterate with enumeration

lock

= while - iterate with iterator

= while - while loop with condition

_intil = classString.lastindexOf("String Content");
“intil = classString.lastindexOf(File.separator);

_ java.lang.String jlaSgs = classString.substring(0,dotin

" java.lang.String jlaSgs = classString.substring(dotinde =

" return classString.substring(dotindex+1); 2
« M »

Press "Alt+/' to show Template Proposals

Fig. 5. Screenshot of code completing

V. EXPERIMENT RESULTS

Experimental Setup. We have conducted the experiments to
evaluate the accuracy of code completion at statement level.
We pick the n-gram based technique [4] as the comparison
baseline. All the experiments were performed on a laptop
with Intel i7 2.4GHZ processor and 16GB memory. We have
collected 500 open-source Java projects from GitHub, which
contain 2,465 Java files and 38,183 lines of code in total. The
data is available at [15], containing both training data (2,415
files) and testing data (52 files).

Evaluation Process. The code completion is performed at
statement level. Specifically, we have commented out each
statement in test files and to check whether PCC and n-gram
model could accurately complete the statement. An accurate
completion must match the original code exactly. For PCC,
we invoke the code completion engine described in the last
section to complete a statement. For n-gram, we iteratively
predict tokens and record all the possibilities. Then we use
the predicted tokens to form a set of sequences and check
whether any one of them can match the original code.
Results. The results are public at [15] and shown in Table I.
In Table I, #Stmt is the number of statements in the test
file. TopK means the completion matches the right code in
first K predictions. Since n-gram model is strongly dependent
on plain text, if all variable names in local context are
unseen in training data, n-gram model cannot predict the right
variable. That is why n-gram model gets 0% accuracy in
CookieCounter.java. Consider Topl accuracy, in 90% cas-
es, PCC improves the accuracy form 3% to 60%. The average
improvement is 22.26%. In the remaining case Delete Frame,
PCC gets lower accuracy than n-gram model. The reason is
that the context and the predicted statement exist in training
data. If the context and the predicted statement are both exactly
matched in training data, the n-gram model performs well.
Meanwhile PCC predicts many possible statements including
the expected statement but the priorities of those statements are
slightly wrong. This minor defect in priorities of statements
could be eliminated when considering T'op N accuracy where

686

TABLE I
ACCURACY OF CODE COMPLETION

Test File #Stmt Top! Top3 Top6 Top10
N-gram PCC N-gram PCC N-gram PCC N-gram PCC
ArrayMinValue 47 16.7% 29.8% 21.3% 48.9% 25.5% 55.3% 25.5% 57.4%
BallPanel 33 6.1% 9.1% 6.1% 15.6% 6.1% 18.2% 9.1% 21.2%
ClassInfo 35 8.6% 40% 14.3% 71.4% 14.3% 74.3% 14.3% 80%
CookieCounter 21 0% 57.1% 80.9% 0% 85.7% 0% 95.2%
DeleteFrame 37 29.7% 18.9% 35.1% 45.9% 35.1% 51.4% 35.1% 59.5%
DeleteUtil 38 31.6% 34.2% 34.2% 60.5% 34.2% 63.2% 34.2% 63.2%
DrawSquareFrame 10 10% 70% 10% 80% 10% 80% 10% 90%
Foo 52 7.7% 28.8% 11.5% 57.7% 11.5% 57.7% 13.5% 65.4%
FullScreenFrame 23 30.4% 39.1% 47.8% 52.2% 47.8% 65.2% 47.8% 65.2%
JDBCConnCommit 60 11.7% 15% 23.3% 36.7% 26.7% 38.3% 31.7% 41.7%

N is greater than 2. Consider T'op3 accuracy, in all cases,
PCC improves the accuracy form 4.4% to 80.9%. The average
improvement is 34.62%. Consider T'op6 accuracy, in all cases,
PCC improves the accuracy form 11.6% to 85.7%. The average
improvement is 37.81%. Consider Topl0 accuracy, in all
cases, PCC improves the accuracy form 10% to 95.2%. The
average improvement is 41.76%.

The huge search space, the handling of variable names
and the elimination of trivial tokens contribute to the im-
provement. For example, if we want to predict code based
on context “A(B());”, the token sequence of our IR for
this code is “B A#QPmk” which contains only 2 tokens.
However, the token sequence in n-gram model for this code
is “A (B ()) ;” which contains 7 tokens. If we use last
two tokens to predict code, in n-gram model, we could only
use two tokens: ©)” and “;” which make little sense. The two
tokens: “B” and “A#QPmk” contain more information than
two tokens:) and “;” comparatively. Our context searcher
also contributes to the accuracy improvement through finding
patterns from other code. For example, if we predict code

from “Unseen|] unsees = ...;”, every word in the context
is unseen before. The context searcher finds the similar
context “File]] files = ..;” and its following statement

“for (File file files) ...”. The synthesizer generates
the right statement: “for (Unseen unsee : unsees) ...” by
selecting and generating suitable variables. Some statements
in our experiments are generated in this way. Although our
technology has done a lot of searching, the speed of our system
is fast, the time consumed to show up the proposals are less
than 1 second in all positions waiting to be code completed.

VI. THREATS TO VALIDITY

The right statements completed in our experiment are
mainly JDK APIs, Servlet APIs, common if-judgements and
for/while-loops. For other data sets such as programs full
of user-defined functions, the result might be different. Our
solution to the problem of variable selection does not take
the semantics or the topics of variables into consideration and
this may produce false positive code which is compilable but
semantically wrong. Our approach is based on the linear model
with short-term memory. For programs full of branches and
complex code relations, our approach is hard to discover the
co-relationships of those programs.

VII. CONCLUSIONS

In this paper, we proposed PCC to optimize the token-
level based language modeling for the statement level code
completion. We introduced an intermediate representation (IR)
for source code to handle long token sequences, to suggest
a complete statement with the precise synthesizer. We also
provide a simple solution to problems of variable selection.
In the future, we will adopt the graph based model or deep
learning to further improve the accuracy of variable selection.
Program slicing techniques will also be adopted to analyze
long contexts.

REFERENCES

[1] M. Allamanis and C. A. Sutton. Mining source code repositories at
massive scale using language modeling. In MSR ’13, San Francisco,
CA, USA, May 18-19, 2013, pages 207-216, 2013.

[2] H. K. Dam, T. Tran, and T. Pham. A deep language model for software
code. 2016.

[3] J. Dillon. Aerospike documentation. http://www.aerospike.com/docs/,
2016.

[4] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu. On
the naturalness of software. In ICSE 2012, June 2-9, 2012, Zurich,
Switzerland, pages 837-847, 2012.

[5] A.T. Nguyen and T. N. Nguyen. Graph-based statistical language model
for code. In ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
pages 858-868, 2015.

[6] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A
statistical semantic language model for source code. In ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013, pages 532—
542, 2013.

[7]1 T. Parr. Antlr4. http://www.antlr.org/, 2017.

[8] V. Raychev, P. Bielik, and M. T. Vechev. Probabilistic model for
code with decision trees. In OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, pages
731-747, 2016.

[9] V. Raychev, P. Bielik, M. T. Vechev, and A. Krause. Learning programs
from noisy data. In POPL 2016, St. Petersburg, FL, USA, January 20
- 22, 2016, pages 761-774, 2016.

[10] V. Raychev, M. T. Vechev, and E. Yahav. Code completion with
statistical language models. In PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014, page 44, 2014.

[11] Z. Tu, Z. Su, and P. Devanbu. On the localness of software. In The
ACM Sigsoft International Symposium, pages 269-280, 2014.

[12] venukb. Eclipse jdt. http://www.eclipse.org/jdt/, 2006.

[13] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk.
Toward deep learning software repositories. In leee/acm Working
Conference on Mining Software Repositories, pages 334-345, 2015.

[14] Y. Yang. Pcc. https://github.com/yangyixiaot/CodeCompletionPlugin.

[15] Y. Yang. Experiment data. https://github.com/yangyixiaof/gitcrawler/
tree/master/programprocessor/experiment-dataset, 2017.

687

