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ABSTRACT
Crypto token is a digital asset used in blockchain-based decentral-
ized applications. Today, tokens have attracted many investors and
collected a large amount of money. Unfortunately, the booming
token market has simultaneously spawned numerous fraudulent
schemes. Rug pull is one of the well-known scams, where fraudu-
lent developers lure investors into seemingly profitable projects and
then run off with their money, leaving the investors with worthless
assets. To prevent future losses, researchers in both industry and
academia have attempted to expose rug pull risks in advance. How-
ever, rug pull can manifest in various scenarios during the transfer
process, posing significant challenges for effective detection.

In this paper, we first conduct an in-depth study of 201 real-world
rug pull incidents for their root causes, and summarize 4 common
types of rug pull risks. Then, we establish a component-configurable
transfer model to locate and analyze the transfer process in token
contracts. Based on the model, we generate effective oracles for the
4 rug pull risks, which can overcome the interference of diverse
implementation structures. We propose Tokeer, a token verification
tool that implements the transfer model and oracles with datalog
technique to expose rug pull risks hidden in token contracts. We
apply Tokeer on real-world tokens and compare it with state-of-
the-art tools: the commercial tool GoPlus and the academic tool
Pied-Piper. Tokeer achieves an average of 98.0% recall and 98.9%
precision, and successfully detects 27.2% more real rug pull risks in
wild production, significantly outperforming the state-of-the-art
tools in terms of detection accuracy and effectiveness.

1 INTRODUCTION
Crypto token is a type of digital currency that represents an asset or
offers holders certain platform-specific features. Tokens are built on
top of blockchain, often utilizing smart contracts to fulfill a variety
of functions. As of today, the token world is reported to be worth
over $3 trillion with more than 300 million investors globally [37].
The market’s continual expansion is attracting more people who
see the potential for lucrative returns on their investments.

However, due to the immature and unregulated nature of the
token market, numerous fraudulent schemes have emerged. Among
these, rug pull has become a prevalent scamming approach and has
caused significant damage to the token world. Existing study of
Xia et al. [66] has proven that roughly 50% of the tokens listed on
Uniswap are scam tokens, most of which have performed rug pull
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actions. The analysis of Cernera et al. [30] also suggest that 81.2%
of 1-day tokens (comprising 60% of all tokens deployed) listed on
PancakeSwap contain the rug pull scam pattern.

In rug pull schemes, fraudulent developers entice investors with
seemingly lucrative projects, but then abruptly siphon off the in-
vested funds, abandon the project and run away, leaving investors
with worthless assets. Awell-known rug pull incident is BNB42 [62].
The project owners deployed malicious external contracts that pre-
vented anyone but themselves from withdrawing funds. Therefore,
they block the investors from selling their assets, leaving them with
valueless tokens. This causes approximately 6,000 investors to lose
a total of $2.78 million.

To better understand the principles of scammers’ rug pull ap-
proaches, we studied 201 rug pull events occurred from Jan. 1st,
2022 to May. 31st. 2023, which have resulted in real-world losses of
more than $425 million. Through our analysis, we summarize the
most common root causes embedded in the token contracts that dis-
rupt the normal transfer execution and lead to rug pulls: BlackList:
The token records the users’ transfer permissions. Users can be
restricted from transferring their assets, e.g., reselling their tokens.
Therefore, the users’ tokens become valueless. ModifyBalance:
Administrators can modify the balance of certain addresses. They
can manipulate the users’ assets without approval, or drain out the
token liquidity, resulting in significant fluctuations in the token
value. TimeLimit: By imposing specific time constraints on the
transfer, developers prevent users from transferring their assets,
thereby rendering themworthless.AlienDepend: The transfer pro-
cess invokes an external contract that isn’t publicly available and
whose address can be assigned by scammers. Therefore, scammers
can enable malicious functionalities out of sight.

Exposing rug pull risks is critical to safeguarding investors’ as-
sets, and both academia and industry have gained some related
achievements. Xia et al. [65] and Cernera et al. [30] identifies rug
pull tokens through machine learning and pattern matching based
on the previous transactions. Their approaches are limited to identi-
fying rug pull behaviors that have already occurred. There are also
existing tools that can expose scamming risks implanted in the to-
ken contract. Pied-Piper [51], for instance, applies datalog analysis
based on the contract’s EVM bytecode to reveal backdoor threats,
some of which are equivalent to rug pull risks. However, its plain
detection strategy cannot accurately identify the transfer execution
flow, and it lacks effective oracles. As a result, it is unable to handle
diverse and complex real-world scenarios. Besides, the industry
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also offers commercial solutions for auditing smart contracts to
identify potential scamming risks. Tools like GoPlus Security [57],
TokenSniffer [48], RugPullDetector [1] audit the source code of
token contracts to check token security. Some of them can cover
the check of several rug pull risks. However, heavily depending
on the contract source code and known rug pull patterns, they are
susceptible to source-code level obfuscation and cannot cover com-
plex code structures. In conclusion, existing tools are not effective
enough in accommodating various rug pull scenarios, resulting in
lots of false negatives and false positives.

To effectively detect rug pull risks in token contracts, there are
two main challenges. First, themodeling of a generalized token
transfer process is challenging. Transfer is the core process of
token transfer, where rug pulls always occur. Therefore, locating
and analyzing the transfer in token contracts is essential for subse-
quent detection. However, the structure of transfer implementation
varies in practice due to the existence of multiple sub-processes
with uncertain sequential relationships. Second, it is challenging
to define effective oracles that can expose rug pull risks that
are concealed within diverse implementations. Scammers
nowadays frequently employ unconventional code implementa-
tions or obfuscation techniques to conceal fraudulent code snippets,
which poses great challenges in devising an oracle that can encom-
pass all possible code structures. For example, to restrict an address
from transferring, fraudulent developers may block it at any point
before or during the transfer process. This can include restricting
the address from entering the transfer core process or terminating
the execution before the balance update.

To address the challenges, we propose a component-configurable
transfer model that is applicable across various scenarios. It iden-
tifies the code components that implement transfer functionality
and establishes their execution flows. Based on the transfer model,
we propose an oracle generation strategy, which generates oracles
that accommodate various code structures. We apply our model
and oracle generation strategy to the 4 rug pull risks and propose
Tokeer, which automatically exposes rug pull risks in crypto tokens.
Specifically, Tokeer can be applied to all the solidity-based [39]
contracts by performing datalog analysis on the intermediate rep-
resentation (IR) generated from the contract’s Ethereum Virtual
Machine (EVM) bytecode.

For evaluation, we apply Tokeer on real-world tokens from Bi-
nance Smart Chain (BSC) [32] (the most active chain [30] with over
3 million transactions and 700 newly verified contracts per day),
and tokens that have caused rug pull events. We evaluate Tokeer’s
detection accuracy and detection effectiveness, and compare it with
the commercial tool GoPlus and the academic tool Pied-Piper. To-
keer achieves a 98.0% recall, 44.9% better than GoPlus and 91.6%
better than Pied-Piper, and a 98.9% precision, 0.6% better than Go-
Plus and 52.3% better than Pied-Piper. Furthermore, Tokeer can
expose all the rug pull risks in tokens that have led to real-world
rug pull events, and can identify 27.2% more rug pull risks than
GoPlus and Pied-Piper in real-world deployed tokens.

In summary, this paper makes the following contributions:

• We conduct in-depth studies on 201 rug pull events and
summarize 4 common types of rug pull risks.

• We propose a component-configurable transfer model and
oracle generation strategy for rug pull detection. Based on
them, we implement Tokeer, which utilizes datalog analysis
to expose rug pull risks in tokens.

• We evaluate Tokeer on real-world tokens and compare it
with state-of-the-art tools. Tokeer achieves better accuracy
and finds more real rug pull risks. We have open-sourced
Tokeer1 and our datasets.

2 STUDY ON REAL-WORLD RUG PULLS
Previous studies on rug pull have predominantly focused on the
phenomena and consequences of rug pulls. There is a lack of sys-
tematic study of the root causes behind real-world rug pull events,
specifically the scamming techniques implanted in token contracts.
Therefore, we conduct an in-depth study on real-world rug pull
events that have already caused huge losses. The goal is to delve
into the fundamental rug pull causes in token contracts to guide us
in exposing rug pull potential before it leads to actual loss.

2.1 Study Methodology
In this section, we present our study methodology including the
data collection and the analysis approach.

Data Collection. Our study covers 201 real-world rug pull inci-
dents that occurred from Jan. 1st, 2022 to May. 31st, 2023, which
have resulted in a total loss of over $425 million. We obtain the in-
cidents from the analysis reports and technical posts of blockchain
security companies including PeckShield [54], Beosin [6], Cer-
tik [31], Blocksec [9], Chainalysis [33] and Solidus Labs [58]. These
blockchain security teams monitor the token market in real-time
to provide timely alerts on the plunge of token value, which is a
typical phenomenon of a rug pull. From their alerts, we obtain the
basic information (e.g. contract address) of the relevant token and
perform the empirical study.

Analysis Approach For each rug pull incident, we inspect their
behaviors and contract source codes to study their rug pull features.
Additionally, we search for existing information from blockchain
security teams to help summarize the causes of rug pull. When
studying a rug pull incident, we first identify whether it is caused
by malicious functionalities embedded in its contract’s transfer
implementations. We then apply a more detailed inspection of its
technical root causes. For example, how the developers block the
users from selling (e.g. the branching conditions that lead to the
termination of the transfer process).

2.2 Common Rug Pull Risks
Through our in-depth study, we analyze the detailed scamming ap-
proaches that lead to rug pull events. We focus on the 201 real-world
rug pull events (A rug pull event can be triggered by a combination
of multiple risks) that can be detected through the token contract,
and summarize 4 most common types of rug pull risks:

BlackList. Some tokens allow the administrators to restrict the
transfer permissions of certain addresses. They usually establish a
map that can be set only by the administrators. During the transfer,
the mapped value is checked and controls the branching condition.

1Tokeer is available at: https://github.com/TokenSecure/Tokeer

https://github.com/TokenSecure/Tokeer
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As a result, some addresses cannot transfer the assets. In our sur-
vey, 118 (58.7%) rug pull tokens contain this risk. One example is
the Sirius_Finance [42], making away with more than $44,943 in
customer funds. At the time of token claim, the developers blocked
all addresses, not allowing them to transfer tokens. Furthermore,
developers can silently sell out tokens and drain market liquidity.
Therefore, the assets of users became valueless.

ModifyBalance. Administrators can arbitrarily modify the bal-
ance of a certain address without any legitimate reason or back-
ing. Such modifications can have significant consequences. For
example, they can burn a large number of tokens to drain out the
token liquidity. This often triggers a swift and severe collapse in
the token’s price. Besides, some can even transfer away the in-
vestors’ tokens to their addresses without authorization. 85 (42.3%)
incidents are caused by this risk. JST [2] is an example that the
scammer withdraws the user assets and transfers to the scammer’s
address, causing a loss of $1,150,000. Besides, tokens like NOVA [7]
contain a mint function that can only be called by the owner. The
owner minted a huge amount of NOVA and sold them immediately,
stealing $105,811. This allows the owner to make illegal profits and
causes the token value to dump.

TimeLimit. In some tokens, administrators can block the trans-
fer by checking the timestamp of the current block. Before trans-
ferring the assets, the timestamp is obtained and is compared with
the limit value after a series of calculations. The comparison re-
sult controls the branching condition and subsequently affects the
transfer execution. 16 (8.0%) incidents are related to this risk. Star-
Financial [56] is a typical example of rug pull caused by TimeLimit.
The developer secretly changed the code to set timing limits on the
transfer. The token blocks all transfers that occur after a certain
time limit. This blocks any further transfers, resulting in a total loss
of $40,264. Since the tokens cannot be sold, they become valueless.

AlienDepend. Some tokens implement the transfer process in
an external contract or call the external functions during the trans-
fer process. These alien contracts are often close-sourced, and their
addresses can be set by the token creators through the construc-
tor or be modified by administrators. The external functions can
conduct various malicious operations, including ‘BlackList’, ‘Modi-
fyBalance’, and ‘TimeLimit’. 50 (24.9%) investigated tokens contain
this type of risk. A typical case is a token CirculateBUSD [10]. It
calls an unverified SwapHelper contract, in which the specified
token (and amount) is transferred to a hardcoded address, caus-
ing a $2 million loss. Besides, Sirius_Finance [42] with BlackList
mentioned above applies the proxy mechanism to hide the Black-
List in an external, unverified contract. Therefore, the owner can
constantly create rug pulls out of sight.

3 MOTIVATING EXAMPLES
Today, the serious dangers of rug pull have garnered increasing
attention. Developers in both industry and academia have made
attempts to identify rug pulls in tokens. Unfortunately, despite
efforts, no feasible solution has been found to fully address the
problem. Existing works face substantial challenges in identifying
hidden rug pulls across various code structures. In this section, we
highlight this problem using real-world tokens with rug pull risks.

3.1 Real-world Hidden Rug Pull Risks
Scammers nowadays always apply various unconventional code
implementations to hide the scamming logic and circumvent the
checks of existing works. In Fig. 1, we show the transfer execution
flow of two real-world rug pull tokens. Parallelogram components
represent the checking of branching conditions. Rectangular com-
ponents represent function calls. Dotted components stand for
optional processes controlled by branching conditions. Sometimes,
the scammers check the branching conditions before entering the
internal transfer function. For example, in token Dialectic [27] in
Fig. 1(a), the check of mapping _isExcluded and _anitswaplist
happen before entering the inner transfer process _transfer. Be-
sides, scammers hide the branching conditions in recursive function
calls. In TMK [60] in Fig. 1(b), the check of sender is wrapped in
function getCheckRoot.

(a) Dialectic

transfer _isExcluded[sender]

true

false

Sender Balance
Reduction

Receiver Balance
Addition

anitswaplist[sender]

_transfer

true

true

_transfer !(val == sender) Sender Balance
Reduction

Receiver Balance
Addition

false

true

(b) ModifyBalance: ETH918

tt(sender)

mint / burn unlock == 1 Sender Balance
Reduction

Receiver Balance
Addition

true

(d) AlienDepend: Cake-LP

_transfer block.timestamp-
openTime < limit

true

false Sender Balance
Reduction

Receiver Balance
Addition

data.address2uint
Mapping(sender) == 1

false

true

(b) DDS

data.setAddress2Uint
Data(sender, 1);

_isExcluded[receiver]

false false

val = excuse(MarketFee)

_safeTransfer_1

false

token.call(abi.encode(
‘transfer’, to, value));

_safeTransfer_2 token.call(abi.encode(
‘transfer’, to, value));

(a) Dialectic

transfer _isExcluded[sender]

true

false

Sender Balance
Reduction

Receiver Balance
Addition

anitswaplist[sender]

_transfer

true

true

_isExcluded[receiver]

false false

(b) TMK

transfer Sender Balance
Reduction

Receiver Balance
Addition

_isRoot[sender] || _abnormal

_transfer

getCheckRoot

_balance[…]−= …

_balance[…]+= …

_isRoot[sender]
|| _abnormal

false true

(c) TMK

getCheckRoot

true

false

Figure 1: The transfer execution flows of real-world BlackList
tokens. They cannot be detected by existing works.

3.2 Challenges to Expose Hidden Risks
Existing works like Pied-Piper and GoPlus cannot detect the rug
pull risks in Fig. 1. Pied-Piper applies datalog analysis to identify
backdoor threats. However, it cannot detect the rug pull risks in
Fig. 1. It lacks an effective analysis of the transfer process, and
cannot identify which parts of the code can affect the execution
of the transfer. For example, in Fig. 1(a), the checking of Black-
List mapping happens before entering the core transfer process
_transfer and thus is falsely ignored. For Fig. 1(b), the checking
of the BlackList is wrapped in other functions, which are not recog-
nized as a part of the transfer. GoPlus performs contract auditing
at source code level, matching known patterns of the rug pull risks.
It can be easily confused by source code level obfuscation such as
the unconventional mapping name in Fig. 1. Besides, lacking the
analysis of transfer execution flow, it cannot identify the complex
function invocation structures, and cannot determine the impact of
certain operations on the execution flow.

In comparison, Tokeer proposes a component-configurable trans-
fer model that facilitates the analysis of the transfer process. Firstly,
the transfer model identifies commonalities across different imple-
mentations to establish a transfer framework. As depicted in Fig 1,
despite variations in code structures, all implementations contain
an interface that takes in sender, receiver, and transfer amount. Ad-
ditionally, they all result in asset transfers, represented as Sender
Balance Reduction and Receiver Balance Addition. Secondly,
Tokeer identifies various components within the transfer frame-
work, such as function calls and branching conditions. By applying
control flow analysis, Tokeer identifies their specific impact on the
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transfer. Tokeer then establishes an oracle generation strategy. It fo-
cuses on the functionality of each component and how it affects the
transfer execution. For example, in Fig 1(b), Tokeer first identifies
the function getCheckRoot as a part of the transfer process that
can impact the execution. Then Tokeer identifies that the branching
condition within it checks the sender’s address and may inhibit the
transfer, leading to BlackList. In conclusion, Tokeer’s transfer model
and oracle generation strategy overcome the existing challenges. It
is effective in various rug pull scenarios, exhibiting high resilience
to code obfuscation and unconventional code implementations.

4 TOKEER DESIGN
In this section, we introduce the overall design of Tokeer. As shown
in Fig. 2, we first present the details of the construction of the
component-configurable transfer model. Then we show the oracle
generation strategy based on the model. Finally, we introduce the
verification process of targeted tokens using generated oracles.

4.1 Transfer Model Construction
The transfer model is constructed in a bottom-up fashion. Modeling
the transfer process allows for accurately locating and identifying
the various components of transfer, which serves as the foundation
for subsequent oracle definition.

Transfer Model Construction

Tokeer Overview

Verification

v3 = ADD v1, v2
v5 = SHA3 v4, v3
SSTORE v5, vpos
vnext = CONST 
JUMP vnext

Test Reports

608060405260043
610610213576000
3560e01c8063893
d298df3…

decompile

verify

Runtime 
bytecode

IR Expression

Oracle!: detected
Oracle#: (null)

…

Plugin

+

Transfer Model

construct

Oracle Generation

Rug Pull Risks

Examples

…

Transfer Model Analysis

Reached Sub-process

Missed Sub-process

Branching Plugins Oracles

𝑅𝑆𝑃!,
𝑈𝑆𝑃!,
𝐸𝑃!

Oracle!

Sub-process

Figure 2: An overview of Tokeer. (1) Tokeer constructs the
component-configurable transfer model (2) Based on the
transfer model, Tokeer generates oracles for rug pull risks.
(3) Tokeer conducts verification on the IR expression decom-
piled from the EVM bytecodes of the token contracts.

4.1.1 Notations. We begin by defining essential notations, which
are the bottom-level elements that represent simple statements,
operations, or relations. They include:
• Comp(𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2): Comparing the value of 𝑝𝑎𝑟𝑎𝑚1 and
𝑝𝑎𝑟𝑎𝑚2. Comp includes EQ, judging if two parameters are equal;
GE, judging if the first parameter is greater than or equal to the
second one; LE, judging if the first parameter is less than or equal
to the second one. All value relations can be covered by these
three operators.

Comp := 𝐸𝑄 | 𝐿𝐸 | 𝐺𝐸

• Calc(𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2): Taking 𝑝𝑎𝑟𝑎𝑚1 and 𝑝𝑎𝑟𝑎𝑚2 as inputs for
mathematical calculations. Calc includes Add, Sub, Mul, Div.

Calc := 𝐴𝑑𝑑 | 𝑆𝑢𝑏 | 𝑀𝑢𝑙 | 𝐷𝑖𝑣

• Type(𝑣𝑎𝑟 ): Variable 𝑣𝑎𝑟 ’s type is: Addr, a right-most 160 bits
value that represents the address of a smart contract, a wallet, or
a transaction hash; Const, a variable with constant value; Global,
a global variable.

Type := 𝐴𝑑𝑑𝑟 | 𝐶𝑜𝑛𝑠𝑡 | 𝐺𝑙𝑜𝑏𝑎𝑙

• Input(var, func): Variable 𝑣𝑎𝑟 is a parameter of the function 𝑓 𝑢𝑛𝑐 .
• DataFlow(𝑣𝑎𝑟1, 𝑣𝑎𝑟2): Variable 𝑣𝑎𝑟2 is the value obtained from
𝑣𝑎𝑟1 after a series of calculations or data flows.

• BlockEdge(𝑏𝑙𝑜𝑐𝑘1, 𝑏𝑙𝑜𝑐𝑘2): There exists an execution path that
jumps from the end of 𝑏𝑙𝑜𝑐𝑘1 to the beginning of 𝑏𝑙𝑜𝑐𝑘2.

• Included(𝐴, 𝐵): 𝐴 is a smaller element than 𝐵 and is included by
𝐵. This relationship can hold between a statement and a block, a
block and a function, a block and a component (a sub-process or
a plugin), etc.

4.1.2 Sub-processes. While the implementations of transfer pro-
cesses in various tokens may differ in their internal details, they
share a similar framework and functionality. For example, tokens
that comply with the ERC-20 standard need to implement the
transfer interfaces and events, which define the parameters, re-
turn values, and core functionalities. Therefore, we extract 4 key
sub-processes (abbreviated as 𝑆𝑃 ) that are common to all transfer
implementations of tested tokens. Details are shown in Fig. 3.

• 𝑆𝑃0 : CallPublicTransfer(𝑓 ): Function 𝑓 is the public entry of
the transfer process. Tokens that conform to ERC-20 token stan-
dard are all required to provide public transfer interfaces for
users to trade their tokens. Therefore, calling the public transfer
method is the first necessary step for a transfer. The method
contains three parameters: address variables 𝑠𝑒𝑛𝑑𝑒𝑟 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
that represent the sender and receiver account addresses, and an
unsigned integer 𝑎𝑚𝑜𝑢𝑛𝑡 denoting the transfer amount.

• 𝑆𝑃1 : EnterInternalTransfer(𝑓1, 𝑓2): 𝑓1 is the public transfer inter-
face, and 𝑓2 is the inner transfer method that implements the
core functionalities. For a transfer process, after calling the public
transfer interface, it will jump to the internal transfer method
for subsequent execution.

• 𝑆𝑃2 : SenderBalanceReduction(𝑓 ): Function f contains an opera-
tion that reduces the sender’s balance. The sender address and
amount can be identified by Input(sender, f) and Input(amount, f).
Global(balance) represents the global variable that records the
balance of users’ wallet addresses. During the transfer process, a
certain amount of tokens in the sender’s account will be trans-
ferred to the receiver’s account. Therefore, the transfer pro-
cess must have a sub-process that reduces the sender’s balance.
Sub(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑠𝑒𝑛𝑑𝑒𝑟 ], 𝑣𝑎𝑙) denotes that the balance of 𝑠𝑒𝑛𝑑𝑒𝑟 is
reduced by 𝑣𝑎𝑙 , and DataFlow(𝑎𝑚𝑜𝑢𝑛𝑡, 𝑣𝑎𝑙) denotes that the re-
duced value is related to the input amount.

• 𝑆𝑃3 : ReceiverBalanceAddition(𝑓 ): Function 𝑓 contains an oper-
ation that increases the receiver’s balance. Similar to the pre-
vious, Input(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑓 ) represents the input receiver address,
and Global(balance[receiver]) represents the global variable that
records the balance of 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ’s wallet address. Correspondingly,
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𝑆𝑃! ≔ 𝐼𝑛𝑝𝑢𝑡 𝑠𝑒𝑛𝑑𝑒𝑟, 𝑓 ∧ 𝐴𝑑𝑑𝑟 𝑠𝑒𝑛𝑑𝑒𝑟 ∧ 𝐼𝑛𝑝𝑢𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑓 ∧ 𝐴𝑑𝑑𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ∧ 𝐼𝑛𝑝𝑢𝑡 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑓 ∧ 𝑈𝑖𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡
𝑆𝑃" ≔ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏" , 𝑓" ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏-, 𝑓- ∧ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒(𝑏", 𝑏-)
𝑆𝑃- ≔ 𝐼𝑛𝑝𝑢𝑡 𝑠𝑒𝑛𝑑𝑒𝑟, 𝑓 ∧ 𝐴𝑑𝑑𝑟 𝑠𝑒𝑛𝑑𝑒𝑟 ∧ 𝐼𝑛𝑝𝑢𝑡 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑓 ∧ 𝑈𝑖𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 ∧ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ∧ 𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑣𝑎𝑙 ∧ 𝑆𝑢𝑏(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠𝑒𝑛𝑑𝑒𝑟 , 𝑣𝑎𝑙)
𝑆𝑃/ ≔ 𝐼𝑛𝑝𝑢𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑓 ∧ 𝐴𝑑𝑑𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ∧ 𝐼𝑛𝑝𝑢𝑡 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑓 ∧ 𝑈𝑖𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 ∧ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ∧ 𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑣𝑎𝑙 ∧ 𝐴𝑑𝑑(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , 𝑣𝑎𝑙)

𝑃! ≔ 𝑖𝑠𝐴𝑑𝑑𝑟𝑉𝑎𝑙𝑖𝑑 𝑎𝑑𝑑𝑟 | 𝑖𝑠𝐴𝑑𝑑𝑟𝑃𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 𝑎𝑑𝑑𝑟
𝑖𝑠𝐴𝑑𝑑𝑟𝑉𝑎𝑙𝑖𝑑 𝑎𝑑𝑑𝑟 ∶= 𝐸𝑄 𝑎𝑑𝑑𝑟, 𝑣𝑎𝑙 ∧ (𝐶𝑜𝑛𝑠𝑡 𝑣𝑎𝑙 ∨ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑣𝑎𝑙 )
𝑖𝑠𝐴𝑑𝑑𝑟𝑃𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 𝑎𝑑𝑑𝑟 ∶= 𝐸𝑄 𝑚𝑎𝑝[𝑎𝑑𝑑𝑟], 𝑣𝑎𝑙 ∧ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑝 ∧ (𝐶𝑜𝑛𝑠𝑡 𝑣𝑎𝑙 ∨ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑣𝑎𝑙 )

𝑃" ≔ 𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤 𝑡𝑖𝑚𝑒, 𝑖𝑛𝑡𝑒𝑟 ∧ 𝐿𝐸 𝑖𝑛𝑡𝑒𝑟, 𝑣𝑎𝑙 ∧ (𝐶𝑜𝑛𝑠𝑡 𝑣𝑎𝑙 ∨ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑣𝑎𝑙 )

𝑃- ≔ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏" , 𝑓" ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏-, 𝑓- ∧ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒(𝑏", 𝑏-)

𝑃/ ≔ 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑎𝑙𝑙(𝑠𝑡𝑚𝑡)

𝑃0 ≔ 𝑂𝑛𝑙𝑦𝑂𝑤𝑛𝑒𝑟 𝑎𝑑𝑑𝑟 | 𝑖𝑠𝐴𝑑𝑑𝑟𝑃𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑎𝑑𝑑𝑟)

Sub-processes:

Plugins:

Figure 3: Bottom-up definitions of 4 sub-processes and 5 plugins. They are defined based on the notations.

the transfer increases the buyer’s balance, which is represented
by Add(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ], 𝑣𝑎𝑙).

4.1.3 Plugins. we define a plugin as an operation with a specific
functionality. Some operationsmay occurmultiple times at different
locations during the transfer. This results in a wide variety of code
implementations. To adapt to diverse transfer implementations, we
introduce 5 types of plugins that enrich the transfer model. Detailed
instructions are shown in Fig. 3.
• 𝑃0 : AddrCheck(𝑎𝑑𝑑𝑟 ): The check of the validity and permis-
sions of a certain address addr. Let isAddrValid(𝑎𝑑𝑑𝑟 ) be the
validity check of 𝑎𝑑𝑑𝑟 . It verifies that 𝑎𝑑𝑑𝑟 is not an illegitimate
address such as the zero address 0𝑥0, or a defined global variable.
Let isAddrPermitted(𝑎𝑑𝑑𝑟 ) be the execution permission check of
𝑎𝑑𝑑𝑟 . A rug pull token usually establishes a data structure to
mark the privilege of addresses. In this condition, it verifies the
mapped value of 𝑎𝑑𝑑𝑟 , and determine the branching conditions.
isAddrValid and isAddrPermitted are collectively referred to as
AddrCheck.

• 𝑃1 : TimingCheck(𝑡𝑖𝑚𝑒): The check of a timestamp. The checking
first obtains the timestamp of the current block and then performs
some calculations. The result is compared with the limit, which
can be a constant or a variable.

• 𝑃2 : InternalCall(𝑓1, 𝑓2) Function 𝑓1 calls function 𝑓2, which is
another function within the same token contract. To achieve
InternalCall(𝑓1, 𝑓2), there should be 𝑏1 in 𝑓1 and 𝑏2 in 𝑓2. Besides,
𝑏1 and 𝑏2 satisfy the condition BlockEdge(𝑏1, 𝑏2).

• 𝑃3 : ExternalCall(𝑠𝑡𝑚𝑡): Statement 𝑠𝑡𝑚𝑡 calls a function in an
external contract, which is usually not open source, and obtains
the return value for subsequent execution.

• 𝑃4 : BreakIn(𝑎𝑑𝑑𝑟 ): Address with excessive privileges can di-
rectly access the transfer process to modify the balance of some
users. The checking of privileges can be conducted using relation
OnlyOwner(𝑎𝑑𝑑𝑟 ) or isAddrPermitted(𝑎𝑑𝑑𝑟 ).

4.1.4 Model Construction. The sub-processes identify the fixed
components of the transfer, and the plugins extend the diversity of
detailed implementations. Their combination forms the component-
configurable transfer model. The 4 sub-processes exist in a certain
order, while the plugins can be arbitrarily plugged into any location
in the transfer process. The detailed definition used in this session
is shown in Fig. 4.

The construction of the transfer model involves two steps. First,
we use sub-processes to establish an underlying framework. We

identify the functions where the sub-processes are located, and
then establish the transfer framework. The public transfer entry is
identified as CallPublicTransfer(𝑓𝑝𝑢𝑏 ). The inner transfer function
is identified as EnterInternalTransfer(𝑓𝑝𝑢𝑏 , 𝑓𝑖𝑛), which specifies the
invocation hierarchy between 𝑓𝑝𝑢𝑏 and 𝑓𝑖𝑛 . The functions that con-
duct balance modification are recognized as SenderBalanceReduc-
tion(𝑓𝑟𝑒𝑑 ) and ReceiverBalanceAddition(𝑓𝑎𝑑𝑑 ). In addition, we define
FunctionReach(𝑓1, 𝑓2) to indicate that 𝑓1 can reach 𝑓2 through a series
of function calls. Therefore, the underlying transfer framework can
be presented as Transfer(𝑓𝑝𝑢𝑏 , 𝑓𝑟𝑒𝑑 , 𝑓𝑎𝑑𝑑 ), which uses 𝑓𝑝𝑢𝑏 to locate
the entry point, and use 𝑓𝑟𝑒𝑑 and 𝑓𝑎𝑑𝑑 to ensure the transfer func-
tionality. Besides, all functions that can be reached and executed
during the transfer are identified as FunctionReach(𝑓𝑝𝑢𝑏 , 𝑓 ). Second,
we plug the plugins into the transfer framework to cover various
code structures. Let F be the set of functions that may be executed
during transfer. As presented above, all f ∈ F can be identified by
FunctionReach(𝑓𝑝𝑢𝑏 , 𝑓 ). Let P be the set of plugins recognizedwithin
the transfer process. For every 𝑝 ∈ P, the relation between it and
its located function 𝑓𝑖 is denoted by Included(p, f𝑖 ). Up until now,
the complete transfer model is constructed as TransferModel(F, P).
The types of plugins can be enriched to accommodate new rug pull
risks in the future.

4.2 Oracle Generation
We generate the oracle for each risk from a number of correspond-
ing samples. For each sample, we first identify the components of
its transfer process using the transfer model. Then, we use a triplet
(𝑅𝑆𝑃,𝑀𝑆𝑃, 𝐵𝑃) to record the analysis result, where 𝑅𝑆𝑃 (Reached
Sub-Processes) denotes sub-processes that can definitely be exe-
cuted; 𝑀𝑆𝑃 (Missed Sub-Processes) indicates the sub-processes
that may not be executed due to the branching condition; 𝐵𝑃
(Branching Plugin) denotes the plugin that determines the branch-
ing condition. The triplet of the j-th sample of i-th risk would be
(𝑅𝑆𝑃𝑖 𝑗 , 𝑀𝑆𝑃𝑖 𝑗 , 𝐵𝑃𝑖 ). For the example in Fig. 1(a), the branching
conditions determined by AddrCheck happens before EnterInternal-
Transfer. Therefore, the 𝑅𝑆𝑃 is CallPublicTransfer,𝑀𝑆𝑃 is EnterIn-
ternalTransfer, SenderBalanceReduction and ReceiverBalanceAddi-
tion, and 𝐵𝑃 is AddrCheck.

Then, we calculate the intersaction of 𝑅𝑆𝑃𝑖 𝑗 to form 𝑅𝑆𝑃𝑖 , which
denotes that in all senarios with i-th risk, 𝑅𝑆𝑃𝑖 can be definitely
executed. Similarly, we calculate the intersaction of 𝑀𝑆𝑃𝑖 𝑗 to form
𝑀𝑆𝑃𝑖 , which represents that once the i-th risk works,𝑀𝑆𝑃𝑖 must
not be executed, regardless of the specific code implementations.
Therefore, the oracle of the i-th risk should be (𝑅𝑆𝑃𝑖 , 𝑀𝑆𝑃𝑖 , 𝐵𝑃𝑖 ).
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𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓'() , 𝑓*)) ≔ 𝐶𝑎𝑙𝑙𝑃𝑢𝑏𝑙𝑖𝑐𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& ∧ 𝐸𝑛𝑡𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓+, ∧
𝑆𝑒𝑛𝑑𝑒𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓'() ∧ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑓*)) ∧
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓+, , 𝑓'() ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓+, , 𝑓*))

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ ≔ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓'() , 𝑓*)) ∧ ( (𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑝, 𝑓+ ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓$%& , 𝑓+ ))

𝑂𝑟𝑎𝑐𝑙𝑒+ ≔ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ ∧ 𝐸𝑃+ ⊆ ℙ ∧ 𝑒𝑝 ∈ 𝐸𝑃+ ∧

𝑆𝑝𝑙𝑖𝑡 𝑏!, 𝑏", 𝑏- ∧ 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏. ∧ ¬𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ(𝑏-, 𝑏.))

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓", 𝑓- . ≔ 𝑓" = 𝑓- 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑎𝑙𝑙 𝑓", 𝑓- 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓", 𝑓/ ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓/, 𝑓- 𝑆𝑝𝑙𝑖𝑡 𝑏!, 𝑏", 𝑏- ≔ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏!, 𝑏" ∧ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏!, 𝑏-
𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏- ≔ 𝐸𝑄 𝑏", 𝑏- 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏", 𝑏- 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏/ ∧

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏/, 𝑏-

Transfer Model: Oracle:

(𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏!, 𝑒𝑝 ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏. , 𝑚𝑠𝑝 ∧ 𝑚𝑠𝑝 ∈ 𝑀𝑆𝑃+ ∧

(

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓'() , 𝑓*)) ≔ 𝐶𝑎𝑙𝑙𝑃𝑢𝑏𝑙𝑖𝑐𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& ∧ 𝐸𝑛𝑡𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓+, ∧ 𝑆𝑒𝑛𝑑𝑒𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓'() ∧ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑓*)) ∧
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓+, , 𝑓'() ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓+, , 𝑓*))

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓", 𝑓- . ≔ 𝑓" = 𝑓- 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑎𝑙𝑙 𝑓", 𝑓- 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓", 𝑓/ ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓/, 𝑓-
Transfer Model:

𝑆𝑝𝑙𝑖𝑡 𝑏!, 𝑏", 𝑏- ≔ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏!, 𝑏" ∧ 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏!, 𝑏-

Oracle:

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏- ≔ 𝐸𝑄 𝑏", 𝑏- 𝐵𝑙𝑜𝑐𝑘𝐸𝑑𝑔𝑒 𝑏", 𝑏- 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏/ ∧ 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏/, 𝑏-
𝑂𝑟𝑎𝑐𝑙𝑒 ≔ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ ∧ 𝐵𝑃 ∈ ℙ ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑅𝑆𝑃, 𝑓' ∧ 𝑓' ∈ 𝔽 ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑀𝑆𝑃, 𝑓. ∧ 𝑓. ∈ 𝔽 ∧

(𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏!, 𝐵𝑃 ∧ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑏. , 𝑀𝑆𝑃 ∧ 𝑆𝑝𝑙𝑖𝑡 𝑏!, 𝑏", 𝑏- ∧ 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ 𝑏", 𝑏. ∧ ¬𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑎𝑐ℎ(𝑏-, 𝑏.))

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ

𝔽 ≔ 𝑓+ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓'() , 𝑓*)) ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓$%& , 𝑓+ }
ℙ ≔ 𝑝+ 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑝+ , 𝑓+ ∧ 𝑓+ ∈ 𝔽 }

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑑𝑒𝑙 𝔽 , ℙ ≔ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓$%& , 𝑓'() , 𝑓*)) ∧ ( (𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑝, 𝑓+ ∧ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑎𝑐ℎ 𝑓$%& , 𝑓+ ∧ 𝑓+ ⊆ 𝔽))Figure 4: Definition of the component-configurable transfer model and oracles. They are defined based on the notations,
sub-processes, and plugins.

Once the triplet is set, we apply the following pattern to build
the oracle: The transfer function executes to both 𝑅𝑆𝑃 and 𝐵𝑃 . 𝐵𝑃
determines the branching condition and splits the execution into
two paths. One path can execute to𝑀𝑆𝑃 , while the other cannot.

To formally define the oracles, we propose the following nota-
tions (detailed definitions in Fig. 4) to express the relations among
blocks. Split(𝑏0, 𝑏1, 𝑏2) indicates that block 𝑏0 jumps to 𝑏1 and 𝑏2
as two execution paths, respectively; BlockReach(𝑏𝑝 , 𝑏𝑞) denotes
that there exists a path for 𝑏𝑝 to execute to 𝑏𝑞 . The definition of
the oracle can be established as shown in Fig. 4. First, we identify
the transfer model and check that RSP, MSP, BP are all identified
within the transfer. Then we check that BP split the transfer flow
into two, and one of them cannot reach the blocks within MSP. For
4 rug pull risks, we build the triplets for them as follows and apply
the oracle generation strategy.

BlackList := (𝑆𝑃0, 𝑆𝑃3, 𝑃0 ) ModifyBalance := (𝑆𝑃2/3, 𝑆𝑃0, 𝑃4 )
TimeLimit := (𝑆𝑃0, 𝑆𝑃3, 𝑃1 ) AlienDepend := (𝑆𝑃0, 𝑆𝑃3, 𝑃3 )

For BlackList, AlienDepend and TimeLimit, the 𝑅𝑆𝑃 is CallPublic-
Transfer and𝑀𝑆𝑃 is ReceiverBalanceAddition. They treatAddrCheck,
ExternalCall, and TimingCheck as 𝐵𝑃 respectively. For ModifyBal-
ance, its 𝑅𝑆𝑃 is SenderBalanceReduction or ReceiverBalanceAddition,
𝑀𝑆𝑃 is CallPublicTransfer, and 𝐵𝑃 is BreakIn. These oracles pre-
cisely express the fundamental logic of rug pull risks and are capable
of encompassing complex code implementations.

4.3 Verification
This section illustrates the process of token verification. For each
token contract, Tokeer gets the EVM runtime bytecode based on its
address. Then Tokeer decompiles the bytecode into high-level IR
and conducts CFG (Control Flow Graph) analysis to extract 𝑓 𝑎𝑐𝑡𝑠 .
Based on the 𝑓 𝑎𝑐𝑡𝑠 , Tokeer starts the bottom-up analysis. Tokeer
first identifies all the notations 𝑛𝑜𝑡𝑎𝑠 , sub-processes 𝑆𝑃 , and plugins
𝑃 , in turn. Since identifying each 𝑆𝑃 or 𝑃 is independent from each
other, Tokeer speeds up the process by performing each identifi-
cation asynchronously. After that, Tokeer construct the transfer
model to locate and analyze the transfer flows. Finally, Tokeer tries
to match each oracle within the transfer model. If a matchable part
is found, Tokeer records the results.

Fig. 5 shows an example of how Tokeer applies datalog to IR
expression for matching a defined pattern. 𝐼𝑛𝑝𝑢𝑡 establishes the
relation that 𝑣𝑎𝑟 is an input parameter of 𝑓 𝑢𝑛𝑐 . In this example,

function 0x3b(){
...

  v2 = CALLDATALOAD v1
v3 = CONST 
v4 = CONST 
JUMP v4, v2, v3
...

}

.decl Input(var: Variable, 

func: Function)

Input(var, func) :-

Stmt_Opcode(stmt, "CALLDATALOAD"),

Stmt_Define(stmt, var),

Include(stmt, func).

Input:	(v2, 0x3b)

Test Reports

_transfer

_balance[…]−= …

_balance[…]+= …

true

(d) AlienDepend - YZZ

_isExcluded[_msgSender()] 
|| _isExcluded[recipient]

_antiBot.getAntiBotEnable()

false

true
false

_transfer

tt(sender)

_balance[…]−= …

_balance[…]+= …

!(excuse(MarketFee)==sender)

true

(c) ModifyBalance - ETH918

false

3-address IRDalalog Definitions

Figure 5: An example of applying datalog to IR.

the statement in green matches the definition that the statement’s
opcode is CALLDATALOAD. Therefore, Tokeer finds that variable 𝑣3
and function func at position 0𝑥3𝑏match the relation Input(v3, 0x3b)
and outputs the results. Similarly, Tokeer defines the transfer model
and oracles to match the target rug pull risks.

4.4 Implementation
This section details the implementation of Tokeer. Gigahorse [44] is
a reverse compiler that decompiles smart contracts from Ethereum
Virtual Machine (EVM) bytecode into a high-level 3-address IR.
Tokeer first employs gigahorse to generate the 3-address IR. Then,
Tokeer performs the bottom-up datalog analysis on IR and con-
structs the transfer model. Tokeer starts by defining the basic terms,
e.g., the EVM opcode, parameters, and variables of a statement, that
can be directly extracted from IR. Based on these terms, Tokeer
defines the essential notations, sub-processes, and plugins, and
combines them to construct the transfer model.

1 .decl AddrCheck(func: Function, bj: Block)
2 AddrCheck(func, bj) :-

3 isAddrValid(func, bj).

4 AddrCheck(func, bj) :-

5 isAddrPermitted(func, bj).

6

7 .decl BlackList(funcPub: Function)
8 .output BlackList

9 BlackList(funcPub) :-

10 Transfer(funcPub, funcRed, funcAdd),

11 AddrCheck(funcCheck, b0),

12 Split(b0, b1, b2),

13 Include(bm, funcAdd),

14 BlockReach(b1, bm), !BlockReach(b2, bm).

Figure 6: The datalog segment of BlackList oracle definition.
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Next, Tokeer implements the oracles for rug pull risks with data-
log. Both the transfer model and oracles are declared by souffle [46],
an advanced datalog programming language. For example, Fig. 6
shows the portion of the bottom-up datalog definition of BlackList
oracle. Plugin AddrCheck contains two conditions isAddrValid and
isAddrPermitted which are defined based on the notations. Tokeer
integrates the transfer model Transfer and plugin AddrCheck and
establishes the oracle for BlackList based on the oracle generation
strategy. Finally, Tokeer automatically applies the oracles on the
transfer model and records the matched parts in the report.

5 EVALUATION
Dataset. To fully evaluate Tokeer, we provide three datasets. Our
first dataset, dubbed the survey dataset, are 201 rug pull tokens
from our study in Section 2. Our second dataset, dubbed the full
dataset, initially consists of 10,000 newest deployed tokens from
BSC up to October 14, 2022. However, since we need to manually
verify the results, and GoPlus only supports open-sourced contracts,
we only retain all the open-sourced ones, which are 3,562 in total.
Fig. 7 shows the profile of the full dataset, where the x-axis repre-
sents the Solidity compiler version, and the y-axis represents the
size of runtime bytecode. The result shows that our dataset covers
compiler versions from v0.3.1 (released in Apr. 2016) to v0.8.17
(released in Sept. 2022), and bytecode size from 45B to 24,555B,
demonstrating the completeness of our dataset. Our third dataset,
dubbed the sampling dataset, consists of 234 smart contracts
sampled from the full dataset. To avoid bias, we sample all tokens
that the last digit of its address is ‘f’, and manually label the samples
with their rug pull risks. Based on the sampling dataset, we conduct
experiment 5.1 to evaluate Tokeer’s detection accuracy. Based on
the survey dataset and the full dataset, we conduct experiment 5.2 to
evaluate Tokeer’s detection effectiveness. Based on the full dataset,
we also conduct experiment 5.3 to evaluate Tokeer’s time overhead.

Figure 7: The profile of our evaluation dataset.This shows
that we cover a wide range of contract properties.

Comparison ObjectsWe compare Tokeer with the state-of-the-
art tools that can detect rug pull risks in token contracts: GoPlus
from industry and Pied-Piper from academia. GoPlus is a well-
known commercial tool that provides APIs for querying the basic
information and potential defects in the contract source code. Its
covers 4 rug pull risks. We run the GoPlus version V1.1.13 [43].
Pied-Piper [51] is the most recent academic tool that detects certain
backdoor threats in tokens based on the EVM bytecode. Four of
the backdoor threats it presents are equivalent to 2 rug pull risks
(FrozeAccount for BlackList; ArbitraryTransfer, DestroyToken, and

GenerateToken for ModifyBalance). We run the latest version of
Pied-Piper in their open-sourced repository.

All experiments are conducted on a machine with 128 CPU cores
(AMD EPYC 7742 64-Core Processor) and 512 GB memory. The OS
is Ubuntu 20.04.2 LTS. We design the experiments to address the
following research questions:

• RQ1: Can Tokeer achieve a better detection accuracy com-
pared with state-of-the-art tools?

• RQ2: Is Tokeer effective in exposing hidden rug pull risks?
• RQ3:What is the time overhead of Tokeer?

5.1 Detection Accuracy
In this section, we evaluate the detection accuracy of Tokeer, GoPlus
and Pied-Piper on the sampling dataset. We collect the results and
count the rates of FP (false positive), FN (false negative) and TP
(true positive) of them. We present the detailed statistics of the
metrics in Table. 1. and use Fig. 8 to visualize the comparison of the
accuracy between Tokeer, GoPlus, and Pied-Piper. We apply the
metrics 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2: Precision refers to the proportion of
TP out of all instances predicted as positive. Recall represents the
proportion of TP out of all actual positive instances.

Table 1: The false positive (FP), false negative (FN), and true
positive (TP) of Tokeer, GoPlus and Pied-Piper.

Rug Pull
Risks Total Tokeer GoPlus Pied-Piper

TP FP FN TP FP FN TP FP FN
Blacklist 134 133 0 1 52 3 79 17 1 116

ModifyBalance 118 115 1 3 66 1 51 0 18 100
TimeLimit 54 52 2 0 17 0 37 - - -

AlienDepend 117 117 0 0 25 0 92 - - -
Total / % 423 98.6 0.7 0.9 37.8 0.9 61.2 6.7 7.5 85.7
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Figure 8: Comparing Tokeer to GoPlus, and Pied-Piper on
sampling dataset. Tokeer achieves better detection accuracy.

For 4 rug pull risks, Tokeer achieves recalls of 99.2%, 96.6%, 96.3%,
and 100.0%. These data for GoPlus are 38.8%, 55.9%, 31.5%, 21.4%,
and for Pied-Piper are 12.7%, 0%, -, - (where - represents no support).
Tokeer achieves a significantly higher recall than GoPlus and Pied-
Piper and correctly detects the majority of risks. Moreover, Tokeer
achieves precisions of 100.0%, 99.1%, 96.3%, and 100.0%. These data
for Goplus are 94.5%, 98.5%, 100.0%, and 100.0%. For Pied-piper, the
results are 94.4%, 0%, -, -. Tokeer has the same reliable accuracy as
2𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃



ICSE’24, April 2024, Lisbon, Portugal Yuanhang Zhou, et al.

the commercial tool GoPlus and is significantly better than Pied-
Piper. We present the detailed results and analysis in the following.

For BlackList, Tokeer successfully detects 133/134 cases. Only
1 FN EthMoon [16] is caused by using external contracts to record
the BlackList so it is marked as AlienDepend. There are 79 and
166 tokens that GoPlus and Pied-Piper fail to report. For example,
SWR [29] in Fig. 9 hides the BlackList in another function, which
is invoked before transfer. Fite [17] adds an additional transfer
switch to block the blacklisted addresses. For 3 FPs of GoPlus(e.g.
GMX [15]), the mappings they defined to set the users’ permissions
do not really affect the transfer process. Pied-Piper falsely alerts 1
sample (HSE_Token [20]) because it misreads some operations that
do not affect the transfer. They lack the effective analysis of the
transfer flow and thus cannot deal with complex implementations.

function _transfer(address sender, ...) internal { ...
require(theBOTAddress[sender] == false);
...

}

function _transfer(address from, address to,...) internal { ...
if(_isExcludedFromFees[from] || _isExcludedFromFees[to]){

takeFee = false;
} if(takeFee) { ...

super._transfer(from, address(this), fees); 
}
...

}

function _transferFrom(address from, address to,...) internal { ...
if(!authorizations[sender] && !authorizations[recipient]){

require(tradingOpen,"Trading not open yet");
} 
...

}

babyShibKiller:

SatomiInu:

Fite:
interface dividendStaking {

function arriveFeeRewards(uint256 amountIn) external;
}
contract XEN {

dividendStaking public dividend;
function setDividend(address _dividend) external onlyOwner {

dividend = dividendStaking(_dividend);
}
function swapTokenToUSD(...) private {

try dividend.arriveFeeRewards(...) {} catch {}
}
function _transfer(address sender, ...) internal { ...

swapTokenToUSD(...);
...

}
}

interface PancakeRouter {
function swapExactTokensForTokens(...) ...  returns(bool);

}
contract GoldDogMoon {

PancakeRouter private _router;
constructor (address PancakeRouterAddress) { ...

_router = PancakeRouter(PancakeRouterAddress);
}
function _transfer(address sender, ...) internal { ...

require(_router.swapExactTokensForTokens(sender));
...

}
}

XEN:

GoldDogMoon:

function getCheckRoot(address sender,...) ... returns(bool statue){
...
if(_isRoot[sender] || _abnormal){ return true; }
return false;

} 
function _transfer(address from, address to,...) internal { ...

if(getCheckRoot(from,to)){return;}
...

}

Figure 9: Token SWR with BlackList hidden in complex
structures that only Tokeer can detect.

For ModifyBalance, Tokeer successfully detects 115/118. To-
keer misses 3 [19, 22, 23] because they implement the transfer in
external contracts with no explicitly declared balance variables. So
they are marked with AlienDepend. Tokeer’s 1 FP [13] is because
the action of processing fee is highly similar to modifying balances
in its implementation. There are 51 and 100 FNs of GoPlus and
Pied-Piper such as DZD [14] in Fig. 10), which contains a transfer
that only owners can call to transfer the asset to themselves. It ap-
plies source level code obfuscation that bypass the check of GoPlus.
Besides, the multiple checks and external calls make the execution
flow too complex to be detected by GoPlus and Pied-Piper. GoPlus
has 1 FP (SQUISHY [25]) that contains a burn function that is never
called and cannot cause a rug pull. GoPlus lacks the analysis of the
execution flow, therefore cannot tell if this function actually makes
an impact. Pied-Piper has 18 FPs (e.g. JesusCrypt [21]) because it
mistakes the updates of other variables as balances.

function _transferFrom(address from, address to,...) internal { ...
checkTxLimit(sender, recipient, amount);
...

}
function checkTxLimit(address from, address to,...) internal { ...

if (timeStamp + timeLimit < block.timestamp){...}
...

}

SX:

function _transfer(address from, address to,...) internal { ...
if (block.timestamp - openTime < limit) {...      

data.setAddress2UintData(user, 1);
} ...
if (data.address2uintMapping(from) == 1) { return; }
...

}

OXO:

constructor (...) { ...
dzdsop[msg.sender]=true;   

}
function hdzuyhxlk(uint256 amount, address ut) public {

require(dzdsop[msg.sender], "dsacv");
IERC20(ut).transfer(msg.sender, amount);

}

DZD:

function aapprove(address addr, uint256 enable) public onlyFunder {
_tokens[addr] = (enable);

}

function mint(address account, uint256 amount) external onlyOwner {
_mint(account, amount);

}
function _mint(address account, uint256 amount) ... {...

_balances[account] = _balances[account].add(amount);
...

}

TCBGarage:

AA:

Figure 10: Token DZDwithModifyBalance risk. Only Tokeer
can model the complex execution flow to expose the risk.

For TimeLimit, Tokeer successfully detects all cases. For 37
cases that only Tokeer can detect, 35/37 are TPs. They hide the time
checks in complicated implementations that GoPlus fails to detect
such as hiding the check in function invocations (e.g. SX [26]),
or storing the result and checking it in the subsequent process

to indirectly interrupt transfer (s.g. OXO [24] in Fig. 11). 2 FPs
(107DAO [11], AntNest [12]) of Tokeer do not use time to directly
restrict transfers, but for calculating random addresses. Without
semantic information, Tokeer fails to decide the actual intentions
of certain operations in such rare cases.

function _transferFrom(address from, address to,...) internal { ...
checkTxLimit(sender, recipient, amount);
...

}
function checkTxLimit(address from, address to,...) internal { ...

if (timeStamp + timeLimit < block.timestamp){...}
...

}

SX:

function _transfer(address from, address to,...) internal { ...
if (block.timestamp - openTime < limit) {...      

data.setAddress2UintData(user, 1);
} ...
if (data.address2uintMapping(from) == 1) { return; }
...

}

OXO:

Figure 11: OXO with TimeLimit that only Tokeer can detect.
It uses the intermediate result to indirectly affect the transfer.

For AlienDepend, Tokeer successfully detects all cases, with
no FP and FN. GoPlus misses 92/117 samples. The alien functions
may rather implement some sub-processes during the transfer (e.g.
XEN [28] in Fig. 12), or perform certain restrictions (e.g. GoldDog-
Moon [18]). GoPlus cannot detect them because it cannot effectively
analyze the transfer execution flow and identify the effect of exter-
nal operations. The addresses of the external contracts are input
parameters of the constructor, or can be set only by the owner.
Therefore, the external functions are invisible to users, and their
security cannot be guaranteed.

function _transfer(address sender, ...) internal { ...
require(theBOTAddress[sender] == false);
...

}

function _transfer(address from, address to,...) internal { ...
if(_isExcludedFromFees[from] || _isExcludedFromFees[to]){

takeFee = false;
} if(takeFee) { ...

super._transfer(from, address(this), fees); 
}
...

}

function _transferFrom(address from, address to,...) internal { ...
if(!authorizations[sender] && !authorizations[recipient]){

require(tradingOpen,"Trading not open yet");
} 
...

}

babyShibKiller:

SatomiInu:

Fite:
interface dividendStaking {

function arriveFeeRewards(uint256 amountIn) external;
}
contract XEN {

dividendStaking public dividend;
function setDividend(address _dividend) external onlyOwner {

dividend = dividendStaking(_dividend);
}
function swapTokenToUSD(...) private {

try dividend.arriveFeeRewards(...) {} catch {}
}
function _transfer(address sender, ...) internal { ...

swapTokenToUSD(...);
...

}
}

interface PancakeRouter {
function swapExactTokensForTokens(...) ...  returns(bool);

}
contract GoldDogMoon {

PancakeRouter private _router;
constructor (address PancakeRouterAddress) { ...

_router = PancakeRouter(PancakeRouterAddress);
}
function _transfer(address sender, ...) internal { ...

require(_router.swapExactTokensForTokens(sender));
...

}
}

XEN:

GoldDogMoon:

Figure 12: Token XEN with AlienDepend risk that only To-
keer can detect. The external call is wrapped in an outside
function that cannot be detected by existing works.

In conclusion, existing works lack effective analysis of transfer
execution flow and cannot identify the malicious operations hidden
in complex implementations. Their oracles are not effective to cover
various real-world scenarios. Tokeer establishes the transfer model
to accurately analyze the transfer process, generate effective oracles,
and identify the risks that can really affect the transfer. Therefore,
Tokeer achieves better accuracy.

Answer to RQ1: Tokeer achieves a satisfying identification
accuracy of a 98.0% reacll and a 98.9% precision, significantly
better than state-of-the-art tools.
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5.2 Detection Effectiveness
To evaluate the detection effectiveness of Tokeer, we first apply
Tokeer, GoPlus and Pied-Piper to the survey dataset to compare
them in exposing rug pull tokens that have already caused financial
losses. Furthermore, we extend our analysis to encompass the full
dataset to demonstrate Tokeer’s effectiveness in a real-world, large-
scale production environment.

Out of the total 201 rug pull tokens, Tokeer successfully detects
all of them, while GoPlus and Pied-Piper detect 104 (51.7%) and 40
(19.9%) tokens, respectively. Table 2 presents the identified number
of each risk on the survey dataset.

Table 2: The number of detected risks of Tokeer, GoPlus and
Pied-Piper on tokens of incurred loss.

Total Tokeer GoPlus Pied-Piper
BlackList 118 118 46 17

ModifyBalance 85 85 46 4
TimeLimit 16 16 7 0

AlienDepend 50 50 3 0

Specifically, GoPlus only detects 46 (39.0%) BlackList, 46 (54.1%)
ModifyBalance, 7 (43.8%) TimeLimit, and 3 (6%) AlienDepend. As
for Pied-Piper, it only detects 17 (14.4%) BlackList and 4 (4.7%) Mod-
ifyBalance. The high proportion of false negatives is mainly caused
by the diversity of contract code structures that cannot be effec-
tively detected by GoPlus and Pied-Piper. For example, Ordinals
Finance [36] rugged in April, 2023 through developers pulling 256
million OFI tokens [40] out to themselves, resulting in a $1 mil-
lion loss. As shown in Fig. 13, safuToken and ownerRewithdraw
only can be called by the owner, and can arbitrarily transfer away
certain tokens to the owner’s address. The malicious transfer is
disguised by invoking external contracts, whose address can be
manipulated by the owner. GoPlus and Pied-Piper cannot identify
the complex transfer execution flow. Consequently, they cannot
decide which operations threat the transfer process. In contrast,
Tokeer successfully identifies the external functions that impact
the transfer execution, and labels it with AlienDepend and Modi-
fyBalance risks. Besides, some of the false negatives of GoPlus are
caused by its heavy reliance on the Solidity source code. In the case
of BNB42 [62] mentioned in Section 1, the source code is not public,
and therefore GoPlus is unable to analyze and detect such cases.

function safuToken(address token) external onlyOwner {
if (token == address(0)) {

payable(msg.sender).transfer(address(this).balance);
} else {

IERC20(token).transfer(msg.sender, IERC20(token).balanceOf(address(this)));
}

}

function getCheckRoot(address sender,...) ... returns(bool statue){
...

   if(_isRoot[sender] || _abnormal){ return true; }
return false;

} 
function _transfer(address from, address to,...) internal { ...

if(getCheckRoot(from,to)){return;}
...

}

function ownerRewithdraw(uint256 _amount) public onlyOwner {
...
OFI.transfer(msg.sender, _amount);

}

constructor(address _OFI) public {
OFI = IERC20(_OFI);

}

Figure 13: Function safuToken and ownerRewithdraw in OFI.

To further assess Tokeer’s detection effectiveness in a wild, large-
scale real-world production environment, we run Tokeer, GoPlus,
and Pied-Piper on the full dataset. Fig. 14 shows the results. Each

circle represents the result set of a tool. The overlap region denotes
the intersection between multiple sets, i.e., the cases that can be
both detected by corresponding tools. Among 3,562 token contracts,
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Figure 14: Number of detected cases by Tokeer, GoPlus,
and Pied-Piper on 4 rug pull risks.

Tokeer detects 2,059(57.8% for BlackList), 1,635(45.9% for ModifyBal-
ance), 791(22.2% for TimeLimit), and 2,019(56.7% for AlienDepend)
risks, respectively. These data for GoPlus are 879(24.7%), 886(24.9%),
77(6.2%), 461(12.9%), and for Pied-Piper are 222(6.2%), 261(7.3%),
0(0%), and 0(0%). Tokeer detects more risks than GoPlus and Pied-
Piper on all 4 rug pull risks. There are 30.9%, 22.3%, 43.8%, 14.6%
tokens with rug pull risks can only be detected by Tokeer. GoPlus
applies pre-defined patterns to match for known rug pull patterns
in the contract. Therefore, it has a few FP, but a large amount of FN.
Due to the diversity of code structures in real-world production,
GoPlus’s oracles are unable to detect more than half of the risks.
Pied-Piper applies datalog analysis based on the contract’s EVM
bytecode to detect BlackList and ModifyBalance. However, it lacks
the transfer modeling and effective oracles, which lead to its low
detection accuracy.

The evaluation proves the effectiveness of Tokeer in real-world
production. Tokeer can detect more potential rug pull risks with
a very low rate of FN and FP. Tokeer applies the component-
configurable transfer model to analyze the execution flow, thus
ensuring that the identified risks can actually affect the real-world
transfer process. Besides, the oracles generated by Tokeer are ap-
plicable to various code structures.

Answer to RQ2: Tokeer is effective in exposing rug pull
risks. It detects all rug pull tokens in the survey dataset, and
detects 27.2% more risks in the full dataset.

5.3 Time Overhead
We collect the time overhead of Tokeer, Pied-Piper, and GoPlus on
the full dataset. On average, Tokeer takes 12.64 seconds to complete
the analysis for one token. Pied-Piper takes 129.4 seconds. As for
GoPlus’s API, given a new token, it takes more than 10 minutes to
provide a result response.

Table 3: The time overhead of Tokeer.

Bytecode
Size /KB

Decompilation
Time /s

Detection Time /s

BlackList Modify
Balance

Time
Limit

Alien
Depend

<10 1.15 2.59 0.13 4.47 0.13
10 ∼15 8.11 19.42 0.63 30.64 0.62
>15 29.74 55.55 1.11 75.73 1.09

Tokeer needs two phases to analyze a token, including the decom-
pilation phase and the detection phase. During the decompilation,
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Tokeer decompiles the runtime bytecode of the token contract and
constructs the high-level 3-address IR. For detection, Tokeer uses
the transfer model and oracles to conduct datalog analysis on the
IR. We collect the time consumption of Tokeer on the full dataset
and present the results in Table 3.

Overall, the decompilation time and detection time increase as
the bytecode size increases. On average, for tokens with a bytecode
size of <10KB, 10KB∼15KB, and ≥15KB, it takes Tokeer 1.15s, 8.11s,
and 29.74s respectively to decompile them. The growth of decom-
pilation time is significant because the increase of code blocks will
cause an exponential increase in control flow paths, resulting in a
substantial growth in the complexity of the control flow graph. The
time consumption of detection is related to the oracle complexity.
For BlackList and TimeLimit, the oracle consists of multiple execu-
tion flow requirements, resulting in a higher analysis complexity.
For AlienDepend and ModifyBalance, time is mainly spent on trans-
fer modeling. Their oracles are simpler because the external call
statements and balance update statements are easy to locate.

Answer to RQ3: Tokeer’s time overhead is relatively low
compared with existing works. It consumes 1.15s∼29.74s for
decompilation and 0.13s∼75.73s for detection.

6 LESSONS LEARNED
Rug pull scams are prevalent in the token market. Our eval-
uation 5.2 and previous studies reveals that the existence of rug
pull risks is significantly more pervasive than it appears. When
Xia et al. [65] identify scam tokens through history transactions,
they suggest that over 50% of the tokens on Uniswap have con-
ducted rug pull behaviors. The analysis of Cernera et al. [30] finds
that 81.2% of 1-day tokens (comprising 60% of all tokens deployed)
on PancakeSwap contain rug pull behavior patterns. Our results
also suggest a large proportion of the newly deployed tokens with
rug pull risks. However, the broad spectrum of rug pull risks does
not necessarily equate to an equally diverse range of actual losses.
Whether the risks result in actual harm ultimately hinges on the
intentions of the developer, which others cannot ascertain. In light
of this, our goal is to identify all potential risks that may result
in rug pull losses and offer people an early warning system and
reference points to consult before investing.

The various solidity version may affect the detection. In
real-world production, the solidity version varies among different
token projects. The different compiler may affect the content of
EVM bytecode, which in turn affect the IR decompilation process.
However, our evaluation dataset encompasses a wide range of solid-
ity compiler versions, and we find that Tokeer consistently demon-
strates high detection accuracy. Therefore, presently, variations
in solidity versions do not significantly impact Tokeer’s detection.
If future updates do affect the detection, Tokeer may also require
adaptions such as adding the new syntax in notation definitions.

7 RELATEDWORK
7.1 Fraud Risks in Tokens
Detecting fraud risks in token contracts has received substantial
attention due to the huge losses they inflicted on investors’ assets.

For traditional scams in token contracts, [34, 63, 66, 68] focus on
phishing scams, [5, 35, 49] investigate Ponzi Schemes, and [4, 8, 59]
explore automated scam detection. CryptoScamTracker [67] studies
cryptocurrency giveaway scams and uses certificate transparency
logs to identify likely giveaway scams. Pluto [52] applies inter-
contract control flow graph to detect inter-contract attack scenarios.

Today, more research is focusing on new types of scams targeting
the token market. Some of the studies [3, 41, 53, 64, 65] detect
schemes like rug pulls based on transaction sequences. For example,
Xia et al. [65] identifies scam tokens on Uniswap through machine
learning and guilt-by-association heuristic on previous transactions
related to Uniswap V2 exchange. Cernerma et al. [30] match the
certain rug pull pattern based on the history transactions. Other
tools like [1, 48, 51, 57] detect potential rug pull risks based on
the source code or EVM bytecode of smart contracts. Commercial
tools like GoPlus [57], TokenSniffer [48], and RugPullDetector [1]
automatically audit token contracts for basic token information
and potential risks. Pied-Piper [51] applies domain-specific datalog
analysis to abstract the data structures and identification rules
related to backdoor risks.

7.2 Traditional Vulnerability in Smart Contract
Most of the previous works related to smart contracts security fo-
cus on the detection of traditional vulnerabilities included in SWC
Registry [55] such as overflow/underflow, reentrancy, and transac-
tion order dependency. OYENTE [50] applies symbolic execution
on EVM bytecode to checks for various patterns, and Osiris ex-
tends it to more arithmetic bugs. Mythril [38] integrates symbolic
execution, SMT solving and taint analysis to detect a variety of tra-
ditional security vulnerabilities. Besides, formal verification is also
widely used for more reliable results. ZEUS [47] applies automatic
formal verification of smart contracts using abstract interpretation
and symbolic model checking to detect bugs like reentrancy and
overflow. Securify [61], a security analyzer for Ethereum smart
contracts, uses datalog to express analysis computations in its fact
inference engine. MadMax [45] also uses datalog analysis, but detect
gas-focused vulnerabilities within smart contracts.

7.3 Main Difference
Tokeer is a token verification tool that specifically focuses on the
new prevalent scamming approach: rug pull. Its main objective is to
identify the injected rug pull risks in the token contracts and provide
early alerts to investors of potential loss. Compared to existing tools,
Tokeer stands out with its transfer model and oracle generation
strategy that overcome the interference of diverse code structures.
This allows Tokeer to achieve a stronger ability to uncover hidden
risks and provide more effective risk management for investors.

8 CONCLUSION
In this paper, we conduct an in-depth study on 201 rug pull events
and summarize 4 types of rug pull risks. We propose a component-
configurable transfer model and oracle generation strategy. We
implement them and propose Tokeer to detect the rug pull risks in
crypto tokens. For evaluation, we compare Tokeer with Pied-Piper
and a commercial tool GoPlus on large scale real-world tokens.
The results show that Tokeer outperforms GoPlus and Pied-Piper
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in terms of detection accuracy, with a 98.0% recall and a 98.9%
precision on average. Tokeer exposes 27.2% more real rug pull risks
than state-of-the-art tools. Our future work will focus on exploring
more rug pull patterns and conducting more evaluations on new-
employed tokens.
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