
1

Coverage Guided Differential Adversarial Testing of
Deep Learning Systems

Jianmin Guo, Yue Zhao, Houbing Song, and Yu Jiang

Abstract—Deep learning is increasingly applied to safety-
critical application domains such as autonomous cars and
medical devices. It is of significant importance to ensure their
reliability and robustness. In this paper, we propose DLFuzz,
the coverage guided differential adversarial testing framework
to guide deep learing systems exposing incorrect behaviors.
DLFuzz keeps minutely mutating the input to maximize the
neuron coverage and the prediction difference between the
original input and the mutated input, without manual labeling
effort or cross-referencing oracles from other systems with the
same functionality. We also design multiple novel strategies for
neuron selection to improve the neuron coverage. The incorrect
behaviors obtained by DLFuzz are then exploited for retraining
and improving the dependability of the models.

We present empirical evaluations on two well-known data-
sets to demonstrate its effectiveness. Compared with DeepXplore,
the state-of-the-art deep learning white-box testing framework,
DLFuzz does not require extra efforts to find similar functional
deep learning systems for cross-referencing check. But DLFuzz
could generate 338.59% more adversarial inputs with 89.82%
smaller perturbations, while maintaining the identities of the
original inputs. DLFuzz also managed to averagely obtain 2.86%
higher neuron coverage, and save 20.11% time consumption
with respect to DeepXplore. We then evaluate the effectiveness
of strategies for neuron selection, and demonstrated that all
these strategies perform better than DeepXplore. Finally, DLFuzz
proved to be able to improve the accuracy of deep learning
systems by incorporating these adversarial inputs to retrain.

Index Terms—deep learning, dependability, adversarial testing,
neuron coverage.

I. INTRODUCTION

DEEP learning plays a key role in the development of
artificial intelligence. In the past few years, deep learning

has demonstrated its competitiveness on a wide range of ap-
plications, such as image classification [1], [2] in autonomous
cars, natural language processing [3] in robotics and even
reconstruction of brain circuits [4] in medical devices. These
encouraging accomplishments inspired wide deployments of
deep learning techniques in more security-critical domains,
and it is in great demand to test their dependability.

For the testing of deep learning systems, the classical
approach is to gather sufficient manually labeled input data
to assess the accuracy. However, the input space of testing
is so huge that it is extremely hard to collect all the possible
inputs to trigger every feasible logic of a deep learning system.
It is demonstrated that state-of-the-art deep learning systems
can be fooled by adding small perturbations to the test inputs

J. Guo and Y. Zhao and Y. Jiang (corresponding author, email:
jiangyu198964@126.com) are with the KLISS, BNRist, School of Software
Engineering, Tsinghua University, Beijing, 100084 China.

H. Song is with Embry-Riddle Aeronautical University Daytona Beach, FL,
USA.

[5]. Although deep learning exhibits impressive performance
on image classification or recognition tasks, the classifiers
can also be easily led to incorrect classifications by applying
imperceptible perturbations [6], as shown in Fig. 3. Therefore,
deep learning systems testing is quite challenging but essential
to ensure the correctness of those safety-critical practices.

Several approaches have been proposed to improve the
testing efficiency of deep learning systems with software
testing techniques. Some of them leverage solvers like Z3 to
generate adversarial inputs under the formalized constraints
of the deep learning models [7], [8]. These techniques are
accurate, but work in a heavy white-box manner and are
resource-consuming for constraint solving. Some black-box
methods exploit heuristic algorithms to mutate the inputs until
the adversarial inputs acquired [9]. These methods are time-
consuming and rely heavily on the manually supplied ground
truth labels. Other approaches of adversarial deep learning
focus on fooling the deep learning systems by applying
imperceptible perturbations to the inputs mostly in a gradient-
based manner [5], [6]. They work efficiently but are shown to
have low neuron coverage [10].

Recently, DeepXplore [10] was presented as the state-of-
the-art white-box testing framework for deep learning systems
and first introduced the concept of neuron coverage as a testing
metric. It relies on three deep learning systems with similar
functionality to cross-check and finds adversarial inputs which
produce different labels among these systems. Given one
test input, DeepXplore maximizes the difference of labels of
tested three systems and value of a neuron selected to cover
jointly. It could generate adversarial inputs efficiently and
improve neuron coverage substantially with respect to random
testing methods. Nevertheless, cross-referencing suffers from
the scalability and difficulty of finding similar deep learning
systems.

Owing to the totally distinct internal structures of deep
neural networks (DNN) and software programs, there exists
a large gap between the testing of deep learning systems and
the testing of traditional software systems. More efforts are
needed for approaches which could better combine software
testing into deep learning testing. Fuzz testing [11]–[13] has
been recognized as one of the most effective methodologies
for vulnerability detection in software testing, demonstrated
by the huge amount of vulnerabilities caught. The core idea
is to generate random inputs to execute as many program
paths as possible so as to lead the program to expose vi-
olations and crashes. It can be seen that fuzz testing and
deep learning systems testing share similar goals of achieving
higher coverage as well as getting more exceptional behaviors.
Furthermore, multiple strategies for input mutation play a key

2

part in generating high-quality inputs randomly. To achieve
higher coverage, it keeps the mutated inputs contributing to
the increase of coverage in a seed list. Inspired by the similar
goal and useful experience of fuzz testing for later mutation,
the way of combining its knowledge into the adversarial testing
of deep learning systems is worth practicing.

In this paper, we propose DLFuzz, a coverage guided differ-
ential adversarial testing framework. It aims to maximize the
neuron coverage and to generate more adversarial inputs for
a given deep learning system, without cross-referencing other
similar systems or manual labeling. First, DLFuzz iteratively
selects neurons worthy to activate for covering more logics,
where multiple strategies are designed based on our premier
work [14]. Next, DLFuzz mutates the test inputs by applying
minute perturbations to guide the deep learning system expos-
ing incorrect behaviors. During the mutation process, DLFuzz
keeps the mutated inputs which contribute to a certain increase
of the neuron coverage for the subsequent fuzzing. Besides,
the minute perturbation is restricted to be invisible so that
the prediction results of the original input and the mutated
inputs should be the same. In this way, DLFuzz is able to
automatically identify the erroneous behaviors with differential
testing that an error is triggered when the prediction result of
the mutated input is not the same as the original input.

To evaluate the efficiency of DLFuzz, we conducted em-
pirical studies on six deep learning systems trained on two
popular datasets, MNIST [15] and ImageNet [16]. The deep
learning model and the datasets are exactly the same as
those used by DeepXplore. Compared with DeepXplore, DL-
Fuzz does not need extra efforts to collect similar functional
deep learning systems for cross-referencing label check, but
could generate 135% − 584.62% more adversarial inputs
with 79.56% − 96.77% smaller perturbation. In the different
settings, DLFuzz obtained 1.10%−5.59% higher neuron cov-
erage. Besides, DLFuzz achieved higher neuron coverage even
in all the configurations of activation threshold of DeepXplore.
For the time efficiency, it saves 20.11% time consumption
on average with one exceptional case on ImageNet costing
59.42% more than DeepXplore. For the practical concerns,
we carried out thorough evaluations of the configurations of
the parameters and recommended better choices of them. Next,
we evaluate the effectiveness of strategies for neuron selection,
and demonstrated that all these strategies perform better than
DeepXplore while the better strategies for each deep learning
system vary. Finally, DLFuzz exhibits its practical use for
steadily improving the deep learning systems by augmenting
the training dataset and retraining the model.

In summary, our work has the following main contributions:
1) We combine fuzz testing into the adversarial testing of

deep learning systems and propose the first coverage
guided differential fuzz testing framework, which pro-
vides a novel direction for the testing of deep learning
based systems.

2) We leverage differential testing to avoid manually check-
ing effort and overcome the trouble of collecting similar
functional deep learning systems for cross-referencing.

3) We implement the proposed framework and conduct
comprehensive experiments to demonstrate its highly ef-
fectiveness in improving the dependability of deep learn-

ing systems, compared with DeepXplore. Moreover, the
code, testing dataset and experimental results are all
available at https://github.com/turned2670/DLFuzz.

II. RELATED WORK

We present the most closely related work of deep learning
testing and fuzzing testing. The former two parts provide two
different research directions for deep learning testing.
Adversarial deep learning. The robustness and reliability of
deep learning systems are the crucial factors for their large-
scale applications in the real world. However, an intriguing
property of deep learning systems was found out that a state-
of-art DNN can be easily fooled by applying imperceptible
perturbations to the input image [5]. Since then, a large number
of methodologies have emerged in this field. The classical
approach FGSM [17] computes the adversarial perturbation
efficiently by one-step gradient ascent. Another classical ap-
proach JSMA [18] fools the deep learning system by mod-
ifying several pixels according to a saliency map recording
the input features. Many approaches extended these work
and developed multiple trends including iterative methods
[19], [20], nontargeted attacks and targeted attacks [6], [20],
black-box attacks [21], defenses against attacks [22], attacks
beyond the context of image classification [23], [24], etc. For
detailed information on more related work, we recommend
a comprehensive survey about adversarial attacks on deep
learning [25].

As discussed earlier, these approaches perform efficiently
in generating adversarial inputs for the deep learning systems
as well as obtaining minute perturbations [6]. However, they
expose a major weakness that they achieve low neuron cover-
age, similar to the coverage obtained using randomly selected
test inputs [10].
Testing and verification of deep learning systems. Inspired
by the achievements of software testing for ensuring the
robustness of traditional programs, researchers also tried to
apply these techniques to deep learning testing for ensuring the
robustness of deep learning systems. White-box verification
approaches aim to guarantee the safety of deep learning sys-
tems by formally checking the violations of safety properties.
The early approach [26] defines safety constraints for the
whole deep learning system and solves them by an SAT solver.
Later works [7], [8] attempt to improve the scalability of
these approaches within a finite scope. However, they still
have a long way to serving the real-world deep learning
systems. Black-box testing approaches [9], [27] search the
input vector space for modifications which could cause errors.
Even with salient regions limiting the search space relatively,
these methods are still too time-consuming.

Unlike the above methods, DeepXplore [10] was proposed
as the first white-box testing framework which could scale
well to large-scale deep learning systems. It introduced neuron
coverage as a metric similar to the code coverage in traditional
testing. Several other approaches [8], [28] have also proposed
multiple metrics of different granularity for deep learning
testing.
Fuzz testing of software. Fuzz testing is an advanced
methodology of vulnerability detection in software testing.

3

DNN
Optimization objective:

higher neuron coverage & more
adversarial inputs

Mutation Algorithm

Original input

Original
input

Adversarial
inputs

Seeds for subsequent fuzzing

Perturbations

Strategies for neuron selection

Seed listIntermediate
mutated input

x
''
1
x

''
2
x

''
3
x

Desired

x

x

Continue fuzzing

Test inputs

X

Fig. 1: Architecture of DLFuzz for the differential adversarial testing of deep learning systems.

It is well-known for its highly effectiveness in discovering
vulnerabilities in real-world applications. Most of the public
vulnerabilities are reported by fuzz testing tools. AFL [11]
and Libfuzzer [29] are two fundamental fuzzing tools and
are widely deployed in security communities and academic
research. AFL tends to test the whole program while Libfuzzer
focuses on fuzzing specific functions. Their key features for
producing random inputs and choosing better seeds to increase
the coverage have been combined into deep learning testing
in this paper.

Other approaches have made attempts to improve fuzzing.
Coverage-based fuzzers [12], [13], [30] leverage the coverage
information to guide the mutating process for valuable seeds.
Mutation-based fuzzers [31], [32] concentrate on fuzzing the
complex formats using the input format model. Some tools
[33], [34] have exploited symbolic execution to generate the
real inputs for feasible paths satisfying the constraints. The
means of utilizing these successful experience of fuzzing in
deep learning testing may be worthy of exploration further.

III. DLFUZZ SYSTEM DESIGN

A. DLFuzz Overview

The overall architecture of DLFuzz is depicted in Fig.
1. In this paper, we implement DLFuzz to work on image
classification based deep learning systems, a popular task in
deep artificial intelligence domains to demonstrate its feasi-
bility and effectiveness. The adaptions in other tasks such
as speech recognition are straightforward and also follow the
same workflow in Fig. 1.

To specify, the whole test input set X is composed of images
to be classified and each input x is the one during testing.
The DNN is a particular convolutional neural network (CNN)
under test, such as VGG-16 [35]. The mutation algorithm
applies tiny perturbation to x and gets x′, which is visibly
indistinguishable from x. If the mutated input x′ and the
original input x are both fed to the CNN but classified to be
of different class labels, we treat this as an incorrect behavior
and x′ to be one of the adversarial inputs. The inconsistent
classification results before and after mutation indicate that at
least one of them is wrong so that manually labeling effort is
not required here. In contrast, if the two are predicted of the
same class label by the CNN, x′ will continue to be mutated
by the mutation algorithm to test the CNN’s robustness. In

addition, a seed list is well maintained for each given input
x, keeping those intermediate mutated inputs which could
increase the neuron coverage and satisfy the limit for the
perturbation. These seeds are then added to the test input set
X , used for subsequent fuzzing and producing incremental
adversarial inputs.

B. Coverage Definitions
Neuron coverage. Based on the demonstration that covering
more neurons could potentially trigger more logics and more
erroneous behaviors [10], DLFuzz also leverages the concept
of neuron coverage. It refers to the percent of neurons of the
DNN which have been activated at least once during testing.

The formal definition is represented in equation (1). Given
a set of test inputs T = {x1, x2, ...} and all neurons of
the testing DNN N = {n1, n2, ...}, for a specific neuron
n ∈ N , its output value under a specific input x fed to
the DNN is denoted by out(n, x). Neuron n is regarded
as activated (covered) if there exists one such input x that
out(n, x) is larger than the set threshold t. Here the threshold
t should be customized when testing.

NC(T) =
|{n|∃x ∈ T, out(n, x) > t}|

|N |
(1)

l2 distance. DLFuzz adopts l2 norm, one of the most fre-
quently used norms, to measure the perturbations and restrict
the perturbations to be nearly imperceptible. Considering the
observation that the same minute perturbation may produce
varying degrees of impact when applied to different inputs,
we introduce a relative measurement denoted by l2 distance,
which is defined to be the ratio of the l2 norm of the
perturbation to the l2 norm of the corresponding test input.
Similar to [6], we also adopt the average l2 distance of the
whole test inputs computed as follows as an important metric.

l2 dist. =
1

|T |
∑
x∈T

‖r‖2
‖x‖2

(2)

where T and x are the same as the definitions in equation (1),
r is the perturbation obtained by DLFuzz for x.

C. Guided Adversarial Input Search Algorithm
The guided adversarial search is the main component of

DLFuzz. It is completed by solving a joint optimization prob-
lem of both maximizing the neuron coverage and the number

4

of incorrect behaviors. The core process of the mutation
algorithm is presented in Fig. 2. The algorithm contains three
key components to discuss in detail.

Input: input list ← unlabeled inputs for testing
dnn ← DNN under test
k ← top k labels different from the original label
m ← number of neurons to cover
λ← hyperparameter for balancing the two goals
strategies ← strategies for neuron selection
cov tracker ← tracks the information of neurons
iter times ← iteration times for each seed

Output: set of adversarial inputs, neuron coverage
1: adversarial set = []
2: for i = 0 to len(input list) do
3: x = input list[i] //the original input
4: seed list = [x] //seeds for each input
5: for xs in seed list do
6: c, c topk = dnn.predict(xs)
7: neurons = selection(dnn, cov tracker, strategies, m)
8: obj = sum(c topk) - c + λ · sum(neurons)
9: grads = ∂obj/∂xs //gradient obtained

10: for iter = 0 to iter times do
11: /*grads processed to get the perturbation for mutation*/
12: perturbation = processing(grads)
13: x′ = xs + perturbation //mutated input obtained
14: c′ = dnn.predict(x′) //label after mutation
15: update cov tracker //update coverage information
16: l2 distance = distance(perturbation, x)
17: if the coverage improved by x′ > 0.01/(i + 1) and

l2 distance < 0.02 then
18: seed list.append(x′)
19: if c′ != c then
20: adversarial set.append(x′)
21: break

Fig. 2: The overall process of the mutation algorithm

Objective definition. As discussed in Section I, the gradient-
based adversarial deep learning outperforms the other ap-
proaches in several aspects, especially in time efficiency.
It finds perturbations by optimizing the input to maximize
the prediction error [5], which is opposite to optimizing the
weights to minimize the prediction error while training the
DNN. It is easy to implement by customizing the loss function
as our objective and maximizing the loss by gradient ascent.
The loss function of DLFuzz is defined as the following
equation (line 8 in Fig. 2), which is also the optimization
objective:

obj =

k∑
i=0

ci − c+ λ ·
m∑
i=0

ni (3)

where the objective consists of two parts. In the first part∑k
i=0 ci − c, c is the original class label of the input,

ci(i = 0, ..., k) is one of the top k class labels with confidence
just lower than c (line 6 in Fig. 2). Maximizing the first
part guides the input to cross the decision boundary of the
original class and lie in the decision space of top k other
classes. Such modified inputs are more likely to be classified
incorrectly. In the second part

∑m
i=0 ni, ni is a target neuron

intended to activate. These neurons are selected considering
many strategies to improve the neuron coverage (line 7 in
Fig. 2). The hyperparameter λ is used for balancing the two
objectives.

Adversarial input search. The adversarial search reveals
the overall workflow of Fig. 2. When given a test input x,
DLFuzz maintains a seed list for keeping the intermediate
mutated inputs which contribute to the neuron coverage. At
first, the seed list only has one input which is exactly x.
Next, DLFuzz traverses each seed xs and obtains the elements
making up its optimization objective. Then, DLFuzz computes
the gradient direction for later mutation. In the mutation
process, DLFuzz iteratively applies the processed gradient as
the perturbation to xs and obtains the intermediate input x′.
After each mutation, the intermediate class label c′, coverage
information, l2 distance of x and x′ are acquired. If the neuron
coverage improved by x′ and the l2 distance are desired, x′

will be added into the seed list. Finally, if c′ is already different
from c, the mutation process for seed xs terminates and x′ will
be included in the set of adversarial inputs. Therefore, DLFuzz
is able to generate multiple adversarial inputs for a certain
original input and explore a new way to further improve the
neuron coverage.

For the iterative mutation process, it contains two steps.
First, various processing methods are available to generate per-
turbations when the gradients obtained, including just keeping
the sign [5], imitating the realistic situations [10], [36], etc.
These mutation strategies for the input are easy to be extended
to DLFuzz. Second, DLFuzz adopts l2 distance to measure
the perturbation so as to ensure the distance between x and
x′ is imperceptible. As for the conditions of seed keeping in
line 17, DLFuzz limits our desired distance to a relatively
small range (less than 0.02) to ensure the imperceptibility. As
the neuron coverage improvement of one input declines with
more inputs tested, the corresponding threshold for keeping
the seeds also decreases with the number of inputs tested.
Furthermore, we can increase the thresholds of seed keeping
to reserve more mutated inputs with greater distance.

Strategies for neuron selection. To maximize the neuron
coverage, we propose four heuristic strategies for selecting
neurons more likely to improve coverage based on our premier
work [14], as below:

1) Strategy 1. Select neurons covered frequently during past
testing. Inspired by the practical experience in traditional
software testing that code fragments often or rarely
executed are more possible to introduce defects. Neurons
covered often or rarely perhaps can result in unusual
logics and activate more neurons.

2) Strategy 2. Select neurons covered rarely during past
testing due to the considerations stated above.

3) Strategy 3. Select neurons with top weights. It is pre-
sented based on our assumption that neurons with top
weights may have a larger influence on other neurons.

4) Strategy 4. Select neurons near the activation threshold.
It is easier to accelerate if activating/deactivating neu-
rons with output value slightly smaller/larger than the
threshold.

For each seed xs, m neurons will be selected utilizing one or
more strategies, which can be customized in strategies of the
algorithm inputs of Fig. 2.

5

IV. EXPERIMENT

A. Experiment Setup

Implementation. We implemented DLFuzz based on various
widespread frameworks of deep learning systems, Tensorflow
1.2.1, Keras 2.1.3 and Caffe 1.0.0. DLFuzz exhibits high
portability on these general frameworks. We developed and
evaluated DLFuzz on a computer with 4 cores (Intel i7-
7700HQ @3.6GHz), 16GB of memory, an NVIDIA GTX
1070 GPU and Ubuntu 16.04.4 as the host OS.
Models and data sets. DLFuzz mainly tests CNN models of
classification tasks, similar to mainstream adversarial testing
frameworks. For evaluation, we selected two datasets used
by DeepXplore for image classification tasks, MNIST and
ImageNet. The same as DeepXplore, DLFuzz tested the three
identical pre-trained CNNs for each dataset.

MNIST [15]: a large database of handwritten digits consist-
ing of 60000 training images and 10000 testing images. The
three pre-trained neural networks are the open-source CNNs
constructed by DeepXplore based on the LeNet family [37],
namely, LeNet-1, LeNet-4, LeNet-5.

ImageNet [16]: a large visual database containing over 14
million images for object recognition. The three pre-trained
CNNs to evaluate are VGG-16 [35], VGG-19 [35], ResNet50
[2], which are well-known for their remarkable performance.

Considering the fairness, we also randomly choose 20
images from the dataset for each CNN as test inputs in
the same way with DeepXplore. If not specified, the default
settings of hyperparameters k, m, λ, strategies and neuron
activation threshold t are 4, 10, 1, “Strategy 1” and 0.25
respectively. Hyperparameter iter times is 3 for ImageNet
and 5 for MNIST. The results of DeepXplore are obtained
under its recommended setting.
Research questions. We constructed the experiments to an-
swer the following three research questions to demonstrate the
efficiency of our approach.

1) RQ1. How is the effectiveness of DLFuzz approach?
(Section IV-B)

2) RQ2. How is the effectiveness of strategies for neuron
selection? (Section IV-C)

3) RQ3. Is DLFuzz helpful for improving the deep learn-
ing systems? (Section IV-D)

B. RQ1: Effectiveness of DLFuzz.

Table I presents the effectiveness of DLFuzz compared with
DeepXplore. DLFuzz exhibits its advantages in improving the
neuron coverage, generating more adversarial inputs within the
same time limit and restricting imperceptible perturbations.

Higher neuron coverage. As presented in the fifth column
of Table I, for the tested six CNNs, DLFuzz achieved 1.10%
to 5.59% higher neuron coverage than DeepXplore under
different settings on average, including different neuron selec-
tion strategies applied and different activation thresholds for
computing the neuron coverage. For the best setting, DLFuzz
is able to acquire 13.42% higher neuron coverage.

As for the improvement of neuron coverage by DLFuzz,
the main reasons lie in two aspects. First, DLFuzz selects
more neurons with various strategies to cover specific decision

logics, whereas DeepXplore randomly selects one neuron to
cover, which is inadequate to improve the coverage. Next,
DLFuzz maintains a seed list to keep the intermediate mutated
inputs which could increase the neuron coverage during test-
ing, which are used for subsequent testing to further improve
the coverage.

More adversarial inputs. DLFuzz averagely generated
338.59% more adversarial inputs, which could be extracted
from the eighth column of Table I. Several samples of adver-
sarial inputs obtained by DeepXplore and DLFuzz for the same
inputs are given in Fig. 3. Note that, DLFuzz is effective to
produce adversarial inputs for any class, no matter how many
classes the tested model has. Because, it is easy for DLFuzz
to guide the model to classify inputs as other classes, with no
relevance to number of classes.

Since DeepXplore applies three types of domain-specific
constraints to the input image, namely different intensities of
lights, occlusion by a single small rectangle and occlusion by
multiple tiny black rectangles, one sample for each type of
the constraints is listed for MNIST except the third type for
ImageNet (not acquired after several times of testing). The
third sample for ImageNet is substituted by another sample of
the second type.

However, adversarial inputs under the third constraint for
MNIST are easily acquired. Similar to the third sample of
DeepXplore for MNIST, there are a few cases that the tiny
black rectangles applied overlap the key features of the inputs
and more tiny rectangles could even cover one part of the
inputs and change their labels. This type of realistic trans-
formations is only applicable to cross-referencing frameworks
and hard to ensure the identity after being applied to the input.
Although the adversarial inputs should be acquired after more
experiments for ImageNet, it can be inferred that it’s harder
to generate adversarial inputs for larger-size colorful images
than smaller-size grayscale images by putting on multiple tiny
black rectangles.

Moreover, like the samples of DeepXplore in the first row of
Fig. 3, lighting effects added to the inputs to obtain adversarial
inputs are always stronger than in realistic conditions. In the
set of adversarial inputs generated by DeepXplore under the
first constraint, 60% and 25% of them are totally black or
white for ImageNet and MNIST respectively. In our opinions,
realistic transformations are valuable but more exploration is
needed for transformations like the second constraint, which
are always realistic and appropriate to obtain perturbations.

Smaller perturbations. Adversarial inputs generated by
DLFuzz have 89.82% smaller perturbations, derived from the
eleventh column of Table I. In this way, DLFuzz provides a
stronger guarantee for the consistence of the image’s identity
before and after mutation. As the samples in Fig. 3, the per-
turbations generated by DeepXplore are visible, whereas those
generated by DLFuzz are imperceptible and require careful
observations to identify. Thus, the visualized perturbation is
given for each sample of DLFuzz. As samples for MNIST
are nearly 8 times smaller than samples for ImageNet, the
alignment in Fig. 3 zooms in the samples for MNIST and
magnifies their perturbations.

Higher time efficiency. Finally, DLFuzz spent 20.11%
shorter time on generating each adversarial input on these

6

TABLE I: Effectiveness of DLFuzz compared with DeepXplore, presented with the results of DeepXplore (DX.), DLFuzz (DF.)
and the improvement of DLFuzz w.r.t DeepXplore.

DataSet CNN NC.1 # Adv.2 l2 dist. Time per adv.3
DX. DF. Improved DX. DF. Increased DX. DF. Decreased DX. DF. Saved

MNIST
LeNet-1 51.45% 53.90% 2.45% 20 53 165.00% 8.2637 0.2708 96.72% 0.7078 0.5623 20.56%
LeNet-4 61.50% 67.09% 5.59% 20 47 135.00% 8.2637 0.2812 96.60% 0.7078 0.6344 10.37%
LeNet-5 63.30% 65.53% 2.23% 20 54 170.00% 8.2637 0.267 96.77% 0.7078 0.587 17.07%

ImageNet
VGG16 39.68% 43.19% 3.52% 13 89 584.62% 0.0817 0.0167 79.56% 10.473 3.4537 67.02%
VGG19 38.43% 40.71% 2.28% 13 81 523.08% 0.0817 0.0154 81.15% 10.473 3.6606 65.05%

ResNet50 56.00% 57.10% 1.10% 13 72 453.85% 0.0817 0.010 88.13% 10.473 16.6958 -59.42%
1 Neuron coverage. Achieving higher neuron coverage means that it’s able to test more logics of the deep learning system.
2 The number of the adversarial inputs. More adversarial inputs could augment the training set and further be used for improving the accuracy of the model.
3 Time for each adversarial input. Shorter time used indicates the higher efficiency.

Ori.: 4 DX.: 8 DF.: 7 Ori.: rule DX.: harmonica DF.: harmonica

Ori.: 1 DX.: 7 DF.: 7 Ori.: robin DX.: partridge DF.: quail

Ori.: 9 DX.: 4 DF.: 7 Ori.: Bedlington DX.: teddy DF.: miniature poodle

Fig. 3: Samples of adversarial inputs annotated with the framework and the predicted label. (Ori. is the original label. Each
sample of DLFuzz also follows with its corresponding perturbation). The left four columns for MNIST and the right four
columns for ImageNet.

deep learning systems, computed from the last column of
Table I. An exceptional case is that DLFuzz cost more time in
generating adversarial inputs than DeepXplore for ResNet50,
which is owing to more time needed for neuron selection when
testing a deep learning system consisting of a huge number of
neurons (94056).

Moreover, as in twelfth and thirteenth columns in Table
I, generating per adversarial input for models of ImageNet
costs more time than models of MNIST. This is due to higher
complexity of models of ImageNet. But, DLFuzz could still
reduce the time spent on VGG models around 65%.

Neuron coverage with different activation thresholds. As
illustrated in equation (1), the value of neuron coverage varies
with the activation threshold customized. Fig. 4 presents the
neuron coverage of DeepXplore and DLFuzz with different
activation thresholds for the two datasets. DLFuzz averagely
achieved 3.42% and 3.13% higher neuron coverage than Deep-
Xplore for MNIST and ImageNet respectively under these
thresholds.

Hyperparameters for configuration. As for the hyperpa-
rameters configured in the input, we tried combinations of pos-
sible settings to evaluate their influence. Table II, III, and IV
reveal the variations in the effectiveness of DLFuzz with three
main hyperparameters m, k, λ in equation (3), respectively. In
Table III and IV, the number of neurons selected m is 8 and

0.0 0.25 0.5 0.75
Neuron activation threshold t

0
10
20
30
40
50
60
70
80
90

100

N
eu

ro
n

co
ve

ra
ge

 (
%

)

DLFuzz
DeepXplore

MNIST

0.0 0.25 0.5 0.75
Neuron activation threshold t

0
10
20
30
40
50
60
70
80
90

100

N
eu

ro
n

co
ve

ra
ge

 (
%

)

DLFuzz
DeepXplore

ImageNet

Fig. 4: The neuron coverage improvement with different
activation thresholds. The four thresholds are the exact values
in the evaluation of DeepXplore.

all the strategies are used together. The four main metrics are
still utilized for measuring the effectiveness, different from
just time efficiency evaluated in DeepXplore. For simplicity,
results for several CNNs are given.

According to the experimental results, the optimal value for
m is 5 among these deep learning systems and 30 is another
good choice for LeNet-4 and LeNet-5. Selecting more neurons
would gain no improvement in the neuron coverage and obtain
fewer adversarial inputs. Here, more neurons selected will
decentralize the value increasement of each neuron, as well as
the weight of the part searching for adversarial inputs. Then,
k = 1 and k = 9 both perform better on these CNNs and

7

k = 3 is also a good choice for CNNs on MNIST. λ = 0.1
is optimal for LeNet-5, VGG-16 and VGG-19 while λ = 5 is
optimal for LeNet-4. But the changes of λ have little influence
on the effectiveness of DLFuzz on LeNet-1 and ResNet50.

Table V provides the results of DLFuzz with changes
of hyperparameter iter times (Line 10 in Fig. 2). The
parameter iter times also has a key impact on the success
rate of generating adversarial inputs given a set of test
inputs. The larger iter times is, the success rate tends to
be higher, as well as the neuron coverage and the number
of adversarial inputs. But more iteration times of mutating
would result in larger perturbations. The optimal value
for iter times of DLFuzz is 10 for MNIST and 30 for
ImageNet, whereas 50 is the default value of DeepXplore.

The answer to RQ1: DLFuzz is an effective approach for
deep learning testing. It could averagely achieve 2.86%
higher neuron coverage, generate 338.59% more adversarial
inputs with 89.82% smaller perturbations, and save 20.11%
time consumption.

TABLE II: The variation in the effectiveness of DLFuzz
on VGG-19 with different numbers of neurons selected to
activate (parameter m in equation (3)). The best result across
each column is highlighted in bold. (the same in the following
tables).

m NC. # Adv. l2 dist. Time per adv.
5 45.3% 36 0.0146 2.8626
8 43.7% 28 0.0147 3.7750

10 43.6% 23 0.0160 3.9238
20 42.3% 14 0.0152 7.2600
30 42.2% 12 0.0169 10.4903
40 43.4% 22 0.0177 5.8395

DX. 38.6% 15 0.1478 6.5717

TABLE III: The variation in the effectiveness of DLFuzz with
different numbers of top other labels (parameter k in equation
(3)).

CNN k NC. # Adv. l2 dist. Time per adv.

LeNet-5

1 70.9%* 66 0.2492 0.1989
3 70.5% 57 0.2592 0.2705
4 70.5% 49 0.2683 0.3347
9 71.3% 55 0.2636* 0.4316

DX. 69.8% 20 8.4853 0.4132

VGG-16

1 50.3% 68 0.03 1.9574
3 47.2% 20 0.0175 2.9308
4 48.3% 32 0.0194 2.5996
9 49.9%* 63* 0.0263 2.6021

DX. 42% 15 0.1478 6.5717
* The second largest value across the corresponding column.

0 4 8 12 16 19
Number of Images Tested

0
7

14
21
28
35
42
49
56
63
70

N
eu

ro
n

C
ov

er
ag

e
(%

)

DLFuzz strategy 1
DLFuzz strategy 2
DLFuzz strategy 3
DLFuzz strategy 4
DeepXplore

LeNet-4

0 4 8 12 16 19
Number of Images Tested

0
6

12
18
24
30
36
42
48
54
60

N
eu

ro
n

C
ov

er
ag

e
(%

)

DLFuzz strategy 1
DLFuzz strategy 2
DLFuzz strategy 3
DLFuzz strategy 4
DeepXplore

VGG16
Fig. 5: Neuron coverage with the number of images tested
when different strategies applied in DLFuzz.

TABLE IV: The variation in the effectiveness of DLFuzz
with the hyperparameter balancing the neuron coverage and
adversarial inputs generating (parameter λ in equation (3)).
The threshold t to compute NC. for LeNet-4 is 0.75.

CNN λ NC. # Adv. l2 dist. Time per adv.

LeNet-4

0.1 43.9% 42 0.2853 0.3588
0.5 43.9% 43 0.2838 0.3539
1 43.2% 44 0.2848 0.3454
5 45.3% 34 0.2941 0.4226
10 44.6% 31 0.2958 0.4663

DX. 34.5% 20 8.5498 0.4427

VGG-19

0.1 43.9% 34 0.0200 2.7917
0.5 43.8% 27 0.0251 3.7126
1 42.9% 20 0.0231 4.6690
5 42.7% 13 0.0251 6.4588
10 42.1% 10 0.0252 7.8549

DX. 38.6% 15 0.1478 6.5717

TABLE V: The variation in the effectiveness of DLFuzz on
ResNet50 with the maximum iteration times when mutating
the seeds (parameter iter times in Line 10 of Fig. 2).

iters success rate1 NC. # Adv. l2 dist. Time per adv.
3 0.6 74.3% 40 0.0106 8.6322
5 0.75 74.6% 75 0.0137 6.0317

10 0.9 74.9% 165 0.0190 4.8113
20 1 75.2% 346 0.0275 4.0486
30 1 75.4% 600 0.0359 3.9829
50 0.95 75.6% 943 0.0465 4.1807

1 The percent of test inputs which could be mutated to be adversarial inputs.

TABLE VI: Better strategies for each CNN. The number of
neurons selected m is 8. The hyperparameter λ is 0.1. The
threshold t to compute NC. for LeNet models is 0.75.

CNN Strategies NC. # Adv.
VGG-16 13 50.0% 70
VGG-19 1 44.9% 43

Resnet50 2 74.5% 50
134 74.4% 55

LeNet-1 (with Strategy 4) 36.5% 49

LeNet-4 123 43.9% 45
23 43.9% 44

LeNet-5 1234 36.6% 50
124 36.6% 51

C. RQ2: Effectiveness of Strategies for Neuron Selection.

We tried the four proposed strategies for neuron selection on
two CNNs and depicted the results in Fig. 5. All strategies are
shown to contribute more to the neuron coverage improvement
than DeepXplore while having similar performance among
themselves. It seems that strategy 1 performs slightly better.
Besides, DLFuzz is able to achieve higher neuron coverage in
the early stage.

These strategies can also be combined together and Table
VI lists the better strategies for each CNN with NC. and #
Adv. as metrics, since the other metrics vary little among these
strategies. We have experimented over all the combinations
of the four strategies on each model. For instance, ”strategy
13” represents that strategy 1 and 3 are combined to select
neurons to cover, the same with other cases. For LeNet-1,
combinations with strategy 4 all perform well. As shown in
Table VI, the better strategies for each CNN are not common,
so various strategies designed provide the higher possibility
for maximizing the neuron coverage.

8

0 1 2 3 4
Epochs

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

Origin
Retrain

LeNet-1

0 1 2 3 4
Epochs

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

Origin
Retrain

LeNet-4

0 1 2 3 4
Epochs

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

Origin
Retrain

LeNet-5

Fig. 6: The accuracy improvement of three CNNs on MNIST after retraining.

The answer to RQ2: The neuron selection strategies we
designed are effective. All the neuron selection strategies
perform better than DeepXplore while the better strategies
for each deep learning system vary.

D. RQ3: Improving deep learning Systems by DLFuzz.

To prove the practical use of DLFuzz, we incorporated 114
adversarial images into the training set of three CNNs on
MNIST and retrained them to see if their accuracy is able
to increase. Note that it is hard to improve their accuracy as
their accuracy is already around 98% and those adversarial
images take up a tiny part with respect to the whole 60000
training images. Finally, we improved their accuracy by up to
1.8% within 5 epochs. More improvement is expected if more
adversarial inputs included in the retraining process. In this
way, these adversarial inputs generated by DLFuzz augmented
the training dataset with more corner cases and could improve
the robustness of the deep learning systems.

The answer to RQ3: DLFuzz exhibits its practical use for
improving the deep learning systems. By augmenting the
training dataset and retraining the deep learning systems,
DLFuzz could improve their accuracy by up to 1.8% within
5 epochs.

E. Discussion

Applicability of fuzzing to deep learning testing. The
effectiveness of DLFuzz demonstrates that applying the knowl-
edge of fuzzing to deep learning testing is feasible and can
greatly improve the performance of existing deep learning
testing techniques such as DeepXplore. The gradient-based
solution of the optimization problem guarantees the easy
deployment and high efficiency of the framework. The mech-
anism of seed maintenance provides diverse directions and
larger space for improving the neuron coverage. Besides,
DLFuzz is capable to obtain incremental adversarial inputs
for one input. Various strategies combined for neuron selection
proved to be good at finding neurons beneficial for increasing
the neuron coverage.

Without manual effort. For confirmation, we checked
all the 366 adversarial inputs generated by DLFuzz, though
DLFuzz maintains quite small l2 distance by the restricted
threshold. We haven’t found any adversarial inputs that have
already changed their identities after mutation. The adversarial

inputs are nearly the same as the original input, and the
perturbations are imperceptible.

Advances over networking systems. Although DLFuzz
currently aims at image classification tasks, which are almost
CNN models involved, DLFuzz is designed with scalability
to be applied to other tasks and systems. For the advances of
our approach to be used over networking systems, they could
be summarized as twofold. First, CNN is now widely used in
many networking systems, always as necessary components
playing artificial tasks, like video processing component in
large-scale video storage networking system. Second, CNN
is also a special networking system, depending on connected
layers and neurons to process huge information. Thus, the ad-
vances of our method over CNN are potential to be generalized
to common networking systems.

Future work. Encouraged by the impressive effects of
DLFuzz on image classification tasks, we will work on the de-
ployments of DLFuzz on other popular tasks in deep learning
domains, such as speech recognition. The specific constraints
for input mutation of the corresponding task will be added into
the common workflow. Also, some domain knowledge can be
leveraged to provide more efficient mutation operations and
increase the efficiency of DLFuzz.

V. CONCLUSION

We design and implement DLFuzz as an effective coverage
guided adversarial testing framework of deep learning systems.
DLFuzz first combines the basic ideas of fuzz testing into deep
learning testing and demonstrates its effectiveness. Compared
with DeepXplore, DLFuzz averagely obtained 2.86% higher
neuron coverage and generated 338.59% more adversarial
inputs with 89.82% smaller perturbations given the same
amount of inputs. DLFuzz also overcomes the trouble of
relying on multiple deep learning systems of the similar
functionality in DeepXplore. The novel strategies designed by
DLFuzz for neuron selection perform well in improving the
neuron coverage. Additionally, DLFuzz exhibits its practical
use by incorporating these adversarial inputs to retrain the deep
learning systems and to steadily improve their accuracy.

Currently, DLFuzz is evaluated for CNN models and image
classification tasks. Since the scalability of its design, our
future work mainly includes the generalization over RNN
models and corresponding domains, like speech recognition
and natural language processing. Finally, our framework will
try to provide solutions for common networking systems.

9

ACKNOWLEDGMENT

This research is sponsored in part by National Key Research
and Development Project (Grant No. 2019YFB1706200), the
NSFC Program (No. U1911401, 61802223), the Huawei-
Tsinghua Trustworthy Research Project (No. 20192000794),
and the Equipment Pre-research Project (No. 61400010107).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[4] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung,
and W. Denk, “Connectomic reconstruction of the inner plexiform layer
in the mouse retina,” Nature, vol. 500, no. 7461, p. 168, 2013.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proceedings
of the 2nd International Conference on Learning Representations, 2014.

[6] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

[7] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 3–29.

[8] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural networks,”
arXiv preprint arXiv:1803.04792, 2018.

[9] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box
safety testing of deep neural networks,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2018, pp. 408–426.

[10] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1–18.

[11] M. Zalewski, “American fuzzy lop,” 2007.
[12] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-

box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, 2017.

[13] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, pp. 2329–
2344.

[14] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2018, pp. 739–743.

[15] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” Computer Science, 2015.

[18] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[19] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” in Proceedings of the 2nd International Conference on
Learning Representations, 2017.

[20] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of 2018 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
Spotlight.

[21] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” arXiv preprint arXiv:1710.08864, 2017.

[22] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 38th IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[23] J. Guo, Y. Zhao, X. Han, Y. Jiang, and J. Sun, “Rnn-test: Adversarial
testing framework for recurrent neural network systems,” arXiv preprint
arXiv:1911.06155, 2019.

[24] L. Wu, X. Du, W. Wang, and B. Lin, “An out-of-band authentication
scheme for internet of things using blockchain technology,” in 2018 In-
ternational Conference on Computing, Networking and Communications
(ICNC). IEEE, 2018, pp. 769–773.

[25] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[26] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in International Conference
on Computer Aided Verification. Springer, 2010, pp. 243–257.

[27] X. Huang and X. Du, “Achieving big data privacy via hybrid cloud,”
in 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2014, pp. 512–517.

[28] L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li,
L. Li, Y. Liu et al., “Deepgauge: Comprehensive and multi-granularity
testing criteria for gauging the robustness of deep learning systems,”
The 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2018.

[29] (2017, Aug.) libfuzzer in chrome. [Online]. Available: https://llvm.org/
docs/LibFuzzer.html

[30] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and
J. Sun, “Safl: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. ACM,
2018, pp. 61–64.

[31] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” in ACM SIGPLAN Notices, vol. 52, no. 6. ACM,
2017, pp. 95–110.

[32] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE, 2017, pp. 579–594.

[33] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in International
Conference on Information Systems Security. Springer, 2008, pp. 1–25.

[34] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations, 2015.

[36] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

Jianmin Guo is a Ph.D. candidate at School of
Software Engineering, Tsinghua University, Beijing,
China. She received the BS degree in software
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2017. Her
research interests are software testing, mainly focus-
ing on deep learning testing and backdoor detection
of deep learning systems.

10

Yue Zhao is a master student at School of Software
Engineering, Tsinghua University, Beijing, China.
He received the BS degree in software engineering
from Beijing University of Posts and Telecommuni-
cations, Beijing, China, in 2017. His research inter-
ests are deep learning testing and backdoor detection
of deep learning systems.

Houbing Song received the Ph.D. degree in elec-
trical engineering from the University of Virginia,
Charlottesville, VA, in 2012, and the M.S. degree in
civil engineering from the University of Texas, El
Paso, TX, in 2006. In 2017, he joined the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Embry-Riddle Aeronautical University, Day-
tona Beach, FL, where he is currently an Assis-
tant Professor and the Director of the Security and
Optimization for Networked Globe Laboratory. His
research interests include cyber-physical systems,

cybersecurity and privacy, internet of things, edge computing, AI/machine
learning, big data analytics, unmanned aircraft systems, connected vehicle,
smart and connected health, and wireless communications and networking.

Yu Jiang received the BS degree in software en-
gineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2010, and
the PhD degree in computer science from Tsinghua
University, Beijing, China, in 2015. He was a Post-
doc researcher in the department of computer sci-
ence of University of Illinois at Urbana-Champaign,
IL, USA, in 2016. He is now an associate professor
in Tsinghua University, Beijing, China. His current
research interests include domain specific modeling,
formal computation model, formal verification and

their applications in embedded systems.

