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Abstract—Vulnerable code clones in the operating system (OS)
threaten the safety of smart industrial environment, and most vul-
nerable OS code clone detection approaches neglect correlations
between functions that limits the detection effectiveness. In this
paper, we propose a two-phase framework to find vulnerable OS
code clones by learning on correlations between functions. On
the training phase, functions as the training set are extracted
from the latest code repository and function features are derived
by their AST structure. Then, external and internal correlations
are explored by graph modeling of functions. Finally, the graph
convolutional network for code clone detection (GCN-CC) is
trained using function features and correlations. On the detection
phase, functions in the to-be-detected OS code repository are
extracted and the vulnerable OS code clones are detected by
trained GCN-CC. We conduct experiments on 5 real OS code
repositories, and experimental results show that our framework
outperforms the state-of-the-art approaches.

Index Terms—Cyber-physical security, vulnerable code clone
detection, graph convolutional network, correlation modeling

I. INTRODUCTION

At present, numerous industrial applications with operating
system (OS) are deployed on smart industrial devices. And the
smart industrial environments is projected to soon interconnect
tens of billions of cyber-physical devices including both high-
end devices and low-end devices with resource constraints,
which use a general LinuxOS distributions, e.g., Ubuntu,
openSUSE and FreeBSD, or embedded real-time operating
system (RTOS) distributions, e.g., uCos and freeRTOS [1].

Though the deployment of OS reduces the costs of man-
aging various applications which become more complex with
the development of industrial devices, vulnerable code clones
in OS threaten the safety of smart industrial environment [2]–
[5]. Code clones, the exact or similar copies of code fragments
within or between programs, is one of the serious code
smells which can lead to latent bugs, vulnerabilities and
security-critical problems [6]–[9]. And the patches to buggy
code are often not cover all of the code clones in real OS
distributions [10], and code clones appear more common in
the industrial OS because its version is often stable but old.
Even worse, the wide deployment of numerous cyber-physical
devices in production makes the vulnerable code clones not
only suffer the OS distribution itself but also make the whole
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industrial environments vulnerable since the operating systems
and their utilities running on top of industrial devices as the
key components. Therefore, it is important to find vulnerable
code clones in OS code to ensure the security of cyber-physical
devices in industrial environments.

Many researchers have proposed the vulnerable code clone
detection approaches for the “big code” such as OS code.
And the most of these approaches are based on the code
abstraction comparison [10]–[13] or neural networks [9], [14],
[15]. The former methods have three steps. The first step is
to split a program into some kind of code fragments. The
second step is to represent each code fragment in the abstract
fashion. The third step is to compute the similarity between
code fragments via abstract representations obtained in the
second step. And the latter methods regard the vulnerable code
clone detection as a binary classification (whether a program
has code clone or not) or to determine which category of
vulnerability a program belongs to. In this way, the raw feature
of code is firstly extracted as the training set. And then, a
classifier is trained to learn the end-to-end feature based on the
training set. Finally, the vulnerable code clones are detected by
the pre-trained classifier. However, these methods only focus
on the feature of code fragment itself without considering
the correlation between functions in OS code repository. As
the results, missing of correlation consideration limits the
performance and scope of these methods, e.g., it is difficult to
detect the complex code clones such as code clones in Type
III (e.g., deletion, insertion, and rearrangement of statements)
and Type IV (semantic clones which are syntactically different
but convey the same functionality) [16].

The numerous function calls in each version of OS distribu-
tion leads to the complex correlations between OS functions.
And the correlations between functions in the code repository
can help us to find vulnerable code clones, especially for
the OS code because there are numerous functions in its
various versions. In this paper, we propose a framework of
vulnerable code clone detection to integrate correlations be-
tween functions and function features. The graph convolutional
network is used as the detector, which is widely used in
semi-supervised learning on the graph structure [17], [18] and
shows the effectiveness in various classification tasks [19]–
[21]. In particular, the framework contains two phases, i.e.,
training phase to train a detector of vulnerable code clone
detection, and detection phase to find the vulnerable code
clone. In the training phase, the OS functions related to the
vulnerabilities are first extracted from the commits in OS code
repository, which as the training set of the vulnerable functions
and its fixed versions. And the OS functions in training
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set is abstracted and vectorized based on its AST structure.
Then, the correlation is explored based on graph modeling
of OS functions calls, and the similarity estimation based on
correlations between functions is derived. Finally, the graph
convolutional network for vulnerable code clone detection
(GCN-CC) is trained by both function features and correlations
to optimize the network parameters. In the detection phase,
the network-parameters-optimized detector is used to find
vulnerable code clone in to-be-detected functions. We conduct
experiments on 5 code repositories of OS distribution. And the
experimental results demonstrate the superior performance of
the proposed framework in vulnerable code clone detection,
compared to many state-of-the-art methods. The contributions
are summarized as follows.
• A two-phase framework of vulnerable code clone detec-

tion for OS code is proposed, with the consideration of
both function features and correlations between functions.

• The similarity estimation based on correlations between
functions is derived by graph modeling of function calls.

• Experimental results show the superior performance of
the proposed framework.

The rest of this paper is organized as follows. Section II
introduce the existing methods related to code clone detection
of OS code. The proposed vulnerable code clone framework
is described in Section III. And the experimental datasets,
settings of the proposed framework, compared approaches,
results and discussions are reported in Section IV. Finally,
we conclude this paper in Section V.

II. RELATED WORKS

A. Code clone detection of big code

The code clone detection of OS code is related to de-
tect code clones in “big code”. Sajnani et. al. proposed a
scalable clone detector called SourcerCC to detect Type I,
II and III of code clones in large inter-project, with the
granularity of the whole code repositories [13]. Based on the
SourcerCC, Nishi et. al.proposed a token-based code clone
detection approach which integrates filtering and verification,
to optimize the runtime cost of code clone detection and
extend the scalability [22]. Jiang et. al.proposed Deckard to
find code clone as the granularity of file [23]. Based on
Deckard, Gharehyazie et. al.detected code clone of the whole
project repositories in GitHub, which verifies the scalability of
Deckard [24]. Though these methods can detect code clones
by computing the similarity of two abstracted code fragments,
they cannot detect the vulnerable code clones since two code
fragments with identical syntax abstract data structures do not
necessarily contain the same vulnerability. Therefore, these
methods are insensitive to judge patched and unpatched, or
fixed and vulnerable code fragments.

B. Vulnerable code clone detection

Since the above methods of discovering code fragments with
similar syntactic patterns cannot handle the vulnerable code
clone detection, many researchers have proposed vulnerable
code clone detection approaches for the big code based on
code syntactic similarity comparison and neural networks.

Fig. 1. The overview of the proposed framework.

As for the abstracted code fragments comparison,
Jang et. al.proposed the first tool of vulnerable code clone
detection specific to the OS distributions called ReDeBug [10],
which uses the syntax-based normalization and tokenization
to generate abstracted code fragments and a sliced window
for similarity comparison. Kim et. al. proposed an approach
for the scalable detection of vulnerable code clones called
VUDDY, which exploits security-awared function abstraction
with four levels and a hash function for fingerprint gener-
ation [11]. For the application of VUDDY, an automated
analysis platform called IoTcube is designed to find code
similarity and security vulnerabilities in the IoT devices [25].
Liu et. al. proposed a system called VFDETECT that can
detect code clone of variable renaming, code sequence chang-
ing and redundancy inserting, which is also based on the
fingerprints generation and abstraction [26].

For the neural-network-based approaches, Li et. al. pro-
posed deep learning-based vulnerability detection system
called VulDeePecker [14], which uses code gadgets to rep-
resent programs and the bidirectional long short term memory
(BLSTM) neural network as the detector for vulnerable code
clone detection. Lin et. al. also used the BLSTM to obtain a
representation indicative of software vulnerability for vulner-
ability detection [27], while the code feature is derived by the
serialized abstract syntax trees (ASTs) and vectorized by the
Continuous Bag-of-Words neural embeddings. However, the
neural-network-based methods neglect the correlation between
code fragments, while both the code feature and correlations
between code fragments are considered in the proposed frame-
work.

III. THE PROPOSED FRAMEWORK

In this section, we propose the system overview and details
of the proposed framework.

A. System overview

The overview of our framework is shown in Fig. 1. The
framework contains two phases, i.e., the training phase and the
detection phase. The training phase is to optimize the detector
for vulnerable code clones and the detection phase is to detect
vulnerable code clones in the to-be-detected OS functions by
the optimized detector. In particular, on the training phase,
the training set of OS functions is first extracted with their
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Fig. 2. Example of function extraction from code repository as training set.

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

O OS functions in the training set.

N The number of functions in the training set.

Y Function labels.

M The number of labels for OS functions in training set.

X Features of functions in training set.

G Graph of functions G = {V, E,W}
v Vertices set which indicates functions on the graph.

E Edges set indicates function calls on the graph.

W The weight of edges.

Aex The adjacent matrix of explicit correlations.

Aim The adjacent matrix of implicit correlations.

Him
w The matrix of input-to-fuse parameters.

Hex
w The matrix of fuse-to-output parameters.

Z The outputs of GCN-CC.

vulnerability label from the commits in the OS code repository.
And the AST structure of OS function in the training set is
formulated. Then, the feature of functions is derived while
the correlation estimation is explored on graph modeling of
functions calls, based on the derived AST structure of OS
functions. Finally, the derived feature, label and correlation
estimation are integrated as the input to optimize the network
parameters in the graph convolutional neural networks, which
is used as the code clone detector. On the detection phase, the

to-be-detected OS functions are also vectorized and correlation
explored firstly. Then, the vulnerable code clone detection is
performed by the detector which is optimized on the training
phase. In the following, we give the details of each step
with the formal description. The important notations and the
corresponding definitions are summarized in Table I.

B. Function extraction from code repository
The code repository is regarded as the input of the proposed

framework, e.g., git repository, since the OS code is usually
maintained by the version control tools due to the complexity
and scalability of programs. The example of function extrac-
tion is shown in Fig. 2.

We first extract the code fragment as the granularity of
function from the commits in the code repository, by fil-
tering the keywords of vulnerable code, i.e. CVE id. In
this way, we first list all commits in code repository and
select with the keyword “CVE-” to extract the CVE re-
lated commits. Then, for each keyword related commit,
we check out all versions of the OS function and stored.
For example, the patch for CVE-2018-1093 in the com-
mit “7dac4a1726a9c64a517d595c40e95e2d0d135f6f” changes
function ext4 read inode bitmap, so all the revised versions
of this function are stored, i.e., ext4 read inode bitmap
changed in 12 Feb 2016, 20 Feb 2018, 27 Mar 2018 and 12
May 2018. Finally, the training set is extracted that consists
of various versions of the vulnerability-related OS functions.

As for the label of functions in training set, the functions
in the training set are labeled with the keyword and status
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Fig. 3. Illustration of feature extraction based on AST structure.

of vulnerability fix. In this way, the functions before the
keyword related commits are tagged with “vulnerable” while
the functions after that are tagged with “fixed”. For example,
the fragments of the function ext4 read inode bitmap are
labeled as CVE-2018-1093 with “vulnerable” or “fixed” tag,
and the versions before the patch for CVE-2018-1093 are
labeled as “CVE-2018-1093-vulnerable” while the versions
after that are labeled as “CVE-2018-1093-fixed”.

By this step, the vulnerability related functions with labels
are extracted from code repository as the training set for
the proposed vulnerable code clone detection framework.
For the convenience of descriptions in the following part,
we denotes the training set contains N functions as O =
{O1,O2, · · · ,ON}, where Oi is the i-th function in the
training set. And we denote the label of training functions
as Y = {Y1,Y2, · · · ,YM} with one-hot encoding. Here, M
is the number of labels for OS functions in training set, which
equals 2 times (vulnerable and fixed tags) of the number of Nc

keywords of vulnerability. And the keywords of vulnerability
is denoted as C = {C1, C2, · · · , CNc

}.

C. Function abstraction and vectorization

In this part, functions in the training set are parsed into the
abstract syntax tree (AST) structure and vectorized with bag-
of-words (BoW) model to generate the feature of functions.

We first exploit a lazy AST parser for our abstraction of
function fragments, which includes 10 AST node types and 53
expression node types, and each node corresponds to a C code
block or expression. The bag-of-words (BoW) model is used
to generate the function feature based on its AST structure,
which traverses each node of abstract syntax tree and count
the number of AST and expression node types. As the result,
we get the 63-dimensional vector of each function fragments
by the bag-of-abstract-word based on AST structure, which
ensures the robustness of function representation to common
modifications in OS functions. For example, as illustrated in
Fig. 3, the function ext4 read inode bitmap is parsed as the
AST structure and vectorized by the BoW model.

Fig. 4. Illustration of internal function calls and external function calls.

By this step, for the training set of function O =
{O1,O2, · · · ,ON}, the function feature is generated based
on the AST structure of function and BoW model, which
is denoted as X = {X1,X2, · · · ,XN}. Here, Xi ∈ X is
the feature of function Oi ∈ O, and the feature of function
X ∈ RN×63 is used as the one of the inputs for training the
GCN-CC detector.

D. Function correlation exploration

In this step, the correlation between OS functions is ex-
plored based on graph modeling of function calls in the
training set. In this way, both internal and external function
calls in training set are extracted based on their AST structure
firstly. And a graph is used to model the function calls. Then,
two types of correlation called are explored on the graph with
the form of adjacent matrix. Finally, the derived correlation
estimations are used as the input for training GCN-CC model.
In the following, we give the formal description of correlation
exploration based on graph modeling of function calls.

We first extract function calls in the training set based on the
AST structure of functions. And two types of function calls of
internal function calls and external function calls are defined.
The internal function call function shows which function in the
training set is called by a function. And the external function
call indicates the function out of the training set is called by
a function. For example, as shown in Fig. 4, the function
ext4 read inode bitmap calls 5 functions, with 3 internal
function calls (ext4 fill f lex info, set task ioprio and
ext4 iget are in the training set) and 2 external function calls
(ext4 msg and PTR ERR are out of training set).

Based on the two types of calls for functions in the training
set, we use a graph model to formulate the correlation between
functions. In this way, a graph of functions is denoted as G =
{V, E ,W}, where V is a function set, E denotes an edge set
that indicates calls between functions and W is the weight
of edges. And for vi ∈ V , the internal function and external
functions called by vi ∈ V are denoted as Vinl(i) and Vext(i),
respectively.
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Fig. 5. Explicit correlation exploration between functions.

Based on the graph contains functions and their internal
and external function calls, we explore the correlation between
functions to derive the correlation estimation. The correlation
estimation is formulated as an adjacent matrix A ∈ RN×N ,
and the correlation between two functions is denoted by the
i, j-th entry of A. Therefore, we have

A(vi, vj) =

{
1 if vi ∈ e, vj ∈ e,

0 otherwise,
(1)

where vi, vj ∈ V and e ∈ E . Moreover, we define the explicit
correlation as the correlation estimation based on internal
function calls, and the implicit correlation as the correlation
estimation based on external function calls. Let Aex and
Aim denote the adjacent matrix that indicates the explicit and
implicit correlation between functions. Now we introduce the
correlation exploration on the graph model of function calls
as follows.

To formulate the explicit correlation, for vi ∈ V , its internal
function calls Vinl(i) are linked directly to the function vi. As
shown in Fig. 5, the internal functions of ext4 fill super
are ext4 fill f lex info, set task ioprio and ext4 iget,
so ext4 fill super are linked to these internal functions,
which indicates the explicit correlation corresponding to
ext4 fill super. Thus, for vi ∈ V , we have

Aex(vi, vj) =

{
1 if vj ∈ Vinl(i)
0 otherwise,

(2)

It is noted that the explicit correlation is unidirectional, which
means for vi ∈ V and vj ∈ Vinl(i), the Aexp(i, j) = 1 but
Aexp(j, i) = 0.

To formulate the implicit correlation, we exploit the one-
order distance between functions based on their external
function calls. For vi, vj ∈ V , their external functions are
Vext(i) and Vext(j), respectively. Let d(vi, vj) denote the one-
order distance between vi and vj , and we have

d(vi, vj) = |Vext(i)− Vext(j)|. (3)

Moreover, we set a threshold T to determine the correlation
estimation Aim. Thus, for vi ∈ V and vj ∈ Vext(i), we have

Aim(vi, vj) =

{
1 if d(vi, vj) ≤ T

0 otherwise.
(4)

As shown in Fig. 6, for example, there are 28 external function
calls for the version of function ext4 read inode bitmap
on 20 Mar 2018, 29 external function calls for the version

Fig. 6. Implicit correlation exploration between functions.

of function ext4 read inode bitmap on 12 May 2018, and
143 external function calls for the function ext4 fill super.
And for ext4 read inode bitmap with the version of 12 May
2018, the one-order distance to its version on 20 Mar 2018
and the function ext4 fill super is 1 and 164, respectively.
Therefore, the two versions of ext4 read inode bitmap will
be linked and regarded as implicit related when the threshold
is set as 5. It is noted that the implicit correlation is bilateral,
which means for vi ∈ V and vj ∈ Vext(i), both Aim(i, j) and
Aim(j, i) equal 1.

By this step, two correlation estimations, i.e., Aex and Aim,
are explored by the graph modeling of function calls. And both
Aex and Aim are integrated with function feature X to train
the GCN-CC detector in the next step.

E. Graph convolutional networks for code clone detection

In this step, both correlation estimations derived by correla-
tion exploration and features of function, are integrated by the
proposed GCN-CC model. In the training phase, the label of
function is used to train the GCN-CC model and outputs the
GCN-CC model with fine-optimized network parameters. In
the detection phase, the to-be-detected functions features and
their correlation descriptions are fed into the optimized GCN-
CC detector, and the GCN-CC model outputs the predicted
label with its vulnerability keywords.

The proposed GCN-CC model contains three layers, i.e.,
input layer, fuse layer, and output layer. And two convolution
operations between layers are designed to tune the network
parameter between layers. More specifically, the input-to-fuse
convolution is conducted to optimize the network parameters
by function feature, label and implicit correlation, and the
fuse-to-output convolution is conducted to optimize network
parameters by the function feature, label and explicit correla-
tion. The implementation of the GCN-CC network structure
is described as

f(X,Aex,Aim) = softmax(AexReLU(AimXHim
w )Hex

w ),

where Him
w and Hex

w are to-be-tuned network parameters.
Specifically, Him

w ∈ RD×U is the input-to-fuse parameters
matrix, where U is the number of fused feature. Hex

w ∈ RU×Nc

is the fuse-to-output parameters matrix. Moreover, ReLU and
softmax are the activation function used for the input-to-
fuse convolution and fuse-to-output convolution in GCN-CC,
respectively. Specifically, ReLU(·) is defined as

ReLU(·) = max(0, ·). (5)
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And softmax(·) is described as

softmax(Zi) =
exp(Zi)∑

Zi∈Z exp(Zi)
. (6)

Here, Zi ∈ R1×Nc is the outputs of the GCN-CC for the i-th
function as inputs, and Zi,j determines the possibility that a
function Oi ∈ O belongs to the labels Yj ∈ Y.

In the training phase, to tune the network parameters Him
w

and Hex
w , the label of functions as training set is used and we

have
Y = f(X,Aex,Aim). (7)

The batch gradient descent is exploited to optimize Him
w

and Hex
w for each iteration in the training phase. And the

stochasticity is also considered to avoid the overfitting in the
training, by adding a dropout layer between each pair of
consecutive layers of the proposed GCN-CC. Moreover, we
use the cross-entropy error between the labeled OS functions
in the training set and predicted labels in the training phase, to
optimize the network parameters. Let Err denote the cross-
entropy error and we have

Err = −
∑
p∈V

Nc∑
q=1

Yp,qln(Zp,q), (8)

where Yp,q denotes the function label associated with the p-
th function belonging to the q-th label, and Zp,q represents
the possibility that the p-th function belongs to the q-th label
detected by GCN-CC.

F. Vulnerable code clone detection

On the detection phase, the vulnerable code clone detection
is performed by the GCN-CC which is optimized on the train-
ing phase. The preprocessing, i.e., abstraction, vectorization
and correlations exploration, of the to-be-detected function is
the same as that for the training functions. Then, the GCN-
CC model with the optimized network parameters is used as
the detector to find vulnerable code clones. In this way, the
correlation estimation and feature of to-be-detected functions
are exploited as the inputs of GCN-CC detector, and the
detector outputs the possibility of a certain vulnerability in
a to-be-detected function.

IV. EXPERIMENTS

In this section, we first introduce the experimental datasets,
settings, compared methods and metrics. Then, the experimen-
tal results and discussions are reported.

A. Dataset

We collected 5 git repositories of OS distributions as the ex-
perimental datasets, i.e., openSUSE, ubuntu-trusty, FreeBSD,
OpenBSD and Linux kernel. The vulnerable and fixed func-
tions are extracted by the keyword of CVE id. Table II
summarizes the experimental datasets, where “#CVE id” is the
number of CVE ids, “#CVE Label.” is the number of CVE-
related function labels. “#Vul.” is the number of vulnerable
functions and “#Fix.” is the number of fixed functions related

TABLE II
DATASETS OF OS CODE REPOSITORY USED IN EXPERIMENTS

Repository #CVE id #CVE Label #Vul. #Fix.

FreeBSD 21 492 760 1127
openSUSE 206 717 3179 5415
Linuxkernel 171 540 2281 3684
OpenBSD 31 112 267 119

ubuntu-trusty 343 1187 2643 1650

Total 772 3048 9130 11995

to CVE ids. We use the above OS distributions since these
OS distributions are widely used in industrial practice and
also included in the vulnerable code database of the compared
methods.

B. Experimental Settings

1) Compared methods: We compared the proposed frame-
work with VUDDY [11], [25] and LSTM neural network.
VUDDY exploits the vulnerability-preserving abstraction to
detect vulnerable code clones as the granularity of functions.
Specifically, there are two stages of VUDDY, i.e., preprocess-
ing and vulnerable clone detection. As for the preprocessing
stage, vulnerable functions are firstly extracted from the code
repository. And the syntactic abstraction with 4-level (formal
parameter, local variable name, data type and function call)
and normalization are performed to transform a function into
a token series. Then, a 2-tuple fingerprint of function is
generated and stored as the form of maps for retrieval. Then in
the clone detection stage, VUDDY uses key and hash look-up
between the vulnerable database and to-be-detected programs
based on the generated fingerprint. It is noted that VUDDY
with and without program abstraction schemes are both used
in our comparison. LSTM neural network (NN) is widely used
as the classifier for the vulnerable code clone detection [14],
[27]. And the same function feature used in our framework is
regarded as the inputs of NN. It is noted that other feature
of function can be used for the comparison between the
proposed framework and compared methods since the key of
the proposed framework is to integrate function correlation and
feature to improve the performance of vulnerable code clone
detection.

2) Settings of the proposed framework: We now give the
experimental settings of the proposed framework. For the cor-
relation exploration, we set the threshold of implicit correlation
determination as 1, which means the implicit correlation exists
when the distance is less than 1 between any two OS functions.
For the parameters GCN-CC model, the maps parameter to
optimize the feature of function is set as the same as the
number of labels Y. The dropout layer is used between layers
and the rate of dropout is set as 0.2. We train this network
model for a maximum of 600 epochs (training iterations) using
the Adam optimizer. The empirical learning rate is set as 0.01
for all datasets of code repository. Because the outputs of the
proposed framework is a possibility distribution, we use the
predicted label which possibility is maximal for each to-be-
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(a) Accuracy (b) Precision (c) Recall (d) F1-score

Fig. 7. Experimental results of vulnerable code clone detection of the compared methods.

detected function, as the predicted results with the following
comparison in experiments.

3) Evaluation criteria: We use the widely used metrics,
i.e., accuracy, precision, recall and F1-score, to evaluate the
performance of the proposed framework compared with the
state-of-the-art methods. To train the GCN-CC model, we
randomly select 50% of functions per CVE-related label as the
training set. And we select one more function per label as the
validation set. The training will stop if the loss of validation
set not decreases in 10 times in a row. We test the proposed
framework using all the functions, because it is a common
scenario to find both the unchanged vulnerable functions and
the functions which are developed based on the vulnerable
functions in practice.

C. Experimental results

The experimental results of the proposed framework com-
pared with other methods are summarized in Fig. 7. And we
make the following observations.

Firstly, the experimental results of accuracy show that
the proposed framework outperforms the state-of-the-art ap-
proaches on most test cases of datasets. Moreover, the average
accuracy on 5 datasets is 58.82%, 58.61%, 70.16% and
82.54%, for VUDDY without and with abstraction, LSTM
methods and our framework, respectively. And the improve-
ments of the proposed framework is 40.32% compared to
VUDDY without abstraction, 40.81% compared to VUDDY
with abstraction, and 17.64% compared with NN. The results
indicate that the proposed framework is more effective in
vulnerable code clone detection than other methods, and the
better performance of the proposed framework is summarized
as the following reasons. Compared with the state-of-the-art
methods, the proposed framework finds the vulnerable code
clones with the consideration of the correlation between OS
functions, not only the function feature. Specifically, both the
explicit and implicit correlation are integrated with GCN-CC
model, whereas the NN only uses function feature to train the
neural network, and VUDDY only takes the token series based
on the parameter or statement abstraction within the function
for comparison.

Second, the experimental results of precision and recall
show that the proposed framework achieves relative balanced
performance compared with VUDDY on most test cases of
datasets. The methods of VUDDY without and with abstrac-
tion trade high precision for low recall. For example, the
precision is 1 but the recall is 0.08 for VUDDY on the

TABLE III
AVERAGE RANKING COMPARISON WITH DIFFERENT CORRELATION

INPUTS.

FreeBSD openSUSE linux OpenBSD ubuntu-trusty

NONE 18.85 8.57 7.62 8.59 10.48
IM 13.34 8.27 7.03 2.54 7.51
EX 8.09 3.45 2.67 1.98 4.07

IM+EX 2.13 1.63 1.90 1.66 1.78

FreeBSD dataset, while the precision and recall is 0.79 and
0.82 for the proposed framework, respectively. It is noted that
a vulnerable code clone detector with high false positive rates
is not usable, and a detector with high false negative rates is
not useful [14]. Therefore, VUDDY achieves the high false
negative rates by the emphasis on low false positive rates,
which limits the usability of vulnerable code clone detection.
In this case, the proposed framework achieves both relatively
low false negative rates and low false positive rates, which
ensures useful and usable results of vulnerable code clone
detection. Moreover, the imbalance between precision and
recall leads to very low F1-measures. And for the average F1-
score on 5 datasets, the proposed framework is 0.7921, while
the VUDDY with abstraction is 0.3922, the VUDDY without
abstraction is 0.3970, and the NN is 0.6389.

In summary, the proposed framework improves the per-
formance of vulnerable code clone detection for OS by the
consideration of the correlation between functions and feature
of function.

D. Discussions

In this part, we discuss the impact of correlation exploration
and the form of outputs. To show the improvements by
integrating the correlation consideration, we compared the pro-
posed framework (IM+EX) with different correlation inputs,
i.e., no correlation (NONE), explicit correlation only(EX) and
implicit correlation only(IM). For this purpose, we change the
inputs of correlation descriptions as two identity matrices, two
explicit matrices and two implicit matrices for NONE, EX
and IM, respectively. We report the average ranking and top-
K accuracy of vulnerable code clone detection. The average
ranking results of different inputs on 5 datasets are reported
in TABLE III. And Fig. 8 shows the top-K accuracy of
the proposed framework with various correlation inputs on 5
datasets.

1) On correlation exploration: From the reported results
in TABLE III and Fig. 8, we can observe that the proposed
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Fig. 8. Top K accuracy of the proposed framework on 5 datasets.

framework with both explicit and implicit correlation achieves
the best performance compared with other correlation inputs,
and the performance degrades when correlations are not inte-
grated into the inputs. And the experimental results indicate
that the correlation exploration and the integration of both
explicit correlations, implicit correlation and feature is the
key to improve the performance of the proposed framework.
Moreover, the average ranking of the proposed framework
considering both explicit and implicit correlations is less
than 2. It indicates that the real vulnerable code clones can
be expected to be found in the first two candidates from
results on average, which is efficient for OS code developer
and maintainer to reduce the costs of confirming whether a
function has vulnerable code clones or not.

2) On probability distributional outputs: From Fig. 8, we
make the following observation. First, the results indicate that
the accuracy increases with K when it less than 3, and then
the accuracy reaches a stable value. Second, the top-2 accuracy
of vulnerable code clone detection by the proposed framework
with both correlations is over 95%, which is usable and useful
for developers and maintainer to find vulnerable code clones in
OS code. Moreover, it indicates that the proposed framework
can improve the performance by its outputs with the form of
the possibility distribution, while the outputs of other token
comparison based methods, e.g., VUDDY, cannot provide the
candidate list for developer to confirm vulnerable code clones.

V. CONCLUSION

In this paper, we proposed a two-phase vulnerable code
clone framework for OS in industrial environments. Specifi-
cally, in the training phase, we first extract the functions as the
training set from the commits of the latest OS code repository.
To derive the function feature, the OS functions are abstracted
by their AST structure and vectorized based on the BoW
model. To explore the correlation between functions, we ex-
plore the explicit and implicit correlation by graph modeling of
function calls. Both function feature and correlation are inte-
grated to optimize the network parameters of GCN-CC model,
and the optimized model is used to detect the vulnerable code
clone of OS code in the detection phase. The experiments
conducted on 5 real code repository of OS distributions show
that the proposed framework outperforms the state-of-the-art
approaches. For future work, the more effective inputs of
GCN-CC will be studied. The current function feature is based
on the BoW model and AST structure, and correlations are
explored by function calls. And more various function features

and correlations will be added in our future work. Moreover,
approaches such as target kernel fuzzing will integrate into the
process of code clones confirmation to increase the automatic
degree of vulnerable OS code clone detection.
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