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Abstract—The SQL specification consists of hundreds of state-
ment types, which leads to difficulties in DBMS fuzzing: state-
of-the-art works generally reuse the statements of predefined
types; the limited types cannot cover the full input space and test
the corresponding logic consequently. In this paper, we propose
LEGO, a fuzzer to generate SQL sequences with abundant types
to improve DBMS fuzzing coverage. The key idea of sequence
generation is type-affinity, which indicates the meaningful occur-
rence of SQL type pairs (e.g., INSERT and SELECT). During each
fuzzing iteration, LEGO first proactively explores SQL statements
of different types and analyzes affinities with coverage feedback.
Next, when a new affinity is discovered, LEGO synthesizes new
SQL sequences containing the types progressively.

We evaluate LEGO on PostgreSQL, MySQL, MariaDB, and
Comdb2 against SQLancer, SQLsmith, and SQUIRREL. The
sequence-oriented fuzzing helps LEGO outperform other fuzzers
on branch coverage by 44%–198%. More importantly, in the
continuous fuzzing, LEGO has discovered 102 new vulnerabilities
confirmed by the corresponding vendors, including 6 bugs in
PostgreSQL, 21 bugs in MySQL, 42 bugs in MariaDB, and 33
bugs in Comdb2. Among them, 22 CVEs have been assigned due
to their severe security influences.

Index Terms—DBMS fuzzing, SQL Type Sequence

I. INTRODUCTION

Database management systems (DBMSs) are crucial for
modern data-intensive systems [49]. Serving as the intermedi-
ary between the user and the database, a DBMS offers the
solution to optimize and manage the storage and retrieval
of data [6, 23, 27, 30]. Security vulnerabilities, especially
memory bugs such as buffer overflow are particularly danger-
ous for DBMS because they might allow attackers to steal
information, tamper data, crash systems, and bring heavy
losses [4, 10, 32, 35, 51, 54]. Existing works have focused
on logic, performance, and memory bugs in DBMSs. To test
logic and performance bugs, many representative schemes
utilize differential testing [16, 35, 39]. Recently, many fuzzing
methods are applied to detect memory bugs of DBMSs,
focusing on generating valid SQL queries [37, 46, 53, 54].

The abundance of SQL Type Sequences contained by
generated test cases is crucial for fuzzing a DBMS. As
Figure 1 shows, a test case (surrounded by the grey box) is
an input for a DBMS, and it always consists of a sequence of
SQL statements [24, 40, 50] (surrounded by the orange box).

�Yu Jiang is the corresponding author.

Generally, SQL statements have hundreds of types. Type is
the category divided by the same functionalities, like SELECT
and INSERT. SQL Type Sequence is a sequence of the types
for each SQL statement in a test case (surrounded by the red
box). SQL Type Sequence implicitly describes the semantic
characteristics of a test case, and its abundance is important
to cover the functionalities of a target DBMS. First, specific
DBMS logic must be triggered by a specific type of statement.
For example, testing SELECT statements alone cannot exercise
the logic of INSERT statements. Second, specific DBMS
logic must be triggered by statements of a specific order.
For example, CREATE a table then INSERT into it makes
sense, while INSERT first and CREATE the table next renders
the first statement useless. In short, the abundance of SQL
Type Sequences is determined by both the combination and
permutation of statement types.

*

Original Seed

1:CREATE TABLE t1(v1 INT, v2 INT);
2:INSERT INTO t1 VALUES(1, 1);
3:INSERT INTO t1 VALUES(2, 1);
4:SELECT FROM t1 ORDER BY v1;
5:SELECT v2 FROM t1 WHERE v1=1;

Mutation Areas

Statement

Test Case 

SQL Type 
Sequence

Mutated Seed

Mutate

… …
5:SELECT v2 FROM t1 ORDER BY v1;

Fig. 1. Breakdown of inputs generation in mutation-based DBMS fuzzing.
Executions are performed at test case level, where a test case consists of a
sequence of statements. To generate mutated seeds from an original seed,
fuzzers mutate the inner structure given a predefined SQL type.

However, existing fuzzing works have put hard work into
generating valid test cases since SQL is a highly-structured
language, while neglecting to enrich SQL Type Sequences.
In general, fuzzers could be divided into generation-based [35,
37] and mutation-based [15, 51, 54]. Generation-based fuzzers
generate test cases according to custom rules. Consequently,
the number of states and relationships between sequences are
limited by the rules. For example, SQLsmith mainly generates
SELECT statements, so it will only explore limited state space
and the relationships are limited to the same type.

Mutation-based fuzzers select an test case (also called a
seed) from an input pool, generate many new inputs with
mutation, and save the input back to the pool if its execu-



tion triggers new code regions. To ensure the correctness of
generated seeds, existing works focus on the inner structure
of individual statements. For example, Figure 1 colorizes
the available mutation areas in each statement with a grey
background. Most fuzzers generally first select one individual
statement and perform mutating operations on the mutation
areas to generate a new test case. For example, SQUIRREL
first selects the 5th statement, and then it changes the inner
structure from “WHERE v1=1” to “ORDER BY v1”. Note
that the type of the mutated statement is still “SELECT”, and
both the original and mutated seed have the same SQL Type
Sequence. Therefore, the abundance of SQL Type Sequence
does not increase. As a result, it is hard for existing fuzzers to
explore the full input space and cover the corresponding logic
in the target DBMS. Consequently, generating abundant SQL
Type Sequences can be a promising method to improve the
coverage and overall effectiveness of DBMS fuzzing.

However, generating abundant SQL Type Sequences can be
challenging. First is the state explosion. A DBMS generally
has hundreds of SQL statement types [31], even though given a
maximum sequence length, the total number of all the possible
sequences is numerous. For example, suppose a DBMS has
100 statement types, even though limiting the sequence to
only 5 statements, possible unique sequences will reach 10
billion. Second, many statement sequences make little sense
because the types contained may not be related to each other.
For example, if one statement creates a trigger while another
changes the permissions to access data, the affinity between
them is low. Thus the sequence composed by them has less
contribution to the testing effectiveness. Third, the test cases
with generated SQL Type Sequences may not be suitable
for fuzzing. Suppose a test case is very long and has many
repeated subsequences, a fuzzer might get stuck in handling
it although it contains various types.

In this paper, we propose LEGO, which improves the
effectiveness of DBMS fuzzing in finding memory-safety
bugs by increasing the abundance of SQL Type Sequences.
To tackle the above challenges, LEGO adopts a progressive
approach. The key concept is type-affinity, which describes the
pattern of composing two SQL statements. Specifically, it is
a chronological relation between two adjacent SQL statement
types contained in a test case. First, LEGO employs proactive
affinity analysis guided by DBMS implementation code cover-
age feedback to explore type-affinities at the beginning of each
fuzzing iteration. It picks an existing test case from the corpus,
changes each statement to another type, and determines its
significance by analyzing the coverage. If the change results
in new code coverage, then an affinity will be recorded. Next,
LEGO exploits the affinity by synthesizing new sequences it
induces to further increase coverage. When a new affinity is
discovered, LEGO permutes all SQL Type Sequences contain-
ing the affinity with a limited length. The sequences are then
instantiated to executable test cases. With sequence-enriched
test cases progressively synthesized from affinities discovered
by proactive exploration, LEGO continuously explores the state
space of target DBMSs.

We evaluate LEGO on the latest version of PostgreSQL,
MySQL, MariaDB, and Comdb2 against SQLancer, SQL-
smith, and SQUIRREL. The sequence-oriented fuzzing helps
LEGO cover 198%, 44%, and 120% more branches than
SQLancer, SQLsmith, and SQUIRREL on average, respec-
tively. More importantly, in the continuous fuzzing (i.e., con-
stantly running fuzzing without stopping it until the code
is modified [29]), LEGO finds 102 new vulnerabilities while
others find 11 of them in total. The vulnerabilities include 6
bugs in PostgreSQL, 21 bugs in MySQL, 42 bugs in MariaDB,
and 33 bugs in Comdb2. Among them, 22 bugs are confirmed
as CVEs in the U.S. National Vulnerability Database.

II. SQL TYPE SEQUENCE

Basic concepts. Database Management Systems (DBMSs)
refer to the software used to manage the storage and retrieval
data in databases [49]. Structured Query Language (SQL) is
a domain-specific language used to interact with a DBMS to
mange the data within it [50]. SQL statements are the smallest
execution unit fed into a DBMS. Test cases or queries are used
as input and they are the objects of the basic operations (such
as mutation) for DBMS fuzzers [54], also known as seeds. A
test case always consists of a sequence of SQL statements.

SQL statements types. In general, SQL statements have
hundreds of types [31]. Specifically, a statement type defines
one certain kind of specific operation on a certain type of ob-
ject. For example, CREATE TABLE and CREATE VIEW are
two types. Statement types could be roughly divided into four
categories: Data Definition Language (DDL, e.g., CREATE
TABLE), Data Query Language (DQL, e.g., SELECT), Data
Manipulation Language (DML, e.g., INSERT), Data Control
Language (DCL, e.g., GRANT) [40, 50]. Besides them, some
other types of statements are used to deal with the transaction
within the database (e.g., COMMIT).

CREATE TABLE t1 (a INT,b VARCHAR(100));

INSERT INTO t1 VALUES(1,'name1');

INSERT INTO t1 VALUES(3,'name1');

SELECT * FROM t1 ORDER BY a DESC;

False
SELECT * FROM t1 ORDER BY a DESC;

INSERT INTO t1 VALUES(1,'name1');

INSERT INTO t1 VALUES(3,'name1');

t1.isempty()

ORDER BY 

True

SELECT t1

return

Test Case Q1

CREATE TABLE t1 (a INT,b VARCHAR(100));

Test Case Q2 Flowchart

Fig. 2. An example to illustrate the importance of importing SQL Type
Sequence. The left is two test cases and the right is the flowchart to make
the plan for the SELECT statement. The two test cases on the left contain the
same statement combinations. However, the same SELECT statements will
execute different branches due to the different orders in SQL Type Sequence.

Definition. SQL Type Sequence is a sequence of the types
for each SQL statement in a test case, which abstracts the
execution order of SQL statements inside a test case by type.
Take Figure 2 as an example, the SQL Type Sequences of the
test case Q1 is “CREATE TABLE→ INSERT→ INSERT→
SELECT”, while the SQL Type Sequences of the test case Q2
is “CREATE TABLE→ SELECT→ INSERT→ INSERT”.
The two test cases have the same SQL statements, but the
different SQL Type Sequences.



Importance of abundant SQL Type Sequences. SQL Type
Sequences implicitly characterize the semantics of test cases.
The abundance of SQL Type Sequences is important for ade-
quate DBMS fuzzing. First, the richness of types contained in
sequences is a prerequisite for covering the various functions
of a DBMS. More importantly, some code logic must be
reached by executing some specific sequences. Specifically,
even for the exact same SQL statements, various permutations
will constitute different sequences, and each of which may
cover completely different code regions. For example, the two
test cases Q1 and Q2 in Figure 2 have the same combinations
of four statements (i.e., 1 CREATE TABLE, 1 SELECT, and 2
INSERT). However, Q1 gets sorted data but Q2 obtains empty
results because of the different execution orders. Specifically,
Q1 fetches the data after inserting them, while Q2 queries the
data before they are prepared.

Finally, abundant SQL Type Sequences with statement-level
structure and data mutation can further facilitate fuzzing. Most
existing DBMS fuzzers are skilled in mutating structure and
data in a single SQL statement, not sequences. Abundant type
sequences can increase the breadth of the state space explored
by fuzzing, and fine mutations on top of that can further
increase the depth of exploration. In summary, promoting
the abundance of SQL Type Sequences in the generated test
cases facilitates the exploration of the state space of fuzzers,
thus enabling the discovery of more potential bugs. However,
generating abundant type sequences is fraught with challenges.

Challenge in generating abundant SQL Type Sequences.
Arbitrarily permuting or combining types and listing all pos-
sibilities are two straightforward ways to generate abundant
SQL Type Sequences. However, neither of them is practical
because of the following challenges:

C1: The full state space of SQL Type Sequences is enor-
mous. Arbitrarily permuting can only explore limited space,
while listing all possibilities will suffer from state explosion.
To deal with different business scenarios, enterprise DBMSs
usually define lots of statement types for different function-
alities. For example, PostgreSQL’s manual [31] describes 188
types of SQL statements. Assuming that a test case contains
20 statements on average, the number of all possible sequences
is 3×1045. In our experiment, SQUIRREL executes 10–60 test
cases per second, and it would take more than 1035 years to
execute all the possible SQL Type Sequences.

C2: Many sequences of SQL types are meaningless. Con-
sequently, listing all sequences or arbitrarily permuting types
suffer from meaningless SQL Type Sequences. In other words,
generating them does not contribute to the abundance. The
meaningless is reflected in two aspects: 1 Many statement
sequences may easily bring semantic errors. For instance,
if “SELECT * FROM t2” is executed before “CREATE
TABLE t2 (v0 int)”, their coverage is low due to se-
mantic errors. 2 Many statement types are not closely related,
and forming them into a sequence does not cover new logic.
For example, one statement creates a table, while another
changes the permissions to access specific data. There may
be no relationship between them.

C3: The test cases with generated SQL Type Sequences
may not be suitable for fuzzing. Fuzzing is computationally
intensive and requires a large number of executions with
generated test cases to find bugs. Consequently, fuzzers prefer
seeds with high coverage that can be run quickly to perform
mutations. Even though a test case has abundant SQL Type
Sequences, it may still be hard to assist fuzzing. For example,
in our experiments, we find a seed fed to SQUIRREL that
contains 945 SQL statements. It repeatedly calls hundreds of
INSERT statements to store data. These statements have very
similar behaviors, contributing little to coverage but increasing
the workload to parse and execute. As a result, SQUIRREL
hung for 23 minutes while executing this seed.

Status of existing fuzzers. Existing fuzzers mainly focus
on generating syntactically and semantically correct seeds,
while neglecting to generate abundant SQL Type Sequences.
Generation-based fuzzing and mutation-based fuzzing are two
main types. Generation-based fuzzers (e.g., SQLsmith and
SQLancer) generate seeds based on custom rules. To meet
challenges C1 and C2, a compromise solution is to manually
add a large number of rules for generating sequences. How-
ever, the solution can be labor-intensive, while the abundance
remains limited. For challenge C3, it is possible to simplify
the rules to improve execution speed. But the simplification
is likely to decrease coverage. Mutation-based fuzzers (e.g.,
SQUIRREL and RATEL) mutate seeds by changing existing
seeds, but most of them only change the structure or data
in individual statements. Therefore, the sequence and the
relationship the test case contained will not be changed. For
challenges C1 and C2, the key technical difficulty is generating
meaningful and abundant sequences from the large state space.
However, existing fuzzers lack approaches to address that.
For challenge C3, existing approaches include selecting more
times of seeds with fast execution or trimming seeds guided
by coverage. However, they may still produce large seeds that
tend to make them stuck.

Original Seed

1:SET@@SESSION.explicit_for_timestamp=OFF;

...


8:DROP TABLE IF EXISTS t1;

9:CREATE temporary TABLE t1(a INT, b INT, c

VARCHAR(100));

10:INSERT ignore INTO t1 VALUES(1, 1,

'name1');

11:ALTER SYSTEM major freeze;


--... Insert a large amount of data to t1  
231:SELECT * FROM t2;

232:INSERT ignore INTO t2 VALUES('Water'); 
232:CREATE TRIGGER v0 AFTER UPDATE ON t2 FOR 
EACH ROW INSERT INTO t2;

234:SELECT * FROM t2 GROUP BY full_name;

1 2 3 6 ...

... ...

DROP TABLE=>1     CREATE TABLE=>2
INSERT=>3         SELECT=>4
CREATE TRIGGER=>5 ALTER SYSTEM=>6

4 3 5 4 ...

2 3 5 4

Synthetic Seed (CVE-2021-35643) 

Type-
Affinities
 Affinity Analysis

Sequence Synthesis

1 2

2 3

3 6

3 5

5 4

.. ...

CREATE TABLE v0 (v1 YEAR ZEROFILL ZEROFILL);

INSERT LOW_PRIORITY IGNORE INTO v0 VALUES ( NULL ),

(22471185.000000),('x' LIKE NULL);

CREATE TRIGGER v0 AFTER UPDATE ON v0 FOR EACH ROW

INSERT INTO v0 SELECT * FROM v2 GROUP BY 89,34

ORDER BY RANK () OVER HELP IS TRUE ;

SELECT LEAD (TRUE) OVER (ORDER BY v1 RANGE BETWEEN

1468.000 FOLLOWING AND 16 FOLLOWING ) v1 FROM v0;

Fig. 3. An example to show the process of affinity analysis and sequence
synthesis. For a seed that hits new branches, LEGO first analyzes type-
affinities in original SQL Type Sequence. With the analyzed affinities, LEGO
synthesizes more SQL Type Sequences and instantiates them into test cases.

Basic Idea of LEGO. LEGO explores the SQL type space
to proactively analyze the affinities between types. It then
exploits these affinities to generate high-quality test cases,
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Fig. 4. Design of LEGO. 1) In Step 1, LEGO explores the SQL type space to proactively analyze the affinities. It picks an existing seed from the seed pool,
performs sequence-oriented mutation to change each statement’s type. If the mutated seed covers new branches in the target DBMS, then the type-affinity
caused by type changes will be recorded. 2) In Step 2, LEGO exploits type-affinities to synthesize test cases progressively. When a new affinity is discovered,
LEGO permutes all SQL Type Sequences containing the type-affinity. The sequence is then instantiated to executable test cases to feed into the target DBMS.
With sequence-enriched seeds progressively synthesized from affinities discovered by proactive exploration, LEGO continuously explores the state space of
the target DBMS and finds its bugs.

which contribute to the abundance of SQL Type Sequence
and are suitable for fuzzing.

To address challenges C1 and C2, LEGO introduces type-
affinity to abstract the problem of synthesizing meaningful
SQL Type Sequences. Specifically, type-affinity is a chrono-
logical relation between the types of adjacent SQL statements.
LEGO uses type-affinity to determine what type of statements
should be concatenated after an existing one, thus enabling
the exploration of a wide range of state spaces while ensuring
that meaningful sequences are generated. LEGO first explores
new type-affinities by performing sequence-oriented mutations
on existing test cases. To ensure that affinities are meaningful,
LEGO performs affinity analysis only on seeds that cover new
branches in the target DBMS. For challenge C3, to be suitable
for fuzzing and to generate abundant sequences, we limit the
maximum sequence length while using sequence synthesis to
accommodate various sequence lengths. Although some bugs
that can only be triggered by long repeated SQL sequences.
However, handling them may degrade the performance of
fuzzer or even cause fuzzer to be stuck.

Figure 3 shows the process of LEGO to produce a test
case that crashes MySQL server. The bug has been as-
signed CVE-2021-35643 by Oracle [28] because of the se-
vere consequences: it could be used to break down the
MySQL servers directly via the network. To generate the
test case, a specified SQL Type Sequence should first be
synthesized. For simplicity, we use 1 to 6 to represent
the type “DROP TABLE”, “CREATE TABLE”, “INSERT”,
“SELECT”, “CREATE TRIGGER”, and “ALTER SYSTEM”,
respectively. Note the original test case is rather long and the
figure only shows a part of that. LEGO first extracts type-
affinities in its SQL Type Sequence. For example, from line
8 to 11, the sub sequence is “ 1 → 2 → 3 → 6 ”, and from
line 231 to 234, the sub sequence is “ 4 → 3 → 5 → 4 ”.
From the SQL Type Sequence, LEGO finds a new type-
affinity, namely “an INSERT statement could be followed by
a CREATE TRIGGER statement” (i.e., 3 → 5 in the figure).

With the new type-affinity, LEGO synthesizes new se-
quences containing it and instantiates the sequences into test
cases. The synthesized test cases are usually short in sequence

length, simple in SQL structures but abundant in SQL types,
and some of them may cover new coverage or directly trigger
new crashes. In Figure 3, we also show a synthesized test
case that crashes the MySQL server. The sequence of it is
“ 2 → 3 → 5 → 4 ”. We can find that the new seed is much
shorter while having a different sequence. Seeds like it can
be executed at a high speed and help fuzzer to explore new
state-space quickly. Based on the specified sequence, LEGO
finally triggers the crash.

III. DESIGN OF LEGO

Figure 4 illustrates the overall sequence-oriented fuzzing
process of LEGO, which mainly contains two steps in each
iteration: 1) proactive affinity analysis and 2) progressive
sequence synthesis. The following text presents the details.

A. Proactive Affinity Analysis

As aforementioned, abundant sequences in generated test
cases can improve the effectiveness of DBMS fuzzing. How-
ever, arbitrarily permuting or combining various types to form
SQL Type Sequences are difficult to work since the statements
may not be closely related to each other. In addition, the
space of all possible sequences is huge. In contrast, LEGO
proactively produces new sequences by employing sequence-
oriented mutation. Sequences that cover new code regions of
mutated seeds will be considered meaningful and the type-
affinities in them will be extracted.

1) Type-Affinity: In reality, the sequence of statement types
in a test case always appear with a certain pattern. For
example, the type sequence “CREATE TABLE→ INSERT→
SELECT” is a common pattern to create, update, and query
data. To better describe the pattern and abstract the problem,
we define statement type-affinity, which is a chronological
relation between adjacent statements. Specifically, if one state-
ment follows close to another statement, we consider the types
of the two statements to have a chronological relation. We
use the partially ordered tuple (type1, type2) to represent this
relation as a type-affinity, which means that type1 could be
followed by type2. For example, when a INSERT statement
follows close to a CREATE TABLE statement in a real seed,
then type INSERT has the chronological relation to type



CREATE TABLE. Then the type-affinity (CREATE TABLE,
INSERT) is built. Based on type-affinities, LEGO continually
selects the next statement type to synthesize new sequences
and instantiates them to test cases that have rich semantics.

2) Proactive Sequence-Oriented Mutation: To analyze
type-affinities, LEGO explores the sequence state space by
sequence-oriented mutation to produce SQL Type Sequences
different from the current test case. LEGO follows the the-
ories behind coverage-guided fuzzing to detect meaningful
sequences. Coverage-guided fuzzers gradually explore the
program’s state space with coverage feedback heuristically.
LEGO reuses this principle to find meaningful sequences inside
the huge state space of SQL Type Sequences. Specifically,
when a mutated SQL Type Sequence finds new branches,
the combination is regarded as meaningful. Consequently,
we record the type-affinities resulting from the change for
further sequence synthesis. On the contrary, when a generated
sequence does not cover new branches, it is not good for
expanding coverage and will be discarded.

Algorithm 1: Sequence-Oriented Mutation
Input : Input seed: Q,

Type-affinities: T ,
Target DBMS: D

1 for statement s ∈ Q do
2 Q1 = substitute(s, Q);
3 if hitNewBranch(Q1, D) then
4 analyzeAffinities(Q1, T);
5 end
6 Q2 = insertAfter(s, Q);
7 if hitNewBranch(Q2, D) then
8 analyzeAffinities(Q2, T);
9 end

10 Q3 = delete(s, Q);
11 if hitNewBranch(Q3, D) then
12 analyzeAffinities(Q3, T);
13 end
14 end

Algorithm 1 illustrates the process of sequence-oriented
mutation. When a seed needs to be mutated, we mutate each of
its statements in turn by substitution, insertion, and deletion.
1 Substitution: The mutation changes the current statement
with another statement. It first randomly selects a different
statement type and then instantiates it into a statement to
replace the current one. To fix semantic errors, it will analyze
the dependencies following the methods of SQUIRREL and
refill in SQL data. The change in type results in a change of the
SQL Type Sequences. If the mutated seed hits new branches,
it will be preserved and its type-affinities will be analyzed.
2 Insertion: This mutation adds a random SQL statement after
the current statement. Like the substitution, it selects a random
statement type, instantiates it to a SQL statement, and fixes
semantic errors. The mutated seed covering new branches will
be retained and its type-affinities will be recorded. 3 Deletion:
The mutation removes the current statement to compose a
new test case. The test case will be validated and refilled in
concrete data. LEGO will also analyze the affinities brought by

the deletion from the mutated seed that finds new branches.
We take Figure 5 to illustrate the process of sequence-

oriented mutation. The original seed has 5 statements. Its
SQL Type Sequence is “CREATE TABLE→ INSERT→
INSERT→ UPDATE→ SELECT”. When the 4th statement
is being mutated, suppose we substitute it with a DELETE
statement. The change results in a new SQL Type Se-
quence, and two new type-affinities: “INSERT→ DELETE”
and “DELETE→ SELECT” are also generated. Second, we
insert after it with a DELETE statement. The mutation helps
us find two new type-affinities: “UPDATE→ DELETE” and
“DELETE→ SELECT”. Finally, we delete the 4th statement.
One new type-affinity “INSERT→ SELECT” is created.

StatementTest Case SQL Type Sequence

Mutated Seed

Substitution
1:CREATE TABLE t1(v1 INT, v2 INT);
2:INSERT INTO t1 VALUES(1, 1);
3:INSERT INTO t1 VALUES(2, 1);
4:DELETE FROM t1 WHERE v1=1; 
5:SELECT * FROM t1 ORDER BY v1; 

Original Seed

1:CREATE TABLE t1(v1 INT, v2 INT);
2:INSERT INTO t1 VALUES(1, 1);
3:INSERT INTO t1 VALUES(2, 1);
4:UPDATE t1 SET v1=1; 
5:SELECT * FROM t1 ORDER BY v1;

Insertion

1:CREATE TABLE t1(v1 INT, v2 INT);
2:INSERT INTO t1 VALUES(1, 1);
3:INSERT INTO t1 VALUES(2, 1);
4:UPDATE t1 SET v1=1; 
5:DELETE FROM t1 WHERE v1=1; 
6:SELECT * FROM t1 ORDER BY v1;

1:CREATE TABLE t1(v1 INT, v2 INT);
2:INSERT INTO t1 VALUES(1, 1);
3:INSERT INTO t1 VALUES(2, 1);
4:SELECT * FROM t1 ORDER BY v1;

Deletion

Fig. 5. LEGO employs sequence-oriented mutation to compose new SQL
Type Sequences. Mutations include substitutions, insertions, and deletions.

3) Type-Affinity Analysis: As mentioned earlier, type-
affinities abstract the principle of combining different SQL
statements. Analyzing affinities helps us list new permutations
of SQL statement types, so that abundant and meaning-
ful sequences can be composed. Sequence-oriented mutation
proactively explores the affinities by producing test cases with
different SQL Type Sequences. To extract the type-affinities
of test cases, the prerequisite is identifying the SQL types of
the statements. This is challenging because a DBMS may have
many or even its own unique types. For example, PostgreSQL
defines 188 SQL statement types, 1,025 keywords, and 349
subclause types (e.g., expression and “WITH” clause). We
use an AST model to accurately identify statement types. The
model is built from DBMS’s grammar specification to support
identifying all statement types and other structures.

Algorithm 2 illustrates the process of affinity analysis. It
parses the test case and saves the result into type-affinity T :
a Map whose key is the statement type and value is a set
of the next statement types that could follow closely to the
key. The algorithm parses each SQL statement in order. It
identifies the type of the current SQL statement. With the
recorded type of the last statement, it learns the type-affinity:
lastType → currentType. Specifically, it first parses each



Algorithm 2: Type-Affinity Analysis
Input : Test case: Q,

Type-affinity map (type→Set⟨type⟩): T
1 lastType = NULL;
2 for statement s in Q do
3 currentType = parse(s);
4 if lastType != NULL then
5 if lastType == currentType then
6 continue;
7 end
8 if lastType /∈ T then
9 affinity = Set();

10 T [lastType] = affinity;
11 end
12 add(T [lastType], currentType);
13 end
14 lastType = currentType;
15 end

SQL statement in the test case to get its type (line 3). If
currentType is the same as lastType, it will ignore it, since
composing only one type does not contribute much to the
abundance of SQL Type Sequences (lines 5-7). If the type of
the last statement (lastType) does not recorded, then a set is
created and T adds this set as the value for lastType. Next, the
algorithm adds the currentType into the set of lastType in T
(lines 8-12). After parsing one statement, the algorithm will
update lastType (line 14) and try the next SQL statement.
After processing all statements, LEGO analyzes all possible
type-affinities appearing in the test case.

B. Progressive Sequence Synthesis

The analyzed type-affinities supply the possibility to syn-
thesize abundant and meaningful sequences of SQL state-
ments. Beginning from specific starting statement types (e.g.,
CREATE TABLE), LEGO progressively synthesizes all pos-
sible SQL Type Sequences shorter than a specified length
in accordance with type-affinities. Take Figure 6 (a) as an
example, assuming that the root node represents a starting
type and each path from the root to other nodes represents
a SQL Type Sequence. With analyzed affinities, LEGO tries
to produce all SQL Type Sequences. Then LEGO instantiates
sequences into test cases with non-repetitive structures to
explore the state space of the target DBMS.

As new type-affinities continue to be discovered, the chal-
lenge is progressively synthesizing SQL Type Sequences with
the newly found affinities. In other words, LEGO tries to
generate all possible type sequences not longer than the given
length. When a new affinity is found, for effectiveness, we
want to only synthesize all new type sequences containing it.
As Figure 6 shows, when a new affinity “ 4 → 6 ” is found,
we do not want to re-synthesize all the SQL Type Sequences,
but generate the sequences only containing this affinity, which
is marked as the red arrows in Figure 6 (b).

To achieve the progressive synthesis, a data structure called
Prefix Sequence is designed to record all the generated se-
quences of specified lengths which end with a certain SQL
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Fig. 6. When one new affinity is found, LEGO only synthesizes all new type
sequences containing it.

statement type. Specifically, suppose we use a vector S to
store all sequences that have been generated that are not longer
than length LEN . Prefix Sequence is a Map whose keys are
a pair (τ , λ) and whose values are a vector of the indexes in
S that corresponding sequence ends with the type τ and has
the length λ. When LEGO finds a new type-affinity t1 → t2,
it will find all possible prefix sequences ending with t1 that
are shorter than LEN according to Prefix Sequence, and then
it will synthesize all new sequences that are not longer than
LEN containing this new type-affinity.

Algorithm 3: Progressive Sequence Synthesis
Input : Length of the target sequence: LEN ,

New type-affinity: t1 → t2,
Prefix sequence: PS,
Type-affinity map: T ,
Vector of generate sequences: S

1 for level← 1 to LEN − 1 do
2 prefixSeqIndex = PS([t1, level]);
3 if isEmpty(prefixSeqIndex) then
4 continue;
5 end
6 for seqIndex ∈ prefixSeqIndex do
7 seq = clone(S[seqIndex]);
8 pushBack(seq, t2);
9 pushBack(S, clone(seq));

10 addRecord(PS, t2, level + 1,length(S)-1);
11 listseq(level + 1, t2, seq);
12 end
13 end
14 Function listSeq(level, nodeType, seq):
15 if level ≥ LEN then
16 return;
17 end
18 for nextType ∈ T [nodeType] do
19 pushBack(seq, nextType);
20 listSeq(level + 1, nextType, seq);
21 pushBack (S, clone(seq));
22 addRecord(PS, nextType,

level + 1,length(S)-1);
23 pop(seq);
24 end
25 End Function

Algorithm 3 shows the overall process of synthesizing new
sequences when a new type-affinity t1 → t2 is found. The
possible sequences containing the affinity will be saved in
vector S. For each allowed length, the algorithm checks for the



existence of an already generated sequence with that length,
ending with t1 in the new type-affinity. If not, the process
will try the next length (lines 2-5). Or else, it will first add t2
after each found prefix sequence seq and push back the clone
of seq to S (lines 6-9). The index of the output sequence
is also recorded into PS (line 10). Then it will synthesize
all sequences based on seq. Note that because t1 → t2 is
a new type-affinity, all sequences generated based on that are
new sequences. Then the algorithm calls the recursive function
listSeq to list all possible sequences with the specified length
(line 11). Function listSeq (lines 14-25) tries to compose all
possible next types based on the current type and all type-
affinities. Each synthesized sequence will be recorded. When
the sequence length reaches the specified limit, it will return to
try the next combination. For example, suppose the length of
target sequence is 2, current sequence is “CREATE TABLE”,
type-affinity is “CREATE TABLE→ [INSERT, SELECT]”,
then we get all possible sequences of length 2: “CREATE
TABLE, INSERT” and “CREATE TABLE, SELECT”.

After synthesizing all the sequences, LEGO instantiates
each sequence into an executable test case. The challenge is
instantiating valid test cases from type affinities. Specifically,
we need to instantiate corresponding SQL statements just
from a type. It is difficult to ensure syntactic and seman-
tic correctness. LEGO addresses the issue by utilizing AST
(abstract syntax tree) [48] as an intermediate representation
between test cases and types. In instantiation, the dependencies
between statements are also analyzed and maintained. The
instantiation includes three steps. First, AST synthesis. When
finding a new seed, LEGO parses each of its statements to
extract AST structures and saves them into the global library.
In instantiation, for each entry in the SQL Type Sequences,
LEGO randomly selects a type-matched structure from the
library to build the AST. Second, statement concatenation.
LEGO translates the AST of each entry into SQL statements
and concatenates them into a candidate SQL test case. Finally,
validation. The candidate test case is re-translated to an AST.
The dependencies between different data are analyzed, and
the AST will be filled with concrete values that satisfy all
dependencies. After that, the AST is translated to an exe-
cutable test case and fed to the target DBMS. Because of the
randomness in selecting structures, one SQL Type Sequence
will be instantiated multiple times to increase the diversity for
combinations of AST structures and type sequences.

For example, with the sequence “PRAGMA→ CREATE
TABLE→ INSERT”, LEGO first constructs the SQL state-
ment skeleton and instantiates some SQL data with random
values, like “PRAGMA foreign keys=on; CREATE TABLE
v0(x INT PRIMARY KEY, y INT REFERENCE); INSERT
INTO v2(v1) VALUES(100);”. This test case contains seman-
tic errors because TABLE v2 is not exist. Then, LEGO builds
the data dependency graph of the SQL statement and fixes
it with the correct data. Finally, the instantiated test case is
“PRAGMA foreign keys=ON; CREATE TABLE v0(x INT
PRIMARY KEY, y INT REFERENCE); INSERT INTO v0(x)
VALUES(100);”.

IV. IMPLEMENTATION

LEGO is implemented based on AFL++ [13]. The affinity
analyzer and the sequence synthesizer are two main compo-
nents. The affinity analyzer implements Algorithm 1 and 2 to
analyze and record the new type-affinities. The synthesizer
implements Algorithm 3 to synthesize new SQL Type Se-
quences. LEGO integrates the two components as a custom
mutator of AFL++. Besides, we also implement the syntax-
preserving mutations as conventional mutation methods.

The affinity analyzer and the sequence synthesizer are sup-
ported by the AST parser. LEGO reuses the IR (intermediate
representation) defined by SQUIRREL and implements AST
parser based on Bison 3.3.2 [7] and Flex 2.6.4 [14]. Since the
specifications of the latest DBMSs like PostgreSQL contain
lots of dialects or unique features, we use a lot of rules in
LEGO’s AST parser to make sure it supports these features.
Specifically, for the parser of MariaDB and MySQL, We
use 748 definitions of tokens for Flex, 852 declarations and
2855 rules for Bison. And for the parser of PostgreSQL and
Comdb2, the numbers are 494, 695, and 3179, as well as 201,
205, and 455, respectively. Besides, we also write logic to
translate these newly added rules to IRs and transform IRs
back. To better adapt to DBMSs, we write their fuzzing drivers
using AFL++’s persistent mode.

V. EVALUATION

We evaluated LEGO in terms of its ability to discover new
vulnerabilities, as well as its efficiency in exploring the state
space of the target DBMSs. Our evaluation aims at answering
the following research questions:

• RQ1: Can LEGO discover new vulnerabilities?
• RQ2: Can LEGO perform better than other state-of-the-

art DBMS fuzzers?
• RQ3: How effective are sequence-oriented algorithms?

A. Evaluation Setup

Tested DBMSs and compared fuzzers. To evaluate the
generality and efficiency of LEGO, we used the latest version
of four open-source DBMSs for evaluation, namely Post-
greSQL, MySQL, MariaDB, and Comdb2, which are widely
used in industry and academic research. PostgreSQL [26, 30]
is a object-relational DBMS with over 30 years of active de-
velopment. MySQL [27, 47] is one of the most popular open-
source DBMSs. MariaDB [5, 23] is a community-developed
fork of MySQL. Comdb2 [11, 36] clusters RDBMS built on
optimistic concurrency control techniques. To encompass as
many state-of-the-art DBMS fuzzers as possible, we compared
LEGO to popular fuzzer SQUIRREL and SQLancer from the
academy and SQLsmith from the industry.

Basic setup. We performed all experiments on a machine
running 64-bit Ubuntu 20.04 with 128 cores (AMD EPYC
7742 Processor @ 2.25 GHz) and 488 GiB of main memory.
All the DBMSs were instrumented with AddressSanitizer
(ASAN) [38]. For each fuzzer, we used their default configu-
rations, such as instrumentation methods and seed corpus. We



TABLE I
LEGO DISCOVERED 102 NEW VULNERABILITIES (POSTGRESQL: 6, MYSQL: 21, MARIADB: 42, COMDB2: 33) WHILE OTHERS FOUND 11 IN TOTAL.
[UAF: USE-AFTER-FREE, BOF: BUFFER OVERFLOW [HEAP (H), STACK (S)], AF: ASSERTION FAILURE, SEGV: SEGMENTATION VIOLATION, UAP:

USE-AFTER-POISON, NPD: NULL POINTER DEREFERENCE, UB: UNDEFINED BEHAVIOR]

DBMS Component Bug Type and Number Identifier

PostgreSQL Optimizer BOF(1), AF(1), SEGV(2) BUG #17097, BUG #110303, BUG #17152, BUG #17151
PostgreSQL Parser AF(1) BUG #17094
PostgreSQL DML AF(1) BUG #17067
MySQL Optimizer BOF(3), SBOF(1), NPD(4),

HBOF(1), UAF(1), AF(2)
CVE-2021-2357, CVE-2021-2055, CVE-2021-2230,
CVE-2021-2169, CVE-2021-2444

MySQL DML SBOF(1), SEGV(2) CVE-2021-35645
MySQL Auth SBOF(1), SEGV(2) CVE-2021-35643
MySQL Storage SEGV(1), AF(2) CVE-2021-35641
MariaDB Optimizer NPD(2), BOF(1), UAP(3),

SEGV(2), AF(1)
CVE-2022-27376, CVE-2022-27379, CVE-2022-27380,
MDEV-26403, MDEV-26432, MDEV-26418, MDEV-26416,
MDEV-26419, MDEV-26430

MariaDB DML BOF(1), UAP(1), AF(1), SEGV(1) CVE-2022-27377, CVE-2022-27378, MDEV-26120,
MDEV-25994

MariaDB Parser BOF(1), UAF(2), SEGV(1) CVE-2022-27383, MDEV-26355, MDEV-26313, MDEV-26410
MariaDB Storage SEGV(7), UAP(2), UAF(2), BOF(2) CVE-2022-27385, CVE-2022-27386, MDEV-26404,

MDEV-26408,MDEV-26412, MDEV-26421, MDEV-26434,
MDEV-26436, MDEV-26420, MDEV-26408, MDEV-26431,
MDEV-26432, MDEV-26433

MariaDB Item AF(4), SEGV(3), UAP(2), UAF(1) MDEV-26405, MDEV-26407, MDEV-26411, MDEV-26414,
MDEV-26438, MDEV-26428, MDEV-26417, MDEV-26434,
MDEV-26437, MDEV-26427

MariaDB Lock SEGV(2) MDEV-26425, MDEV-26424
Comdb2 Bdb UB(6) CVE-2020-26746
Comdb2 Berkdb BOF(1), UB(7) CVE-2020-26745
Comdb2 Csc2 BOF(1) CVE-2020-26744
Comdb2 Db UB(4), UAF(1), SEGV(3) CVE-2020-26743
Comdb2 Mem BOF(1), HBOF(1), SEGV(1) CVE-2020-26741, CVE-2020-26742
Comdb2 Sqlite UB(5), SEGV(2) –

Total 102 bugs, 22 CVEs

tried to run as many tests as possible to make a comprehen-
sive comparison between LEGO with other fuzzers. However,
we encountered some compatibility issues. Specifically, since
SQLsmith does not officially support the syntax of MySQL,
MariaDB, and Comdb2 [41], we only compared LEGO against
SQLsmith on PostgreSQL. We ran each DBMS with one
fuzzer for 24 hours, which is a widely used time setup. Each
fuzzer instance was run separately in a docker with one CPU
core. To distinguish bugs, we first got them from unique
crashes by comparing the call stack. To improve accuracy,
we also further analyzed the bugs manually.

B. DBMS Vulnerability Detection

1) Overall Results: The four tested DBMSs are widely used
by users and well tested by engineers, making it difficult to
find new bugs. Nevertheless, LEGO managed to detect 102
vulnerabilities in continuous fuzzing, while others found only
11 of them in total. Specifically, SQLancer and SQLsmith
did not find any bugs. SQUIRREL found 3 bugs in MySQL
and 8 bugs in MariaDB, respectively. Table I shows LEGO
discovered 6, 21, 42, and 33 bugs in PostgreSQL, MySQL,
MariaDB, and Comdb2, respectively. Some of these vulnera-
bilities can be exploited in just a few steps and have serious
repercussions. Specifically, among 102 vulnerabilities, there
are 61 vulnerabilities (17 buffer overflows, 7 use after frees,
29 segmentation violations, and 8 use-after-poisons) that are
very dangerous. They could be powerful attack primitives
which lead to arbitrary code execution. Specifically, they
can be exploited to attack the DBMS server through the
network to control the system or elevate privileges. In the
other words, these bugs could cause a high availability impact

on the DBMS server by an attacker. There are also 6 null
pointer dereferences, 13 assertion failures, and 22 undefined
behaviors, which indicate the internal errors of DBMSs and
might lead to denial-of-service by crashing the DBMS or other
unexpected damages.

We have actively reported all the bugs to the corresponding
DBMS vendors and received their confirmation feedback. At
the time of the paper writing, 22 bugs have been confirmed
as CVEs in the U.S. National Vulnerability Database. Among
them, according to CVSS score [12], 8 CVEs are flagged as
high-risk, 8 CVEs are flagged as medium-risk, and 6 CVEs
are reserved at the request of the vendor (unpublished and
have no score) due to their high severity and complexity.
The results demonstrate that sequence-oriented fuzzing could
help LEGO to explore the unexpected states, which may
lead to serious vulnerabilities in target DBMSs. We analyzed
the bugs and found that many of them were related to the
unexpected SQL Type Sequence. Following is a case study to
show the effectiveness of LEGO for detecting vulnerabilities
in PostgreSQL which has existed for about 2 years prior to
the writing of the paper.

2) Case Study: In this section, we introduce and analyze a
SEGV in PostgreSQL. The bug lies in PostgreSQL’s optimizer
component. It happens when the optimizer makes the plan for
the query of a clause. Specifically, the bug is triggered by the
unexpected sequence which composes the NOTIFY statement
and the WITH clause.

The mechanism to trigger the bug. Figure 7 shows a test
case that can trigger the bug. First, it executes the CREATE
TABLE statement to create a table v0 in PostgreSQL. Then
it creates an instead rule on the INSERT operation for table



1: CREATE TABLE v0( v4 INT, v3 INT UNIQUE, v2 INT , v1 INT UNIQUE ) ;

2: CREATE OR REPLACE RULE v1 AS ON INSERT TO v0 DO INSTEAD NOTIFY COMPRESSION;

3: COPY ( SELECT 32 EXCEPT SELECT v3 + 16 FROM v0 ) TO STDOUT CSV HEADER ;

4: WITH v2 AS (INSERT INTO v0 VALUES (0)) DELETE FROM v0 WHERE v3 = - - - 48;

Fig. 7. A test case that can trigger a SEGV in PostgreSQL, which composes
NOTIFY and WITH into a sequence.

v0, which executes an NOTIFY instead of inserting values.
After executing the COPY operation to transfer data, it uses
an WITH clause to create a temporary view, which updates
the data of v0 (i.e., inserts one value and deletes some
other records). However, the SQL Type Sequence “CREATE
RULE→ NOTIFY→ COPY→ WITH” constructs a logic that
is not considered in PostgreSQL.

Root Cause Code in Rewrite 

Crash Code in Optmizer Component :

static List * RewriteQuery(Query *parsetree, List *rewrite_events)

{ ...
// Recursively process any insert/update/delete statements in WITH 
foreach(lc1, parsetree->cteList){

CommonTableExpr *cte = lfirst_node(CommonTableExpr, lc1);

Query *ctequery = castNode(Query, cte->ctequery);

List *newstuff;

newstuff = RewriteQuery(ctequery, rewrite_events);

// Handle single-statement DO INSTEAD rules
if (list_length(newstuff) == 1){

// Push the single Query back into the CTE node

ctequery = linitial_node(Query, newstuff);

// Add code to handle the case of NOTIFY statement to fix the bug 
...

Assert(!ctequery->canSetTag);

cte->ctequery = (Node *) ctequery;

}

void replace_empty_jointree(Query *parse){

...

// parse->jointree is null causing the crash
if (parse->jointree->fromlist != NIL)return;  ... 
parse->jointree->fromlist = list_make1(rtr); }

Component :

Fig. 8. The crash code of the SEGV and the fixing methods. The root cause
of the bug is that the rewrite component ignores the situation when a NOTIFY
statement is followed by a WITH statement in a test case.

Figure 8 shows the relevant crash code to this bug, as well
as the fixing methods. PostgreSQL crashes in its optimizer
component’s replace_empty_jointree function when
the backend process makes plans for the WITH statement. The
root cause of this bug is in PostgreSQL’s rewrite component,
which ignores the situation when a NOTIFY statement is
followed by a WITH statement. Specifically, since the NOTIFY
statement is associated with the INSERT operation for table
v0, PostgreSQL will invoke the rewrite rule to replace the
insert operation “INSERT INTO v0 VALUES (0)” in the
WITH statement with a NOTIFY statement. In the code, Post-
greSQL calls the RewriteQuery function to process insert
statements in WITH clauses. However, NOTIFY commands
are not supported to replace the INSERT statement in a WITH
clause. In other words, it misses the case where a DML [40]
statement is rewritten by a NOTIFY statement. As a result,
PostgreSQL gets an NULL jointree which causes the
SEGV in replace_empty_jointree in planning later.

The developers of PostgreSQL responded that they currently
lack the support to rewrite INSERT/ UPDATE/ DELETE
statement with NOTIFY in a WITH clause. And they missed
the checks of the case. They fixed this issue and added new test
cases which have the SQL Type Sequence “CREATE RULE→
NOTIFY→ COPY→ WITH” to do regression test.

The reason for detecting the bug only by LEGO. The
bug is invoked by an unexpected SQL Type Sequence, which
is rarely used by testers, and as a result, the bug hides for
a long time. With the analyzed type-affinities, LEGO synthe-
sizes abundant SQL Type Sequences containing the expected
sequence. Based on the type sequence of corresponding syn-
thesized seeds, LEGO mutates them into more seeds effectively
and finally synthesizes the specific test case to trigger this
bug. Other fuzzer are hard to compose the specific SQL
Type Sequence thus they cannot find the bug. Specifically,
SQLsmith mainly generates SELECT SQL statements, which
would ignore the bugs composed of different types of SQL
statements. SQLancer generates test cases based on custom
pattern rules mainly for SELECT statements, while only a
limited number of SQL Type Sequences can be generated.
SQUIRREL generates test cases mainly by changing the struc-
ture or data in one individual statement, so it is hard to
generate new sequences of SQL types beyond the sequence
contained in the existing seeds. Consequently, the bugs which
have new SQL Type Sequences will be missed by them.

C. Comparison with Other DBMS Fuzzers

We evaluated fuzzers using two metrics, namely branches
covered and bugs triggered. The two metrics are used as the
standard in fuzzing evaluation [8, 17, 44], and have been
widely used in fuzzing works [35, 42, 54]. To evaluate LEGO,
we compared it against SQLancer, SQLsmith, and SQUIRREL.
For a fair comparison, when we finished fuzzing, we collected
the seeds generated by each fuzzer and rerun the input seeds
to uniform the branch coverage. In addition, the bugs were
distinguished and identified by comparing the call stack and
manual analysis.
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Fig. 9. Number of branches covered by LEGO, SQUIRREL, SQLancer, and
SQLsmith on 4 DBMSs in 24 hours.

Coverage. Figure 9 demonstrates the branches covered
by those fuzzers over 24-hour fuzzing. It shows that LEGO
performed better. Specifically, LEGO covered 198%, 44%,
and 120% more branches than SQLancer, SQLsmith, and
SQUIRREL on average, respectively. The fundamental reason
for improving coverage is that DBMSs are rich in states,
and the states are sensitive to the type and execution order
of SQL statements. The same set of SQL statements can



trigger different code regions when executed with different
orders. Since LEGO focuses on generating abundant SQL
Type Sequences, thus it is sensitive to the order of execution
of statements and can cover more code regions as well as
unlock bugs hidden in them. SQLancer and SQLsmith are two
state-of-the-art DBMS fuzzers that generate test cases from
rules. However, they could only generate limited SQL Type
Sequences. Specifically, SQLancer continuously generates test
cases for fuzzing based on custom pattern rules, while only
a limited number of SQL Type Sequences can be generated.
Furthermore, SQLsmith mainly generates SELECT statements
for PostgreSQL to ensure semantic correctness.

SQUIRREL is an advanced mutation-based DBMS fuzzer.
It uses coverage feedback to guide it in exploring the code
regions of the target DBMS. Due to the coverage feedback
and its efforts to improve syntactic and semantic correctness,
SQUIRREL performs better than SQLancer in these DBMSs.
However, it still suffers from the lack of the abundance of SQL
Type Sequences. Starting from the initial seeds, SQUIRREL
mainly modifies the structure and data inside single SQL
statements. Therefore the seeds it produces is hard to change
the SQL Type Sequences of the initial seeds. Because of the
limitation in sequences’ abundance, SQUIRREL may be not
able to trigger some functionalities of target DBMSs.

TABLE II
NUMBER OF TYPE-AFFINITIES GENERATED BY DIFFERENT FUZZERS

DBMS SQLancer SQUIRREL LEGO

PostgreSQL 474 34 2101
MySQL 50 21 643
MariaDB 119 28 734
Comdb2 127 36 229

Total 770 119 3707

Increment 2937 3588 –

In contrast, LEGO is designed to increase the abundance of
SQL Type Sequences. Type affinity describes the pattern of
composing sequences, which reflects the abundance of SQL
Type Sequences. Table II shows the type-affinities contained
by seeds generated by different fuzzers in 24 hours. SQLsmith
is excluded because it contains only one statement per test
case. The table shows that LEGO found more type-affinities
than other fuzzers, which allowed LEGO to produce more
meaningful sequences to increase the abundance. Specifi-
cally, it proactively explores the type sequence space through
sequence-oriented mutations and analyzes type-affinities in
mutated seeds that have new coverage. It then uses these type-
affinities to synthesize meaningful sequences. The increase in
sequence abundance assists LEGO to trigger more logic in the
target DBMSs. Consequently, LEGO had better coverage than
others in the target DBMS.

Bugs. Table III shows the number of bugs found by each
fuzzer. It shows that LEGO found 52, 52, and 41 more
bugs than SQLancer, SQLsmith, and SQUIRREL, respectively.
SQLancer focuses on detecting logic bugs in DBMSs, but
the bug-finding process is limited by its predefined rules.

TABLE III
NUMBER OF BUGS TRIGGERED IN 24 HOURS

DBMS SQLancer SQLsmith SQUIRREL LEGO

PostgreSQL 0 0 0 2
MySQL 0 – 3 11
MariaDB 0 – 8 32
Comdb2 0 – 0 7

Total 0 0 11 52

Increment 52 52 41 –

Consequently, it did not trigger bugs in the latest versions
of these DBMSs. SQLsmith generates only limited types of
statements, especially the SELECT type. It greatly ensures
syntax correctness, however, the abundance of SQL Type
Sequences is also limited. The evaluation results show it did
not find any bugs in the latest version of PostgreSQL. Based on
the improved coverage, LEGO explores more state space of the
target DBMSs. Exploring more states increases the likelihood
of finding bugs. Besides, as the case study shows, many of the
triggered bugs have unexpected SQL Type Sequences. LEGO
proactively analyzes type-affinities of statements from mean-
ingful test cases. Based on type-affinities, LEGO progressively
synthesizes abundant SQL Type Sequences. Moreover, LEGO
lays the foundation for conventional mutations to use these
sequences to mutate and find bugs. Thus, LEGO found more
bugs than SQLancer, SQLsmith, and SQUIRREL.

D. Effectiveness of Sequence-Oriented Algorithms in LEGO

To measure the effectiveness of the sequence-oriented
fuzzing algorithm and exclude other differences such as the
extension in AST parser, we implement LEGO- for com-
parison, which disables the sequence-oriented algorithms in-
cluding proactively affinity analysis and progressive sequence
synthesis. Note that the affinity analysis provides the funda-
mental elements for sequence synthesis, the tightly-coupled
nature requires us to disable them altogether. We compare
LEGO- against LEGO on PostgreSQL, MySQL, MariaDB, and
Comdb2 for 24 hours.

Table IV shows the eventual number of type-affinities found
and branches covered by LEGO and LEGO- on four DBMSs.
First, LEGO is able to find more type-affinities than LEGO-.
Specifically, Table IV shows that LEGO found 337, 48, 119,
and 29 more type-affinities when compared to LEGO- on
PostgreSQL, MySQL, MariaDB, and Comdb2, respectively.
When disabling sequence-oriented algorithms, the conven-
tional mutation methods in LEGO- are limited to chang-
ing individual statements of a test case. Differently, LEGO
proactively explores type-affinities to increase the abundance
of SQL Type Sequences. Consequently, LEGO found more
type-affinities than LEGO-. Second, with more type-affinities,
LEGO can cover more branches in four DBMSs. Specifically,
LEGO covered 20%, 15%, 25%, and 7% more branches when
compared to LEGO- on PostgreSQL, MySQL, MariaDB, and
Comdb2, respectively. More type-affinities help LEGO synthe-
size more meaningful SQL Type Sequences. With the increase



TABLE IV
NUMBER OF TYPE-AFFINITIES FOUND AND BRANCHES COVERED BY LEGO- AND LEGO

DBMS Type-Affinities Branches
Name Types LEGO- LEGO Increment LEGO- LEGO Improvement
PostgreSQL 188 1764 2101 337↑ 69301 83149 20%↑
MySQL 158 595 643 48↑ 116713 133840 15%↑
MariaDB 160 615 734 119↑ 95570 119238 25%↑
Comdb2 24 200 229 29↑ 24625 26269 7%↑

in sequence abundance, more functions in target DBMSs could
be triggered. Thus LEGO covered more branches than LEGO-.

Moreover, the table also illustrates the correlation among the
number of statement types, increments in type-affinity finding,
and improvements in branch coverage: when a DBMS has
more statement types, LEGO tends to make more type-affinity
increments while making more branch coverage improvements.
Specifically, the first two columns show the statement types
of PostgreSQL, MySQL, MariaDB, and Comdb2. The 5th
column shows increments in type-affinity finding made by
LEGO, and the 8th column shows the improvement in branch
coverage. From the 2nd column and the 5th column, we
can find that when one DBMS has more statement types,
LEGO could have more increments in type-affinity finding.
The increment in type-affinities results in the increment of
SQL Type Sequences. Correspondingly, LEGO could also
make more improvements in the number of branches covered.
For example, LEGO increased the number of type-affinities
on PostgreSQL by 337 when compared to LEGO-, and it
improved the branch coverage by 20%. LEGO’s improvements
to Comdb2 were smaller than those to other DBMSs. It might
be due to the fewer types of Comdb2 than other DBMSs.
Specifically, there are only 24 types in Comdb2, which re-
stricts the upper limit of the increment in type-affinities. In
the experiment, LEGO had a 29 increment when compared
to LEGO-. As a result, LEGO correspondingly made a 7%
improvement in the number of branches covered for Comdb2.

VI. DISCUSSION

Redundant type-affinities. In proactively type-affinity
analysis, changes besides SQL types may trigger new coverage
and cause redundant type-affinities. For example, new code re-
gions might be found by changes of data or new combinations
between non-adjacent SQL statements. This issue has a lim-
ited impact on LEGO. First, LEGO progressively synthesizes
sequences containing new type-affinities based on the existing
sequences. Thus redundant type-affinities would not cost too
many resources. Second, if redundant type-affinities are caused
by the combination between non-adjacent SQL statements, the
affinity could help LEGO to synthesize sequences containing
that. Specifically, because relations are transitive, considering
adjacent statements could also cover non-adjacent cases. For
example, if A→B and B→C is learned, LEGO also knows the
implication of A→B→C. In other words, relations of non-
adjacent relations (A→B→C) can be learned from adjacent
statements (A→B and B→C). Nevertheless, we plan to refine

type-affinities in the future, such as importing the model of
non-adjacent combinations between types.

Semantic abundance of the synthesized test cases. LEGO
analyzes the type-affinities from mutated seeds which cover
new branches. In this process, extracting only the type infor-
mation loses some semantic information of the test case. LEGO
addresses the problem in two steps. First, besides types, it
parses the AST structures and stores them in a library. Second,
during the synthesis process, it randomly combines the SQL
Type Sequences and type-matched structures to reconstruct
the semantic information. Nevertheless, some semantic in-
formation will still be lost. In the future, we plan to learn
semantic information (e.g., dependencies between statements)
automatically, and use it to guide sequence synthesis.

Limiting sequence length may miss some bugs. There
are indeed some bugs that can only be triggered by long
repeated sequences. However, handling them may degrade
fuzzing performance or even stall the fuzzer. For example,
we found SQUIRREL hung for 23 minutes for a test case,
whose length is 945 and has hundreds of repeated INSERT
statements. Therefore, limiting the length is a practical way to
ensure the fuzzers work normally. We conducted an additional
experiment on MariaDB for fuzzing 24 hours with different
lengths. The results show that LEGO finds 30, 35, and 27 bugs
when setting the length to 3, 5, and 8, respectively. It illustrates
that cutting length will miss some bugs, while increasing
length will also miss bugs due to performance degradation. In
the future, to detect bugs triggered by long sequences, we plan
to split long sequences into several equivalent short sequences.

Adaptability of LEGO. The approach of LEGO is general
for most DBMSs. To adapt to a new DBMS, LEGO should
learn the SQL type information specific to the target DBMS.
This can be achieved by providing the original grammar
specification (e.g. BNF or bison/yacc file) to LEGO. LEGO will
automatically derive SQL type information from the grammar
specification and reuse the existing type-affinity infrastructure.
Nevertheless, the number of statement types would influence
the performance of LEGO. For example, LEGO has fewer
improvements to LEGO- on Comdb2 than other DBMSs. To
mitigate the problem, besides types, we will also further
increase the diversity of synthesized sequences to improve
the process. For example, we could combine different inner
structures across statements.

Feasibility of extending existing fuzzers with LEGO.
Directly adapting LEGO’s solution to existing fuzzers by
simple incremental changes is difficult. One possible solution



is to use the type-affinities found by LEGO. For generation-
based fuzzers, we can add rules transformed from LEGO’s
type-affinity. And for mutation-based fuzzers, we can add
mutation operators under the guidance of LEGO’s type-affinity.
However, without LEGO’s results, existing work needs to re-
implement LEGO’s logic to increase abundance effectively.

VII. RELATED WORK

In this section, we will focus on some tasks related to
DBMS fuzzing and highlight how they differ from LEGO.

Finding logic and performance bugs in DBMSs. Schemes
aimed at logical bugs focus on the correctness of DBMSs.
Logic bugs would not crash the system but may cause a
DBMS to return unexpected results, such as leaking extra
rows. RAGS [39] uses differential testing, namely detecting
logic bugs by running the same query on different DBMSs and
checking the result consistency. SQLancer [35] synthesizes
queries to fetch a random row from existing tables in the
target DBMS. If the DBMS fails to fetch that, then the DBMS
might have a bug. Its following works [34, 33] also apply
similar strategies by building functionally equivalent queries.
Schemes aimed at performance bugs focus on the actual
execution of DBMSs. Performance bugs can slow down an
entire DBMS system or even bring it to a halt. APOLLO [16]
generates queries to test two versions of the same DBMS. If
the execution times for two versions are significantly different,
then a performance bug is found. These fuzzers focus on
finding differences between versions to locate bugs, rather than
increasing the abundance of SQL Type Sequences.

LEGO differs from these works by aiming to find memory
bugs by generating test cases containing abundant SQL Type
Sequences. Compared to logic and performance bugs, memory
bugs happen more frequently. We did a cursory survey of the
number of different type of bugs reported on MariaDB since
2009, and we found that the number of memory bugs is larger
than the other two types combined. More importantly, memory
bugs are even more damaging. Because they allow an attacker
to leak or corrupt memory, the attacker can execute remote
code or even gain control of the whole system.

Generation-based DBMS fuzzing. Generation-based
fuzzers [25, 35, 37, 43] have been used to test DBMSs
for decades. They always generate enormous test cases
based on custom rules, but the rules in turn also limit
the SQL Type Sequences they can generate. Because
generating a fully valid test case proves to be an NP-complete
problem [21], generation-based fuzzers generally enhance
semantic correctness while ensuring syntactic correctness.
Some works treat generation as the process to satisfy
constraints [1, 22] and use SAT solvers to generate potential
queries [2]. SQLsmith [37] is one of the state-of-the-art
generation-based DBMS fuzzers. It continuously generates
syntactically correct SQL statements. But it only generates
limited types of SQL statements (e.g., most are SELECT
for PostgreSQL) to ensure the database is unchanged, which
causes a restricted number of sequences.

LEGO is different from these works. Unlike fixed state-
ment generation, It utilizes mutation-based methods to enrich
sequences beyond predefined rules. Therefore, LEGO runs
automatically and can progressively synthesizes SQL Type
Sequences. Based on the coverage feedback to analyze type-
affinities, LEGO could increase the abundance of SQL Type
Sequences and trigger various behaviors of the target DBMSs.

Mutation-based DBMS fuzzing. Mutation-based fuzzers
have been widely used to test software and find many bugs [3,
9, 18, 19, 20, 45, 46, 51, 52, 53, 54]. They generally leverage
coverage feedback to test the target programs. Traditional
mutation-based fuzzers (e.g., AFL [53]) could easily adapt
to testing DBMS libraries like SQLite [6]. However, the
mutated seeds generated by random mutations can hardly pass
the syntax checks of DBMSs. Some works adopt advanced
program analysis techniques like taint analysis [3, 20] and
symbolic execution [19, 52]. However, it is still hard for
them to generate test cases that are both correct in syntax
and semantics. Recently, SQUIRREL [54] was proposed to
generate valid test cases by syntax-preserving and semantics-
guided mutation. It designs an intermediate representation to
maintain the structure information of test cases. RATEL [46]
further adapts mutation-based fuzzing into several enterprise-
level DBMSs. It improves the feedback precision, enhances
the robustness of input generation, and performs an online in-
vestigation on the root cause of bugs. UNICORN [51] combines
syntax-preserved mutation and time-series guided mutation
to generate time-series queries. GRIFFIN [15] uses metadata
graph to mutate test cases in a grammar-free way.

LEGO differs from these works by enhancing mutation
with the sequence synthesis. Unlike random mutations, LEGO
proactively analyzes the type-affinities from test cases. The
type-affinities are used to synthesize meaningful SQL Type
Sequences, which implicitly contain the semantic information
of test cases. Therefore, LEGO can continually cover new
branches and find previously-unknown bugs.

VIII. CONCLUSION

This paper presents LEGO, a fuzzer that automatically
analyzes type-affinities to increase the abundance of SQL Type
Sequences. It first analyzes the type-affinities from any two
adjacent statement types that appear in test cases generated
by proactively sequence-oriented mutation. Then it synthesizes
new sequences based on the analyzed affinities. LEGO outper-
forms three state-of-the-art fuzzers on four popular DBMSs,
namely PostgreSQL, MySQL, MariaDB, and Comdb2. More
importantly, LEGO finds 102 new vulnerabilities. Among
them, 22 bugs are confirmed as CVEs due to their severe
security influences. Our future work will focus on refining
the type-affinity analysis to improve efficiency.
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