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Kernel fuzzing is an effective technique in operating system vulnerability detection. Fuzzers such as Syzkaller
and Moonshine frequently pass highly structured data between fuzzer processes in guest virtual machines and
manager processes in the host operating system to synchronize fuzzing-relevant data and information. Since
the guest virtual machines’ and the host operating system’s memory spaces are mutually isolated, fuzzers
conduct synchronization operations using mechanisms such as Remote Procedure Calls over TCP/IP networks,
incurring significant overheads that negatively impact the fuzzer’s efficiency and effectiveness in increasing
code coverage and finding vulnerabilities.

In this paper, we proposeHorus, a kernel fuzzing data transfermechanism thatmitigates the aforementioned
data transfer overheads. Horus removes host-VM memory isolation and performs data transfers through
copying to and from target memory locations in the guest virtual machine. Horus facilitates such efficient
transfers through using fixed stub structures in the guest’s memory space, whose addresses, along with the
guest’s RAM contents, are exposed to the host during the fuzzer’s initialization process. When conducting
transfers, Horus passes highly-structured non-trivial data between the host and guest instances through
copying the data directly to and from the stub structures, reducing the overall overhead signficantly compared
to that of using a network-based approach. We implemented Horus upon state-of-the-art kernel fuzzers
Syzkaller ,Moonshine and kAFL and evaluated its effectiveness. For Syzkaller andMoonshine, Horus increased
their transfer speeds by 84.5% and 85.8% for non-trivial workloads on average and improved their fuzzing
throughputs by 31.07% and 30.62%, respectively. Syzkaller and Moonshine both achieved a coverage speedup
of 1.6× through using Horus. For kAFL, Horus improved specifically its Redqueen component’s execution
speeds by 19.4%.
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1 INTRODUCTION

Fuzzing is a popular program testing technique that has gatheredmuchmomentum in both academia
and industry due to its effectiveness and scalability. Since the number of bugs in a project usually
grow exponentially with the amount of code, operating system kernels such as Linux, which
comprise of code on the scale of several million lines of code or more, have no shortage of critical
vulnerabilities. As kernels execute in the processor’s privileged mode, triggering any of its bugs can
lead to catastrophic results, including loss of data, exposure of sensitive information, unauthorized
code execution, etc. For instance, a recent vulnerability labelled CVE-2021-42008 [Hutchings 2021]
is classified as Slab-Out-Of-Bounds that can result in kernel memory corruption, and when properly
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exploited it can ultimately result in privilege escalation. Such a vulnerability is not an exception:
there have been numerous kernel vulnerabilities [Deucher 2021; Google 2021a; Lantz 2021] found
and exploited by malicious parties over the past few years. Therefore, it is of paramount importance
to extensively study and develop kernel fuzzing techniques to improve the safety of operating
systems and to protect users and the public.
Fundamentally, fuzzers test programs through repeatedly feeding the target program with

different inputs, such as raw data bytes, structured objects and network packets, and observing
the program’s execution for any exceptional or faulty behavior. State-of-the-art fuzzers generally
employ techniques such as coverage feedback, input mutation and grammar-based generation to
effectively explore the state space and find bugs on a wide variety of programs.
Kernel fuzzers generally follow the testing paradigms of userland program fuzzers. Using

Syzkaller [Vyukov 2016] as an example, kernel fuzzers generate system call sequences to feed
as input into the kernel. Syzkaller is feedback-driven and employs mutation-based and grammar-
based input generation, allowing it to generate sophisticated system call sequences. While userland
fuzzers run in the same machine as its target program, kernel fuzzers differ in design by runing
the target kernels in an emulated environment, such as QEMU [Bellard 2005], since fully testing
kernels requires allowing it to run in the processor’s privileged mode. Therefore, in order to run
multiple fuzzing instances at once and prevent bugs from crashing the fuzzer itself, kernel fuzzers
are generally split into two components, specifically 1) a fuzzing manager running on the host
machine with a stable kernel, and 2) fuzzer instances running on guest virtual machines with target
kernels. The manager performs the following operations: synchronizing global fuzzing statistics
and information between all guest fuzzing instances, bookkeeping global data including overall
coverage and new test cases. The fuzzer instances generate (or mutate) and execute test cases,
monitor the target kernel’s execution status during test case execution, and synchronizing informa-
tion to and from the manager process. The test cases consist of system call sequences, which are
organized as highly structured data when transferred between the host process and guest instances.
Many kernel fuzzers have followed a similar design path to Syzkaller’s to transfer sophisticated
coverage data or test case inputs to and from the guest instance, such as Moonshine, HEALER,
RtKaller, Tardis, etc. kAFL[Schumilo et al. 2017] is another popular kernel fuzzer optimized towards
fuzzing kernels for the x64 architecture. Similar to Syzkaller, kAFL is designed with the guest kernel
running in a QEMU/KVM instance and the manager process residing in the host operating system,
thus it also performs data transfers from the host process to guest instances. What is different,
however, is its kernel fuzzing technique, which is similar to that of AFL [lcamtuf 2013], where it
feeds generated inputs as linear bytes into certain kernel buffers and tries to trigger bugs within the
kernel itself. Thus, kAFL’s data transfers are mainly serialized buffers rather than highly structured
data, which is easier to handle compared to Syzkaller-like kernel fuzzers.

These host-guest data transfer characteristics in kernel fuzzers result in the need for data transfer
mechanisms, which can be inefficient depending on its design and implementation. For instance,
Syzkaller uses Remote Procedure Calls (RPCs) [Birrell and Nelson 1984] to invoke specific functions
in the guest fuzzers. Specifically, Syzkaller’s fuzzer and manager send data into RPC stubs, which
in turn converts the data into RPC payloads to transfer over TCP/IP networks. This method is
used for a broad range of functions within Syzkaller , including the fuzzer sending new inputs to
the manager and the manager synchronizing inputs and coverage information to the individual
fuzzer instances. In our preliminary survey, these procedures take roughly more than one-third of
the entire execution time during Syzkaller’s fuzzing campaign, which is significant as the amount
of time that system call sequences are executed to actually test the underlying kernel can only
account for roughly one-half of the entire campaign.
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We observe that the guest virtual machine’s memory pages physically reside in the host’s memory.
However, the host is barred from accessing the data stored within the guest’s memory pages due
to the process isolation mechanisms in modern systems. Therefore, if we allow the fuzzer and
manager instances to communicate and transfer data through directly accessing data in another
instance’s memory space, we can devise methods to transfer non-trivial highly-structured data
efficiently by leveraging the ability to directly copy the information to and from exact memory
locations in either instance, thus greatly reducing the data transfer overheads.
We use this insight to design Horus, a kernel fuzzing data transfer mechanism that proposes

such memory access procedures in kernel fuzzing, thus providing efficient and consistent data
transfers between the two instances through directly accessing another instance’s memory space.
We explain our designs on Syzkaller to illustrate our approach, since the relevant mechanisms
require some modifications to the fuzzer itself. Horus facilitates efficient data transfers using
the following procedures. During the kernel fuzzer’s initialization process, Horus creates fixed
stub structures in the guest fuzzer instance. It generates memory layout descriptions for the stub
structures and registers these structures to the host manager process over RPC. When the fuzzing
campaign is underway, whenever the fuzzer or manager wishes to send highly-structured non-
trivial data structures to the other side, they transfer the data through the stub structures using
algorithms designed to conduct efficient and consistent transfers. Briefly speaking, the transfer stubs
intercept the original RPC calls and offload the actual data to transfer stubs. The stubs copy the data
structure’s metadata and actual data, including all referenced data, into the stub structures. Stubs in
the destination instance then retrieve the data from these stub structures using the corresponding
layout descriptions.
We implemented prototypes of Horus on kernel fuzzers, including Syzkaller , Moonshine and

kAFL, all popular kernel fuzzers, and evaluated Horus’s effectiveness in reducing data transfer
latency and improving execution throughput on recent and major versions of the Linux kernel. For
Syzkaller andMoonshine, which conducts structured data transfers during fuzzing, when integrated
with Horus, their data transfer latencies decreased by 84.5% and 85.8% on average while their
execution throughputs increased by 31.07% and 30.62% on average, respectively. Furthermore,
Syzkaller and Moonshine’s coverage statistics achieved a speedup of 1.6× and 1.6×, and improved
by 6.9% and 8.2% over 12 hours, respectively. In addition, Syzkaller and Moonshine were able to
find more bugs in a limited amount of time by using Horus, of which 5 were previously unknown
and confirmed by the kernel maintainers. In kAFL’s instance, Horus increased its Redqueen
component’s execution speeds by 19.4%, but does not present a significant advantage overall
over vanilla kAFL, which is within expectations, as kAFL mostly only performs linear buffer
transfers during execution. Regardless, Horus still demonstrates its effectiveness to improve
fuzzing efficiencies for kernel fuzzers, as many kernel fuzzers conduct data transfers of non-trivial
data structures in methods similar to that of Syzkaller .

In summary, this paper makes the following contributions.

• We identify that host-guest communication and data transfers in state-of-the-art kernel
fuzzers incur significant overheads when transferring highly structured data, resulting in
reduced performance during kernel fuzzing.

• We observe that the efficiency of kernel fuzzers can be improved by developing efficient
host-VM memory access procedures, through directly accessing memory located within a
virtual machine instance, thus allowing direct memory access to transfer the relevant data.

• We design and implement Horus, a kernel fuzzing data transfer mechanism that provides
efficient data transfers through efficient data transfer techniques for improved kernel fuzzing
performance.
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• We demonstrate that Horus can significantly improve kernel fuzzers’ execution through-
put, speed of coverage growth, and bug detection, demonstrating that these data transfer
procedures can be beneficial towards a kernel fuzzer’s effectiveness.

• To facilitate open research, we have open-sourced the code for Horus on Github (https:
//github.com/Wingtecher-OSLab/Horus).

2 BACKGROUND AND RELATEDWORK

2.1 Kernel Fuzzing

Fuzzing is an automated software testing technique first proposed in 1988 by Miller et al. [Miller
1988] Fuzz testing programs, a.k.a fuzzers, generally test other programs through repeating the
following procedure: 1) it generates an input using various methods, 2) it feeds the input to the
target program, and 3) it monitors the program for any crashes or exceptional behavior [Serebryany
et al. 2012; Serebryany and Iskhodzhanov 2009]. Since its inception, fuzzing has gained much
attention from various research fields due to its effectiveness in discovering concrete bugs [Chen
et al. 2019; Gan et al. 2018; Godefroid et al. 2008; Liang et al. 2018, 2022; Wang et al. 2021; Zheng
et al. 2019].
A general rule of thumb in program testing is that the greater the code base, the more bugs

the program contains. Operating system kernels generally have enormous code bases. Linux, for
instance, recently reached 27.8 million lines of code. Hence, kernels inevitably contain a plethora
of critical vulnerabilities. Many researchers have attempted to utilize fuzzing for finding kernel
bugs, thus improving the kernel’s overall security [Jeong et al. 2019; Kim et al. 2019; Shen et al.
2021; Shi et al. 2019; Xu et al. 2020]. Generally speaking, fuzzing a kernel involves the following
steps: 1) the fuzzer runs the target kernel within a virtualized or emulated environment; 2) it feeds
the target kernel with generated test cases, usually consisting of system calls sequences; 3) the
fuzzer then leverages kernel feedback information such as coverage to find bugs and guide further
input generation; 4) it also monitors for any exceptional behavior and reports any crashes found,
typically with kernel sanitizers [Elver 2019; Ryabinin 2014].
There have been much effort in designing and improving kernel fuzzers. Using Syzkaller as an

example, we introduce common components and procedures of a typical kernel fuzzer. Syzkaller
is a widely-used kernel fuzzer developed by Google and has excellent vulnerability detection
capabilities [Vyukov and Konovalov 2020]. By far, Syzkaller has successfully discovered thousands
of vulnerabilities in a wide range of kernels, including Linux, Windows, MacOS, etc. Syzkaller
at runtime consists of a manager process running in the host machine and fuzzer instances and
executors running in the guest virtual machines, as shown in Figure 1. The manager is responsible
for managing the fuzzing campaign, analyzing exceptions, reproducing crashes and logging fuzzing
stats, etc. Fuzzer instances are spawned by the manager and perform test case generation, mutation,
feedback analysis and sending test cases to the executor for testing. Executors decode the test
cases and perform the system calls with the corresponding arguments. It also collects coverage
information and sends it back to the fuzzer for further analysis.

On the input generation side, Syzkaller uses system call specifications to generate new test cases.
A system call specification consists of a set of system call abstractions, where each contains a
system call description and the specific information of its parameters. Before the fuzzer starts,
Syzkaller parses all the system call specifications written in domain language and translates them
into Abstract Syntax Tree (AST) representations. Fuzzers generate system call sequences also in
AST format that are then packed into binary format and forwarded to the executor. Meanwhile,
each fuzzer utilizes a separated thread to poll the manager to receive any new fuzzing-relevant
data. Afterwards, the executor will translate the generated inputs into to actual system calls and
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Fig. 1. Diagram of Syzkaller’s fuzzer instance sending a new test case to the manager process, which consists

of the following six steps: 1○ the test case (a system call sequence) is serialized into a byte representation, 2○
passed to the RPC system as a payload for the manager process, 3○ sent through the RPC channel via TCP/IP,

4○ received by the manager RPC server, 5○ assembled as the same byte array as in the fuzzer, and finally 6○
deserialized as a fully structured test case. Commonly used RPC calls include Connect(), which establishes

a connection between the manager process and a fuzzer instance; NewInput(), which the fuzzer process

initiates to send the manager a system call sequence that triggers new kernel behavior; Poll(), which the

fuzzer uses to ask the manager for any new inputs or information that the other fuzzer processes may have

contributed; Check(), which the fuzzer uses during initialization to verify the parameters and versions of the

testing harness.

execute it. If a test case triggers a crash or finds any new coverage, the fuzzer will send this test
case back to the manager via RPC for further test case generation.

Moonshine [Pailoor et al. 2018] is an effective kernel fuzzer built on top of Syzkaller . It’s advantage
over Syzkaller is by proposing a distillation algorithm, which traces and further distills actual
execution traces of real-world applications to obtain a set of system call sequences that allows
the fuzzer to initialize with a rich corpus, thus speeding up the fuzzing process. Therefore, it
can generate high-quality test case and cover more kernel code more efficiently. Healer [Sun
et al. 2021] is another promising Syzkaller-like kernel fuzzer that promotes a relation learning
algorithm which dynamically learns relations between system calls over the fuzzing campaign.
Using this information, Healer can generate higher-quality test cases therefore achieving higher
kernel code coverage. There have also been works that attempt to automatically generate system
call specifications, such as [Sun et al. 2022], thus relieving kernel developers of the tedious task of
crafting detailed specifications.
kAFL [Schumilo et al. 2017] is another kernel fuzzer, which differs from Syzkaller’s approach

by utilizing an AFL-like fuzzing strategy. Specifically, it fuzzes the kernel by delivering generated
payloads into certain manually designated kernel buffers. It uses mutation strategies derived from
those initially engineered in AFL, such as arithmetic operations, bit and byte flips, as well as purely
random generations. kAFL’s major advantage lies in its effective utilization of hardware features
in Intel processors such as Intel PT to collect coverage statistics, and thus minimize the fuzzing
overhead to boost the fuzzing efficiency. Due to its design choices, kAFL does not require sending a
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highly structured input to and from the guest virtual machine instances, thus potentially lowering
the data transfer overhead during runtime. However, it employs many techniques, such as Redqueen,
that requires fetching a multitude of structured data from the kernel’s runtime image. Redqueen
accelerates kAFL’s kernel coverage through fetching comparison information from the kernel
under test, identify the corresponding input segments to these comparison operands, and guides
the fuzzer’s input generation towards directions that can possibly reach a different comparison
branch of the conditional jump, thus increasing the fuzzer’s coverage and potentially triggering
new bugs.
Currently, kAFL is based on the Nyx [Schumilo et al. 2021] backend, which provides the facili-

ties for its PT-based execution tracing and virtual machine management. Nyx itself is designed
towards hypervisor fuzzing and augments such workloads by allowing for efficient snapshots and
recoveries. Many works have been based on the foundations laid down by kAFL/Nyx, including
Redqueen [Aschermann et al. 2019], GRIMORE [Blazytko et al. 2019], Nyx-net [Schumilo et al.
2022], etc.

In addition, many works aim to improve fuzzing performance by introducing hybrid execution
and multi-threaded execution, like HFL[Kim et al. 2020] and Razzer[Jeong et al. 2019].

2.2 System Emulation

Full system emulation provides a virtual CPU, dedicated memory space and emulated peripherals
to provide kernels and userland programs with a emulated device to run upon. Compared to user
mode emulation, it can fully support running a full-fledged kernel, thus facilitating kernel fuzzing.
Popular emulators include QEMU, Bochs [Mihoka et al. 2008], and VirtualBox [Dash 2013].

Full system emulators can run programs compiled for other architectures by using a technique
called dynamic binary translation. Specifically, the emulator reads binary code intended for another
architecture from the target program, translates it into instructions for the host machine, then
executes it to emulate the target program.
In addition, for system emulation, the emulator uses a software memory management unit

(SoftMMU), which manages the entire memory space required by the emulated programs. In detail,
the emulator can provide all the ram and disk memory space for kernels, thus the entire memory
space can be accessed through the emulator. For the emulator, it performs a virtual-to-physical
address translation on each memory access operation, allowing each base block to be indexed by
its physical address. Because the emulator provides a relatively independent runtime environment
and memory space, it is ideal for running sophisticated bare-metal systems, like kernels. Hence
many researchers use system emulators to facilitate the kernel’s execution during kernel fuzzing.

2.3 Host-VM Communication

There have been much research in the field of improving communication efficiencies between
the hosts and guest virtual machines. Such research has resulted in conceiving techniques such
as VM-host or inter-VM memory sharing. For instance, some works have proposed to utilize the
guest virtual machines’ network stack, such as VSock [Garzarella 2020] or character devices such
as Virtio [Patni et al. 2015], to facilitate such memory sharing techniques. These approaches, while
being using generalized mechanisms, are not the best solution for sharing data between fuzzers
running in guest virtual machine instances and manager instances. We will delve into the relevant
details in the subsequent sections.
Another such technique is Virtual Machine Introspection (VMI), which allows users to control

the virtual machine’s behavior, as well as access its internal states, including its memory contents.
Some kernel fuzzers and fuzzing techniques, such as Redqueen, utitilze VMI to access the contents
of its target kernel and perform corresponding mutation strategies. However, VMI only provides
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kernel fuzzers with the means to access the guest memory region; Horus provides the tools to
transfer data efficiently between the host and guest memory spaces.

3 MOTIVATION

Kernel fuzzers generally rely on traditional remote transmission procedures or virtual machine
management techniques to communicate and transfer data with the guest instances, thus possibly
incurring insignificant overheads. For example,Syzkaller and Moonshine use Remote Procedure
Calls (RPC) over TCP/IP to communicate and send data between guest fuzzer instances and the host
manager to synchronize fuzzing-relevant information, including new inputs, crash information,
runtime statistics, etc. Using Syzkaller as an example, we visualize the process of sending a test case
from the fuzzer instance running in the VM to the manager instance running in the host machine
in Figure 1. We observe that sending structured data from the guest fuzzer requires invoking
computation and memory-use intensive operations, such as serialization and deserialization, for
the data to be transferred using common methods such as TCP/IP and reach the host manager.
Intuitively, using RPC to transmit data requires highly structured data structures to be encoded and
decoded, incurring significant overheads for non-trivial workloads. The data that kernel fuzzers
transmit to synchronize relevant information is highly-structured, i.e. containing many layers of
structures, and non-trivial, i.e. containing references to external data. Therefore, using RPC will
only exacerbate the problem. Furthermore, the fuzzer instance runs in a emulator, thus incurring
even more overhead due to the instruction translation and address conversion processes during its
execution. Thus, the less instructions executed during such a data transfer on the guest side, the
more efficient the fuzzing process will become. This issue also affects kernel fuzzers with similar
data transfer designs, where highly-structured non-trivial data is sent between host and guest
instances.
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(a) Performance profiling of Syzkaller’s fuzzer in the

guest VM. Similar to the manager side, the fuzzer

also spends a considerable amount of time on RPC-

related events.
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(b) Performance profiling of Syzkaller’s fuzzing man-

ager. The RPC system uses a significant amount of

time transmitting information to and from the re-

spective fuzzers.

Fig. 2. Performance profiling results of Syzkaller’s fuzzing manager and guest fuzzer instances during actual

fuzzing scenarios. The runtime is divided into the following chunks.Main loop: the fuzzer’s main loop performs

input mutation and execution, while the manager’s main loop functionalities are delegated to Goroutines.
RPC: execution time proportions of the entire RPC system, including encoding and decoding arguments

(Data) and sending and receiving RPC requests and responses over TCP/IP (RPC Con.). Go Runtime represents
the execution time for Goroutines and its runtime.

To quantitatively understand the severity of this problem, we broke down Syzkaller’s performance
metrics using pprof [Google 2021b]. pprof profiles and reports each component’s proportions
of the entire execution time. As shown in both Figure 2a and Figure 2b, a significant proportion
of Syzkaller’s fuzzing manager’s and guest fuzzer’s execution time is spent on RPC calls, thus
justifying our concerns. A more detailed investigation reveals that encoding and decoding highly
structured and non-trivial data such as new inputs and coverage are the root cause of this overhead.
Fuzzers can circumvent these mechanisms by making the kernel fuzzing-aware, i.e. modifying

the kernel and emulator to expose an interface that facilitates direct transfers between the guest
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fuzzer and the host manager. However, a general rule of thumb in fuzzing is to avoid modifying the
test target if possible to avoid introducing any new bugs, thus rendering this approach inadvisable.
Additionally, these fuzzers can leverage OS-provided facilities such as the network stack, hardware
buses and character devices to perform direct memory accesses. However, not all operating systems
provide such facilities, while adapting such techniques to the respective operating systems require
a non-trivial amount of human labor.
In reality, however, kernel fuzzers are merely processing and moving one memory object to

another memory location, when the guest VM’s pages already reside in the host’s memory space,
only that it is isolated by the host operating system’s virtual memory mechanisms. Therefore, if we
can expose the guest VM’s memory to the host manager, we can perform data transfers between
the guest fuzzer and host manager through directly accessing the other instance’s memory space,
thus offloading data movement from RPC calls.

To transfer data efficiently between the host manager and the guest fuzzers, we come across the
following challenges:
1. Accessing data structures in another instance’s memory space correctly.We need some form of

description to find relevant fields of structured data in a foreign memory space. Then, the host
manager can access specific parts of the guest’s memory to retrieve and send data to the fuzzer
instances. First, we need to expose the guest instances’ memory into the host’s memory space.
Then, the host manager instance needs to understand the location in the guest instance’s memory
of the data being transmitted to read and process the relevant data.

2. Transmitting the data efficiently and consistently to another memory space. Inter-memory-space
data movement poses significant challenges towards maintaining the consistency of the target
data structures. Specifically, retrieving data from a foreign memory space requires us to correctly
reconstruct all structure entries and externally referenced data, while transferring data demands that
we keep structural pointers and metadata intact while filling the actual contents. If not addressed
adequately, this may result in situations such as loss of data, invalid pointers, incorrect amount
of data transferred, etc. In addition, performance is also a significant factor in our considerations,
since inefficient transfer methods will reduce the benefits of such a method.

4 HORUS DESIGN

We design Horus, a kernel fuzzing data transfer mechanism that facilitates efficient and consistent
highly structured data passage between the host manager and guest fuzzers, and improves overall
kernel fuzzing throughput. Horus addresses the aforementioned challenges by removing memory
barriers between the host manager and guest fuzzers and providing resources and methods for
efficient memory transfers. Specifically: 1) we perform modifications to existing tools and propose
new primitives that allow the host manager to correctly find target data structures within the
guest’s memory space; 2) we offload the data transfer functionalities of RPC calls to Horus’s stubs
by designing algorithms to efficiently and consistently transfer data between the host manager and
guest fuzzers.
We illustrate Horus’s design when implemented for Syzkaller in Figure 3. As shown in the

figure, Horus’s design consists of manager-side and fuzzer-side stubs that transparently transfers
the data to and from the relevant memory regions of fixed stub structures. These stub structures
are created during Syzkaller’s initialization process and persist throughout the entire lifecycle of
the virtual machine. As their locations are constant, the fuzzer sends the relevant descriptions
of their layout and locations to the manager process (Section 4.1). Their purpose is to hold data
corresponding to the relevant data structures being transmitted between the fuzzer and manager
during fuzzing, as the manager will understand exactly where to find the data that it intends to
receive or place the data it wishes to transfer. When the fuzzing campaign is underway, if the
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data during inter-memory-space transfers. During Syzkaller’s initialization process, Horus’s fuzzer generates

memory layout descriptions of the stub structures 1○, send the descriptions to the manager 2○ and allow

the manager to find the locations of the stub structures in the guest’s physical memory space 3○ (§ 4.1).

When transferring data from the fuzzer to the manager during a fuzzing campaign, Horus’s fuzzer-side

stubs offload the relevant data 4○ to the stub structures 5○ while the manager retrieves the data 6○ and

reconstructs the corresponding data structure 7○ (§ 4.2).

fuzzer wishes to pass data to the manager, such as in cases where the fuzzer sends the manager
process new system call sequences that trigger new kernel behavior, Horus stores these system
calls and their relevant data within the corresponding stub structures. Horus will then send the
same RPC call minus the actual data to the manager process to notify the manager that the transfer
of data is ready to commence. Horus’s stubs on the manager side intercept the RPC calls and
transfers the data from the guest instance’s memory space into the manager process’s memory
space using the descriptions sent by the fuzzer instance during initialization. After this is completed,
the reconstructed structures are then returned to the manager for further processing, whereas in the
fuzzer instance the RPC call finalizes, allowing it to continue its fuzzing operations. If the manager
wishes to pass information to a fuzzer instance, instead of the fuzzer process first placing the data
within the stub structures, the RPC call is first initialized, where the manager process places the
data to be transferred within the guest’s memory space, after which the RPC call finalizes with the
fuzzer instance retrieving the target data from the relevant stub structures (Section 4.2). Though
our description is Syzkaller-oriented, Horus is not restricted to one single fuzzer. Horus can be
designed and implemented on kernel fuzzers that separate their fuzzing logic into distinct parts
that run in both the host and guest operating systems and require transferring highly structured
data between the respective instances, such as Moonshine and Healer. Adapting Horus to other
fuzzers will follow a similar approach, including identifying data transfer entities, using Horus to
create stub structures, and devise transfer routines based on the overall data structure.

4.1 Correctly Finding Inter-Memory-Space Data Structures

Syzkaller’s model of communication between fuzzer and manager instances only consists of data
transfer pathways. Therefore, we can expose each guest virtual machine’s memory space to the
manager process, allowing for direct access to each fuzzer instance’s memory to transmit and
receive data requested and sent from the respective fuzzers.
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Since QEMU is widely used to run the fuzzer instances, we modify QEMU’s guest machine RAM
allocation scheme to expose the guest’s memory space to the host machine. Specifically, when
QEMU is initializing the guest machine’s memory, instead of allocating a chunk of memory backed
by anonymous pages, we redirect the allocation to shared memory and place a file descriptor under
the system’s shared memory directory. During Syzkaller’s initialization process, after successfully
booting the guest virtual machine, Syzkaller’s manager maps its RAM section, backed by shared
memory, into its own memory space.
Now that the host manager is able to access the guest fuzzer’s physical memory, we need to

inform the host manager of the source or target data structure’s locations in the guest’s physical
memory. The data structures used in Syzkaller’s synchronization process are highly-structured and
non-trivial. We denote highly-structured to be data structures with multiple levels of hierarchies,
while non-trivial data structures are those with external references, such as pointers pointing to
buffers in another memory location. The memory layout description of these data structures needs
to address the following issues.
First, for highly structured non-trivial data structures, transferring between the fuzzer and

manager instances requires moving and reconstructing not only the structure or array itself, but
also all references that the member values may point to, in addition to fixing the references in the
non-trivial data structures for the target memory space. For instance, the Input struct, defined in
the module syzkaller/rpctype, is frequently used in RPC call transfers to represent a test case. We
show its structure in Figure 4, where we see that the member variables reference other buffers
which contain the actual data. Apparently, copying the Input struct itself is insufficient: we also
need to copy the buffers that the fields Name, Prog and Cover point to. Furthermore, we need
to fix the data pointer values so that they are valid in the target address space. Therefore, the
description needs to encompass the memory information of the structure itself and all referenced
data structures.

Structure

"Input"

Field: Name

Type: String

StringHeader
Data pointer

Len

Data pointer

Len

Cap

"s" "y" "z" ...

Byte Buffer

Field: Prog

Type: Byte Slice

Field: Signal

Type: Structure 

Field: Cover

Type: uint32 Slice Data pointer

Len

Cap

0xde 0xad 0xbe ...

Byte BufferSliceHeader

cov0 cov1 cov2 ...

uint32 Buffer

signal.Serial
struct

Fig. 4. The Input structure, a non-trivial data structure frequently sent in Syzkaller’s RPC calls. The Prog and
Cover fields are Go slices while the Name field is a Go string, all of which maintain a Data pointer pointing
to the actual buffer containing the actual slice or string elements. In order to send the entirety of an Input
structure instance to another memory space, we need to copy not only the structure body itself, but also all

buffers its members may refer to, and re-validate the data pointers for the target address space.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Horus 1:11

Second, virtually contiguous memory addresses may fragment when translated to physical
memory addresses as a result of the state of the page tables during the instances’ execution. Thus,
when constructing memory layout descriptions for virtually contiguous memory areas, such as
buffers, we need to determine, at each page boundary, the corresponding physical pages and
describe the entire area using a sequence of physical pages.
Therefore, we design the following primitives and use them to describe the memory layout

information of any data structure. First, we define the ContiguousArea structure to describe a
contiguous physical memory area. It consists of two members, a base physical address and the
length of the area. A contiguous physical memory area spanning multiple physical pages can be
represented by a single ContiguousArea instance. This is the most basic building block for more
complex structures. Next, we describe a virtually-contiguous memory chunk as VirtualChunk.
VirtualChunk consists of a sequence of ContiguousArea instances, thus representing virtual
memory chunks correspond to one or multiple physical memory areas. Now, we can describe the
memory layout of structures and arrays. Arrays can be represented simply as a VirtualChunk,
since they only consist of a contiguous memory chunk. Self-contained structures, i.e. structures
that have no additional references, can also be represented using a VirtualChunk instance. Finally,
we can describe non-trivial data structures using combinations of the aforementioned description
primitives. Specifically, the description first contains a VirtualChunk that describes the memory
layout of its own structure body. All referenced data structures can be represented as instances of
the aforementioned primitives, such as member arrays using VirtualChunk instances.
Using the Syzkaller’s Input structure as an example, we briefly cover the components of its

memory layout description. First, a VirtualChunk instance StructMem describes the memory
location of the struct body. Next, we use three VirtualChunk instances to describe the memory
locations of the individual data buffers of the member variables Name, Prog and Cover, respectively.
Finally, the description for Input contains the description for the signal.Serialmember structure
Signal.
Given the complexity of generating such a description, it is not viable to transfer any arbitrary

structure on demand. Doing so would require the fuzzer instance to iterate through the structure
itself and all referenced data, find the corresponding physical memory areas, and send the description
to the manager over RPC calls each time the fuzzer and manager instances need to transfer data.
This can significantly reduce the overhead reduction of using direct memory copying, even when
not considering the complexity of the design itself.

Thus, we propose to use fixed stub structures to facilitate data transfers between the fuzzer and
manager instances. These structures are statically allocated during the fuzzer’s initialization process
and contain the same data as the corresponding structures transferred through RPC. This allows
the transmitting and receiving end to know the location to and from which to move data. Therefore,
we generate the memory layout descriptions of these stub structures and notify the manager with
their respective descriptions during the fuzzer instance’s initialization process.
In practice, we find that Syzkaller most frequently uses the Input and the PollRes structures

during RPC data transfers. The former is described above and the latter is used to transfer syn-
chronized inputs and coverage information from the host manager to the individual guest fuzzers.
Therefore we create fixed stub structure instances for both structures and implement their respective
memory layout descriptions.

4.2 Efficiently and Consistently Transferring Data Structures

During the fuzzer’s execution process, Horus intercepts the RPC calls used to transfer and synchro-
nize data between the manager and fuzzer instances and offloads the data into Horus’s transfer
stubs. These transfer stubs are present on both fuzzer and manager instances to facilitate the
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Fig. 5. Diagram of how the manager uses fixed stub structures’ descriptions to transfer data to and from the

fuzzer instance within the guest VM. The shaded segments in the memory represent the locations of the

fixed stub structure in physical memory. A contiguous virtual memory chunk can consist of multiple physical

memory chunks due to how virtual memory is mapped in the guest VM, as shown by the Prog Buffer and
Cover Buffer entries in the Figure.

movement of data to and from the respective stub structures. Since the fixed stub structures reside in
the guest’s memory space, the manager needs to map its data to physical memory locations in order
to facilitate transfers. Apparently, the methods for transferring to and from the stub structures are
significantly different in the fuzzer and manager instances. Therefore, we propose the following
algorithms to transfer data structures across memory space boundaries efficiently and consistently.
Transferring Data to the Manager:When the fuzzer instance transfers data to the manager

instance, for instance when the NewInput() RPC call is invoked to send a new input to the manager,
it performs the following procedure.
For the transfer stub on the fuzzer size, it first fills the corresponding fixed stub structure with

the data it wishes to transfer through a top-down manner. Specifically, the stub first assigns all self-
contained member variables and structures without external references, such as integers, boolean
values and other nested structures bodies, with the desired values. Then, for member variables
with external references, such as strings, byte arrays and slices of structures, the fuzzer copies the
data in the original target buffers into the fixed stub structure’s corresponding data buffers. Finally,
the fuzzer modifies the length metadata of the stub buffer. Specifically, Go’s slices and strings are
represented at runtime using a *Header structure from the reflect module. For instance, headers for
string variables are named StringHeader. This is also present in Figure 4, where the headers for
strings and slices both contain pointers to the actual data buffer, the length of the buffer, and in the
case of slices, the capacity of the buffer. We simply change the length value to modify its metadata.
For composite structures or arrays of non-trivial data structures, the stub will then recursively
perform the data transfer on the corresponding structures.
We illustrate this process in the upper half of Figure 5. To fill the fixed stub structure for Input

structures, since there are none self-contained member variables, the stub first sets all corresponding
metadata values, specifically the length values for the string Name and slices Prog and Cover. Next,
it copies all relevant buffers to the stub’s corresponding buffers. This concludes the procedures on
the fuzzer’s side.
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For the manager to recover the structure data, the manager-side stub uses the memory layout
descriptions of the stub structure to identify the locations to read from in a top-down manner.
Specifically, the manager first retrieves the body of the data structure from the location indicated by
its memory layout description, then proceeds to recursively recreate all its references. The lengths of
the slices and strings can be recovered through reading the header structures in the structure body.
When a virtually contiguous memory section in the guest’s memory space is physically discrete,
the manager performs multiple reads from locations indicated by the sequence of ContiguousArea
instances in the corresponding VirtualChunk description.

This process is illustrated in the lower half of Figure 5. To retrieve the Input structure transferred
from the fuzzer instance, the manager first reads the physical memory chunks that contain the body
of the Input stub structure. Then it allocates buffers to place the contents of the stub’s Name, Prog
and Cover buffers. Next, it copies the contents of the stub buffers into the corresponding buffers
allocated in the previous step. Finally, the manager fixes the data pointers in the member variable’s
slice and string headers to produce the target structure.
Transferring Data to the Fuzzer: When the manager sends data to a fuzzer instance, for

example when the manager returns the result of a Poll() RPC request initiated by a fuzzer
instance, which contains inputs and coverage synchronized from other fuzzer instances, themanager
performs the following procedure:
Similar to the aforementioned inverse process, the manager fills the stub structures with the

corresponding data. However, since the stub structure is in the guest VM’s virtual memory space,
the manager needs to avoid modifying Data pointers in the header structures of strings and slices to
avoid invalidating the stub structures. Therefore, the manager performs data transfers recursively
using the following procedure. First, the manager copies the stub structure’s body into its own
memory space. Next, it modifies all self-contained variables to the corresponding values. Then, it sets
the length metadata of all member slices and strings by modifying their respective headers. Finally,
it copies the body back to the stub memory locations. The manager then recursively conducts this
procedure on the referenced data structures.
To retrieve the data at the fuzzer side, the fuzzer performs a deep copy of the stub structure,

which copies all structure variables and their referenced objects. This procedure is much more
straightforward since the manager has set the length metadata of slices and strings properly while
maintaining the integrity of the pointers of the actual buffers.
This procedure is also demonstrated in Figure 5 with the flow of data reversed. Specifically,

the manager first assigns the length metadata of all string and slice headers. Then, the manager
copies the buffers of the Name, Prog and Cover variables to the respective physical memory chunks
of the stub buffers. Copying a buffer may require multiple memory copies, since, as explained
before, a contiguous virtual memory chunk in the guest VM may not be physically contiguous.
This completes the operations on the manager side. On the fuzzer side, the fuzzer simply performs
a deep copy of the stub’s contents, producing the transferred Input structure.

5 IMPLEMENTATION

Here, we discuss the implementation details regarding Horus’s adaptation Horus to Syzkaller,
Moonshine and kAFL, including relevant details towards the data transfer primitives used, transfer
routine implementation and fuzzer-specific implementation details.

5.1 Syzkaller and Moonshine
We implemented Horus for Syzkaller and Moonshine. As Moonshine re-uses most of the RPC
primitives from Syzkaller , we implement Horus for both fuzzers using the methods introduced in
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the previous section. We modified the manager and fuzzer’s RPC mechanisms to conduct transfers
using Horus’s transfer mechanisms.
Specifically, as aforementioned, Horus intercepts the data transfer process of NewInput and

PollRes structures, as these are the most used during fuzzing. To facilitate Horus’s transfer
mechanisms, we inserted interception routines before the actual RPC invocations in both the
manager and fuzzer processes. Specifically, we replaced relevant RPC calls that contains data
sections with ones that exclude the relevant fields. When the fuzzer or manager process wishes
to send an RPC call, Horus fills the fixed stub structures with the relevant data and invokes the
relevant calls. When the receiving side processes this request, instead of extracting the data from
the RPC request itself, it calls the Horus routines to recover the relevant data from the specified
locations.
When allocating fixed stub structures, Go’s memory allocator lazily allocate pages to contain

the structures, i.e. the pages are not allocated immediately and fully, but only when they are first
accessed. Therefore, during the initialization process, Horus traverses all allocated pages to ensure
that they are properly allocated, allowing both the host and guest to use the memory pages properly.

5.2 kAFL

While as aforementioned, kAFL mainly transfers linear data buffers to kernel buffers in the guest
instance, thus potentially not having an overhead comparable to that of Syzkaller , we also imple-
mented Horus for kAFL to understand the effects of Horus on these kernel fuzzers. kAFL mainly
performs host-VM data transfers in the following two scenarios. First, the kAFL worker, which is
the equivalent of the fuzzer component in Syzkaller , transfers inputs, which are linear byte buffers,
to the guest instance’s predetermined byte buffers upon each execution cycle. In contrast, Syzkaller
and Moonshine’s inputs consist of non-trivial, highly structured data, which encapsulates an entire
system call sequence with all argument types and contents. Second, during the Redqueen stage
of a given input seed’s fuzzing process, the worker retrieves comparison information extracted
through hooking to each comparison instruction on the execution trace. It then identifies possible
input positions that can influence the result of a comparison expression and guide input generation
towards reversing the comparsion result.

In contrast to Syzkaller and Moonshine, where the fuzzer invokes manager routines through the
use of RPC calls, in kAFL, the agent, which executes the payload on behalf of the worker in the
target kernel, performs such duties through the use of hypercalls. Therefore, when adapting Horus
to kAFL, the corresponding interception is performed before and after such hypercalls.

We implement Horus for the aforementioned two scenarios. For the former scenario, where the
worker is transferring generated inputs to the guest instance, Horus intercepts the vanilla transfer
routines and directly transfers the intercepted payload data to the location specified by the agent
during initialization. For the latter scenario, when kAFL runs the Redqueen routines once for each
new input before conducting traditional mutation operations, the addresses of each comparison
operation is recorded into a shared memory buffer through hooks inserted into QEMU’s execution
stream. When the agent finishes its execution, Horus on the worker side fetches the operands
using methods similar to that discussed in the previous section from each comparison operation
and returns the values for further use in Redqueen’s logic.

6 EVALUATION

We evaluate Horus’s effectiveness when adapted to kernel fuzzers Syzkaller , Moonshine and kAFL.
To analyze and understand Horus’s performance improvements over the original approaches, we
propose and strive to answer the following research questions:
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• RQ1: Can Horus transfer fuzzing-relevant data faster than Syzkaller’s andMoonshine’s RPC
mechanisms and kAFL’s Nyx-based transfer mechanisms?

• RQ2: Can Horus achieve a empirically significant execution throughput improvement com-
pared to using RPC in Syzkaller and Moonshine and using Nyx in kAFL?

• RQ3: Does Horus assist kernel fuzzers achieve the same coverage as non-Horus versions
faster?

• RQ4: How does Horus affect the kernel fuzzer’s abilities in finding kernel bugs?

To answer these research questions, we designed the following experiments.
For Syzkaller andMoonshine, we first probe measure the round-trip-time (RTT) of sending a new

input from the fuzzer to the manager when using Horus’s mechanisms and Syzkaller’s original
RPC systems; then, we profile the processor execution time proportions for each component in
both the fuzzer and manager instances during fuzzing to acquire the reduction in data transfer
overhead through using Horus and examine whether Horus can improve the fuzzer’s execution
throughput; next, we run Syzkaller , Moonshine, Syzkaller+Horus and Moonshine+Horus for 12
hours to compare their coverage statistics; finally, we examine the number of kernel bugs found
through using Horus.
For kAFL, we first measure the average time for an input to be transferred to the agent un-

der Horus and kAFL’s Nyx backend as well as the average time for Horus and Nyx to recover
Redqueen’s required operands; we then collect the coverage statistics of kAFL with Horus and
with Nyx over a period of 12 hours.

6.1 Experiment Setup

We conducted our experiments with Syzkaller andMoonshine on a server with an AMD EPYC 7742
64-Core processor, 512 GiB of memory and running 64-bit Ubuntu 20.04.2 LTS. The tested kernels are
the mainline, stable and most-recent long-term versions, which, at the time of writing, are 5.16, 5.15
and 5.10, respectively. The kernels are compiled with Kernel Address SANitizer (KASAN) enabled to
detect any kernel crashes. The fuzzers obtain kernel coverage using KCOV. We augment Syzkaller
and Moonshine with Horus, which we refer them as Syzkaller+Horus and Moonshine+Horus, or
Syz+Hor and Ms+Hor for short. For the comparison experiments, we configure the virtual machine
instances for the four fuzzers with identical parameters. Specifically, each fuzzer instance has
two virtual machine instances with 4 GiB of memory and two processor cores each. Each set of
experiments is repeated 5 times where each individual experiment is executed for 12 hours on a
dedicated core.
Our experiments on kAFL are conducted on a server with an Intel Xeon Silver 4210R 20-core

processor with 32GiB of memory and running 64-bit Ubuntu 20.04.2 LTS. The host system’s kernel
is replaced with Kernel 5.10.73-kafl+, the patched version provided by kAFL, which integrates
Intel PT support for KVM. The kernel under test is Linux 5.15-4 with the kAFL agent installed
as /arch/x86/kernel/kafl-agent.c. The kernel is compiled with KASAN support to detect
any address violations triggered by kAFL. Each experiment is run with identical parameters and
allocated the same amount of resources. Specifically, each kAFL instance is alloted with 1GiB of
memory and 1 dedicated CPU thread. Each set of experiments is run for 12 hours. A total of 5
experiments were executed.
All statistics are then verified through the Mann-Whitney U test, as per fuzzing guidelines laid

down by Klees et al [Klees et al. 2018], to determine whether there exists statistical differences
between the sets of data. The relevant statistics are shown in Table 4, where we analyze the values
for each entry in their respective sections.
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6.2 Data Transfer Speed

To answer RQ1, we measure the time it takes for kernel fuzzers to complete a data transfer
operation.

6.2.1 Syzkaller andMoonshine. Wemeasure the round trip time statistics for data transfers between
the manager and fuzzer instances in order to understand the data transfer speed speedups of Horus.
The data transferred can be of different sizes, since system call sequences can have a varying
number of system calls and length of the arguments, therefore, we also need to take into account
the size of the transferred data in relation to its round trip time.

We measure these statistics by inserting timer probes before initiating and after the conclusion
of the relevant RPC calls, including the relevant calls to Horus’s stubs. Since RPC calls itself have
a considerable overhead, we also implemented an empty RPC call in the manager’s RPC server and
measured its round trip time when called from the fuzzer instances.
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Fig. 6. Round trip time statistics of sending different sized data structures between the fuzzer and manager

instances. We plot the regression lines for each dataset and shaded its 99% confidence intervals. The average

overhead of the RPC call itself is shown as a yellow area near the 𝑥-axis.

The relevant results are shown in Figure 6. As we see in the graph, the regression lines have
significantly different slopes, indicating that Horus allows both Syzkaller andMoonshine to achieve
a significant speedup in round trip time statistics. On average, Syzkaller and Moonshine achieve a
34.0% and 33.5% speedup in round trip time statistics when using Horus. However, these numbers
include the time for an RPC call itself, thus, when the amount of data transferred is relatively small,
the benefits of using Horus are overshadowed by the RPC call’s overhead itself. To obtain a clear
picture of the actual speedup of Horus, we take the base time for a RPC call into consideration.
Considering that Horus’s round trip time statistics for data transfers under 15KiB have negligible
difference to the RPC call itself, we filter out data with a length of less than 15KiB to assess the
actual speed of data transfers. In this case, Horus achieves a speedup of 84.5% and 85.8%.
As shown in Table 4, we have tested these statistics using the Mann Whitney U test and found

that the 𝑝 values for Syzkaller andMoonshine are approximately 0.007 and 0.006, both less than 0.05,
thus indicating that Horus’s performance is statistically significant than that of vanilla Syzkaller
andMoonshine. Thus, we can conclude that, for Syzkaller andMoonshine, Horus is able to transfer
data significantly faster than the RPC mechanisms provided by traditional fuzzers.
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Table 1. Latency statistics of kAFL with Horus vs. vanilla kAFL. The transfer latency during execution does

not exhibit a significant difference, while Horus is capable of accelerating Redqueen’s retrieval efficiency.

Fuzzer Configuration kAFL/Horus kAFL/Nyx

Payload Transfer Latency (ms) 4.62 4.58
Redqueen Retrieval Latency (ms) 138.6 172.1

6.2.2 kAFL. We measure the average delay of using Horus and Nyx for performing data transfers
both during executing a new input and when fetching comparison operands for Redqueen. The
results are shown in Table 1.
As is evident in the chart, Horus unfortunately does not exhibit a significant difference when

transferring input data to the agent during fuzzing. We believe that this is due to kAFL’s input
being linear in nature, unlike the structured inputs in Syzkaller, therefore Horus’s designs that
facilitate efficient structured data transfer does not offer any observable advantage. Our statistical
tests tell the same story, with the p value in the Mann Whitney U Test being significantly greater
than 0.05.

However, for the Redqueen scenario, Horus exhibits an average latency of 138.6 while kAFL/Nyx
has 172.1, thus reducing latencies compared to vanilla kAFL by 19.4%. We believe that this demon-
strates Horus’s effectiveness when encountering structured data between the host and guest
instances, as multiple offsets in a memory image is similar to that of a simple structure. The sta-
tistical tests show a 𝑝 value of around 0.042, which indicates statistically significant differences
between the data.

6.3 Execution Throughput

To answer RQ2, we measure the overall execution throughputs of each fuzzer configuration and
determine whether Horus delivers an uplift to their fuzzing performances.

6.3.1 Syzkaller andMoonshine. Wefirst evaluate and compare the execution throughput of Syzkaller
and Moonshine when using Horus or RPC to perform data transfers. To this end, we gathered the
number of executions of each kernel fuzzing trial over a period of 12 hours. For each fuzzer, we
averaged over the total number of executions. The relevant results are shown in Table 2. As listed
in the table, Horus assists Syzkaller and Moonshine to achieve an execution throughput speedup
of 31.07% and 30.62%, respectively. Statistical significance is established, as shown in Table 4, where
the p-values of both Syzkaller and Moonshine’s evaluations are below 0.05.

To verify that Horus is the root cause for the respective performance improvements, we then pro-
file the runtime compositions of various functional components during Syzkaller and Moonshine’s
fuzzing campaign. Similar to the preliminary analysis in Section 3, we use pprof to break down each
fuzzer instance’s runtime performance. In particular, we focus our attention on the execution time
for the RPC systems and data transfer mechanisms. A significant decrease in their execution time
proportions will indicate that Horus can effectively increase kernel fuzzer’s execution throughput
by lowering the overhead of data transfer mechanisms.

The relevant results are shown in Figure 7a for the manager instance and Figure 7b for the fuzzer
instance. Since Moonshine’s runtime composition is very similar to that of Syzkaller’s, we omitted
the information from the plots for greater clarity. In this graph, RPC represents the execution time
proportions of the RPC systems itself, such as encoding call arguments, sending and receiving on
network sockets, etc.; Data represents the execution time proportions for Syzkaller to perform
data transfers, using either Horus or the RPC systems for the Horus-improved and original
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Table 2. Execution count and throughput statistics over 12 hours of Syzkaller , Syzkaller+Horus, Moonshine
and Moonshine+Horus for the respective Linux kernel versions.

Fuzzer 5.16 5.15 5.10 Average

Syzkaller 1.62E+06 1.73E+06 1.96E+06 1.77E+06
Syz+Horus 2.50E+06 2.47E+06 2.73E+06 2.56E+06
Syz, exec/m 2252.7 2397.9 2715.4 2455.3
Syz+Hor, exec/m 3469.1 3429.0 3788.7 3562.3
Improvement +54.00% +43.00% +39.53% +45.08%

Moonshine 1.56E+06 1.62E+06 1.89E+06 1.69E+06
Ms+Horus 2.12E+06 2.03E+06 2.45E+06 2.43E+06
Ms, exec/m 2171.9 2246.3 2620.3 2346.2
Ms+Hor, exec/m 2949.3 2820.2 3403.8 3381.9
Improvement +35.79% +25.55% +29.90% +44.14%

versions, respectively. The statistics obtained during the preliminary analysis are also included
for comparison. Obviously, the execution time proportions of the RPC systems and data transfer
mechanisms both decreased significantly with the use of Horus, demonstrating that it is Horus that
lowered Syzkaller and Moonshine’s overhead, thus increasing their overall execution throughput
statistics.

(a) Performance profiling of Syzkaller’s manager

instances with and without Horus implemented.

(b) Performance profiling of Syzkaller’s fuzzer in-
stances with and without Horus implemented.

Fig. 7. Performance profiling of Syzkaller’s manager and fuzzer instances. The 𝑦-axis represents the execution
time proportions of the individual components. RPC represents the execution time proportions used for

sending data through TCP/IP-backed RPC systems. Data represents the execution time proportions used to

encode and decode the data for Syzkaller and to transfer the data to and from the stub structures for Horus.

We further conducted an experiment to evaluate the individual effectiveness of each component
in Horus, i.e. exposing the guest’s memory space into the host and conducting transfers using
Horus’s transfer techniques. The results are shown in Figure 8. As is evident in the graph, using
VMI to transfer the data blobs directly results in a significant reduction in overhead compared to
using RPC calls to transfer the data blobs. However the overhead still grows significantly as the
size of the blob grows. In comparison, using full Horus with Syzkaller/Moonshine is significantly
faster than transferring data blobs, either through RPC or VMI. The fluctuation in Horus’s transfer
latency is due to the variable time it takes for the empty RPC call to reach its receiver. The actual
time used during transferring data is negligible in comparison. Thus we demonstrate that Horus’s
transfer mechanisms deliver significant improvements in comparison to either using RPC or VMI
to directly transfer the serialized or deserialized blobs.
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(a) Syzkaller’s component-wise contributions.
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(b) Moonshine’s component-wise contribu-

tions

Fig. 8. Breakdown of the individual components in Horus for both Syzkaller and Moonshine.
“Syz+Hor”/“Moo+Hor” indicates Syzkaller/Moonshine using Horus, while “Syz+Direct”/“Moo+Direct” indi-

cates Syzkaller/Moonshine transferring the RPC data blobs directly through VMI, and “Syzkaller”/“Moonshine”

indicates using vanilla Syzkaller/Moonshine.

Thus, for Syzkaller and Moonshine, we can answer RQ2 by demonstrating that Horus, through
reducing the overhead for data transfers, helps state-of-the-art kernel fuzzers achieve better execu-
tion throughput.

6.3.2 kAFL. We also measured the execution throughput statistics of kAFL with Horus compared
with vanilla kAFL. The statistics are given as follows: the average execution throughput of kAFLwith
Horus are on average 102.3 executions per second, while that of vanilla kAFL is 100.2 executions
per second. The statistical testing, as shown in Table 4, presents a value greater than 0.05, therefore
their performance are within error margins of each other. Unfortunately, Horus does not exhibit
an impressive improvement over kAFL with Nyx. We believe that the reason still lies within the
results in the previous evaluation, where kAFL’s inputs transferred to the guest instance are mainly
linear buffers, therefore does not fully demonstrate Horus’s transfer techniques’ capabilities. In
addition, while Redqueen’s transfer speed are increased, it is only used during processing new seeds,
which is sparsely scattered within the 12-hour fuzzing period, whereas for the most commonly
used data transfer scenario, which is transferring the input buffer, Horus does not show significant
improvement. This result is within expectations, as Horus mainly targets the transfer of structured
data, while kAFL’s data transfer is, as aforementioned, linear data buffers, thus not demonstrating
Horus’s full potential, as reflected in Syzkaller and Moonshine’s statistics.

6.4 Coverage Statistics

We address RQ3 through examining their respective coverage growths and determining whether
using Horus allows fuzzers to achieve the same coverage in a shorter amount of time.

6.4.1 Syzkaller andMoonshine. Wewish to evaluate whether the execution throughput speedup de-
livered through Horus can assist Syzkaller andMoonshine in achieving better code coverage. Hence,
we conduct fuzzing campaigns for Syzkaller , Moonshine, Syzkaller+Horus and Moonshine+Horus
over a period of 12 hours on the three kernel versions. Each fuzzer’s campaign is repeated 5 times.
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Fig. 9. Branch coverage statistics of Syzkaller , Syzkaller+Horus, Moonshine, Moonshine+Syzkaller for the
respective kernel versions over a duration of 12 hours.

Table 3. Coverage statistics of Syzkaller , Syzkaller+Horus, Moonshine and Moonshine+Horus on the respec-

tive Linux kernel versions over a duration of 12 hours.

Fuzzer 5.10 5.15 5.16 Average

Syzkaller 1.14E+05 1.13E+05 1.17E+05 1.15E+05
Syz+Horus 1.20E+05 1.26E+05 1.22E+05 1.23E+05
Improvement +5.3% +11.5% +4.3% +6.9%

Speedup +1.3× +1.9× +1.6× +1.6×
Moonshine 1.13E+05 1.16E+05 1.14E+05 1.14E+05
Ms+Horus 1.22E+05 1.26E+05 1.22E+05 1.23E+05
Improvement +8.0% +8.6% +7.0% +8.2%

Speedup +1.5× +1.7× +1.5× +1.6×

We sample their coverage statistics every 10 seconds during their respective campaigns and take
the average values. The overall results are presented in Table 3, and we show the plots of coverage
over the duration of their respective fuzzing campaigns in Figure 9.

As listed in Table 4, we performed statistical testing on the results, and found that the kernels 5.10
on Syzkaller , 5.10 onMoonshine and 5.16 onMoonshine have a 𝑝 value of over 0.05, while the other
three do not. Upon further examination, we find that the p-values are borderline. As the acceleration
effects tends to lean towards fuzzing segments that contain frequent data transfers, we deduce that
the effects can be more observable at the beginning half of the fuzzing run. Therefore for these
entries, we calculated their respective p-values when considering their coverage statistics for the
first 6-hours of the entire run. Thus, all six data sets yield 𝑝 values of less than 0.05, demonstrating
a statistically significant improvement over vanilla Syzkaller and Moonshine.

The statistics show that: for Syzkaller , Horus assists the fuzzer in increasing coverage statistics
for the Linux kernel versions 5.16, 5.15 and 5.10 by 7.22%, 11.71% and 8.39%, respectively, with
an average of 9.09%, at the end of 12 hours; for Moonshine, Horus increases the fuzzer’s coverage
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statistics by 7.72%, 8.93% and 7.24%, with an average of 7.97%, respectively. However, comparing
coverage statistics at the end of the campaign does not reveal the entire picture. As shown in
the plot, Horus accelerates Syzkaller and Moonshine’s coverage statistics significantly before the
4-hour-mark. Furthermore, Syzkaller+Horus andMoonshine+Horus were able to achieve the same
coverage as Syzkaller and Moonshine did over 12 hours significantly faster, leading to a speedup of
1.6× and 1.6× for Syzkaller and Moonshine, respectively. Intuitively, kernel fuzzers benefit from
Horus’s design more when they frequently find test cases that trigger new kernel behavior, thus
transferring newly found inputs more often to the manager. When new interesting test cases
become rare, the coverage statistics of kernel fuzzers will converge to similar points with and
without Horus. We believe that Horus’s mechanisms will benefit fuzzers more when they are
capable of generating increasingly high quality inputs, thus being capable of exploring the kernel’s
state space faster and reaping the benefits of using Horus even greater.

Therefore, for Syzkaller and Moonshine, we can answer RQ3 that Horus is able to increase the
speed at which kernel fuzzers explore kernel state, allowing those fuzzers to cover kernel code
more efficiently.
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(a) Coverage growth of kAFL with Horus.
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(b) Coverage growth of kAFL with Nyx.

Fig. 10. Coverage statistics of kAFL with Horus and with Nyx on Linux kernel 5.15-4 over a duration of 12

hours. The blue shaded areas represent the range of the values at each sample point. The blue solid line is the

average coverage statistics.

6.4.2 kAFL. We also examined the coverage statistics of using Horus on kAFL when compared
to vanilla kAFL. The results are shown in Figure 10. As expected, due to no significant execution
throughput increases observable when adapting Horus to kAFL, we do not see a significant
improvement of the coverage statistics over a duration of 12 hours, which is evidenced through our
statistical testing, as shown in Table 4, where the datasets yielded a 𝑝 value of greater than 0.05.
This is indeed as expected, as the previous two evaluations shows that Horus does not deliver a
statistically significant speedup when compared to vanilla kAFL. We will delve into the relevant
details in Section 7.
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Table 4. Mann-Whitney U-Test p-values for each statistical comparison.

Evaluation Target Fuzzer Configuration p-value Significance Comment

Data transfer speeds

Syzkaller - 0.007 ✓ -
Moonshine - 0.006 ✓ -

kAFL Buffer Transfer > 0.05 × Apparent from results
Redqueen 0.042 ✓ -

Syzkaller - 0.009 ✓ -
Execution throughput Moonshine - 0.011 ✓ -

kAFL - > 0.05 × Apparent from results

Coverage

Syzkaller
Kernel 5.10 0.052 × Borderline, see below
Kernel 5.15 0.023 ✓ -
Kernel 5.16 0.046 ✓ -
Kernel 5.10 0.061 × Borderline, see below

Moonshine Kernel 5.15 0.042 ✓ -
Kernel 5.16 0.057 × Borderline, see below

kAFL Kernel 5.15-4 > 0.05 × Apparent from results
Syzkaller-6h Kernel 5.10 0.036 ✓ -

Moonshine-6h Kernel 5.10 0.047 ✓ -
Kernel 5.16 0.021 ✓ -

6.5 Bug Detection

Though Horus does not aim to improve kernel fuzzer’s bug detection capabilites, we are interested
in evaluating the effects of increasing execution throughput on the number of bugs found under a
given time constraint. Thus, we collected the bug report data generated by Syzkaller , Moonshine,
Syzkaller+Horus, and Moonshine+Horus over their respective fuzzing campaigns. We manually
analyzed the bug reports to remove false-positives and duplicates. The results are as follows.
Syzkaller and Syzkaller+Horus found 8 unique bugs in total, of which Syzkaller found 5 and
Syzkaller+Horus found all 8. Moonshine and Moonshine+Horus found 11 unique bugs in total, of
which Moonshine found 7 and Moonshine+Horus found 10.

Thus, we conclude that Horus can help Syzkaller and Moonshine find more kernel bugs under a
given time constraint, which adequately answers RQ4. We also performed kernel fuzzing using
Horus for an extended period of time. Of the bugs found, we submitted reports and received
confirmation for 5 previously unknown bugs, as listed in Table 5.

Table 5. Previously unknown unique bugs found by the fuzzers used during evaluation.

Operation Bug Type Status

svm_vm_copy_asid_from deadlock Confirmed
devkmsg_read deadlock Confirmed
add_transaction_credits assert error Confirmed
kvm_mmu_uninit_tdp_mmu assert error Fixed
usbdev_release assert error Confirmed
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7 DISCUSSION

7.1 Performance on kAFL

Horus is less effective when adapted to kAFL, compared to that of Syzkaller and Moonshine.
Our analysis and reasoning points us to the following reasons. First, in comparison to fuzzers
that perform non-trivial, highly-structure data transfers between their respective host and guest
instances, such as Moonshine, HEALER, TARDIS [Shen et al. 2022], etc., the data that is transferred
between the host and guest instances in kAFL are linear data buffers that are filled into specific
kernel buffers, which does not fully match Horus’s design goal to facilitate efficient data transfers of
highly-structured data between host and guest instances in kernel fuzzing scenarios. Second, unlike
Syzkaller andMoonshine, kAFL utilizes a host-guest shared memory buffer to transmit relevant data,
which is a functionality provided by its Nyx backend, while Syzkaller andMoonshine rely on slower
RPC calls. Nevertheless, Horus still provides a performance uplift in the Redqueen component,
where it transfers structural data, thus demonstrating Horus’s effectiveness. Furthermore, many
kernel fuzzers are also designed with data transfer requirements similar to that of Syzkaller , and
thus can utilize Horus’s data transfer methods to improve overall fuzzing efficiencies.

7.2 Applicability to Other Kernel Fuzzers

Our design, as shown in Section 4, is based on Syzkaller due to the requirement of tight integration
imposed by the specific fixed stub structures required, as well as the interception of the original
data transfer procedures. However, this method is widely applicable to kernel fuzzers that use
the manager-fuzzer model, which requires constant data transfers between the two components
to synchronize test cases and kernel coverage while having high transfer overheads. To adopt
to another kernel fuzzer, one should first identify the structures to pass through direct memory
accesses and the relevant transfer procedures to intercept. Then they can implement fixed stub
structures and the relevant memory layout descriptions. Finally, the they can reuse the QEMU patch
and facilitate transfer operations to that of Horus.

7.3 Guest Physical Memory Consistency

Currently, our design does not support page swapping in the guest VM. Swapping occurs when
the kernel has insufficient physical memory pages to map newly requested memory and must
swap some infrequently used pages to disk. This results in invalidating the fixed stub structures’
physical memory descriptions, leading to incorrect data transfers by using Horus. Currently, we
have disabled page swapping in our VMs to avoid this scenario.
Furthermore, the fixed stub structures are allocated with constant capacities. However, as the

fuzzing campaign progresses, the system call sequences generated may become more complex,
thus there may be a point after which the data that needs to be transferred using Horus can no
longer fit within the stub structures’ buffers. To mitigate this, we can reallocate the stub structures
when their capacities are too small and re-register the memory layout on demand to the manager
process.

7.4 Implications on Kernel Fuzzer Design

There are further design implications for kernel fuzzers when utilizing direct memory access
to the memory space of guest virtual machine instances. In order for kernel fuzzers to efficient,
they need to 1) retain as little code in the emulated guest machines as possible, 2) reduce inter-
process communications as much as possible, and 3) leverage efficient IPC primitives when such
communication is inevitable. Using Syzkaller as an example, it places the fuzzer in the guest
virtual machine, as it frequently passes to-be-executed programs to the executor for system call
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sequence invocation, while sending new inputs to the manager instance occurs relatively sparse,
thus allowing the fuzzer and executor to pass information through a shared memory region while
leveraging RPC for communication between the fuzzer and manager instances. However, there is
the possibility of moving the fuzzer’s functionality into the host machine, thus allowing the fuzzer
instances to run at native speed rather than the reduced emulated speed due to the emulation
overhead. Utilizing the insights of Horus, the fuzzer can communicate directly with the executor
via shared memory, while removing RPC entirely with other efficient IPC primitives such as pipes.
By making such adjustments, kernel fuzzers such as Syzkaller can conform to the aforementioned
three principles and yield more performance during fuzzing. As this is a research problem on its
own, i.e. distributing the workload to maximize fuzzing efficiency, we believe that this is another
topic that should be conducted as future work.

8 CONCLUSION

In this paper, we identify that data transfer overheads in kernel fuzzers affect their effectiveness in
covering kernel code and detecting potential vulnerabilities. We propose Horus, a kernel fuzzing
data transfer mechanism that mitigates the synchronization overheads present in kernel fuzzers
such as Syzkaller and Moonshine by circumventing their original data transfer mechanisms over
remote procedure calls. In doing so, our approach provides a more efficient solution towards
efficiently transferring highly-structured data between host to the guest instances. Specifically,
Horus exposes the guest fuzzer’s memory space to host manager and sets up fixed stub structures
in the fuzzer instances during their initialization processes. Horus then registers the stub structures
with the manager to allow for efficient transfers. When conducting transfers, Horus’s stubs in both
the manager and fuzzer instances use the stub structures to pass highly-structured and non-trivial
data consistently and efficiently. Our evaluation shows that Horus improves data transfer speeds by
84.5% and 85.8% , as well as execution throughput by 31.07% and 30.62% for Syzkaller andMoonshine,
respectively. In addition, Horus allows Syzkaller and Moonshine to achieve a speedup of 1.6× and
1.6× and increases their coverage statistics by 6.9% and 8.2% over a period of 12 hours, respectively.
On kAFL, Horus decreases the data transfer latency of its Redqueen component by 19.4%. To
facilitate open research, we have open-sourced Horus on Github (https://github.com/Wingtecher-
OSLab/Horus).
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