
Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis
Chijin Zhou

Tsinghua University
Beijing, China

Quan Zhang
Tsinghua University

Beijing, China

Mingzhe Wang
Tsinghua University

Beijing, China

Lihua Guo
Tsinghua University

Beijing, China

Jie Liang∗
Tsinghua University

Beijing, China

Zhe Liu
NUAA

Nanjing, China

Mathias Payer
EPFL

Lausanne, Switzerland

Yu Jiang∗
Tsinghua University

Beijing, China

ABSTRACT

Browser APIs are essential to the modern web experience. Due to
their large number and complexity, they vastly expand the attack
surface of browsers. To detect vulnerabilities in these APIs, fuzzers
generate test cases with a large amount of random API invocations.
However, the massive search space formed by arbitrary API com-
binations hinders their effectiveness: since randomly-picked API
invocations unlikely interfere with each other (i.e., compute on
partially shared data), few interesting API interactions are explored.
Consequently, reducing the search space by revealing inter-API
relations is a major challenge in browser fuzzing.

We propose Minerva, an efficient browser fuzzer for browser
API bug detection. The key idea is to leverage API interference
relations to reduce redundancy and improve coverage. Minerva
consists of two modules: dynamic mod-ref analysis and guided code

generation. Before fuzzing starts, the dynamic mod-ref analysis mod-
ule builds an API interference graph. It first automatically identifies
individual browser APIs from the browser’s code base. Next, it
instruments the browser to dynamically collect mod-ref relations
between APIs. During fuzzing, the guided code generation module
synthesizes highly-relevant API invocations guided by the mod-ref
relations. We evaluate Minerva on three mainstream browsers,
i.e. Safari, FireFox, and Chromium. Compared to state-of-the-art
fuzzers, Minerva improves edge coverage by 19.63% to 229.62% and
finds 2x to 3x more unique bugs. Besides, Minerva has discovered
35 previously-unknown bugs out of which 20 have been fixed with
5 CVEs assigned and acknowledged by browser vendors.

CCS CONCEPTS

• Security and privacy→ Browser security; Software security

engineering.

KEYWORDS

browser security, interface fuzzing, dynamic analysis

∗Yu Jiang and Jie Liang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549107

ACM Reference Format:

Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu,
Mathias Payer, and Yu Jiang. 2022. Minerva: Browser API Fuzzing with
Dynamic Mod-Ref Analysis. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3540250.3549107

1 INTRODUCTION

Modern browsers export thousands of built-in APIs, allowing web
applications to access and manipulate a browsers’ inner state flexi-
bly, e.g., accessing an element through doc.getElementById(); chang-
ing styles through el.setAttribute(). The flexibility of browser APIs,
however, becomes an essential part of the attack surface. An at-
tacker can craft a sequence of API invocations to exploit browser
security bugs, resulting in privacy leakage or even remote code
execution.

While browser vendors focused on discovering bugs [3, 15, 27,
29], less attention has been paid to the security of browser APIs.
For example, conventional fuzzing works are commonly focused
on browser submodules, including third-party libraries [9, 13, 14]
and JavaScript engines [16, 17, 31, 34]; consequently, no browser
APIs are covered. Recent work [35, 44, 53] focuses on fuzzing the
rendering engine of browsers where only a limited set of browser
APIs are carefully tested.

For browser testing, the quality of a test case highly depends
on its browser API invocations: higher interaction between its
API invocations translates to higher coverage. However, thousands
of APIs offer near infinite combinations. Enumerating them all
is infeasible, limiting fuzzer effectiveness. To mitigate it, existing
fuzzers consider only a carefully-selected subset of APIs and use
manually-labeled semantics for assisting their pruning heuristics.
As a result, existing approaches cannot thoroughly explore the
state space behind browser API invocations. First, to reduce the
search space, a number of APIs are considered “meaningless” thus
manually pruned. With incomplete API coverage, bugs hidden in
them will never be discovered. Second, manually-labeled semantics
only identify a small amount of inter-API relationships. For exam-
ple, the semantics of some existing works [35, 44] annotate SVG
attributes or CSS properties to allow related APIs to establish data
flow at generation time. The annotations heavily rely on domain
knowledge from experts, thus only a few important components
are concerned currently. To our best knowledge, no known testing
approach can scale to the full set of browser APIs.

https://doi.org/10.1145/3540250.3549107
https://doi.org/10.1145/3540250.3549107

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

To expand the number of tested browser APIs, the vast search
space can be reduced by removing mutually exclusive API combi-
nations. Every API manipulates or accesses a certain part of the
browser’s internal data during its execution, by which an API in-
vocation may interfere with others. Putting two non-interfering
APIs into a test case is unlikely to trigger any interesting behavior
because there is no interaction between them. For example, accord-
ing to our observation, more than 60% of API invocation pairs in
each test case generated by Domato [44] do not access any com-
mon resources, leading to a large number of redundant executions
during the fuzzing campaign. Therefore, it is important to consider
interference between APIs in fuzzing. Once the relations are built,
fuzzers can prune vast unnecessary API combinations and generate
highly-relevant API invocations within a single test case, massively
improving fuzzing performance.

However, it is challenging to capture interference relations and
further facilitate input generation. First, we cannot simply identify
the relations through interface description: an API may influence
another one even though the two APIs are type-independent. For
example, the API Node::appendChild(Node) can impact the API
HTMLInputElement::setSelectionRange(long,long), because
the latter will resize the input element and trigger repainting on this
page, therefore, every element that was appended to the current
page will be checked for reposition during repainting. Hence, the
behaviors of setSelectionRange interfere with by appendChild,
even though they neither belong to the same object nor have any re-
lationship in parameter types. Second, our input generation strategy
should not only consider interference relations but also conform
to semantic correctness. If the concrete parameters do not meet
the API requirement, e.g., type hierarchy or argument count mis-
match, then the invocation will be rejected before reaching the
backend logic, which also renders fuzzing inefficient. Therefore,
the generation strategy should ensure both semantic correctness
and relevance to each other.

We propose Minerva for efficient browser API bug detection.
Leveraging API interference relations, Minerva generates APIs
with correct semantics and relevant combinations, producing test
cases higher in coverage and dependent in API. It consists of two
main modules: dynamic mod-ref analysis and guided code generation.
Before fuzzing starts, the dynamic mod-ref analysis module builds
an accurate API interference graph. It first automatically identi-
fies individual browser APIs from a browser’s code base. Next, it
instruments the browser to dynamically collect mod-ref relations
between APIs. In essence, it detects that interface 𝐼𝑖 is impacted by
𝐼 𝑗 if there is a trace where 𝐼𝑖 reads a resource after 𝐼 𝑗 modifies it.
During fuzzing, the guided code generation module synthesizes API
invocation sequences guided by the mod-ref relations. Based on the
relations, it assigns weights to APIs to prioritize the ones that are
highly relevant to the previous invocations at every selection stage.
Besides, it also leverages API specifications to ensure generated
test cases are semantically-correct.

We implement the prototype of Minerva and evaluate its perfor-
mance on recent versions of three mainstream browsers, i.e. Safari,
FireFox, and Chromium. Compared to state-of-the-art fuzzers, Min-
erva improves edge coverage by 19.63% to 229.62% and finds 2x
to 3x more unique bugs. In addition, Minerva has discovered 35

previously-unknown bugs on the three browsers; 20 have been
fixed with 5 CVEs assigned so far.

In summary, this paper makes the following contributions:

• We identify an insufficiency in browser testing practices and
propose a new approach to generate highly relevant API invo-
cations for browser API bug detection. Our approach leverages
mod-ref relations between APIs, so that the generated test cases
are higher in coverage and less redundant in semantics.
• We design and implement Minerva. It consists of (1) a dynamic
mod-ref analysis module to collect APIs’ memory access infor-
mation, and (2) a code generation module that uses API mod-ref
relations for highly-relevant API invocations synthesis. The tool
will be available at https://github.com/ChijinZ/Minerva.
• We evaluate Minerva on Safari, Firefox, and Chromium. Min-
erva achieved higher coverage and triggered more unique bugs
than the state-of-the-art fuzzers. It has detected 35 previously-
unknown bugs where 5 CVEs were assigned so far.

2 BACKGROUND

2.1 Browser API and Interface Description

Modern web browsers provide thousands of built-in browser APIs
(a.k.a Web APIs) to support complex operations for manipulating
or accessing browsers’ inner state, allowing developers to build
all kinds of web applications. Figure 1 demonstrates how browser
APIs are used in real-world scenarios. When an API is invoked,
the JavaScript engine first parses the statement and dispatches the
invocation to the corresponding binding code. Then the binding
code translates data representations between JavaScript and native
code (mostly C/C++), and finally invokes backend functions for
manipulating or accessing the browser’s inner states.

Interface descriptions are necessary for developers to write API
invocations. Generally, every browser has its own interface descrip-
tion in its code base. The description is in WebIDL [46] format and
contains every API declaration, including interface name and type
properties of its object, return value, and parameters.

2.2 Browser Fuzzing

As one of the most complicated applications, browsers naturally
become an attractive target to security researchers and attackers.
Fuzzing browser’s sub-components such as third-party libraries [13,
14] and JavaScript engines [16, 17, 31, 34] gained significant traction

Web
Developers

JavaScript

Engine<script>

// API invocations
</script>

HTML File

Binding

Code

Interface
Description

Browser Backend

DOM
CSSOM
WebGL
Storage
Media

...

Figure 1: Demonstration of browserAPI usage. BrowserAPI is

exported by browsers for manipulating or accessing browser

backend.

https://github.com/ChijinZ/Minerva

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

1 . <html>

2 . <script>

3 . function fuzz() {

4 . var doc = document;

5 . doc.write("foo");

6 . var svg = doc.

7 . createElementNS("..", "svg");

8 . var body = doc.body;

9 . body.appendChild(svg);

10. svg.forceRedraw();

11. svg.zoomAndPan = 5;

12. svg.setCurrentTime(100);

13. var f = svg.getCurrentTime();

14. svg.currentScale = f;

15. }

16. </script>

17. <body onload="fuzz()"></body>

18. </html>

Interface Description

Implicit
Interference

Redundant

Relation

Test Case

5 . void Document::write(DOMString)

9 . Node HTMLElement::appendChild(Node)
10. void SVGSVGElement::forceRedraw()
11. short SVGSVGElement::zoomAndPan
12. void SVGSVGElement::setCurrentTime(float)
13. float SVGSVGElement::getCurrentTime()
14. float SVGSVGElement::currentScale

...

...

...

(a) A test case and its corresponding interface descriptions

jsDocumentPrototypeFunction_write(...) {

 RenderElement::detachRendererInternal(...) {
 ...
 parent->m_firstChild = nextSibling;
 }
}

Backend of HTMLElement::appendChild

Backend of SVGSVGElement::currentScale setter

jsNodePrototypeFunction_appendChild(...) {

 Node::setParentNode(...) {

 ...

 m_parentNode = parent;

 }

}

setJSSVGSVGElement_currentScale(...) {
 RenderElement::setStyle(...) {

 ...

 for (auto& child :

	 	 	 childrenOfType<RenderText>(*this))

	 child.styleDidChange(diff, &oldStyle);

 }
 SVGElement::isOutermostSVGSVGElement() {

 ...

 if (!m_parentNode)

	 return true;
 ...

 }

}

Backend of Document::write

memory location 1

memory location 2

(b) Memory access interference hidden in browser’s backend logic

Figure 2: An example for implicit interference relation on WebKit. The logic of SVGSVGElement::currentScale is interfered

with by Document::write and HTMLElement::appendChild, although they seem irrelevant from interface description view.

in academic research as well as in industry. Nevertheless, less atten-
tion has been paid to whole browser fuzzing. The lack of end-to-end
fuzzing prohibits finding some vulnerabilities [45].

A common approach of industrial whole browser fuzzers [35,
36, 44] is to take static grammars that describe API specifications
and semantics to generate HTML test cases. For each test case
generation instance, they iteratively select a rule from the static
grammars to instantiate, and generate helper code for it to avoid
syntactic or semantic errors in themeanwhile. In addition to the con-
ventional approach, FreeDom [53], a state-of-the-art DOM fuzzer,
improves fuzzing effectiveness by classifying browser APIs into var-
ious fuzzing operations on the basis of their functionalities. Based
on that, it designs several generation and mutation strategies for
maintaining context information. Recently, Favocado [10] is pro-
posed for finding vulnerabilities in binding code. It extracts all API
specifications of each browser, and tries to leverage the type prop-
erty of APIs to generate test cases that trigger fewer syntactic and
semantic errors.

3 MOTIVATION

The dilemma of existing browser fuzzers is that their effectiveness
cannot be guaranteed once the test surface is increased. On the one
hand, fuzzing is incomplete without considering the full list of
APIs. Those pre-pruned APIs may contain bugs while the fuzzers
will never find them. On the other hand, if the full list of APIs is
considered, it is inevitable to lead to inefficient test cases because
of the huge search space.

One potential solution is to consider interference relations between
APIs during fuzzing. Every API manipulates or accesses a certain
part of the browser’s internal state during its execution. An API
execution may interfere with the ones of other APIs by modifying
common internal data. Orthogonally, an API is irrelevant to another
one if there is no possibility for them to access shared data. Putting
two irrelevant APIs into a test case will not trigger any interesting
behavior because there is no interaction between them. Therefore, it
is important for fuzzing to consider interference relations between
APIs. Once the interference relations are available, fuzzers can
exclude vast unnecessary API combinations and only generate

highly-relevant API invocations within a single test case, largely
improving fuzzing performance.

We observed that the interference relation is generally hidden be-
hind the browser’s backend instead of exposed by interface descrip-
tion, making the collection of it challenging. We define implicit

interference as the relation between two APIs that are irrelevant
at the interface description level but have interference relation dur-
ing execution. Figure 2a presents a representative test case. The test
case includes a sequence of API invocations for appending a SVG el-
ement to the current document’s body (Line 8-9) and manipulating
the internal data of this SVG element (Line 10-14). In this example,
we focus on the last API invocation, i.e. setting currentScale of a
SVG element to a floating-point value, and investigate which state-
ment interferes with it. We notice that it is possible that two APIs
have interference relations even though they are irrelevant from the
interface description view. For example, the logic of the last invo-
cation largely depends on the doc.write and body.appendChild
invocations. Figure 2b is the proof of memory access interference
between them. When executing the last invocation, the browser
first delegates the execution to the corresponding backend function
setJSSVGSVGElement_currentScale. The backend function is re-
sponsible to set the currentScale property of the SVG object and
repaint the page if necessary. During its repainting, the SVG object
checks the style of each RenderText child node of its parent node to
know which rendering objects need to be repainted. In this process,
the backend function reads memory location 2 for checking if the
parent node exists (in the isOutermostSVGSVGElement function),
and also reads memory location 1 for accessing child nodes of par-
ent node (in the setStyle function). The two memory locations are
modified by the doc.write and body.appendChild invocations.
The doc.write invocation adds a node to the current document,
during which it modifies the m_firstChild variable on memory
location 1. On the other hand, the body.appendChild invocation
modifies the parent node of the SVG object on memory location 2.
These implicit interference relations are ignored by existing works.

Besides the implicit interference missed in test cases, we also
found that redundant relation widely exists in test cases. We define
redundant relation as the relation between two APIs that are
only relevant at the interface description level but never interfere

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

API Collection

Mod-Ref

InstrumentationBrowser

Source Code

Trace Analysis

API
Spec

Workload
Inputs

Instrumented
Browser

Dynamic Mod-Ref Analysis §4.1

Weighted API

Selection

Semantics-Aware
Synthesis

Semantic
Information

Interference
Relations

Guided Code Generation §4.2

Test Case

API Interference

Graph Target Browser Bug Report

Figure 3: The overall design of Minerva. During the preparation phase, Minerva performs dynamic mod-ref analysis by

executing workload inputs and analyzing memory access of each API, and then builds an API interference graph. During the

fuzzing phase, guided by the graph, Minerva prioritizes APIs with high relevance to the previously selected ones in every

selection stage, and meanwhile preserves semantic correctness when test case synthesis.

with each other’s state during execution. In Figure 2a, among all
the statements above the last invocation, those SVG operations
(Line 10-13) are likely to interfere with it because they are ma-
nipulating the same SVG object. Counterintuitively, every execu-
tion of those operations did not affect the execution of setting
the currentScale. For example, the setCurrentTime invocation
only manipulates the time-related variables of the SVG object in
the browser’s backend logic, which is isolated to all the memory
accesses of the currentScale execution. Even though the return
value of getCurrentTime is used to set the currentScale, there is
still no interference between them frommemory access perspective.
Putting independent APIs together absolutely makes the generated
test case redundant and reduces fuzzing effectiveness.

In summary, we observe that redundant relation and implicit in-

terference are widely present in API combinations while existing work

does not take them into account. The absence of considering API rela-
tions damages fuzzing effectiveness because putting non-interfering
APIs into a test case will not trigger any interesting behavior. This
motivates us to design an automatic browser fuzzing technique that
reveals interference relations between browser APIs and facilitate
high-quality input generation for more efficient bug detection.

4 DESIGN

Our browser API fuzzer Minerva infers API relations for effective
input generation. As shown in Figure 3, Minerva consists of two
main modules: a dynamic mod-ref analysis to build an accurate
API interference graph and a guided code generation for generat-
ing higher-coverage and API-dependent test cases. (1) During the
preparation phase, the dynamic mod-ref analysis performs instru-
mentation on the target browser and then visits some websites or
generated test cases for trace collection. After that, it analyzes the
collected traces and API specifications to build a directed graph
𝐺 = (𝑁, 𝐸), where𝑁 is the set of APIs and 𝐸 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑁∧𝑢 ≠

𝑣 ∧ ℎ𝑎𝑠𝑀𝑜𝑑𝑅𝑒 𝑓 (𝑢, 𝑣)}. Each edge denotes that its source node API
interferes with the target node API. Next, Minerva leverages the
interference graph to generate test cases. (2) During the fuzzing
phase, for each test case generation, the guided code generation

iteratively selects an API to instantiate and meanwhile generates
a series of helper code for satisfying the semantic dependencies
of this API. It maintains a choice model on the basis of the inter-
ference graph so that in every selection stage its algorithm will
prioritize APIs with high relevance to the previously selected ones.

Besides the API selection, it also adopts a custom synthesis strategy
to ensure the generated helper codes are semantically-correct.

The advantage of Minerva over the state-of-the-art counter-
parts is that Minerva generates less-redundant test cases without
extra manual effort. That brings two major benefits. First, Minerva
can test the full list of APIs instead of a manually-selected subset.
Existing fuzzers avoid considering all APIs because of the huge
search space formed by API combinations. By contrast, Minerva
leverages interference relation to automatically reduce the search
space, making the full APIs fuzzing viable. Second, Minerva is able
to generate high-quality test cases. Even though existing fuzzers
integrate human knowledge to label semantic information, the test
cases they generated still contain many redundant API invocations.
The API invocations of each test case generated by Minerva, on
the other hand, are highly relevant to each other thanks to the
interference relations guidance.

4.1 Dynamic Mod-Ref Analysis

The goal of dynamic mod-ref analysis is to build an API interfer-
ence graph to facilitate high-quality code generation. Each node of
the graph refers to an API, and each edge denotes that its source
node API interferes with its target node. We define the interference
relation used in Minerva as follows:

Definition 4.1. Interference Relation. An API 𝐼𝑖 interferes with
another API 𝐼 𝑗 if the invocation of 𝐼𝑖 modifies a memory location
that is used by the invocation of 𝐼 𝑗 , i.e., part of the state of 𝐼 𝑗 .

To build the graph, we must first collect all API specifications
from each browser to form the nodes, and then collect traces of
browser’s executions to construct the interference edges. Three
sub-components are responsible for this task: (1) the API Collection
component for converting WebIDL files collected each browser to a
context-free grammar; (2) the Mod-Ref Instrumentation component
for instrumenting every modification/reference memory location
of browser’s memory objects; (3) the Trace Analysis component for
building the API interference graph by analyzing traces.

API Collection. Minerva relies on an initial API specification.
First, Minerva requires all APIs to form the node set of the interfer-
ence graph. Besides, although API specification does not reveal im-
plicit relations between APIs, its type property information allows
Minerva to preserve semantic correctness during input generation.
Therefore, the specification is required to keep the same semantic
information with the corresponding API’s declaration, meanwhile

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

interface Document {
 ...
 attribute DOMString title;
 readonly attribute HTMLCollection images;

 NodeList getElementsByName
	 	 	 (DOMString elementName);

 ...
}

...
<DOMString> = <Document>.title
<Document>.title = <DOMString>

<HTMLCollection> = <Document>.images

<NodeList> = <Document>.
	 getElementsByName(<DOMString>)
...

Figure 4: An example of conversion from WebIDL files to

the custom context-free grammar. The conversion preserves

original semantic information. The ones in angle brackets

are non-terminal symbols.

needs to be easily integrated with input generation. To meet this
end, Minerva collects WebIDL files from the code base of the tar-
get browser and then converts them to a simplified context-free
grammar (CFG), which will be used to assist code generation later.
Figure 4 illustrates the general idea of the conversion. The code in
the left rectangle is in a format of WebIDL [46], which is similar to
header files in C/C++ and describes interfaces that are intended to
be implemented in web browsers. The code in the right rectangle is
a custom CFG. Each line of the CFG is a production rule in which
the right-side non-terminal symbols can be expanded recursively. A
non-terminal symbol is regarded as a placeholder for a variable of
the corresponding type when code generation. When dealing with
interface of WebIDL, Minerva follows the following principles
to make the conversion:
• For each read/write member variable, the conversion generates
two production rules, one for getting its value, another for setting
a value to it.
• For each read-only member variable, the conversion generates a
production rule for getting its value.
• For eachmember function, the conversion generates a production
rule in which the left-side non-terminal symbol is the function’s
return type, and the right-side is a concatenation of object type
name, function name and parameter type names.
Mod-Ref Instrumentation. During this stage, Minerva per-

forms instrumentation to a browser. The goal of this instrumenta-
tion is to monitor memory operations, i.e., store and load, of each
API during execution, and reveal implicit interference relations
between APIs. However, it is challenging because instrumenting
the browser on all memory access locations results in unaccept-
able overhead. During testing, we observed over 10x slowdown
and unaffordable overhead in memory for each execution when
tracing all memory operations. To mitigate the overhead, we de-
sign a custom instrumentation strategy based on two observations:
(1) There are many background threads that are responsible for
input-irrelevant tasks, e.g. communication to other processes. The
behaviors of background threads thus are irrelevant to the browser
API execution. (2) Only memory objects that are shared between
APIs should be considered. The memory operations of local vari-
ables are unnecessary to track because it will never interfere with
other APIs.

To meet this end, we perform dataflow analysis to trace the mem-
ory operations in which the operator pointer flows from the shared
memory objects. We model program’s memory behaviors in the
same way as Andersen’s pointer analysis [2] does, i.e., categorizing
pointer operations into four types: address-of (p=&o), copy (q=p),

load (q=*p) and store (*p=q). To enable field-sensitive analysis, we
also consider offsets (q=p.x). The pseudocode for instrumentation
is described in Algorithm 1. Before performing instrumentation,
Minerva obtains all functions that can be reached from API en-
tries (Line 3). There are a lot of functions irrelevant to input in the
browser and thus unreachable from API entries. Such functions
should be excluded from our analysis. Next, it performs dataflow
analysis to trace memory operations of each concerned memory ob-
ject (Line 4-8). Note that Minerva only traces the memory objects
that can be shared between APIs. Local memory objects are thus
excluded. During the dataflow analysis, Minerva recursively traces
all pointer operations related to the current memory object. If a
pointer operation loads from/store to the current object, it will be
regarded as a reference/modification instrumentation point (Line
13-15). If an object is offset or copied from the current object, Min-
erva will recursively trace its dataflow (Line 16-18). If an object
takes the address of the current object, then Minerva will find
every load-site of this object and recursively traces its point-to
object’s dataflow (Line 19-23). In this way, Minerva can instrument
all memory locations flowed from concerned memory objects.

Trace Analysis. After instrumentation, a browser is prepared to
execute workload inputs for trace collection. Every trace contains
memory access information of its API invocations, including theAPI
invocation sequence and a set of modification/reference addresses
for each invocation.

Figure 5 gives a step by step example of revealing implicit rela-
tion between APIs for building the API interference graph. First,
various workload inputs, e.g., off-the-shelf websites or generated
test cases, are executed by an instrumented browser. During ev-
ery execution, a trace that contains memory access information
of its API invocations is emitted. For workload input 1, we can
see that the address 0x7f5dde2ea798 is modified by the 12th API
invocation and used by the 27th API invocation. At the same
time, the memory access sizes of them are both 64, which means
that both APIs most likely access the same object. This is a proof
that the 12th invocation interferes with the 27th. Therefore, we

Algorithm 1:Mod-Ref instrumentation algorithm
Input :Program 𝑃 and a set of APIs 𝐼
Output : Instrumented program𝑄

1 FunctionModRefInstrumentation(𝑃):
2 𝑄 = 𝑃 .copy()
3 𝐹 = getAPIsReachableFuncs(𝑄 , 𝐼)
4 foreach function 𝑓 in 𝐹 do

5 foreach memory object 𝑜𝑏 𝑗 in 𝑓 do

6 instrumentWithDataflow(𝑜𝑏 𝑗 ,𝑄)
7 end

8 end

9 return𝑄

10 Function instrumentWithDataflow(𝑜𝑏 𝑗 ,𝑄):

11 if visited(𝑜𝑏 𝑗) then
12 return
13 foreach load or store instruction 𝐼𝑛𝑠𝑡 uses 𝑜𝑏 𝑗 do
14 𝑄 .instrumentOn(𝐼𝑛𝑠𝑡)
15 end

16 foreach object x is offset or copied from 𝑜𝑏 𝑗 do
17 instrumentWithDataflow(𝑥 ,𝑄)
18 end

19 foreach object x takes address of 𝑜𝑏 𝑗 do
20 foreach object 𝑦 loaded from 𝑥 do

21 instrumentWithDataflow(𝑦,𝑄)
22 end

23 end

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

...

12. document.write("...");

...
27. svg.currentScale = 5;

...

Workload Input 1

Trace 1

...

32. body.appendChild("...");

...
66. svg.currentScale = 1;

...

Workload Input 2

Trace 2

...

...

...

store to
0x7f5dde2ea798

64

...

...

...

...

...

...
12

27
load from

0x7f5dde2ea798

64

...

...

...

...

...

...

...

...

...

store to
0x7f5dde2d2b18

64

...

...

...

...

...

...32

66 0x7f5dde2ea798

...

...

...

load from
0x7f5dde2d2b18

64

...

...

...

...

...

...

I1
I2

I3

I1
I2

I1: <Document>.write(<DOMString>)
I2: <SVGSVGElement>.currentScale = <float>
I3: <new Node> = <Node>.appendChild(<Node>)

Trace
Analysis
 Graph Graph

Dynamic
Execution

Figure 5: An example of building API interference graph. The

instrumented browser executes workload inputs and records

corresponding traces. The trace analysis adds an edge to the

graph once there is a mod-ref pair in the traces.

can add an edge from the <Document>.write(<DOMString>) node
to the <SVGSVGElement>.currentScale=<float> node. Then the
second workload input is processed in the same way. New edges are
added to the graph as they are discovered, continously revealing
new implicit interface relations.

4.2 Guided Input Generation

The API interference graph can facilitate effective code generation
in many ways. First, nodes of the graph include all API declarations,
which can help Minerva not only cover all possible APIs but also
combine them in a semantically-correct way. Second, edges of the
graph indicate that an API can interfere with another one. Minerva
can use them to generate less-redundant test cases.

The key idea of Minerva is to prioritize the APIs that are highly
relevant to the previous invocations at every selection stage. To
meet this end, Minerva maintains a choice model for weighted
sampling based on the API interference graph. In addition to API
selection, Minerva has a synthesis component for guaranteeing se-
mantic correctness. Once an API is selected, Minerva instantiates it
with concrete parameters. The synthesis component is responsible
for generating necessary helper invocations in order to make the
concrete parameters semantically-correct during the instantiation.
Benefiting from weighted API selection and semantics aware syn-
thesis, Minerva can generate test cases that are likely to trigger
deep logic behind interaction of browser’s APIs.

Weighted API Selection. The goal of our selection strategy
is to reduce the redundancy in test cases. Besides, it should also
avoid introducing much extra overhead because low throughput
damages fuzzing effectiveness. Therefore, we adopt weighted ran-
dom sampling [11], a light-weight but effective approach, to meet
this end. Our intuition is that, when 𝑛 API invocations have been

Algorithm 2: Test case generation with weighted selection
Input :API interference graph𝐺𝑟𝑎𝑝ℎ
Output : Invocation list 𝐿𝑖𝑠𝑡

1 Function generateTestCase(𝐺𝑟𝑎𝑝ℎ):
2 𝐿𝑖𝑠𝑡 ← []

// model for weighted API selection

3 𝑀𝑜𝑑𝑒𝑙 = initialization()
// context for storing created variables

4 ctx = initialization()
5 while List.size() < MAXLINE do

6 𝑁𝑜𝑑𝑒 = weightedSelection(𝑀𝑜𝑑𝑒𝑙 ,𝐺𝑟𝑎𝑝ℎ)
// synthesize the invocation and helper code

7 𝐶𝑜𝑑𝑒 = synthesizeInvocations(𝑁𝑜𝑑𝑒 ,𝐺𝑟𝑎𝑝ℎ, 𝑐𝑡𝑥)
8 updateWeights(𝑀𝑜𝑑𝑒𝑙 ,𝐶𝑜𝑑𝑒 ,𝐺𝑟𝑎𝑝ℎ)
9 𝐿𝑖𝑠𝑡 .append(𝐶𝑜𝑑𝑒)

10 end

11 return 𝐿𝑖𝑠𝑡

12 Function updateWeights(𝑀𝑜𝑑𝑒𝑙 ,𝐶𝑜𝑑𝑒 ,𝐺𝑟𝑎𝑝ℎ):
13 foreach invoked API I in Code do

14 foreach sink node s in𝐺𝑟𝑎𝑝ℎ[I] do
15 𝑀𝑜𝑑𝑒𝑙 .weights[𝑠] += 1
16 end

17 end

synthesized, there should be a higher probability to select those
APIs that can be interfered with by the 𝑛 previous invocations. In
this way, the invocations in a generated test case are likely to be
influenced by each other.

Algorithm 2 shows how the selection algorithm works when
generating test cases. During the process, Minerva maintains a
choice model for API selection (Line 3). This model tracks a weight
value (initialized to 1) for every API. When generating a test case,
Minerva iteratively selects an API based on the weights, synthe-
sizes invocations of this API and updates weights according to
synthesized invocations (Line 5-10). The synthesizeInvocations
function is used to synthesize invocations as well as helper code for
semantic correctness. We will detail it later. The updateWeights
function is used to update weights for relevant APIs. During the up-
dating, for each invoked API in the list of synthesized invocations,
Minerva finds all sink nodes of it in the API interference graph
and then updates their weights (Line 12-17). In the next iteration,
it is likely to select the APIs with high relevance to the previous
invocations because their weights are higher than others.

Semantics Aware Invocation Synthesis. The goal of our invo-
cation synthesis is to synthesize semantically-correct invocations
for a selected API node. Thanks to the rich semantics from nodes
of the interference graph, Minerva can know every API’s type
property, i.e., types of its object, return value, and parameters. Algo-
rithm 3 details the synthesis workflow. Note that Minerva should
not only synthesize an invocation of the selected API, instead, it
should also synthesize helper invocations for providing concrete
parameters for the selected API. For example, if the <Element> =
<Document>.getElementById(<DOMString>) production rule is
selected, the generation component is responsible for looking for
a Document variable and a DOMString variable. If previous invo-
cations have created them, Minerva will be likely to use them to
meet the end. Otherwise, Minerva will invoke some APIs to con-
struct them for guaranteeing semantic correctness. Note that the
synthesizer randomly constructs variables to add more instances
for each type even though they are created before (Line 6).

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Algorithm 3: Semantics aware invocation synthesis
Input :API Node for instantiation 𝑁𝑜𝑑𝑒

API interference graph𝐺𝑟𝑎𝑝ℎ
Context 𝑐𝑡𝑥

Output : Invocation list 𝐿𝑖𝑠𝑡
1 Function synthesizeInvocations(𝑁𝑜𝑑𝑒 ,𝐺𝑟𝑎𝑝ℎ, 𝑐𝑡𝑥):
2 𝐿𝑖𝑠𝑡 ← []
3 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑁𝑜𝑑𝑒 .instantiate()
4 𝑆𝑝𝑒𝑐 =𝐺𝑟𝑎𝑝ℎ.getAPISpec()
5 foreach nonterminal symbol S of Node do
6 if ctx.containsVariable(S) and not randomlyDropout() then

// reuse created variable

7 𝑉𝑎𝑟 = 𝑐𝑡𝑥 .get(𝑆)
8 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 .add(𝑉𝑎𝑟)
9 else

// generate semantically-correct code

10 𝑉𝑎𝑟,𝐻𝑒𝑙𝑝𝑒𝑟𝐶𝑜𝑑𝑒=generateHelperCode(𝑆 , 𝑆𝑝𝑒𝑐)
11 𝑐𝑡𝑥 .update(𝐻𝑒𝑙𝑝𝑒𝑟𝐶𝑜𝑑𝑒)
12 𝐿𝑖𝑠𝑡 .append(𝐻𝑒𝑙𝑝𝑒𝑟𝐶𝑜𝑑𝑒)
13 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 .add(𝑉𝑎𝑟)
14 end

15 end

16 𝐿𝑖𝑠𝑡 .append(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
17 return 𝐿𝑖𝑠𝑡

5 IMPLEMENTATION

As Figure 3 shows, Minerva consists of two main modules: a dy-
namic mod-ref analysis and a guided code generation.

The dynamic mod-ref analysis includes API collection, mod-ref
instrumentation, and trace analysis. The API collection is imple-
mented with roughly 600 lines of Python code. It uses off-the-shelf
tools [19, 47] to parse WebIDL files to ASTs, and then convert them
to context-free grammar. The mod-ref instrumentation is imple-
mented on the top of LLVM 12 [24] with roughly 700 lines of C++
code. It traces the dataflow of every concerned memory object on
the top of Link Time Optimizations (LTO). The trace analysis is
implemented with roughly 1,900 lines of Rust code. During the
trace analysis, a server is spawned for collecting trace information
from instrumented browsers. When an instrumented browser is
executing a workload input, the runtime of instrumentation tracks
its trace information into a block of shared memory at the same
time. After the browser is closed, the server will collect its trace
and build the API interference graph as Figure 5 shows. The guided
code generation is implemented with roughly 1,000 lines of Python
code on the top of Domato [44]. The algorithm 2 and algorithm 3
are implemented as third-party extenions for Domato.

In addition to Minerva, we also implemented a browser fuzzing
framework with roughly 2,000 lines of Python code to automate
mainstream browsers for fuzzing. Its browser automation is based
on Selenium [37]. For fair evaluation, it also includes glue code that
adapts other existing fuzzers to this framework.

6 EVALUATION

We evaluate Minerva on three common browsers, i.e. Safari, Fire-
Fox, and Chromium. Our goal is to understand Minerva’s bug-
finding capability as well as how it compares to other state-of-
the-art browser fuzzers. Our evaluation addresses the following
research questions:
• RQ1: How well does Minerva perform compared to other state-
of-the-art browser fuzzers (Section 6.1)?
• RQ2: Does the API mod-ref graph effectively enable Minerva
to generate less-redundant test cases (Section 6.2)?

• RQ3: Can Minerva uncover critical bugs in production-level
browsers (Section 6.3)?
Experiment Setup. We perform our evaluation on an AMD

EPYC 7742 CPU (2.25GHz) with 64 cores running Ubuntu 20.04. To
fuzz our browser targets without a connected display, we use X vir-
tual frame buffer (Xvfb)—a common setup in graphical application
testing. All experiments are conducted on the same hardware and
repeated five times, following fuzzing evaluation best practices [21]
and in line with other fuzzing research [25, 34, 51, 56].

Graph Building. To collect the API mod-ref graph for Min-
erva, we use non-relation-guided Minerva to generate workload
inputs for each mod-ref-instrumented browser for 8 hours. We also
conducted experiments about the impact of different settings to
build graphs, including different time limits and different types
of workload inputs, to fuzzing effectiveness. We will discuss our
results and corresponding settings in Section 6.2. The number of
collected APIs, i.e. nodes of the graph, is 4,630.

Table 1: Features of browser fuzzers using in evaluation.

Fuzzer Year Focus API Spec API Relation

Domato 2017 DOM APIs hand-written hand-written
FreeDom 2020 DOM APIs hand-written hand-written
Favocado 2021 JS bindings automatic type property
Minerva 2021 all APIs automatic mod-ref analysis

Benchmarks. We target three common browsers: Safari, Fire-
Fox, and Chromium. Since Safari cannot be run in a Linux system,
we use WebKitGTK [43], a full-featured port of Safari’s render-
ing engine, as an alternative. The versions are WebKitGTK 2.32.3,
FireFox 95.0, and Chromium 94.0. For comparison, we use three
state-of-the-art browser fuzzers, i.e. Domato [44], FreeDom [53]
and Favocado [10] in our evaluation, see Table 1 for their features.
Note that all fuzzers used in our evaluation are generation-based
and do not need any initial seeds for fuzzing.

Metrics. We use three metrics to evaluate each fuzzer: edge
coverage, number of unique bugs, and average compactness of test
cases. To our knowledge, there is no metric to evaluate how invoca-
tions of a test case are relevant to each other, but it is important to
evaluate it to see if our mod-ref analysis is useful. Therefore, we de-
fine compactness of a test case as the proportion of memory-related
invocation pairs to all invocations pairs within a test case. Formally,
if a test case contains a sequence of 𝑛 invocations [𝐼1, 𝐼2, ..., 𝐼𝑛], then
the compactness is defined as

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =

∑𝑛
𝑖=1

∑𝑛
𝑗=𝑖+1 𝑅(𝑖, 𝑗)

𝑛 ∗ (𝑛 − 1)/2 (1)

where 𝑅(𝑖, 𝑗) equals 1 if 𝐼𝑖 and 𝐼 𝑗 have a mod-ref relation during
runtime; otherwise, 𝑅(𝑖, 𝑗) equals to 0. The coverage and unique
bug metrics are widely used in fuzzing evaluation [9, 17, 21, 34, 53].
We use SanitizerCoverage (SanCov) [23] to collect edge coverage.
Note that we only collect coverage from rendering-related mod-
ules, i.e. libwebkit of WebKit, libxul of FireFox, and libblink
of Chromium, which are responsible for the main backend logic.
Other modules, e.g. networking libraries or JavaScript engines, are
no need to profiled since they are not our concerned. To get unique
bugs, the crashes that each fuzzer found are deduplicated by the

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

Figure 6: The growth trend of edge coverage over 5 runs in 24 hours. Displayed are the median and the 95% confidence intervals.

root cause of ASan [38] report. Each browser is compiled into two
versions: one is instrumented by SanCov and ASan for collecting
edge coverage and crashes; another is instrumented by mod-ref
instrumentation for collecting each test case’s compactness.

6.1 Comparison with Existing Fuzzers

We compare Minerva to three state-of-the-art fuzzers in different
aspects to investigate its strength and weakness. For a fair com-
pactness comparison, the number of lines for individual test cases
is limited to 1,000. This setting does not affect the results of edge
coverage and unique bug according to our experiments. Favocado
does not support FireFox, so we omit the experiment.

Edge Coverage. Figure 6 shows the coverage growth over time
of each fuzzer. The coverage trend is in line with other evalua-
tion [53]. Minerva achieves higher coverage compared to others
in the same amount of time. On average, Minerva improves over
Domato, FreeDom and Favocado by 19.63%, 24.90% and 229.62%,
respectively. The reason why Minerva outperforms Domato and
FreeDom is that Minerva takes the API relations into consider-
ation. On the one hand, the test case generated by Minerva is
semantically-correct and able to cover complete test surface. On
the other hand, with the help of its API interference graph, Min-
erva is capable of exploring deep logic between APIs. Although
Favocado also generates semantically-correct test cases, its type-
based relations introduce redundant relations between APIs as we
discuss in Section 3. Besides, its conservative generation strategy
only choose a few interface objects in each test case, hindering the
fuzzer from state space exploration.

Average Compactness. The compactness of a test case is de-
fined as the proportion of memory-related invocation pairs to all in-
vocations pairs within a test case. A test case with high compactness
indicates that the invocations within it are highly API-dependent.
Table 2 shows compactness improvement of test cases generated by
each fuzzer. Favocado only invokes a few APIs in each of its test
case, so we exclude it in this table. For average improvement, we
runMann-Whitney U Tests and the p-values are all <0.05, indicating
statistical significance. We can see that Minerva generates more
API-dependent invocations within a test case compared to Domato,
FreeDom. On average, Minerva outperforms Domato, FreeDom
by 39.18% and 68.67%, respectively. The reason of the improvement
is that Minerva leverages API interference relations to generate
highly-relevant invocations. Although other fuzzers are also aware
of API relations, they cannot capture implicit mod-ref relationships.
For example, Domato uses manually-labeled parameter relation-
ships to identify that an API may share the same input with the
another. However, some mod-ref relationships can exist between
two APIs even though they are type-independent.

Table 2: Compactness improvement of Minerva compared

to other fuzzers over 5 runs in 24 hours.

Browser vs. Domato vs. FreeDom
min-impr avg-impr max-impr min-impr avg-impr max-impr

WebKitGTK +40.09% +52.70% +93.89% +41.61% +76.21% +109.44%
FireFox +12.22% +25.99% +49.48% +63.39% +103.09% +171.24%

Chromium +31.31% +38.85% +49.72% +16.65% +26.70% +44.87%

Unique Bugs. We deduplicate each crash by its root cause re-
ported by ASan. On FireFox and Chromium, all fuzzers did not
trigger any ASan-reported bug within 24 hours. Figure 7 is a Venn
diagram to demonstrate the overlapping relations among bugs
found by each fuzzer on WebKitGTK. Favocado is omitted because
it does not find any crashes in our experiments. We can see that all
but one of the unique bugs can be found by Minerva. Compared
to Domato, Minerva not only covers all the three unique bugs of
it, but also finds 6 more other unique bugs. Compared to FreeDom,
Minerva finds 6 other unique bugs.

Figure 7: The overlapping relations of the unique bugs found

by each fuzzer on WebKitGTK in 24 hours.

Answer for RQ1. Minerva achieves higher coverage as well as
higher test case compactness compared to existing browser fuzzers.
This means that Minerva can test browser APIs both broadly and
deeply, and thus discovers more bugs than others.

6.2 Effectiveness of Redundancy Reduction

We compare different settings of Minerva to systematically under-
stand how mod-ref relations impact fuzzing performance. We first
compare Minerva to the one without mod-ref guidance, namely
Minerva0, to see if mod-ref relations really can make test cases
less redundant. Second, we compare two different graph building
strategies, i.e. visiting generated test cases or real-world websites,
to figure out which one is more suitable to learn API relations.
Moreover, we also investigate how the amount of API relations
impact fuzzing performance.

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 8: The average compactness improvements of different

time settings compared to the non-relation guided Minerva.

Minerva
ℎ
denotes a Minerva instance guided by h-hours

of building mod-ref relations.

Different Settings of Graph Building. We conduct experi-
ments to understand the contribution ofmod-ref relations to fuzzing.
Besides, we also investigate how the time of building graphs im-
pacts Minerva’s effectiveness. In figure 8, we calculate the average
compactness improvements of different Minervaℎ compared to
Minerva0. The superscript ℎ on Minervaℎ identifies that we use ℎ
hours to build mod-ref relations. For example, Minerva1 means that
we run the build graph process for 1 hour and then use Minerva
guided by this graph to generate test cases for our experiments.
Moreover, the superscript 0 means no graph building process is
executed, so the Minerva0 runs without any mod-ref guidance.
The Minerva8 is the fuzzer we use in Section 6.1.

We can see that all the graph-guided Minerva significantly im-
prove the compactness of Minerva0 by 25.25% to 75.39%. This
result indicates that the mod-ref relations helps fuzzer generate test
cases with higher compactness. With those test cases that contain
the higher correlated invocations, the fuzzer is more likely to ex-
plore the unexpected states of browsers. Besides, as the time spent
in building graph grows, Minerva achieves higher compactness
of test cases. However, there is no significant difference between
Minerva8 and Minerva12. This is because most of the relations
are found in the first 8 hours.

Moreover, we also investigate the overhead that the mod-ref rela-
tion guidance introduces to our fuzzer. On average, Minerva0 and
Minerva spend 0.070 and 0.099 seconds, respectively, in generating
a test case. The difference is negligible because browser’s execution
takes most of fuzzing time (roughly 0.1 to 10 executions/second).
Browser fuzzing suffers from low throughput [28], so all end-to-end
browser fuzzers focus on generating more meaningful test cases
rather than boosting the speed of test case generation. Hence, we
believe that the mod-ref relation guidance helps our fuzzer generate
less redundant test cases at negligible overhead.

Different Workload Types of Graph Building. To collect
workload inputs, we adopt two straight-forward approaches: vis-
iting real-world websites or fuzzer-generated test cases. Here we
conduct experiments to investigate which type of workload input
can bring more mod-ref information. For automatically visiting real-
world websites, we write a script to let the instrumented browser
visit Alexa top 500 websites [1] and randomly click the links of those
websites to jump to other web pages. For visiting generated test
cases, we use non-relation-guided Minerva to generate workloads.

Figure 9 shows the number growth of relations learned from
each type. Compare to real-world websites, the generated test cases
introduce much more API relation information. In the 12-hour
graph building process, visiting real-world websites brings 98691

Figure 9: The number of mod-ref API pairs learned from

different workload input types over 12 hours onWebKitGTK.

mod-ref API pairs, which are much less than visiting generated test
cases does. This is because the APIs used by real-world websites are
not abundant: most of them are requesting resource from outsides,
setting styles to DOM elements or attaching event listeners to
elements. In contrast, visiting generated test cases can provide
more diverse APIs. Covering diverse APIs is important because
those browser APIs that are seldom used by website developers
could be meaningful to vulnerability discovery. For example, the
methods of FontFace are seldom used, because most websites do
not need to change font face during page loading. However, the
internal states of FontFace are complicated: once a font face is
changed, all elements that use this font are notified to repaint. Its
complexity makes it worthwhile to be covered. Minerva discovers a
heap-buffer-overflow vulnerability in the APIs related to FontFace
on Safari. We will provide a detailed case study for it in Section 6.3.

Impact of the Amount of Mod-Ref Relations. During 24-
hours of fuzzing, 99.94% mod-ref relations are used at least once,
showing that our guided input generation can thoroughly exploit
collected relations. Besides, according to Figure 8 and Figure 9,
Minerva’s effectiveness and the amount of relations have a positive
correlation. The fuzzer guided by the 12-hour analysis (777,268 re-
lations) improves the ones guided by the 0.5-hour analysis (157,590
relations) and the 1-hour analysis (260,812 relations) by 24.40% and
14.64%, respectively.

Answer for RQ2. The API mod-ref relations are helpful to
reduce redundancy. Guided by more abundant mod-ref relations,
the fuzzer generates more compact test cases.

6.3 Discovering Unknown Browser Bugs

To evaluate the ability of Minerva in bug discovery, we intermit-
tently run Minerva for finding bugs in three mainstream browsers
for a month. Table 3 shows a summary of all the bugs that Minerva
found in Safari (WebKit), FireFox and Chromium. In total, Minerva
found 35 bugs across diverse browser components, including Font,
Iframe, CoordinatedGraphics. 26 bugs have been confirmed out
of which 20 bugs have been fixed. Five of the bugs are assigned
CVEs and acknowledged by vendors because of their severe secu-
rity consequences. Two of the CVEs are rated as high impact (8.8/10
CVSS score) by the National Vulnerability Database [42]. Since all
the browsers have been heavily tested for several years [13, 14],
we believe that the result shows that Minerva is able to discover
previously-unknown bugs in diverse components of browsers.

Case Study. Minerva identified a heap-buffer-overflow vulner-
ability (ID 16 in table 3), which may allow attackers to execute code

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

Table 3: Previously unknown bugs detected by Minerva.

ID Browser Description Component status

1 Safari (WebKit) null dereference Touch fixed
2 Safari (WebKit) heap use after free SVG CVE-2021-45482
3 Safari (WebKit) heap use after free CoordinatedGraphics CVE-2021-45483
4 Safari (WebKit) null dereference Accessibility fixed
5 Safari (WebKit) null dereference CoordinatedGraphics fixed
6 Safari (WebKit) memory corruption Font fixed
7 Safari (WebKit) null dereference Paint confirmed
8 Safari (WebKit) null dereference Style fixed
9 Safari (WebKit) null dereference FrameView fixed
10 Safari (WebKit) null dereference Paint confirmed
11 Safari (WebKit) out of memory ImageBuffer CVE-2021-45481
12 Safari (WebKit) null dereference Font fixed
13 Safari (WebKit) null dereference FrameLoader fixed
14 Safari (WebKit) null dereference Canvas reported
15 Safari (WebKit) heap use after free Iframe CVE-2021-30936
16 Safari (WebKit) heap buffer overflow Font CVE-2021-30889
17 Safari (WebKit) null dereference Audio fixed
18 Safari (WebKit) memory corruption Paint reported
19 Safari (WebKit) heap use after free IndexedDB fixed
20 Chromium assertion failure Paint fixed
21 Chromium assertion failure Canvas reported
22 Chromium assertion failure Notifications reported
23 Chromium assertion failure WebRTC reported
24 Chromium out of memory Paint confirmed
25 Chromium assertion failure Paint fixed
26 Chromium assertion failure Paint fixed
27 Chromium assertion failure CaptureFromElement confirmed
28 Chromium assertion failure Mojo confirmed
29 Chromium assertion failure Layout reported
30 FireFox assertion failure Dom:Workers fixed
31 FireFox assertion failure SVG fixed
32 FireFox assertion failure Panning and Zooming reported
33 FireFox assertion failure Panning and Zooming reported
34 FireFox out of memory Graphics:WebRender comfirmed
35 FireFox assertion failure Web Painting reported

Listing 1: CVE-2021-30889 on Safari detected by Minerva.

The code snippet triggers a heap buffer overflowwhen setting

the family variable of a FontFace object.

1 <html >
2 <head >
3 <script >
4 function jsfuzzer () {
5 var svgvar00001 = document.getElementById("svgvar00001");
6 var htmlvar00015 = document.getElementById("htmlvar00015");
7 svgvar00001.appendChild(htmlvar00015);
8 var var00120 = htmlvar00015.firstChild;
9 htmlvar00015.removeChild(var00120);
10 var var00240 = document.fonts;
11 var var00241 = new FontFace("foo", null);
12 var var00239 = var00240.add(var00241);
13 var00241.family = "bar"; // <- heap buffer overflow
14 }
15 </script >
16 </head >
17 <body onload=jsfuzzer ()>
18 <svg id="svgvar00001">
19
20
21
22
23 </svg >
24 </body >
25 </html >

remotely. Listing 1 shows a PoC code snippet generated by Min-
erva. The code snippet involves multiple interface objects, includ-
ing SVGSVGElement (svgvar00001), FontFaceSet (htmlvar00015,
var00239 and var00240) and FontFace (var00120 and var00241).
The PoC first gets SVGSVGElement and FontFaceSet objects from
current document, and then appends and removes their child (Line
5-9). Next, it gets a FontFaceSet object from current document
and adds a new FontFace object to the set (Line 10-12). Finally, it

sets the family variable of the FontFace object to a string, leading
to a heap buffer overflow (Line 13). Although the setting statement
seems very simple and bug-free, its execution is very complicated.
Once a FontFace is changed, all elements that use this font are
notified to repaint. States of multiple internal render objects are ac-
cessed and modified during the execution, and a unchecked illegal
memory access leads to the overflow. Although a SVGSVGElement
object seems irrelevant to a FontFace object, APIs of the former
still interferes with that of the latter.

The implicit relations mentioned above can be captured by Min-
erva, and thus it is able to take little time to trigger the bug. Min-
erva discovers it within 14 hours. By contrast, we continuously
ran the three state-of-the-art fuzzers for 1 week and they did not
trigger this bug. This bug was assigned CVE-2021-30889 by Apple
Inc. with acknowledgement and has been fixed since Safari 15.1.

Answer for RQ3. Minerva discovers high-severity real-world
bugs in production-level browsers. The API mod-ref graph signifi-
cantly improves the efficiency of bug detection.

7 DISCUSSION

We now discuss limitations of Minerva and future directions for
testing browser APIs.

Overhead of Instrumentation. Instrumenting load and store
instructions for tracing memory access brings considerable over-
head. Although we have mitigated the overhead, the instrumented
browser is, on average, 3x slower than the non-instrumented ver-
sion. However, Minerva unnecessarily traces every execution if
there are no newly-discovered relations. Minerva adopts an offline
analysis and thus the overhead is acceptable: once a graph is built,
Minerva switches to ASan-instrumented browsers for vulnerability
detection. We plan to further eliminate unnecessary instrumenta-
tion points and support online analysis in the future.

Over- and Under-Approximation of API Relations. Our dy-
namic approach for building API dependence graphs is unlikely to
result in over-approximation. The only situation Minerva cannot
deal with is if a memory address is freed and reallocated for another
usage. In this case, our analysis will determine that the API modify-
ing the former memory address interferes with the one that uses the
latter memory address. Note that this situation rarely happens in
practice. This limitation is shared with most dynamic bug detection
tools, e.g. ASan [38]. We mitigate it by not only comparing memory
address, but also considering the operation size of load and store
instructions. Besides, our instrumentation only traces the memory
objects that can be shared between APIs. Local memory objects are
thus excluded.

Under-approximation, i.e. missing relations, may reduce the
chance of testing some APIs during fuzzing campaigns of Min-
erva. We investigate the coverage difference between Minerva
and Domato to see if there are missed relations. As Table 4 shows,
about 3% to 4% edges are covered by Domato while not covered by
Minerva. However, the learned relations brings significant extra
coverage (∼ 20%), showing that Minerva deeply explores the API
relations even though it overlooks a very small part of them.

Imprecise Information of API Description. From our ob-
servation, though API descriptions provide a way to generate
semantically-correct test cases, its imprecise type property could

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 4: Difference set of Minerva coverage set (M) and

Domato coverage set (D). Each coverage set is the union of

five-time 24-hour results.

𝑠𝑖𝑧𝑒𝑀−𝐷 𝑠𝑖𝑧𝑒𝐷−𝑀 𝑠𝑖𝑧𝑒𝑀 𝑠𝑖𝑧𝑒𝐷

WebKitGTK 60369 (19.57%) 12457 (4.04%) 308460 260548
FireFox 85875 (22.25%) 12895 (3.34%) 385935 312955

Chromium 115751 (21.82%) 20824 (3.93%) 530422 435495

prevent fuzzers from digging into deep logic. For example, the
setAttribute(<DOMString>,<DOMString>) only shows that it
accepts two string variables as arguments, however, the magic
string of each parameter could lead to totally different handle logic.
We mitigate it by reusing labeled attribute information from Do-
mato. Recently, SyzGen [8] recovers interfaces of close-source
MacOS Drivers by iterative refinement of syscall knowledge. We
plan to integrate the refinement strategy in the future.

Relations across Multiple API Invocations. Our approach
currently focuses on the relation between two APIs. However, inter-
API relations could be more complex, e.g., an API can interfere with
the other one only if an intermediate API is invoked. Such condi-
tional relations are challenging to model. We note that this case
is rare in browsers and only a few APIs, e.g., Node.appendChild,
may play such an intermediate role. These intermediate APIs are
naturally prioritized at our selection stages since they access a large
amount of shared data for changing the browser’s state. Thus, our
approach implicitly handles such complex relations. We plan to use
a n-gram model to further reveal multiple inter-API relations.

8 RELATEDWORK

Generic Fuzzing. Fuzzing has been proven to be a practical tech-
nique on bug detection. To enhence fuzzing effectiveness, a large
number of security researchers proposed optimizations from differ-
ent angles, e.g. boosting coverage tracing [49, 50, 55], improving
seed selection strategy [5, 18, 33] or mutation strategy [6, 26], lever-
aging taint analysis [7, 12, 22] or symbolic execution [32, 40, 54].
A common limitation of these fuzzers is the lack of ability to
handle highly-structured inputs. To meet this end, some exten-
sions [4, 39, 48] are proposed to leverage context-free grammar
to assist their tree-based mutation. However, none of them can
be directly applied to browser API fuzzing because they focus on
syntactic correctness while lack support for semantic validity.

Browser Fuzzing. Themost relevantworks are DOM fuzzers [35,
36, 44, 53]. Domato [44], the most successful industrial DOM fuzzer,
leverages hand-written grammar and semantics to generate DOM
API invocations. FreeDom [53] classifies APIs into various fuzzing
operations based on their functionalities and designs several gen-
eration and mutation strategies for maintaining context informa-
tion. Favocado [10], on the other hand, focuses on fuzzing binding
code. Different from them, Minerva automatically builds API re-

lations for API-dependent invocation generation while others only

consider a small amount of selected API relations. In addition, fuzzing
JavaScript engine has become an active research area recently and
many techniques are proposed to preserve semantic validity during

their mutation [16, 17, 31]. These works are orthogonal to Minerva
since they aim at different fuzzing targets.

Interface Analysis for Fuzzing. Several static interface analy-
sis techniques [8, 20, 30] are proposed to enhance fuzzing effective-
ness from different angles. FuzzGen [20] statically analyzes data
dependence of test cases for fuzz driver synthesis. SyzGen [8] recov-
ers interfaces of close-sourceMacOS Drivers by iterative refinement
of syscall knowledge. Moonshine [30] leverage static analysis for
detecting dependencies across syscalls. Different from them, Min-
erva focuses on identifying interference relations between browser
APIs through a novel dynamic mod-ref analysis. Currently, no off-
the-shelf technique can meet this end. The static approaches are
unlikely precise due to the complexity of browsers. For example, JIT
may prevent static analysis from digging into back end logic. By con-
trast, Minerva can analyze the internal states of the browsers during

every browser API invocation, producing more accurate relations.

Some OS kernel fuzzers [41, 52] also rely on dynamic inter-
face analysis for search space reduction. For example, Healer [41]
analyzes coverage impact of each syscall-pair for its generation.
Krace [52] leverages thread interleaving behaviors as alias cover-
age to guide its generation. However, none of these fuzzers can be

applied to browser fuzzing because of the non-deterministic behaviors

of browsers. The state of OS kernels is quite stable when executing
each syscall, i.e. only a specific module is activated and all behav-
iors are input-related; while a browser has multiple processes and
each spawns many background threads that concurrently deal with
input-unrelated tasks, e.g. communication to other processes or
resource requests from the network. As a result, the coverage and
control flow could differ in browsers even when the same invoca-
tion is executed, rendering their interface analysis ineffective, no
matter for syscall coverage impact or thread interleaving behaviors.

9 CONCLUSION

Minerva is an efficient browser fuzzer for browser API bug detec-
tion. Our key idea is to leverage API interference relations to reduce
redundancy and improve coverage. Our fuzzer consists of two mod-
ules: dynamic mod-ref analysis for building API interference rela-
tions and guided code generation for synthesizing high-relevant test
cases. We evaluate its performance on three mainstream browsers,
i.e. Safari, FireFox, and Chromium. Compared to state-of-the-art
fuzzers such as Domato, FreeDom, or Favocado, Minerva im-
proves edge coverage by 19.63%, 24.90% and 229.62% on average,
respectively. Furthermore, Minerva finds 2x to 3x more unique
bugs compared to other fuzzers. In addition, Minerva has discov-
ered 35 previously-unknown bugs; 20 have been fixed with 5 CVEs
assigned and acknowledged by vendors so far.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valu-
able comments and input to improve our paper. This research is
sponsored in part by the NSFC Program (No. 62022046, 92167101,
U1911401, 62021002, 62192730), National Key Research and Devel-
opment Project (No. 2019YFB1706200, No2021QY0604), ERC under
the H2020 research grant 850868, and SNSF grant number PCEGP2-
186974.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang

REFERENCES

[1] alexa. 2021. The top 500 sites on the web. https://www.alexa.com/topsites.
(Online; visited on December 20, 2021).

[2] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-

ming language. Ph. D. Dissertation. Citeseer.
[3] Apple. 2021. Apple security updates. https://support.apple.com/en-us/HT201222.

(Online; visited on December 20, 2021).
[4] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In 26th Annual Network and Distributed System Security

Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-
for-deep-bugs-with-grammars/

[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting fuzzer
efficiency: an information theoretic perspective. In ESEC/FSE ’20: 28th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 678–689. https://doi.
org/10.1145/3368089.3409748

[6] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy, SP 2015,

San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 725–741. https:
//doi.org/10.1109/SP.2015.50

[7] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May

2018, San Francisco, California, USA. IEEE Computer Society, 711–725. https:
//doi.org/10.1109/SP.2018.00046

[8] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. 2021. SyzGen:
Automated Generation of Syscall Specification of Closed-Source macOS Dri-
vers. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communica-

tions Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yong-
dae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM, 749–763.
https://doi.org/10.1145/3460120.3484564

[9] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Xun Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchro-
nization among Diverse Fuzzers. In 28th USENIX Security Symposium, USENIX

Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and
Patrick Traynor (Eds.). USENIX Association, 1967–1983. https://www.usenix.
org/conference/usenixsecurity19/presentation/chen-yuanliang

[10] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros
Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, and Yan
Shoshitaishvili. 2021. Favocado: Fuzzing the Binding Code of JavaScript Engines
Using Semantically Correct Test Cases. In 28th Annual Network and Distributed

System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Inter-
net Society.

[11] Pavlos S Efraimidis and Paul G Spirakis. 2006. Weighted random sampling with
a reservoir. Inform. Process. Lett. 97, 5 (2006), 181–185.

[12] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th

USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan
Capkun and Franziska Roesner (Eds.). USENIX Association, 2577–2594. https:
//www.usenix.org/conference/usenixsecurity20/presentation/gan

[13] Google. 2016. ClusterFuzz. https://google.github.io/clusterfuzz/. (Online; visited
on December 20, 2021).

[14] Google. 2016. OSSFuzz. https://github.com/google/oss-fuzz. (Online; visited on
December 20, 2021).

[15] Google. 2021. Chrome Vulnerability Reward Program Rules. hhttps://bughunters.
google.com/about/rules/5745167867576320. (Online; visited on December 20,
2021).

[16] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,

San Diego, California, USA, February 24-27, 2019. The Internet Society.
[17] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu, Lei

Yu, Jianhua Zhou,Wenchang Shi, andWei Huo. 2021. SoFi: Reflection-Augmented
Fuzzing for JavaScript Engines. In CCS ’21: 2021 ACM SIGSAC Conference on Com-

puter and Communications Security, Virtual Event, Republic of Korea, November 15

- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
2229–2242. https://doi.org/10.1145/3460120.3484823

[18] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed selection for successful fuzzing. In ISSTA ’21:

30th ACM SIGSOFT International Symposium on Software Testing and Analysis,

Virtual Event, Denmark, July 11-17, 2021, Cristian Cadar and Xiangyu Zhang
(Eds.). ACM, 230–243. https://doi.org/10.1145/3460319.3464795

[19] ihgazni2. 2019. webidl2-mozilla-experimental. https://www.npmjs.com/package/
webidl2-mozilla-experimental/v/1.0.5. (Online; visited on December 20, 2021).

[20] Kyriakos K. Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
FuzzGen: Automatic Fuzzer Generation. In 29th USENIX Security Symposium,

USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 2271–2287. https://www.usenix.org/conference/
usenixsecurity20/presentation/ispoglou

[21] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang
(Eds.). ACM, 2123–2138. https://doi.org/10.1145/3243734.3243804

[22] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,
Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with Path Aware Taint Analysis.
In 2022 2022 IEEE Symposium on Security and Privacy (SP)(SP). IEEE Computer

Society, Los Alamitos, CA, USA. 154–170.
[23] llvm team. 2021. Clang 13 documentation: SANITIZERCOVERAGE. https:

//clang.llvm.org/docs/SanitizerCoverage.html. (Online; visited on December 20,
2021).

[24] llvm team. 2021. The LLVM Compiler Infrastructure. https://llvm.org/. (Online;
visited on December 20, 2021).

[25] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Jiaguang Sun.
2019. Polar: Function Code Aware Fuzz Testing of ICS Protocol. ACM Trans.

Embed. Comput. Syst. 18, 5s (2019), 93:1–93:22. https://doi.org/10.1145/3358227
[26] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th

USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August

14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
1949–1966. https://www.usenix.org/conference/usenixsecurity19/presentation/
lyu

[27] Microsoft. 2021. Microsoft Edge Bounty Program. https://www.microsoft.com/en-
us/msrc/bounty-new-edge. (Online; visited on December 20, 2021).

[28] mozilla. 2021. Fuzzing. https://firefox-source-docs.mozilla.org/tools/fuzzing/
index.html. (Online; visited on December 20, 2021).

[29] Mozilla. 2021. Security Bug Bounty Program. https://www.mozilla.org/en-
US/security/bug-bounty/. (Online; visited on December 20, 2021).

[30] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Opti-
mizing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Se-

curity Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 729–743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[31] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE Symposium

on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
1629–1642. https://doi.org/10.1109/SP40000.2020.00067

[32] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In 29th USENIX Security Symposium, USENIX

Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 181–198. https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[33] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Security Symposium, San Diego,

CA, USA, August 20-22, 2014. 861–875. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[34] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and Gio-
vanni Vigna. 2021. Token-Level Fuzzing. In 30th USENIX Security Symposium,

USENIX Security 2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt
(Eds.). USENIX Association, 2795–2809. https://www.usenix.org/conference/
usenixsecurity21/presentation/salls

[35] Mozilla Security. 2015. dharma: Generation-based, context-free grammar fuzzer.
https://github.com/MozillaSecurity/dharma. (Online; visited on December 20,
2021).

[36] Mozilla Security. 2016. Avalanche. https://github.com/MozillaSecurity/avalanche.
(Online; visited on December 20, 2021).

[37] selenium team. 2021. Selenium automates browsers. That’s it! https://www.
selenium.dev/. (Online; visited on December 20, 2021).

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX

Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, Gernot Heiser
and Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/serebryany

[39] Prashast Srivastava and Mathias Payer. 2021. Gramatron: effective grammar-
aware fuzzing. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian
Cadar and Xiangyu Zhang (Eds.). ACM, 244–256. https://doi.org/10.1145/3460319.
3464814

https://www.alexa.com/topsites
https://support.apple.com/en-us/HT201222
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3460120.3484564
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://google.github.io/clusterfuzz/
https://github.com/google/oss-fuzz
hhttps://bughunters.google.com/about/rules/5745167867576320
hhttps://bughunters.google.com/about/rules/5745167867576320
https://doi.org/10.1145/3460120.3484823
https://doi.org/10.1145/3460319.3464795
https://www.npmjs.com/package/webidl2-mozilla-experimental/v/1.0.5
https://www.npmjs.com/package/webidl2-mozilla-experimental/v/1.0.5
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3243734.3243804
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://llvm.org/
https://doi.org/10.1145/3358227
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.microsoft.com/en-us/msrc/bounty-new-edge
https://www.microsoft.com/en-us/msrc/bounty-new-edge
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://doi.org/10.1109/SP40000.2020.00067
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/avalanche
https://www.selenium.dev/
https://www.selenium.dev/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3460319.3464814

Minerva: Browser API Fuzzing with Dynamic Mod-Ref Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[40] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Exe-
cution. In 23rd Annual Network and Distributed System Security Symposium,

NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[41] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and
Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In SOSP

’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /

Koblenz, Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zel-
dovich (Eds.). ACM, 344–358. https://doi.org/10.1145/3477132.3483547

[42] NVD team. 2021. NATIONAL VULNERABILITY DATABASE. https://nvd.nist.
gov/. (Online; visited on December 20, 2021).

[43] WebKitGTK team. 2021. WebKitGTK. https://webkitgtk.org/. (Online; visited on
December 20, 2021).

[44] the Project Zero team at Google. 2017. Domato: A DOM fuzzer. https://github.
com/googleprojectzero/domato. (Online; visited on December 20, 2021).

[45] the Project Zero team at Google. 2021. This shouldn’t have happened: A vul-
nerability postmortem. https://googleprojectzero.blogspot.com/2021/12/this-
shouldnt-have-happened.html. (Online; visited on December 20, 2021).

[46] W3C. 2021. WebIDL Level 1. https://webidl.spec.whatwg.org/. (Online; visited
on December 20, 2021).

[47] w3c. 2021. WebIDL parser. https://github.com/w3c/webidl2.js. (Online; visited
on December 20, 2021).

[48] JunjieWang, BihuanChen, LeiWei, and Yang Liu. 2019. Superion: grammar-aware
greybox fuzzing. In Proceedings of the 41st International Conference on Software

Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee,
Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 724–735. https://doi.org/10.
1109/ICSE.2019.00081

[49] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and
Jiaguang Sun. 2021. RIFF: Reduced Instruction Footprint for Coverage-Guided
Fuzzing. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July

14-16, 2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 147–159.
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe

[50] MingzheWang, Jie Liang, Chijin Zhou, ZhiyongWu, Xinyi Xu, and Yu Jiang. 2022.
Odin: on-demand instrumentation with on-the-fly recompilation. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 1010–1024.
[51] ZhiyongWu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn:

Detect Runtime Errors in Time-Series Databases With Hybrid Input Synthesis.
In ISSTA ’22: 31th ACM SIGSOFT International Symposium on Software Testing

and Analysis, Virtual, South Korea, July 18–22, 2022.
[52] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace:

Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security

and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1643–1660.
https://doi.org/10.1109/SP40000.2020.00078

[53] Wen Xu, Soyeon Park, and Taesoo Kim. 2020. FREEDOM: Engineering a State-of-
the-Art DOM Fuzzer. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and

Communications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 971–986. https:
//doi.org/10.1145/3372297.3423340

[54] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,

2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 745–761.
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[55] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed
Up Fuzzing with Coverage-sensitive Tracing and Scheduling. In 35th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2020, Melbourne,

Australia, September 21-25, 2020. IEEE, 858–870. https://doi.org/10.1145/3324884.
3416572

[56] Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, and Yu Jiang. 2021. PAVFuzz:
State-Sensitive Fuzz Testing of Protocols in Autonomous Vehicles. In 58th

ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA, De-

cember 5-9, 2021. IEEE, 823–828. https://doi.org/10.1109/DAC18074.2021.9586321

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1145/3477132.3483547
https://nvd.nist.gov/
https://nvd.nist.gov/
https://webkitgtk.org/
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://webidl.spec.whatwg.org/
https://github.com/w3c/webidl2.js
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1109/DAC18074.2021.9586321

	Abstract
	1 Introduction
	2 Background
	2.1 Browser API and Interface Description
	2.2 Browser Fuzzing

	3 Motivation
	4 Design
	4.1 Dynamic Mod-Ref Analysis
	4.2 Guided Input Generation

	5 Implementation
	6 Evaluation
	6.1 Comparison with Existing Fuzzers
	6.2 Effectiveness of Redundancy Reduction
	6.3 Discovering Unknown Browser Bugs

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

