
EM-Fuzz: Augmented Firmware Fuzzing via
Memory Checking

Jian Gao, Yiwen Xu, Yu Jiang, Zhe Liu, Wanli Chang, Xun Jiao, and Jiaguang Sun

Abstract—Embedded systems are increasingly interconnected
in the emerging application scenarios. Many of these applications
are safety-critical, making it a high priority to ensure that the
systems are free from malicious attacks. This work aims to
detect vulnerabilities, that could be exploited by adversaries to
compromise functional correctness, in the embedded firmware,
which is challenging especially due to the absence of source code.

In particular, we propose EM-Fuzz, a firmware vulnerability
detection technique that tightly integrates fuzzing with real-time
memory checking. Based on the memory instrumentation, the
firmware fuzzing can not only be guided by the traditional branch
coverage to generate high-quality seeds to explore hard-to-reach
regions, but also by the recorded memory sensitive operations to
continuously exercise sensitive regions which are prone to being
attacked. More importantly, the instrumentation integrates real-
time memory checkers to expose memory vulnerabilities, which
is not well-supported by existing fuzzers without source code.
The experiments on several real-world embedded firmware such
as OpenSSL demonstrate that EM-Fuzz significantly improves
the performance of state-of-the-art fuzzing tools such as AFL
and AFLFast, with the coveragre improvements of 93.98%
and 46.89% respectively. Furthermore, EM-Fuzz exposes a total
of 23 vulnerabilities, with an average of about 7 hours per
vulnerability. AFL and AFLFast together find 10 vulnerabilities,
costing about 13 hours and 10 hours per vulnerability on
average, respectively. Out of these 23 vulnerabilities, 16 are
previously unknown and have been reported to the upstream
product vendors, 7 of which have been assigned with unique
CVE identifiers in the U.S. National Vulnerability Database.

Index Terms—Embedded firmware, Guided fuzzing, Memory
checking, Vulnerability.

I. INTRODUCTION

W ITH the development of 5G technologies and beyond,
the connectivity of embedded systems will get ever

stronger in the emerging application scenarios, such as highly

Manuscript received April 17, 2020; revised June 17, 2020; accepted July 6,
2020. This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue. This
research is sponsored in part by National Key Research and Development
Project (No. 2019YFB1706200, No. 2016QY07X1402, No. 61400010107),
the NSFC Program (No. 61802223, No. U1911401), and the Equipment Pre-
research Project (No. 61400010107).

J. Gao, Y. Xu, Y. Jiang and J. Sun are with the School of Software,
Tsinghua University, Beijing National Research Center for Information Sci-
ence and Technology, and Key Laboratory for Information System Security,
Ministry of Education, Beijing 100084, China (e-mail: {gaojian094, xuyi-
wen14}@gmail.com, jiangyu198964@126.com, sunjg@tsinghua.edu.cn).
Y. Jiang is the corresponding author.

Z. Liu is with the College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211106, China (e-mail:
zhe.liu@nuaa.edu.cn.).

W. Chang is with the Department of Computer Science, University of York,
UK (e-mail: wanli.chang@york.ac.uk).

X. Jiao is with the Department of Electrical and Computer Engineering, Vil-
lanova University, Villanova, PA 19085 USA (e-mail: xujiao@eng.ucsd.edu).

automated vehicles, domestic robots, and Industry 4.0. These
applications are often safety-critical, strictly requiring func-
tions to be correct. Therefore, being free of malicious attacks,
e.g., malicious code injection and denial-of-service (DoS),
needs to be ensured. The reality is however cruel. Cui et al. [1]
scanned about 4 million embedded devices on the network
and found 13.81% of the vulnerability rate. This work targets
the embedded firmware, vulnerability detection of which is
challenging, especially due to the absence of source code.

To enhance the ability of vulnerability exposure, fuzzing
has become a research hotspot of firmware testing in recent
years [2], [3], [4]. Peach [2] is a semi-automated cross-
platform fuzzing framework which generates test inputs based
on manually constructed input specifications. SRFuzzer [3] is
a fully-automated fuzzing framework for fuzzing web servers
of physical SOHO (small office/home office) routers. IoT-
Fuzzer [4] uses the program logics of mobile app’s to produce
meaningful test cases for probing the target firmware. Al-
though these approaches ensure the authenticity of the reported
vulnerabilities, they belong to black-box fuzzing techniques
that do not take into account execution feedback. Therefore
the efficiency of vulnerability discovery is unsatisfactory.

With the greybox fuzzing technique showing efficient vul-
nerability discovery capabilities on programs with source code,
the first thought is to use QEMU process emulation to perform
similar greybox fuzzing on embedded firmware. In the absence
of embedded devices, QEMU emulator indeed becomes the
first choice for fuzzing firmware due to its relatively com-
plete cross-architecture emulation capability and support for
instrumentation to feed back branch coverage information. The
binary versions of tools, such as AFL [5] and AFLFast [6], are
representatives of such implementation, using branch coverage
to guide the generation of test inputs continuously. However,
we find in practice that their ability to deal with embedded
firmware is greatly compromised. Two main reasons hinder
the use of these tools in embedded scenarios.

One reason is that compared to fuzzing targets with source
code, the time cost of using QEMU emulator to fuzz firmware
is higher, and the number of test cases (also called throughput)
that can be executed in a unit of time is 3–5× lower. Though
existing fuzzers [5], [6] can be applied to embedded firmware,
their ability to face low throughput is limited by inappropriate
mutation frequency. For example, AFL’s blind mutation strat-
egy has difficulty mutating the meaningful seeds to efficiently
reach hard-to-reach regions, and further resulting in the crash
of the target under test.

Another reason is that when the firmware source code is not
available, the existing fuzzers cannot implement source code

instrumentation that can be combined with various sanitizers
(e.g., AddressSanitizer, ThreadSanitizer) to check for memory
corruption. According to statistics from NVD in the past three
years, at least 9.82% of the included vulnerabilities were
related to memory vulnerabilities, such as use-after-free and
buffer overflow. This makes hidden memory vulnerabilities in
the firmware less likely to be detected by an unassisted fuzzer.
Although mature memory checkers, such as MemCheck [7]
and Dr. Memory [8], have dominated the field of binary mem-
ory vulnerability checking through binary instrumentation,
they have greater limitations on firmware. They are workable
on the premise that they can be installed in the same running
environment (e.g., same CPU architecture) as the binary under
test. It would be impractical to install these memory checkers
in an already-shipped firmware, so they basically do not work
with the firmware. Furthermore, even if they are included in
the firmware, executing arbitrary test cases obtained without
guided fuzzing may be time-consuming and will not report
vulnerabilities at all.

In the embedded scenario, although existing greybox fuzzers
and memory checkers can exert a certain function, they are
isolated. Combining fuzzing and memory checking to give
full play to their strengths, we face the following challenges:

1) Effective memory instrumentation. The augmented
fuzzer requires the necessary dynamic instrumentation of
firmware, including integrating common types of memory
detectors and recording memory sensitive operations in a
unified way.

2) Multi-architecture support. Firmware CPU architec-
tures present diversity due to different application sce-
narios of embedded devices. Using a unified running
environment to handle multiple architectures of firmware
fuzzing is eagerly welcomed.

3) Coverage-guided and memory-guided collaboration.
Traditional branch guidance information is not enough
to give full play to the capabilities of the combination.
Discovering deeper and wider program paths and trigger-
ing as many memory vulnerability sensitive operations as
possible is our desired goal.

To address the above challenges, we propose EM-Fuzz —
an augmented firmware vulnerability detection technique via
tightly integrating fuzzing with real-time memory checking.
The memory checking module completes the firmware instru-
mentation task via memory hooking and library wrapping,
which solves the challenge 1. In addition to integrating mem-
ory detectors to thoroughly identify memory vulnerability, it
also monitors and records the detailed memory sensitive opera-
tions. Both the fuzzing and the memory checking in EM-Fuzz
are implemented based on the QEMU emulator. Therefore,
it is reasonable to use this unified running environment to
address the multi-architecture support in challenge 2 and
provide the capability for memory checking instrumentation
in challenge 1. When emulating the firmware, the augmented
QEMU emulator collects branch coverage information and
memory sensitive operations, which together guide the mu-
tation direction of the fuzzing and solve the challenge 3.
The former guides the fuzzer to select seeds based on the

traditional branch frequency, and mutate them with random
and restricted mutation strategy, which ensures the depth and
breadth of fuzzing. The latter guides the fuzzer to assign
more mutation times to the seeds that have performed memory
sensitive operations, which increases the chance that fragile
regions can be covered more frequently.

For evaluation, we consider real-world embedded firmware
programs, such as the IEC61850 protocol extracted from
the substation automation system (SAS) firmware, and com-
pare EM-Fuzz with two state-of-the-art fuzzers: AFL [5] and
AFLFast [6]. The experimental results show that EM-Fuzz
significantly improves performance. In particular, EM-Fuzz
exposes a total of 23 vulnerabilities, while AFL and AFLFast
expose 7 and 10, respectively. Combining the results from
AFL and AFLFast, only 10 vulnerabilities are discovered.
Out of the 23 vulnerabilities found by EM-Fuzz, 16 are
previously unknown and have been reported to the upstream
product vendors, 7 of which have been assigned unique CVE
identifiers. As for the time cost, it takes EM-Fuzz 7 hours on
average to discover one vulnerability, which is 54% and 70%
of the time required by AFL and AFLFast, respectively.

In summary, this paper makes the following contributions:
• To our best knowledge, EM-Fuzz is the first tool that

integrates the efficient greybox fuzzing and the mem-
ory checking to augment the capability of vulnerability
discovery on the embedded firmware. While fuzzing has
shown impressive performance on desktop applications,
this work is a step for the embedded firmware without
source code.

• We integrate 10 common types of memory detectors
into EM-Fuzz through dynamic running instrumentation,
which is able to enhance fuzzing to discover more previ-
ously unknown vulnerabilities on real-world firmware.

• We propose an optimized fuzzing strategy for embed-
ded firmware. The traditional branch and the additional
memory sensitive operation information guide fuzzing to
explore hard-to-reach paths, and give fragile code areas
more opportunities for exhausted memory checking.

• We apply EM-Fuzz on real-world embedded firmware,
and discover many previously unknown vulnerabilities.

Paper Organization: Section II presents a motivating exam-
ple. Section III details the design of EM-Fuzz. Section IV
implements EM-Fuzz and reports the experimental results.
Section V indicates future research efforts. Section VI is about
related work, and Section VII concludes the paper.

II. MOTIVATING EXAMPLE

To show how EM-Fuzz can improve fuzzing performance
and expose more vulnerabilities via memory checking in-
strumentation, we walk through the trimmed code snippet
originated from the embedded firmware of IEC61850 shown
in Listing 1. There are two vulnerabilities hidden in block D.

A. Necessity for Memory Instrumentation

Assuming the traditional fuzzer has a chance to explore the
hard-to-reach region D, it still may not expose any memory
vulnerability. In embedded scenarios without any assistance

2

from memory checkers, fuzzers will consider that block D
is functioning properly since the overflow and the memory
leak are not serious enough to crash the target firmware.
As mentioned earlier, existing memory checkers (e.g., Mem-
Check [7], Dr. Memory [8]) require to be installed in the
same environment as the firmware under test and run existing
test inputs to detect memory vulnerabilities. And existing
sanitizers (e.g., AddressSanitizer, ThreadSanitizer) require the
original source code to accomplish the instrumentation, which
is impractical in the testing of black-box embedded firmware.

1 #define FIXED_LENGTH 8

2 void parse_packet(char *buf){

3 ...

4 char* magic_values = getMagicValues(buf,offset=4,len=2);

5 char* func_codes = getFunctionCodes(buf,offset=8,len=2);

6 char* data, *other;

7 //BLOCK A

8 if (magic_values[0] == 0x88 && magic_values[1] == 0xB8){

9 //BLOCK B

10 if (func_codes[0] == 0x40 && func_codes[1] == 0x00){

11 //BLOCK C, TODO:

12 }else if(func_codes[0] == 0x7F && func_codes[1] == 0x02){

13 //BLOCK D

14 other = (char*)malloc(FIXED_LENGTH);

15 data = (char*)malloc(FIXED_LENGTH);

16 //assume data is "1234",len(data)=4

17 strcpy(data,getStatus(buf));

18 //assume other is "abcdefghijklmnopqr", len(other)=18

19 strcpy(other,getInfo(buf));

20 //BUG: buffer overflow, data="qr" now

21 storeToFile(file,data);

22 LOG(data,other);

23 //BUG: forget to free other and data

24 }else

25 //BLOCK E, TODO:

26 }else{

27 //BLOCK F

28 ERROR("Invalid data package");

29 }

30 ...

31 }

Listing 1. Motivating example that illustrates how EM-Fuzz addresses
the problems of existing fuzzers.

In detail, Lines 14 and 15 of Listing 1 request 8 bytes of
heap memory for the other and data variables, respectively. In
the 32-bit OS environment, each variable is actually allocated
16 bytes of memory1, and the memory space of the data is
closely followed by that of the other. When the data memory
is first filled with strings of less than 8 bytes in Line 17,
and then the other memory is filled with strings of more than
16 bytes in Line 19, the contents of the data memory are
contaminated by the other memory because the data memory
is behind the other memory. Obviously, this buffer overflow
issue that causes data integrity should be reported. In addition,
Line 23 forgets to free the memory allocated in Line 14 and 15.
If the function parse_packet is constantly called, the memory
leak issue will make the embedded device run out of resources.

During fuzzing cross-architecture firmware, performing
real-time memory checking of memory vulnerabilities (e.g.,
use-after-free, buffer overflow, memory leak) in a unified
test environment would significantly improve the vulnerability

1It depends on the malloc_chunk data structure defined in glibc [9]. In the
32-bit Linux OS, the minimal size of the allocated memory chunk is 16 bytes.

detection performance. Without firmware source code, this
goal is not well-supported by existing fuzzing techniques.

B. Necessity For Efficient Fuzzing

After supporting memory checking instrumentation, detect-
ing the buffer overflow vulnerability shown in Line 19 requires
the test input buf to meet two conditions: 1) trigger the block
D; 2) contain appropriate values for variables data and other.
Considering the low test input throughput of firmware fuzzing,
the ideal goal should make block D explored more thoroughly.

The code snippet first obtains magic values and function
codes from the data packet according to the fixed offsets 4–5
and 8–9 in Lines 4–5. Line 8 determines whether the magic
value of 2 bytes is equal to 0xB888, and if not equal, it means
that the data packet is invalid and gets filtered out in Line 26.
The vast majority of test cases generated by representative
fuzzers, such as AFL [5], AFLFast [6] and FairFuzz [10],
try to maximize the traditional branch coverage. For example,
AFL chooses a seed as the preference to perform mutations
if it is the fastest and smallest input for any of the observed
branches. FairFuzz performs the restricted mutation strategy
on the selected seed to increase the probability of reaching
the same hard-to-reach branch. However, its mutation strategy
prefers to explore deeper branches rather than the wider ones,
which leads to local convergence problem. Just considering the
branch occurrence and ignoring the weight of the recorded
memory sensitive operations may cause two problems: 1)
branch BD would be reached too late; 2) the number of
times that block C and block D are executed may be seriously
unbalanced, where D is less frequently triggered.

EM-Fuzz aims that branch BD is reached as early as
possible and block D is executed more times than block C, via
the collaboration of the recorded memory sensitive operation
guidance. The former can be achieved by optimizing the
seed selection strategy and the mutation strategy of existing
fuzzers. Each seed in the seed queue can be first selected
with inverse probabilities to the occurrence frequency of
the branch. This optimization increases the chance that the
seed hitting the branch BE will be selected and mutated
instead of being discarded early, which helps cover new rare
branch BD early. In the mutation phase, if the selected seed
hits rare branches and branches with many memory sensitive
operations, EM-Fuzz applies the restricted mutation strategy to
the seed to maintain the depth of path exploration. The latter
can be implemented by adaptively updating seed mutation
energy during the mutation stage. If the seed hits a code block
that contains memory sensitive operations (e.g., malloc, free),
it gives the seed more mutation energy to increase the number
of times that such code block is covered with more test cases.

III. EM-Fuzz DESIGN

As presented in Fig. 1, EM-Fuzz contains two major mod-
ules: memory checking instrumentation and guided fuzzing.
By tightly integrating efficient fuzzing and real-time mem-
ory checking, analysts are able to locate serious security
threats in the firmware quickly. The memory checking in-
strumentation module completes the firmware instrumentation

3

test cases
interesting
test case

memory
sensitive

operations

branch information
Branch and memory guided fuzzing

Fuzzing
controller

Mutation
engine

Seed
selector

Process
execution

Memory checking instrumentation

Memory hooking Library wrapping Memory detectors

Embedded
firmware

memory
corruption

crash

Input queue 𝐼

Defect queue 𝐷
Firmware emulator

Embedded devices

energy

Fig. 1. The memory checking instrumentation module completes indispensable instrumentation, including recording memory sensitive operations to guide
fuzzing and inserting 10 common types of memory detectors to identify memory vulnerability. The fuzzing module is guided by branch information to generate
high-quality seeds to explore hard-to-reach regions, also by memory sensitive operations to continuously exercise regions that are prone to being attacked.

task via memory hooking and library wrapping, which gains
the ability to record memory sensitive operations to guide
fuzzing and integrate common memory detectors to expose
memory corruption vulnerabilities. Based on the firmware
emulator with instrumentation capability, the fuzzing module
seeks to generate high-quality test cases to explore hard-
to-reach regions with branch coverage information guidance
and trigger fragile regions that are prone to being attacked
with memory sensitive operations guidance. As a result, the
augmented firmware fuzzing not only ensures the depth and
breadth of path exploration but also improves the ability of
vulnerability exposure. During the entire fuzzing process, the
two components share two test case queues, including an input
queue I and a defect queue D.

A. Memory Checking Instrumentation

Memory checking instrumentation is responsible not only
for feeding back memory sensitive operations to guide fuzzing
but also for integrating memory detectors to check for memory
vulnerabilities thoroughly. It contains memory hooking, library
wrapping, and memory detector.

1) Memory Hooking: There are two main types of memory
hooking in EM-Fuzz: the instruction hooking and the function
hooking. The instruction hooking intercepts the memory read
and memory write instructions to heap addresses. This is used
to determine whether there are memory vulnerabilities. The
function hooking intercepts memory-related library functions
(e.g., malloc, free). Its purposes are to record memory sen-
sitive operations in the execution trace, and to add prologue
and epilogue actions.

For the instruction hooking, EM-Fuzz only hooks instruc-
tions that involve the heap memory access. Its purpose is to
obtain the marked states of heap memory addresses so that
memory detectors work. Therefore, we have to accurately
distinguish the heap memory space from the entire virtual
memory space. When EM-Fuzz loads the firmware into the
emulator, it initializes the heap bottom address as the brk
variable, denoted as heapBottom = brk. Whenever new heap
memory space is allocated, the value of the brk variable grows
to become the new heap top address. EM-Fuzz only hooks
the instruction whose memory address access is in the range
heapBottom and brk.

For the function hooking, EM-Fuzz directly calculates the
absolute virtual memory address of memory-operation related
library functions. When the emulator executes to the main

function, the library function __libc_start_main has been run
and its start address is stored in the .got.plt section of the
process. We can get the offset value of the __libc_start_main

function from the libc.so library file. Indirectly, the start
addresses of the memory-related library functions can be
calculated according to the start address and the offset value
of the known library function. The reason for not getting the
start address of these functions directly from the .got.plt table
is that other library functions (e.g., printf) may also call these
functions through an offset in the same library file, at which
point memory-related functions may have not been loaded in
the .got.plt table due to the lazy binding mechanism.

2) Library Wrapping: One of the main capabilities of
EM-Fuzz is to support heap memory vulnerability detection
for the firmware. With modifying the original memory-related
library functions, we can implement memory detectors that
require monitoring the entire heap memory state. EM-Fuzz
achieves this goal through the library wrapping technique [8],
which preserves the original heap layout.

We implement the library wrapping to add the prologue
and the epilogue to each memory-related library function.
The inserted prologues take precedence over the executions of
memory-related library functions, which modifies the function
parameters and assigns appropriate memory shadowing states
(detailed in Section III-A3) to different memory regions. The
epilogues are executed before the library functions return,
which modifies corresponding return values. For heap memory
of size P , as requested by the user code in Fig. 2(a), the
prologue re-layouts the virtual memory with the new memory
size Q shown in Fig. 2(b). The memory size P requested by
the user code (e.g., malloc) and the actual allocated memory
size Q satisfy the following equation:

min Q = m+ P + 16 + 4n− P +m

s.t. (4n− P) > 0

m = 8s, s, n ∈ N ∗
(1)

To give an example, if the user requests 5 bytes of heap
memory using malloc(5), the existence of the prologue causes
the actual allocation of 40 bytes, of which 16 bytes are two

4

redzones (m = 8 by default), 16 bytes are auxiliary padding, 3
bytes are system padding, and 5 bytes are available to the user.
Assuming that the start address of the allocated 40 bytes is
0x804b008, the epilogue sets the return address to 0x804b010
before the malloc returns.

4� − P bytes

4� − P bytes Q bytes

low
address

low
address

P bytes

left redzone

user request

auxiliary padding

system padding

right redzone

P bytes

16 bytes

� bytes

� bytes

user request

system padding

low
address unaddressable

uninitialized
or

defined

readable

unaddressable

unaddressable

(a) Memory layout of the original
allocation-related library functions

(b) Memory layout of the new allocation-
related library functions with epilogues

(c) Illustration of marking memory
areas with different states

Fig. 2. Memory layout and corresponding accessible states of the allocation-
related standard library functions.

3) Memory Detectors: Memory detectors must track the
memory usage states to detect memory vulnerabilities.
EM-Fuzz uses memory shadowing to mark the state of each
heap memory byte. The memory shadowing of each byte can
only be one of the following four items at a certain time:
• unaddressable: illegal heap memory that is not allowed

to be accessed by programs within the firmware.
• uninitialized: addressable heap memory that has been

allocated but has not been written.
• defined: addressable heap memory that has been allocated

and has been written.
• readable: addressable heap memory that is only readable

in the string processing library functions.
Fig. 2(b) and Fig. 2(c) illustrate the correspondence between

different heap memory regions and memory shadowing. Un-
addressable memory region includes not only the redzone and
the system padding, but also other memory addresses that are
not allocated. Memory region that satisfies the size of the user
code request can be either uninitialized or defined, depending
on whether the user code assigns values to them. The auxiliary
padding region is marked as readable, which is only usable in
string processing library functions.

TABLE I
HEAP MEMORY VULNERABILITY SUPPORTED BY EM-Fuzz

Memory detectors Implementation principle

buffer overflow write to the system padding, auxiliary padding and right
redzone regions marked as unaddressable or readable state

buffer over-read read from the system padding, auxiliary padding and right
redzone regions marked as unaddressable state

buffer underflow write to the left redzone marked as unaddressable state

buffer under-read read from the left redzone marked as unaddressable state

double free mark the freed memory address for the first time, then
monitor the second free calling of the same address

use-after-free mark the freed memory address for the first time, then
access address marked as the uninitialized or defined state

wild free judge whether the address to be freed is the start address
of the heap memory

uninitialized access access memory address with the uninitialized shadowing

read invalid memory read from memory address marked as the unaddressable state

memory leak hook the exit system call, reports the address and size of
the memory that are not in the unaddressable state

Table I lists ten common types of heap memory vulner-
abilities supported by EM-Fuzz for checking. Each type of

vulnerability corresponds to one memory detector in EM-Fuzz,
as shown in Column 1. Column 2 explains the simple imple-
mentation principle in EM-Fuzz. For example, buffer overflow
means writing data to an adjacent memory location that
overruns the buffer’s boundary. EM-Fuzz detects this behavior
by determining whether instructions write data to the system
padding, auxiliary padding, and right redzone regions marked
as the unaddressable or readable state. The memory leak
detector is a bit special, it hooks the exit system call and
counts memory bytes that are not in the unaddressable state.

If there is no readable state, reading data from heap memory
in the string handling functions is often accompanied by the
buffer over-read false positive. Taking the strlen function as an
example, in order to improve efficiency, it may not read the
character from heap memory byte by byte and determine if
there is a terminator ‘\0’. Different implementation versions
of the strlen function can read one word, double words, or
even 16 bytes (using the SSE instruction set) at a time, find the
terminator from the front to back and return the string length.
To eliminate this type of false positives, we used auxiliary
padding marked as “readable” to filter out buffer over-reads
occurring in the string processing library functions.

B. Guided Fuzzing

The overall procedure of the additional memory sensitive
operation guided fuzzing is presented in Algorithm 1. Lines
1–17 are the main pseudocode implementation that will con-
tinuously execute until the timeout is reached or the fuzzing
is aborted purposely, where improvements to existing fuzzers
are specifically marked by gray boxes. The optimization is de-
signed to more easily explore hard-to-reach deep paths without
losing the breadth of path exploration and give fragile code
areas more opportunities for exhausted memory checking. The
details of each step are described below.

Algorithm 1: Memory sensitive fuzzing algorithm
Input: S: initial seed set
Output: I: test input queue that participates in mutation
Output: D: test input queue that makes firmware crash

1 Function DualGuidedFuzzing():
2 I = S, D = ∅
3 while !isTimeout do
4 seed = ChooseSeed(I) //branch frequency based skip rule

5 recordedMemoryOps = getRecordedMemoryOps(seed)

6
energy = CalculateMutation(seed, recordedMemoryOps)
//consider memory sensitive operations and selected frequency

7 rareBranchFlag = IsHitRareBranch(seed)

8 memSensitiveFlag = IsMemSensitiveBranch(seed)

9 for i from 1 to energy do
10 if rareBranchFlag or memSensitiveFlag then

11
mutatedCase = RestrictedMutation(i, seed)
//keep fixed offsets of the selected seed immutable

12 else
13 mutatedCase = RandomMutation(seed)
14 end
15 ProcessExecute(mutatedCase)
16 end
17 end
18 End Function

5

1) Fuzzing Controller: As the basis of the entire fuzzing
process, fuzzing controller receives feedback after executing
each test case derived from the mutation stage, including
branch coverage and memory sensitive operations. It keeps
track of each branch that has been discovered and records
which test cases have covered the branch. Meanwhile, it is
responsible for updating the global threshold used to dynam-
ically separate common and rare branches. It also records
which memory sensitive operations (e.g., malloc, free) are
included in the execution trace of each test case. These
information provides sufficient support for subsequent seed
selection, energy assignment, and seed mutation.

2) Seed Selector: To cover hard-to-reach branches faster
and earlier, EM-Fuzz uses the seed skip principle based on
branch frequency to select seeds for mutation, which effec-
tively solves the problem that existing fuzzers [5], [6], [10]
may leave some hard-to-cover branches late or not discovered.

We use the term hit count to indicate the number of times
that a branch has been executed. EM-Fuzz initially performs
one round of mutation on each seed of the input queue I
to get the map M recording the hit count of each branch,
and to acquire all observed branches set B. Each time a newly
generated seed is executed, the values ofM and B are updated.
Let n be the number of branches in seed S ∈ I , bj be the jth

branch, and mb represent the branch with the minimum hit
count. We use formula (2) to represent the probability that
seed S will be skipped based on the execution frequency of
each branch, where γ is a balanced constant.

P (S) =

(
1− M−1 (mb)∑n

j=1M−1 (bj)

)
· γ (2)

From the above formula, we know that seeds that execute
rare branches have a lower probability of being skipped. It
ensures that hard-to-reach regions that have been observed can
still be more easily covered. However, it also gives the seeds
that are not preferred in other fuzzers a certain probability of
being selected, which increases the chance to cover other hard-
to-reach regions that have not been seen before. In a similar
way, we can increase the skipping probability of seeds that
cover fewer memory sensitive operations.

3) Seed Mutator: This step consists of two phases: calcu-
late mutation energy and apply mutation strategy. They directly
determine when EM-Fuzz can achieve the maximum branch
coverage and how many vulnerabilities can be detected.

Mutation energy. EM-Fuzz takes the branch hit count and
the number of memory sensitive operations into account to
give different seeds the appropriate mutation energy on the
basis of AFLFast [6]. The firmware emulator in EM-Fuzz is
implemented with the function of memory checking instru-
mentation. During processing each test case, it records several
categories of memory sensitive operations, including allocation
functions (e.g., malloc, calloc), movement functions (e.g.,
memmove, strcpy), comparison functions (e.g., strcmp, memcmp),
release function (e.g., free), etc., which are library functions
easy to cause vulnerabilities.

Let c (S) denote the number of times that the seed S has
been chosen from the input queue I , f (S) represent the

number of fragile library functions in the execution trace of
the seed S, mb be the branch with minimum hit count among
the branches covered by seed S and M(mb) be its hit count.
The new mutation energy E is computed as the formula (3):

E = min

(
Eo
α
· 2

c(S) ·max (1, f (S))
M (mb)

,U
)

(3)

where α > 1 is a constant that balances the relationship
between original AFL’s energy Eo and new EM-Fuzz’s energy
E , U is an upper bound on the number of mutations. It
improves AFLFast’s exponential energy allocation strategy by
additionally considering memory sensitive operations, which
increases the frequency of testing fragile code regions.

Mutation strategy. Drawing on the partial ideas of FairFuzz
and in combination with our proposed seed selection strategy,
EM-Fuzz applies different mutation strategies to different
seeds, where the restricted mutation strategy and the random
mutation strategy. Line 7 in Algorithm 1 first determines
whether the selected seed S covers rare branches. If so,
it performs the restricted mutation that continues to cover
hard-to-reach or memory sensitive branches. Otherwise, it
performs the random mutation that covers a wider range of
new branches. Let min_hit denote the minimum hit count
for all branches in B. As new test cases are executed, the hit
count of each branch also continues to increase, and only the
branches b ∈ B with the hit count M (b) that satisfy formula
(4) belong to rare branch rb.

M (b) < rarity_cutoff (4)

where rarity_cutoff is the threshold separating common and
rare branches, and its real-time value is 2dlog2min_hinte.

If the selected seed hits a rare branch or a memory sensitive
branch, EM-Fuzz applies the restricted mutation strategy. It
first determines which fixed offsets of the selected seeds should
remain unchanged. Therefore, EM-Fuzz performs a round of
mutations on each byte of the seed S by trying three types
of operations: insertion, deletion, and replacement. If any
mutation operation on the fixed offsets makes newly obtained
test cases no longer hit the same rare branch as the original
seed S, then these fixed offsets belong to immutable key bytes,
and vice versa. These immutable bytes will remain unchanged
during the restricted mutation strategy, and EM-Fuzz performs
random mutation strategy on other offsets of the seed based
on the assigned mutation energy. For the selected seed that
does not hit a rare branch or a memory sensitive branch,
EM-Fuzz follows the original random mutation strategy of
AFL to increase the probability of finding new branches.

4) Process Execution: When executing each test case,
EM-Fuzz determines whether it causes the firmware to crash
or corrupt. If so, EM-Fuzz adds such test case to the defect
queue D, otherwise, it measures whether an interesting branch
ib is hit. One of the following two conditions makes a seed
interesting: 1) exercise a new branch that is not observed in the
previous branch set B, presented as ib /∈ B. 2) the number of
times that branch ib is executed by test case T is significantly

6

different from the number of executions by previous any test
case T ′ in input queue I , formulated as

∀T ′ ∈ I, blog2(HS(T , ib))c 6= blog2(HS(T ′, ib))c (5)

whereHS(T , ib) represents the number of times that branch ib
is exercised by the test input T , blog2(·)c is the floor function
of the logarithm to the base of two.

IV. IMPLEMENTATION AND EVALUATION

EM-Fuzz’s firmware emulator is augmented with memory
checking instrumentation based on the QEMU emulation plat-
form [11]. It mainly enhances the original QEMU in three
parts to achieve dynamic runtime instrumentation. First, when
QEMU starts to run a firmware binary, it loads shared mem-
orys to record branch coverage information and the number
of memory sensitive operations. Then, before each translation
block is executed, it instruments a value to uniquely identify
each translation block similar to AFL [5]. Therefore, when a
test case is processed, the transition relationship between two
contiguous translation blocks and the memory sensitive oper-
ation information can be updated to the corresponding shared
memory. Finally, when a memory-related library function call
is encountered during the execution of translation blocks, it
wraps the original library function and sets the appropriate
memory shadowing as described in Section III-A2. If memory
write/read instructions to heap addresses are encountered, it
calls back ten types of memory detectors embedded in the
enhanced QEMU to detect heap memory defects.

The augmented QEMU emulator works together with the
guided fuzzing module. Both of them are controlled by the
synchronous controller that is built on top of AFL [5]. To
reduce the impact of low throughput on firmware fuzzing,
we depend on the vital feedback from memory checking
instrumentation to get the memory-sensitive operations of the
closed-source firmware, and strengthen three functions of the
original AFL: allow each seed in the queue I to participate
in mutation according to the seed skipping principle, assign
mutation energy based on branch hit count and memory
sensitive operations, and apply appropriate mutation strategies
for different selected seeds.

We evaluate whether EM-Fuzz is able to address the bottle-
necks in testing real-world embedded firmware and efficiently
discover multiple types of vulnerabilities. We would like to
answer the following three research questions:
• RQ1: Efficiency in branch discovery. Is EM-Fuzz efficient

in improving branch coverage of firmware?
• RQ2: Effectiveness in vulnerability exposure. Is EM-Fuzz

effective in exposing multiple types of vulnerabilities?
• RQ3: Performance of memory detectors. What perfor-

mance can the detectors of EM-Fuzz achieve against
cross-architectures firmware?

A. Experiments Setup

We evaluate the performance of EM-Fuzz on six embedded
programs, including the ones that were also studied in other
works [6], [12]. They were from two types of embedded
device firmware as listed in Table II. The first type was

protocol programs (ICCP [13], IEC104 [14], and IEC61850
[15]) extracted from substation automation devices responsible
for time-critical information exchange between the control
center and remote terminal units (RTUs) in the power in-
dustry. The second type contains three widely-used programs
(security communication toolkit OpenSSL, data processing
libraries HTSlib and MXML) extracted from the OpenWRT
router firmware. We compare EM-Fuzz with two state-of-the-
art fuzzers to answer RQ1 and RQ2, including AFL [5], and
AFLFast [6]. RQ3 is responded by comparing with the widely-
used binary memory detector Dr. Memory [8].

TABLE II
EMBEDDED PROGRAMS EXTRACTED FROM REAL-WORLD FIRMWARE FOR

EXPERIMENTAL EVALUATION

Program Firmware Type Version Architecture
ICCP Substation automation

system (SAS)
V1.5 X86

IEC104 V1.0.0 X86
IEC61850 V1.3.1 ARM32

OpenSSL
Router

V1.0.1b
ARM32HTSlib V1.8

MXML V2.12

We run the experiments on a 64-bit machine with 36 cores
(Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz), 128GB
of main memory, and Ubuntu 16.04.6 LTS as the host OS.
For each tool, we run each firmware program ten times for
24 hours. We repeat each program ten times with the same
seed file to reduce the randomness of fuzzing. The results
reported in subsequent experiments are summarized after ten
independent runs for each target tested.

B. Efficiency in Branch Discovery

Here we answer the RQ1 about what coverage EM-Fuzz
can achieve within the limited time. We chose the number of
branches covered by the 24-hour fuzzing as a guideline for
evaluating the efficiency. Fig. 3 depicts the trend of branch
discovery, indicating the total number of branch tuples found
by each tool on average at each time point over ten 24-hour
runs. On all fuzzed programs, EM-Fuzz eventually achieves a
higher number of branches covered, with the EM-Fuzz curve
above the other curves in Fig. 3. EM-Fuzz covers an average of
3,386 branches on all six firmware programs, which is 93.98%
and 46.89% more than that of AFL and AFLFast, respectively.

For the specific OpenSSL program, EM-Fuzz covers as
many as 7,862 branches, which is 1.78× more than AFL
and 0.49× more than AFLFast. We can also see that the
curves of AFL and AFLFast on four programs eventually
become stable and no longer increase, which is referred to as
“saturation”. Excluding the OpenSSL and MXML programs,
AFL saturates after approximately 5 hours of fuzzing on the
other 4 programs. Excluding the IEC104, OpenSSL and HT-
Slib programs, AFLFast reaches saturation at approximately
16 hours. However, EM-Fuzz still presents a trend toward an
increase in the number of branches covered on all programs in
the 24-hour fuzzing. The reason is that the mutation strategy of
EM-Fuzz moves toward the earlier coverage of rare branches,
making it easier to explore deeper program paths in a short

7

(a) ICCP protocol program (b) IEC104 protocol program

(c) IEC61850 protocol program (d) OpenSSL program

(e) HTSlib library (f) MXML utilities

Fig. 3. Number of branches covered by contrast tools averaged over 10 runs.

period of time. For the IEC61850 protocol program, its valid
input may contain several specific fields, in which different
fields match different application functions, and EM-Fuzz
generates more interesting test inputs to cover a series of
branches corresponding to these functions. The experiment
results imply EM-Fuzz’s excellence not only in the number
of branch discovery but also in the speed boost.

The ICCP and IEC104 protocal programs showed less
improvement in branch coverage than that of the other four
programs. Two reasons contributed to this situation. First,
we conducted the reverse analysis of the binary of the six
programs, and found that the size of these two programs was
smaller, and the number of branches was significantly less
than the other four programs. Therefore, even a small increase
in branch coverage is not trivial. And the prior study [16]
showed that even small increases in branch coverage can
obtain more defects finding capability after a certain amount
of coverage is achieved. Second, as time progresses, rare
branches gradually became common branches and the number
of other rare branches rediscovered was inadequate. Therefore,
EM-Fuzz’s mutation strategy cannot give full play to its value.

C. Effectiveness in Vulnerability Exposure

Here we answer the RQ2 and focus on whether EM-Fuzz
can expose multiple types of vulnerabilities in firmware effec-
tively. We choose the number and time for illustration.

1) Total Number of Vulnerabilities: The ability to expose
vulnerabilities is an important indicator of fuzzers. Therefore,

we count the number of vulnerabilities that have been con-
firmed officially, including reproducing existing known vul-
nerabilities and discovering previously unknown ones. After
running each program ten times with each tool, we fill the
total number of officially confirmed vulnerabilities discovered
by each tool into Table III. Column 1 refers to the firmware
names. Column 2 represents the identifier information for
each vulnerability, where ‘CVE-XXX’ means that the vul-
nerabilities have been officially confirmed and assigned with
the unique CVE identifier in the U.S. national vulnerability
database [17], and ‘Bug-XXX’ means that the vulnerabilities
have been reported the corresponding product vendors and
officially confirmed, the previously unknown vulnerabilities
are marked with ?. Columns 3, 5, and 7 indicate whether the
three tools in comparison expose each vulnerability, and if
so, the corresponding cell is filled with the check mark (X);
otherwise, it is empty.

From Table III, we can see that EM-Fuzz discovers a total
of 23 vulnerabilities, which are 16 and 13 more than AFL and
AFLFast, respectively. The 16 of the 23 vulnerabilities found
by EM-Fuzz are previously unknown. The two compared tools
together found only 6 of the 16 previously unknown vulnera-
bilities. Among the four vulnerabilities in the ICCP protocol
program, AFL and AFLFast only found one segmentation fault
vulnerability (shortened to SIGSEGV). A similar situation also
exists for the IEC104 protocol program. The improvement
is mainly brought by the real-time memory checker and
the memory sensitive operation information acquired by the
extra memory instrumentation. It can not only expose those
vulnerabilities that would not result in crashes, but also helps
to learn the energy of test input and generate test inputs that
explore deeper and fragile program regions more often. For
example, neither AFL nor AFLFast exposes the SIGSEGV
vulnerability identified by Bug-2019-0921 in the IEC104 pro-
tocol program. Likewise, they found no vulnerabilities in the
HTSlib library that accesses high-throughput sequencing data
in ten runs. These show that EM-Fuzz has a better ability to
detect vulnerabilities in embedded firmware.

2) Types of Vulnerabilities Found: We analyze the ability
of each tool to expose each type of vulnerability. Table IV
lists the statistical results, where each vulnerability belongs to
only one specific type and is not shared with other types. From
Table IV, we can see that EM-Fuzz performs better in reporting
the number of vulnerabilities in each category. The first six
types of vulnerabilities discovered by EM-Fuzz accounts for
12 of a total of 23 vulnerabilities, with a ratio of 52.17%.
Neither AFL nor AFLFast can report any vulnerabilities re-
lated to heap out-of-bounds access. After analyzing these 12
vulnerabilities, we find that seven of them only slightly cross
the corresponding heap boundary. It is not enough to cause the
firmware to crash, so AFL and AFLFast can not expose them.
With the implemented heap memory detectors, EM-Fuzz can
accurately report heap memory issues in firmware programs.

Aside from heap memory vulnerabilities, we focus on the
last three types of vulnerabilities in Table IV. As they would
easily result in crashes, each tool in the comparison performs
well. AFL and AFLFast expose 7 and 10 vulnerabilities,
reaching only 63.64% and 90.91% of these three types of

8

TABLE III
LIST OF VULNERABILITIES FOUND BY EACH TOOL WITHIN 24 HOURS

Program Identifier Type AFL AFLFast EM-Fuzz
Found(?) Time(h) Found(?) Time(h) Found(?) Time(h)

ICCP
Bug-2019-0923? segmentation fault X 8 X 7 X 6
Bug-2019-0925? wild free X 5
Bug-2019-0928? buffer over-read X 2
Bug-2019-1003? buffer overflow X 12

IEC104
Bug-2019-0912? buffer over-read X 5
Bug-2019-0915? stack overflow X 16 X 10
Bug-2019-0918? segmentation fault X 4 X 4 X 5
Bug-2019-0921? segmentation fault X 8 X 6

IEC61850

CVE-2018-18834 buffer overflow X 3
CVE-2018-18937 NULL pointer dereference X 10 X 9 X 7
CVE-2018-19093 segmentation fault X 15 X 14 X 11
CVE-2018-19185 buffer overflow X 2
CVE-2018-19121 segmentation fault X 22 X 17 X 8
CVE-2018-19122 NULL pointer dereference X 21 X 13
CVE-2019-6136? segmentation fault X 13

OpenSSL CVE-2016-2108 buffer underflow X 13
Bug-2019-0824? stack overflow X 6 X 5 X 5

HTSlib
CVE-2018-13843? memory leak X 7
CVE-2018-13844? memory leak X 8
CVE-2018-13845? buffer over-read X 5

MXML
CVE-2018-19764? stack overflow X 19 X 7 X 3
CVE-2018-20004? use-after-free X 6
CVE-2018-20005? memory leak X 5

Total 7 - 10 - 23 -
* Previously unknown vulnerabilities are marked with ?. Vulnerabilities found by each tool over ten 24-hour runs are marked with X.

TABLE IV
THE NUMBER OF EACH TYPE OF VULNERABILITIES FOUND BY THE

CONTRAST TOOLS ON THE SIX FIRMWARE PROGRAMS

Catagory AFL AFLFast EM-Fuzz
buffer overflow 0 0 3

buffer underflow 0 0 1
buffer over-read 0 0 3

wild free 0 0 1
use after free 0 0 1
memory leak 0 0 3

NULL pointer dereference 1 2 2
stack overflow 2 3 3

segmentation fault 4 5 6

Total 7 10 23

vulnerabilities that are found by EM-Fuzz, respectively. The
reason is similar to the previous illustration that EM-Fuzz
applies the optimized fuzzing strategy for firmware. The
traditional branch and the additional memory sensitive oper-
ation information guide the fuzzing to more easily explore
hard-to-reach deep paths, and give fragile code areas more
opportunities for exhaustive fuzzing. These statistics show that
the traditional fuzzing approaches perform well in detecting
vulnerabilities that cause the target to crash. In contrast, with
real-time memory checking of EM-Fuzz, we can detect more
vulnerabilities in embedded firmware.

3) Time of Vulnerability Discovery: Although EM-Fuzz can
cover more branches faster and find more vulnerabilities, we
want to know how long it takes to expose a vulnerability.
Columns ‘Time’ in Table III lists the minimum time at which
the three tools in comparison expose each vulnerability in ten
runs. The empty cell indicates that the corresponding tool
does not find the vulnerability in ten 24-hour experiments.
We can see that it took EM-Fuzz 13 hours to expose all 23
vulnerabilities, of which 17 of the 23 vulnerabilities could be
exposed within 10 hours. On the whole, AFL and AFFLFast

require 1.71× and 1.54× more time on average than EM-Fuzz
to expose vulnerabilities, respectively. For example, AFL re-
quires 22 hours to expose the CVE-2018-19121 vulnerability,
and AFLFast requires 21 hours to expose the CVE-2018-
19122 vulnerability. In contrast, the CVE-2018-19185 vulner-
ability in the IEC61850 protocol program can be reported by
EM-Fuzz in 2 hours.

4) EM-Fuzz’s Time Overhead: In the same running en-
vironment, we selected four open-source projects (Coreutils
[18], libpng [19], zlib [20], yaml-cpp [21]) that were also
studied in other works [6], [12] to evaluate the time overhead
introduced by EM-Fuzz. Using the QEMU emulator without
memory checking instrumentation to run these projects costs
about 3–5× more than running them directly on the native
processor. When the memory checking instrumentation is
turned on, the time cost will increase by an average of 1.5×
again to 4.5–6.5×.

D. Performance of Memory Detectors

We answer the RQ3 about whether EM-Fuzz can accurately
detect heap memory vulnerabilities against diverse architec-
ture firmware in a unified test environment. To illustrate the
accurateness and versatility, we compare EM-Fuzz’s memory
checker module with the state-of-the-art memory checker Dr.
Memory [8], both of which run on the server with the X64
architecture as described in Section IV-A. Since Dr. memory
does not have the ability to generate test cases automatically,
we save all test cases derived from the fuzzing phase of
EM-Fuzz. When using Dr. memory to test firmware, these
test cases are input in turn. Because the main ability of Dr.
Memory is to detect heap memory vulnerabilities, therefore,
for a better and fairer comparison with Dr. Memory, only heap
memory vulnerabilities are counted here. All detected heap

9

memory vulnerabilities are summarized and deduplicated, and
the results are listed in Table V.

TABLE V
NUMBER OF HEAP MEMORY VULNERABILITIES DETECTED

Program Dr. MemoryEM−Fuzz EM-Fuzz
ICCP 3 3

IEC104 1 1
IEC61850 - 2
OpenSSL - 1
HTSlib - 3
MXML - 2

Total 4 12

EM-Fuzz can detect 12 heap memory vulnerabilities on
all six firmware programs, while Dr. Memory can only de-
tect 4 heap memory vulnerabilities on X86-based programs.
EM-Fuzz, like the well-known memory checker Dr. Memory,
accurately detects 3 and 1 heap memory vulnerabilities in
ICCP and IEC104 programs, respectively. This implies that
EM-Fuzz can accurately identify heap memory vulnerabilities
in firmware. The reason Dr. Memory cannot work on the
other four programs is that DynamoRIO [22], its instru-
mentation framework, also requires running on the ARM-
based machine to detect ARM architecture firmware. Different
from it, EM-Fuzz can use a unified test environment, such
as on the X86 machine, to detect the memory vulnerability
of multi-architecture firmware by using the emulator imple-
mented with memory checking instrumentation. This feature
makes EM-Fuzz more efficient and practical, which can use
resource-rich servers to fuzz cross-architecture firmware and
additionally expose memory vulnerabilities hidden in them.

E. Real Vulnerability Case Study

During the experiment, EM-Fuzz exposes two serious vul-
nerabilities that can easily cause denial-of-service (DoS),
CVE-2016-2108 on OpenSSL and Bug-2019-0921 on IEC104.
Taking the CVE-2016-2108 vulnerability as an example, its
CVSS (Common Vulnerability Scoring System) score [23]
is the highest of 10.0, meaning it is a vulnerability prone
to catastrophic consequences. Consider the test input shown
in Fig. 4, which is the data object description structure that
follows the Abstract Syntax Notation One standard (ASN.1).
In order to implement network communication, the ASN.1
parser asn1parse encodes the left data structure of Fig. 4
into the serialized binary stream based on specific encoding
rules, such as DER, PEM. As shown in the code snippet of
Fig. 4, existing fuzzers have difficulty generating test inputs
to trigger the branch condition of Line 422 that contains the
vulnerability implementation. When the parser deserializes the
binary stream, if the value of the INTEGER type is ‘0x-
0’, the parser produces a buffer underflow with an out-of-
bounds write in the i2c_ASN1_INTEGER function. The immediate
consequence of buffer underflow is that the chunk field of
the allocated heap is inadvertently modified, which causes the
parser to crash when releasing the corrupted heap memory.
The deserialization and serialization process allows remote
attackers to corrupt memory, indirectly leading to a denial-
of-service vulnerability.

asn1=SEQUENCE:a
[a]
=INTEGER:0x-0

asn1=SEQUENCQ:a
[a]
=INTEGER:0x-0

Correct Syntax Wrong Syntax

422 if (BN_is_negative(bn)) //Vulnerability snippet in i2c_ASN1_INTEGER

423 ret->type = V_ASN1_NEG_INTEGER;
424 else
425 ret->type = V_ASN1_INTEGER;

Fig. 4. Examples of data object description structures to trigger the crash and
the corresponding vulnerable code snippet in OpenSSL.

Only EM-Fuzz has ever reproduced the high-risk vulnera-
bility during the experiment. With EM-Fuzz’s fuzzing strategy,
it is easier to generate well-formed test inputs and assign
such test inputs more mutation energy, which increases the
probability that other contents except ‘0x-0’ are correct. It
will keep “sequence" and “INTEGER” immutable; otherwise,
the parsing logic will enter the error handling branch.

V. DISCUSSION

In this section, we discuss the limitations of EM-Fuzz and
indicate future research efforts. The first possible threat is
the type of vulnerability EM-Fuzz can discover. Although
EM-Fuzz has integrated the efficient greybox fuzzing and the
memory checking to augment the capability of vulnerability
discovery on the embedded firmware, it mainly focuses on
finding the following categories of vulnerabilities in firmware,
including program crashes, execution timeouts, silent memory
corruptions, and some logical bugs (e.g., an infinite loop).
However, EM-Fuzz does not show sufficient superiority to
web security-related vulnerabilities in firmware, such as XSS
and command injection. The main reason is that the current
implementation does not include suitable monitors to identify
such vulnerabilities that usually do not cause crashes. A
feasible solution is to set up a proxy-based server in the local
network to determine whether the monitor server is accessed
by the firmware, and thus identifying XSS and command
injection vulnerabilities [3].

Another threat is that fuzzinging may fall into a state where
branch coverage is saturated, even though we have proposed
several optimized fuzzing strategies for embedded firmware
to better balance the depth and breadth of branch discovery.
However, as the fuzzing time progresses, there may be some
special filtering mechanisms in the firmware code (e.g., CRC
checksum and hash mapping) causing the fuzzing stuck. That
means it needs to take lots of efforts to discover new branches.
When no new branch is found after the threshold is exceeded,
a feasible solution is to use symbolic execution to generate test
cases to bypass certain branches that are difficult to cover [24].

VI. RELATED WORK

A. Binary Fuzzing Techniques

Black-box [2], [25], [26] and greybox [5], [6], [10], [12],
[27], [28], [29] techniques play a dominant role in the field
of binary fuzzing when the source code is not available.

10

Mutation-based black-box fuzzers [25], [26] mutate the cor-
responding proportion of bits within the test inputs according
to the specified fuzzer ratio. SymFuzz [26] adaptively sets
the fuzzer ratio by determining dependencies between the
execution trace and the bit positions of a test input. Generation-
based black-box fuzzers [2] generate inputs from scratch based
on specifications. Peach [2] relies on the predefined data
model that describes the input data format and state model
that describes specific test input generation strategies to guide
the fuzzing. The limitation of black-box fuzzing techniques is
that the test input generation process lacks feedback from the
program execution trace and results in low code coverage.

The greybox fuzzing techniques collect code coverage in-
formation, which directly affects the seed set involved in the
mutation process. AFL [5] is the representative of many such
techniques, which continually generate test inputs through
deterministic and random mutations. AFLFast [6] optimizes
AFL’s strategy of selecting the next seed for mutation, where
it preferentially mutates the seeds covering the low-frequency
path. FairFuzz [10] modifies the mutation algorithm of AFL.
It purposefully mutates specific bytes of selected seeds in
both the deterministic and random mutation stages. PAFL [30]
utilizes efficient guiding information synchronization and task
division to extend existing fuzzing optimizations [6], [10] of
single mode to industrial parallel mode. Combining fuzzing
techniques with symbolic execution or program analysis [24],
[31], [32] is another improvement in the field of greybox bi-
nary testing. For example, Driller [24] uses fuzzing to explore
program paths under test most of the time. However, when the
fuzzing becomes stuck, it uses concolic execution to generate
new inputs for conditions that the fuzzer can not satisfy.
However, these greybox fuzzing techniques are applicable to
desktop binaries with a specific hardware architecture, and
their usability and efficiency in embedded firmware are greatly
reduced without the instrumentation to support the memory
checker for vulnerabilities that would not result in crash.

B. Binary Memory Checking

Memory vulnerability checking is an important means of
ensuring binary security. Common binary memory checking
tools rely on different stages (e.g., compile-time, link-time,
and runtime) of instrumentation to insert detection logic.
Purify [33] is one of the first commercial memory inspection
tools, relying on link-time instrumentation to detect use after
free and memory leak vulnerabilities. MemCheck [7] is the
most widely used tool for checking memory vulnerabilities. It
implements memory checking on the Valgrind [34] dynamic
instrumentation platform by first converting binary instructions
into the VEX [34] intermediate representation (VEX-IR), then
inserting detection algorithms on the VEX-IR, and finally
converting them back to the binary instructions. Based on
the DynamoRIO [22] instrumentation framework, Dr. memory
[8] uses the code cache mechanism to support heap-based
memory checking for binaries running on multiple operating
systems. Parallel Inspector [35] is a memory and threading
error debugger built on the Pin [36] dynamic instrumentation
framework for the IA-32, x86-64 and MIC instruction set

architectures. The above tools are workable on the premise that
they can be installed in the same running environment (e.g.,
same CPU architecture) as the binary under test. Furthermore,
those tools depend on extra test cases to trigger the execution
and analysis procedure.

VII. CONCLUSION

In this paper, we present EM-Fuzz, an augmented fuzzing
technique via memory checking to enhance vulnerability
discovery capabilities on embedded firmware. Based on the
dynamic instrumentation, we can insert multiple vulnerability
checkers to detect those vulnerabilities that would not crash the
system, and collect the sensitive memory operations to guard
the fuzzer to generate more high-quality test cases and perform
exhaustive memory checking on those fragile code regions.
The experimental results on real-world embedded firmware
manifest EM-Fuzz ’s excellence not only in the number of
vulnerability discovery but also in the speed boost. It has
exposed 23 security vulnerabilities, 16 of which are newly
discovered previously unknown vulnerabilities. In the future,
we plan to extend EM-Fuzz by supporting more architectures
and integrating more checkers for memory security threats.

REFERENCES

[1] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan,” in Proceedings
of the 26th Annual Computer Security Applications Conference. ACM,
2010, pp. 97–106.

[2] “Peach fuzzer,” https://www.peach.tech/, accessed January 20, 2020.
[3] Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang, D. Sun,

C. Zhang, and B. Liu, “Srfuzzer: an automatic fuzzing framework for
physical soho router devices to discover multi-type vulnerabilities,”
in Proceedings of the 35th Annual Computer Security Applications
Conference. ACM, 2019, pp. 544–556.

[4] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing.” in NDSS, 2018.

[5] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl, ac-
cessed January 20, 2020.

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Trans. Software Eng., vol. 45, pp.
489–506, 2017.

[7] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision,” in USENIX Annual Technical Conference,
General Track, 2005.

[8] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” International Symposium on Code Generation and Optimization
(CGO 2011), pp. 213–223, 2011.

[9] glibc wiki, “Introduction to malloc chunk,” https://sourceware.org/glibc/
wiki/MallocInternals, accessed January 22, 2020.

[10] C. Lemieux and K. Sen, “Fairfuzz: a targeted mutation strategy for
increasing greybox fuzz testing coverage,” in ASE, 2018.

[11] QEMU, “The fast processor emulator,” https://www.qemu.org, accessed
January 22, 2020.

[12] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in USENIX Security Symposium, 2018.

[13] ICCP, “Inter-control center communications protocol,”
https://en.wikipedia.org/wiki/IEC_60870-6#Inter-Control_Center_
Communications_Protocol, accessed January 22, 2020.

[14] IEC104, “One of the iec60870 standard sets for supervisory control and
data acquisition in electrical engineering and power system automation
applications,” https://en.wikipedia.org/wiki/IEC_60870-5, accessed Jan-
uary 22, 2020.

[15] IEC61850, “International communication protocol standard for intel-
ligent electronic devices,” https://en.wikipedia.org/wiki/IEC_61850, ac-
cessed January 22, 2020.

11

[16] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” Commun. ACM, vol. 59, pp. 93–
100, 2014.

[17] CVE, “Common vulnerabilities and exposures,” https://www.cvedetails.
com, accessed January 22, 2020.

[18] Coreutils, “Gnu core utilities,” https://github.com/coreutils/coreutils, ac-
cessed January 22, 2020.

[19] glennrp, “Libpng: Portable network graphics support,” https://github.
com/glennrp/libpng, accessed January 22, 2020.

[20] zlib, “A massively spiffy yet delicately unobtrusive compression library,”
http://zlib.net/, accessed January 22, 2020.

[21] jbeder, “A yaml parser and emitter,” https://github.com/jbeder/yaml-cpp,
accessed January 22, 2020.

[22] D. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” 2004.

[23] “Common vulnerability scoring system,” https://en.wikipedia.org/wiki/
Common_Vulnerability_Scoring_System, accessed January 20, 2020.

[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS, 2016.

[25] zzuf, “multi-purpose fuzzer,” http://caca.zoy.org/wiki/zzuf, accessed Jan-
uary 20, 2020.

[26] K. C. Sang, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Security & Privacy, 2015.

[27] Google, “honggfuzz,” https://google.github.io/honggfuzz/, accessed Jan-
uary 20, 2019.

[28] libFuzzer, “a library for coverage-guided fuzz testing,” https://llvm.org/
docs/LibFuzzer.html, accessed January 20, 2020.

[29] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-
K. R. Choo, “Deepfuzzer: Accelerated deep greybox fuzzing,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[30] J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou, and J. Sun, “Pafl: extend
fuzzing optimizations of single mode to industrial parallel mode,” in
ESEC/FSE, 2018, pp. 809–814.

[31] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym : A practical
concolic execution engine tailored for hybrid fuzzing,” in USENIX
Security Symposium, 2018.

[32] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and
J. Sun, “Safl: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing,” in ICSE: Companion Proceeedings,
2018, pp. 61–64.

[33] R. O. Hastings and B. Joyce, “Purify: fast detection of memory leaks
and access errors,” 1991.

[34] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007.

[35] Intel, “Intel parallel inspector,” https://software.intel.com/en-us/
inspector, accessed January 20, 2020.

[36] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in PLDI, 2005.

Jian Gao received the BS degree in software
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2016. He
is currently working toward the Ph.D. degree in
software engineering at Tsinghua University, Bei-
jing, China. His research interests include binary
vulnerability search, software safety and security
of embedded systems, machine learning in program
analysis and their applications to industry.

Yiwen Xu received the BS degree from College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China, in 2020. She is
currently working toward the M.S. degree in soft-
ware engineering at Tsinghua University, Beijing,
China. Her research interests are in the areas of
program analysis, software testing and web security
of embedded systems.

Yu Jiang received the BS degree in software en-
gineering from Beijing University of Posts and
Telecommunications in 2010, and the PhD degree in
computer science from Tsinghua University in 2015.
He was a Postdoc researcher with the Department of
Computer Science, University of Illinois at Urbana-
Champaign, Champaign, IL, USA, in 2016, and is
now an associate professor in Tsinghua University.
His research interests include domain specific mod-
eling, formal computation model, formal verification
and their applications in embedded systems.

Zhe Liu received his Ph.D degree from the Labora-
tory of Algorithmics, Cryptology and Security, Uni-
versity of Luxembourg. His Ph.D thesis has received
the prestigious FNR Awards. He is a full professor
in College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronau-
tics and SnT, University of Luxembourg. He has
been a visiting scholar in City University of Hong
Kong, COSIC, K. U. Leuven as well as Microsoft
Research, Redmond. His research interests include
computer arithmetic and information security.

Wanli Chang is an assistant professor in the De-
partment of Computer Science at the University
of York, UK. He received his Ph.D. in electrical
and computer engineering from the Technical Uni-
versity of Munich (TUM), Germany, in 2017, and
won the Departmental Best Dissertation Award. His
Bachelor’s degree is from Nanyang Technological
University, Singapore, with First Class Honours. His
research interest is on trusted and resource-aware
cyber-physical systems. He is serving in the TPC
of premium conferences on embedded and real-time

systems, as well as design automation, including DAC, ICCAD, DATE, RTSS,
EMSOFT, CODES+ISSS, and LCTES.

Xun Jiao is an assistant professor in the ECE
department of Villanova University. He obtained
the Ph.D. degree from the department of Computer
Science and Engineering at the University of Cali-
fornia, San Diego. He received the dual bachelor’s
degree from the Beijing University of Posts and
Telecommunications, China and the Queen Mary
University of London, United Kingdom, in 2013. His
research interests include error-tolerant computing
and machine learning.

Jiaguang Sun received the BS degree in automation
science from Tsinghua University in 1970. He is
currently a professor in Tsinghua University. He
is dedicated in teaching and R&D activities in
computer graphics, computer-aided design, formal
verification of software, and system architecture. He
is currently the director of the School of Information
Science & Technology and the School of Software
in Tsinghua University.

12

