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Abstract—USB is a widely used interface standard in modern
operating systems for connecting computers to various external
devices. External devices can launch attacks by injecting random
data into the host via USB, causing memory errors or even
system-level crashes. Fuzzing has been proven to be an effective
method to detect USB driver vulnerabilities. However, existing
fuzzing methods generate testing inputs without considering the
format and semantics of USB descriptors, which define device
functionality. As a result, many test cases fail to pass the host’s
input validation mechanism, leading to ineffective testing.

In this paper, we propose DNAFuzz, a USB driver fuzzer
that generates descriptor-aware payloads. First, it utilizes USB
specifications to parse the field definitions and item types of USB
descriptors for modeling. Then, based on the field description list
and semantic information, DNAFuzz designs mutation strategies
to guide the generation of payloads. This approach improves the
quality of test cases and the fuzzing effectiveness. Currently, we
evaluated DNAFuzz on multiple versions of Linux kernel USB
drivers and compared it with state-of-the-art fuzzers, including
USBFuzz and Syzkaller. Results show that DNAFuzz significantly
improves input quality, successfully increasing the proportion of
tests with execution times exceeding 2 seconds by 358% and 65%.
In addition, DNAFuzz detected 15 bugs, 11 of which have been
fixed or confirmed by the corresponding maintainers.

I. INTRODUCTION

USB has become a widely adopted standard interface for
connecting various external devices. As a bridge between
the host and USB devices, USB drivers manage critical
operations such as device identification, configuration, and
data transfer. USB descriptors define device characteristics
and functionalities, providing the basis for host identification
and management. They support the USB devices and the
hosts construct interactions in two phases: 1) The enumeration
phase: the host identifies the device and initializes the driver
by reading descriptors; 2) The data transfer phase: the host
exchanges data packets with the device based on the parsed
descriptor information.

However, the security issues of USB drivers are often
underestimated. Malicious USB devices can exploit vulner-
abilities at any stage to attack the host system, leading
to data breaches, system crashes, or more severe security
threats [1]. For instance, in January 2022, the financially
motivated FIN7 [2], [3] group targeted transportation, insur-
ance, and defense companies with BadUSB [4] attacks to
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deliver REvil and BlackMatter ransomware. Malicious USB
drives emulated keyboards and injected keystroke sequences
that opened PowerShell and executed commands to retrieve
malware. The U.S. Department of Justice estimated the total
losses caused by this group at $3 billion. By the first half
of 2023, Mandiant [5] observed a threefold rise in infected
USB drive attacks targeting sensitive data theft. The recently
disclosed high-severity vulnerability CVE-2024-53104 [6], [7]
further highlights the serious security risks in USB drivers.
This vulnerability resides in the Linux kernel’s USB Video
Class (UVC) driver uvcvideo module, and stems from the
function uvc parse format() failing to skip undefined video
frames. As a result, uvc parse streaming() mishandles these
frame types when calculating the frame buffer size, potentially
causing out-of-bounds writes. Therefore, detecting potential
vulnerabilities in USB drivers is imperative.

Fuzzing is a widely used and effective method for detecting
vulnerabilities in host drivers, with mainstream tools including
USBFuzz [8], Syzkaller [9], and Saturn [10]. USBFuzz em-
ulates USB devices in software, injecting randomized inputs
during driver I/O operations. Syzkaller generates large vol-
umes of random system call sequences to uncover potential
kernel vulnerabilities. Saturn employs host-device collabora-
tive fuzzing to explore interaction logic and expose relevant
bugs. These fuzzing tools have achieved notable success,
uncovering numerous USB driver vulnerabilities. However,
due to the complexity of the USB specifications and descriptor
structures, existing methods often overlook descriptor format
specification and semantic information when injecting mutated
data in the enumeration phase. This results in many test cases
failing to pass the host’s strict input validation mechanisms,
thereby hindering the effectiveness of USB driver fuzzing. In
practice, ensuring mutated payloads conform to USB specifi-
cations poses two major challenges.

The first challenge is accurately modeling USB descrip-
tors. The USB protocol is highly flexible and extensible,
allowing devices to define their own characteristics and data
structures depending on functionality, vendor requirements,
and the specific USB class. As a result, the descriptor struc-
tures differ not only across device types but also among
models within the same class. However, existing tools (such as
Wireshark) [11] have limited capabilities in parsing complex
USB descriptors, generally supporting only basic fields while



lacking comprehensive semantic coverage. If the descriptor
types and format specifications cannot be accurately parsed,
it becomes difficult to map data to the correct fields. Further-
more, applying targeted mutations based on field types and
lengths becomes challenging, which limits the effectiveness
of mutation strategies and ultimately impacts the quality and
efficiency of fuzz testing.

The second challenge is designing effective mutation
strategies. Even though items in a USB descriptor have com-
plex attributes, existing methods neither consider designing
different mutation strategies based on descriptor structures
nor pay attention to the semantic information of fields. Thus,
the mutated descriptor data often fails to pass the host’s
input validation mechanisms. For example, the bDeviceClass
field is an 8-bit unsigned integer that specifies the device
class. If mutations are performed solely at the type and size
level, arbitrary 1-byte values such as 0x15 or 0x72 could be
generated. However, the bDeviceClass value carries specific
semantics, and 0x15 does not correspond to any device class.
Such mutated fields are rejected by host validation checks,
hindering effective fuzzing of USB drivers.

To address these challenges, we designed a descriptor-aware
payload generation-based USB driver fuzzing tool. First, to
accurately model USB descriptors, we extracted and parsed
various field definitions and item types [12], [13] from the
descriptors based on the USB specification, and converted
the descriptor data, represented by byte sequences, into a
structured list of field descriptions. Then, to design efficient
mutation strategies, we built upon the USB descriptors model
and leveraged the converted field descriptions and semantic
information to guide input generation and payload mutation,
thereby improving test case quality and fuzzing effectiveness.
We tested our tool on USB drivers across multiple Linux
kernel versions. Compared to state-of-the-art fuzzers like US-
BFuzz and Syzkaller, our tool significantly improves input
quality, successfully increasing the proportion of tests with
execution times exceeding 2 seconds by 358% and 65%.
Additionally, our tool detected 15 bugs, 11 of which have
been fixed or confirmed by the respective kernel maintainers.

The main contributions of this paper are as follows:

• We designed a descriptor-aware fuzzing method to detect
vulnerabilities in USB drivers.

• We implemented DNAFuzz, 1 a tool that models descriptors
based on the USB specification, and leverages semantic
information to guide payload generation and mutation. The
tool can be tested on USB drivers across multiple Linux
kernel versions.

• Compared to USBFuzz and Syzkaller, DNAFuzz increases
the proportion of tests with execution times exceeding 2
seconds by 358% and 65%. In addition, 15 bugs were
discovered during continuous fuzz testing.

1The prototype of DNAFuzz can be found at: https://anonymous.4open.
science/r/DNAFuzz

II. BACKGROUND

A. USB Protocol and its Communication

Currently, USB has become a widely adopted standard
interface worldwide, supporting a vast number of device types.
USB employs an asymmetric host-device architecture, with the
host serving as the central control unit responsible for device
identification and data transmission. All USB data interactions
are initiated by the host, while devices simply respond to
host requests. A key feature of the USB protocol is its de-
scriptor mechanism [14], which defines device characteristics
and functions. Each USB device communicates its informa-
tion through a series of descriptors covering device type,
configuration, interface, endpoint, and other aspects. Among
these, the device descriptor provides basic device information.
The configuration descriptor details the device’s configuration
scheme. The HID descriptor specifies functionalities related
to human interface devices. Other descriptors further support
device customization and functional extensions. The USB
specification allows manufacturers to flexibly design device
descriptors within the standard framework, which may lead
to variations in implementation. Analyzing actual descriptor
data therefore provides a more accurate reflection of de-
vice behavior. The diversity and hierarchical structure of the
descriptor mechanism enable the USB protocol to flexibly
accommodate a wide range of device requirements and offer
efficient configuration options.
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Fig. 1. USB communication process, consisting of two main phases: enu-
meration, where the host continuously polls the device for data requests, and
formal data transfer.

As shown in Figure 1, the USB communication process is
divided into the enumeration phase and the data transfer phase.
During the enumeration phase, the host initializes the bus with
a reset signal and sequentially issues two device descriptor
requests: the first request obtains an initial 8-byte descriptor
providing basic information, and the second request retrieves a
complete 18-byte descriptor defining the device’s functionality.
Subsequently, the host polls for additional sub-descriptors,
including port, endpoint, and HID descriptors, to fully capture
the device configuration. Once enumeration is completed, the
host and device enter the data transfer phase, exchanging data
packets efficiently based on negotiated parameters.



B. USB Protocol Fuzzing

Fuzzing is an automated testing technique that effectively
exposes software defects by injecting malformed or unex-
pected inputs into a program [15]. Modern fuzzing methods
fall into two paradigms based on input generation:
• Mutation-based Fuzzing: This black-box technique gener-

ates test cases by randomly mutating valid inputs (e.g.,
protocol packets, file formats) through operations such as
bit flips, truncations, or field modifications [16]. Tools like
AFL [17] utilize genetic algorithms to iteratively mutate
seed inputs while monitoring code coverage.

• Generation-based Fuzzing: Also known as model-driven
fuzzing, this approach constructs inputs based on formal
specifications (e.g., grammar rules, protocol definitions).
Tools like Peach [18] generate test cases defining data mod-
els declaratively. This white-box method is more effective
when targeting systems with strict input formats, but entails
higher implementation complexity.
The USB protocol defines device functionality and com-

munication rules through a standardized descriptor system,
which includes a hierarchical descriptor structure and vali-
dation process. Device descriptors, configuration descriptors,
interface descriptors, and endpoint descriptors form a four-
level nested system, with syntax and semantic constraints
between layers. During the device enumeration process, the
host checks the descriptor structure, reference validity, and
functional consistency through a validation mechanism [19].
However, this protocol architecture presents challenges for
fuzz testing: custom descriptors increase rule complexity; the
operating system’s validation strategies create multiple layers
of defense; and implicit dependencies between descriptor
fields make it difficult for traditional mutation strategies to
balance input validity and anomaly. Therefore, USB fuzzing
requires a comprehensive understanding of the descriptor
system, rather than relying solely on localized perturbations.

C. Threat Model

In this paper, we use the following threat model. We
formally define the interaction model of the USB host software
stack as φ = {U,K,B}. Specifically, U represents untrusted
inputs from user space, which are generated by an attacker
using a fuzzer to produce arbitrary or mutated data and injected
into the kernel via system calls. K denotes the kernel-space
components, including the USB Gadget Core, USB Core,
various USB class drivers, and virtual host/device controller
drivers. These components are assumed to be logically correct
and therefore treated as trusted. B denotes the trust boundary,
which is set at the Raw Gadget interface, separating untrusted
inputs from the trusted kernel components.

In this model, the underlying hardware is emulated by
dummy drivers and is therefore also considered trustworthy.
Consequently, the attacker is able to interact with the kernel
USB software stack from user space through the Raw Gadget
interface, but the attack surface is strictly limited to the
communication channel between user-space inputs and the

kernel USB stack. Formally, we represent the potential attack
interaction as FuzzerInput

USBStack−−−−−−−→ Stateerror. If the
inputs generated by the user-space fuzzer trigger abnormal
execution paths or latent vulnerabilities in the USB software
stack, the system may enter an erroneous state Stateerror.
Otherwise, it should correctly process the inputs and continue
to provide normal services.

III. MOTIVATING EXAMPLE

To better understand the challenges of injecting mutated
payloads into the operating system kernel during the USB
device enumeration, we analyze CVE-2024-56629 [20] as a
representative case. This vulnerability persisted in the Linux
kernel for eight years and remained undetected by other USB
driver fuzzers until its recent discovery during real-world
execution. Figure 2 shows the key steps that trigger this error.
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Fig. 2. Key steps to trigger CVE-2024-56629. After the USB device is
connected to the host, the host continuously sends requests to retrieve device
information (①). The USB core matches the corresponding USB driver based
on the device information (②). The USB driver calls the UpdateName function
to update the device name (③). During this process, a null pointer dereference
error occurs due to the product field in the device information being empty.

A. Bug Triggering

During the device enumeration phase, if the device transmits
incorrect or malicious data to the host, it may lead to a series of
issues. A typical example is a kernel page fault, which occurs
when the product field in the descriptor provided by the device
is empty, leading to a null pointer dereference when the USB
driver updates the device information. Figure 3 presents the
core code snippet that triggers the error.

After the USB device is inserted into the host, the
host’s USB core establishes communication with the device
through the host controller driver and initiates the enumer-
ation process. During this process, the host continuously
sends Get Descriptor requests to retrieve various descriptor
information from the device. Based on this information, the
USB core matches and loads the appropriate driver for the
device. Once the driver is matched, the USB driver calls
the probe function to initialize and configure the device.
The parse and register function parses device information
and completes registration, while the update name function



1 static void wacom_update_name(struct wacom *wacom
, const char *suffix){

2 struct wacom_wac *wacom_wac = &wacom->
wacom_wac;

3 struct wacom_features *features = &wacom_wac->
features;

4 ...
5 if (hid_is_usb(wacom->hdev)) {
6 struct usb_interface *intf =

to_usb_interface(wacom->hdev->dev.
parent);

7 struct usb_device *dev =
interface_to_usbdev(intf);

8 - product_name = dev->product;
9 + if (dev->product != NULL)

10 + product_name = dev->product;
11 }
12 }

Fig. 3. The core code snippet of CVE-2024-56629. Line - is the original
code, and lines + are the fixed code.

is responsible for updating the device’s product information.
However, in this case, the product field provided by the device
to the USB core is empty, leading to a null pointer dereference
in the wacom update name function when processing the
product string. This prevents registration of the device node
in the file system and may cause a system crash. The fixed
code (line+) adds a check during the USB driver initialization
to ensure that the product field in the descriptor is non-empty.
This improvement prevents the null pointer dereference error,
effectively mitigating the risk of a system crash.

B. Limitation of Existing Methods

Next, we will demonstrate the limitations of existing state-
of-the-art fuzzing tools, which prevent them from detecting
this vulnerability. Additionally, we will discuss the efforts
required to discover this vulnerability. Currently, USB driver
fuzzers have shown promising results and can be categorized
into two main types.
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Fig. 4. Existing fuzzing methods to explore USB kernel drivers and our key
insight.

Method 1: Fuzzing Syscall Arguments. The primary
USB driver fuzzing approach is generating large volumes of
random system call sequences, widely adopted by existing
tools [9], [21]–[23]. Figure 4 illustrates this testing process.
For example, Syzkaller, one of the most advanced fuzzing
tools, employs built-in system call descriptions to generate
valid or semi-valid system call sequences for testing. Saturn

and Healer, on the other hand, guide USB input generation for
USB driver fuzzing by learning host-device cooperation [10]
and system call correlations. However, the core of this syscall
fuzzing method lies in mutating the parameters and sequences
of system calls, while lacking specific mutation algorithms for
USB data. As a result, it is difficult to perform fine-grained
mutations on key fields within the USB protocol. Due to this
limitation, during extended real-world testing, the fuzzing tools
never set the product field in the USB descriptor to empty,
thereby failing to trigger this error.

Method 2: Random Generation of USB Data. This
method simulates the device providing completely random
data to the driver. USBFuzz is a typical implementation, as
shown in Figure 4. USBFuzz extends the fuzzing engine AFL
to generate inputs simulating device–host communication dur-
ing driver I/O operations. While this method can achieve mu-
tations of device data, the mutation process is highly random,
ignoring USB protocol specifications and descriptor semantics.
Specifically, regarding the aforementioned bug, when mutating
the descriptor data, USBFuzz cannot distinguish which values
belong to the product field and which belong to other fields.
It also fails to semantically infer which fields can reasonably
be set to empty. Therefore, due to its randomness, USBFuzz
is unlikely to set the product field to empty, thus failing to
trigger the bug. The lack of semantic constraints in mutation
also results in many test cases failing the host’s input validation
mechanisms, reducing the fuzzing effectiveness.

The key insight of DNAFuzz: Unlike existing fuzzers, we
guide the mutation of USB data based on USB specifications
and descriptor semantics, thereby generating more protocol-
compliant and targeted test cases. This approach not only
increases the pass rate of test cases through the host’s in-
put validation mechanism but also significantly improves the
fuzzing coverage for USB driver vulnerabilities. For example,
for the bug mentioned above, we first parse the product field
in the descriptor as a UTF-16 encoded string. Considering
the semantic meaning of this field as the product name with
few constraints, we keep other fields in the string descriptor
unchanged and set the specific product field to an empty string,
successfully triggering the bug.

IV. DESIGN

To address the above issue, we designed a descriptor-
aware payload generation tool, DNAFuzz, for fuzz testing
USB drivers. Figure 5 illustrates the main components and
overall workflow of DNAFuzz, divided into two stages: USB
descriptor modeling IV-A and USB package generation IV-B.
In the USB descriptor modeling stage, DNAFuzz extracts
descriptor data from real USB devices. Then, based on the
USB specification, it accurately parses descriptor structure and
the item fields, converting raw byte sequences of descriptor
data into a structured list of field descriptions, field desc.
In the USB package generation stage, DNAFuzz uses the
parsed field types, semantic information, contextual constraints
from the USB specification, and cross-descriptor relationships
to guide the design of the mutation strategy. This enables
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the generation of protocol-compliant and targeted mutated
packets. In addition, we add instrumentation to the host driver
to monitor potential errors or crashes during execution.

A. USB Descriptor Modeling

To efficiently fuzz test host drivers, it is essential to design
mutation strategies that adhere to protocol specifications and
are targeted. However, due to the high flexibility and exten-
sibility of the USB protocol, along with the complexity of
descriptor types and structures, accurate parsing of descriptor
data is critical. If the USB device descriptors cannot be accu-
rately parsed, data fields cannot be identified or mutated based
on their characteristics, causing mutation strategies to fail.
Therefore, DNAFuzz parses descriptor data extracted from real
USB devices based on the USB specification. 2 Specifically,
device descriptors are stored as byte sequences, and DNAFuzz
parses them to extract structures and fields, converting the
data into a structured list of field descriptions. DNAFuzz
achieves a high success rate in parsing USB descriptor data
and performs effective validation of the device information,
providing a reliable foundation for the subsequent mutation
strategy design.

USB Device Data Extraction. To cover a broader range of
host drivers, DNAFuzz extracts all standard and proprietary
descriptors from real USB devices across different Usage
IDs. Initially, DNAFuzz monitors the communication path
between the host and USB device, intercepting all data packets
transmitted over the USB bus, including control transfers
during device initialization, descriptor retrieval, bulk transfers
for large data volumes, and interrupt transfers for input devices
such as keyboards and mice. After packet capture, DNAFuzz
classifies them based on different transfer types and the
direction of data flow. It then extracts key information such
as packet header details, data payloads, and CRC checks,
essential for understanding USB device behavior and protocol
implementation. Given that the USB specification defines 24
major device classes, each containing multiple subclasses and

2The complete list of fields, their constraining mechanisms, and correspond-
ing mutators is available at: https://anonymous.4open.science/r/DNAFuzz/
USBSpecsManualStudy.md

protocols, actual device descriptors exhibit significant diversity
and complexity. We extracted 6 Usage Pages and 23 Usage
Names [12] from real USB devices, covering 23 types of USB
drivers, including mice, keyboards, touchscreens, and others.

Descriptor Data Parsing. USB descriptors can be cate-
gorized into standard descriptors and proprietary descriptors.
Standard descriptors include five types (e.g., device and con-
figuration descriptors), with field order and length explicitly
defined by the USB specification. For example, DNAFuzz
parses device descriptors strictly according to the protocol:
starting with the length field in the first byte, followed by
descriptor type (USB SCAPY TYPE DEVICE = 0x01), USB
version, class, subclass, and others. Since field misalignment
can cause parsing errors, DNAFuzz introduces a boundary
control mechanism to ensure that each field is extracted at
the correct position. It is worth noting that some proprietary
descriptors are defined in ways similar to standard descriptors.

In contrast, parsing proprietary descriptors is more complex,
as they are designed with greater flexibility to accommodate
diverse device reporting needs. For example, the HID report
descriptor consists of items that strictly define packet formats,
functions, and constraints. It typically includes Main, Global,
and Local items, representing semantic elements such as
the Usage Page and Usage. A typical mouse descriptor has
about 30 items, while more complex devices (e.g., digitizers)
may include up to 200 items, covering nearly 400 Usages
for inputs such as buttons, axes, and pressure. To improve
storage and transmission efficiency, report data are stored in
a compact format, but this also increases the difficulty of
automated parsing. Existing tools (e.g., Wireshark) support
only basic fields, such as report length, and lack key semantics
like the Usage Page. To address this limitation, DNAFuzz
builds on the external library HidReportParse.so [24] and
further implements a standardized parsing method for report
descriptors. This method decomposes each item into three core
fields: item tag, item type, and item size, which are used to
identify its type and function. The specific recognition rules
and standards are provided in Table I, which lists the item
attributes corresponding to different prefixes. For instance, in

TABLE I
IMPORTANT ITEM PREFIXES INVOLVED IN THE REPORT DESCRIPTOR.

item type item tag Item Prefix, nn as
Data Length

Main

Input 1000 00 nn
Output 1001 00 nn
Collection 1010 00 nn
End Collection 1100 00 nn

Global

Usage Page 0000 01 nn
Logical Minimum 0001 01 nn
Logical Maximum 0010 01 nn
Report Size 0111 01 nn
Report ID 1000 01 nn
Report Count 1001 01 nn

Local
Usage 0000 10 nn
Usage Minimum 0001 10 nn
Usage Maximum 0010 10 nn



the byte sequence 0x26, 0xff, 0x00, the prefix 0x26 indicates
the item type Logical Maximum. The following two bytes,
0xff, 0x00, are interpreted in little-endian order as 0x00ff,
which corresponds to a logical maximum value of 255.

Convert to Field. In defining the Field classes, DNAFuzz
adheres to modular and structured design principles to ensure
that the modeling results strictly conform to protocol specifi-
cations while supporting precise parsing and construction. By
inheriting from base field classes (such as ByteField and Short-
Field), DNAFuzz customizes the logic for specific field types.
Serialization and deserialization methods are overridden to en-
able accurate modeling of field values during transmission. For
more complex structures, DNAFuzz introduces container types
such as PacketListField and callback mechanisms to support
the dynamic handling of nested fields, thereby enhancing the
flexibility and extensibility of the modeling framework.

class UsbDescriptorHid (Packet):
    name = "HidDescriptor"
    fields_desc = [
        XByteField ("bLength", 0),
        XByteField ("bDescriptorType", 0),
        LEShortField ("wDescriptorLenght", 0),
        XByteField ("bCountryCode", 0),
        XByteField ("bNumDescriptors", 0),
        XByteField ("bHidDescriptorType", 0),
        LEShortField ("wDescriptorLength", 0)
    ]
class UsbDescriptorHidReport (Packet):
    name = "ReportDescriptor"
    fields_desc = [
        PacketListField ("items", [], ReportItem)
    ]

class UsbDescriptorEndpoint (Packet):
    name = "EndPointDescriptor"
    fields_desc = [
        XByteField ("bLength", 0),
        XByteField ("bDescriptorType", 0),
        XByteField ("bEndpointAddress", 0),
        XByteField ("bmAttributes", 0),
        LEShortField ("wMaxPacketSize", 0),
        XByteField ("bInterval", 0)
    ]
class UsbDescriptorString (Packet):
    name = "StringDescriptor"
    fields_desc = [
        XByteField ("bLength", 0),
        XByteField ("bDescriptorType", 0),
        StrField ("wData", 0)
    ]

Fig. 6. Example list of field descriptions, including two standard descriptors
(Endpoint Descriptor and String Descriptor) and two proprietary descriptors
(HID Descriptor and Report Descriptor).

Under this mechanism, DNAFuzz systematically enumer-
ates each individual field in USB descriptors and specifies
its size, order, type, and related attributes. Figure 6 presents
examples of field descriptions, including two standard descrip-
tors (Endpoint Descriptor and String Descriptor) and two pro-
prietary descriptors (HID Descriptor and Report Descriptor).
For standard USB descriptors and certain proprietary ones,
the field type definitions remain consistent. For instance, in
the Endpoint Descriptor, the bLength field is defined as an
XByteField, which inherits from ByteField and represents a
one-byte unsigned integer, while the wMaxPacketSize field
is defined as an LEShortField, a two-byte unsigned integer
encoded in little-endian format. In contrast, for more flexible
proprietary descriptors such as the Report Descriptor, we
designed a ReportItem class based on both the USB and HID
specifications to parse and construct individual items.

Algorithm 1 illustrates the overall process of parsing and
converting a report descriptor into field descriptions. First,
the algorithm iterates through all the items in the reportdesc
(Lines 1-2). When the item.type is main and the item is an
input item (Lines 4-5), it determines whether padding [13] is
required and the amount of padding based on the value and
the product of report count and report size (Line 6). Next,

Algorithm 1: Descriptor parsing and field generating
Input : HidReport descriptor: reportdesc
Output: Field descriptions: reports,

List of report identifiers: report id
1 Function generateField(reportdesc):
2 for item ∈ reportdesc do
3 // Check if the type is main
4 if isMain(item.type) then
5 if isInput(item.tag) then
6 field desc.append=checkpad

(report count,report size) ;
7 pagebuf=gen.replace(usage page) ;
8 while index <report count do
9 field desc.append=convert

(usage) ;
10 index +=1 ;
11 else
12 usage.clear() ;
13 if isGlobal(item.type) then
14 intFromBytes (item.value) ;
15 if isreportid(item.tag) then
16 reports.append(field desc) ;
17 report id.append(item.value) ;
18 field desc.append(report id) ;
19 if reports.len == 0 then
20 reports.append(field desc) ;
21 return (reports,report id)
22 End Function

it creates a page buffer (Line 7) and parses the data items
according to the report count (Line 8). For each data item,
the algorithm generates the corresponding field object using
usage and report size (Lines 9-12). If the item.type is global,
the field size is extracted and converted to an integer (Lines
13-14). When encountering a report id item, the algorithm
adds the current field description and value size to the reports
and report id lists, thereby saving and processing the report ID
(Lines 15-18), a key step of the algorithm. Finally, it ultimately
returns all the field descriptions and report IDs (Lines 19-21).

B. USB Package Generation

In USB devices, descriptor data is interrelated, and any
anomaly during the enumeration process can cause the driver
to fail to load correctly. To achieve efficient payload generation
from descriptors, we construct a mutation strategy framework
centered on the USB descriptor model, and further incorporate
an in-depth understanding of the semantic information of USB
descriptors to optimize the mutation process and ensure the
rationality of the generated mutated packets. In addition, we
add instrumentation to the host driver to monitor potential
errors or crashes during execution.

Mutation Strategy Framework. DNAFuzz implements a
multi-level, multi-type mutation mechanism, generating test
data through flexible mutation strategy design and implemen-
tation. The core of the mutation strategy consists of several



key components. First, the MutationLevel enumeration defines
three levels of mutation strength: mild, moderate, and deep.
DNAFuzz generates mutated data accordingly. The Mutator
class, as the core component of DNAFuzz, is responsible for
generating and displaying mutated data. Specifically, the Mu-
tator class provides three methods: gen() to generate mutated
data, count() to return the number of possible mutations, and
show() to output a string representation. Under the frame-
work of the Mutator class, DNAFuzz implements specific
mutators for various field types (e.g., IntMutator, StrMutator,
ByteMutator), supporting data processing ranging from 1 to
128 bits. The SequenceStrategy class implements multiple
data mutation strategies, including data packet reordering and
data packet insertion. By manipulating the sequence of data
packets or inserting additional binary packets, SequenceStrat-
egy simulates various data flow patterns, further enriching
the mutation scenarios. The MutationDedup class controls the
deduplication scope and method through bitwise masking,
supporting deduplication strategies at different granularities
such as global, scene, or field levels, to avoid redundant
mutations and enhance test data diversity.

Additionally, DNAFuzz extends the Mutator class with
specialized subclasses, such as MapMutator for mapping to
other data types. Through these mechanisms, DNAFuzz flex-
ibly generates mutated data tailored to different testing needs
according to user-specified mutation levels and strategies.

Semantic Information Understanding. Based on the USB
specification semantics, we design three key mechanisms: the
self-limitation mechanism, the consistency constraint mech-
anism, and the structural rationality assurance mechanism,
to guide the mutation strategy and generate high-quality test
cases. Each mechanism fully considers the semantics of de-
scriptors, ensuring the effectiveness of the mutation process
and the rationality of the test cases. Specific examples are
provided in Figure 7 to illustrate their application.
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Fig. 7. Descriptor semantic relationships and three mechanisms: self-
limitation mechanism, consistency constraint mechanism, and structural ra-
tionality assurance mechanism.

• Self-Limitation Mechanism: Ensures field values remain
within valid ranges. For instance, the bMaxPacketSize field
in the device descriptor, representing the maximum packet
size for endpoint zero, is limited to 8, 16, 32, and 64.
DNAFuzz ensures the packet size remains valid during
mutation to prevent invalid cases.

• Consistency Constraint Mechanism: Ensures consistency
between descriptor fields. For example, if bInterfaceClass is
zero, bInterfaceSubclass must also be zero. Their combina-
tion also restricts valid bInterfaceProtocol values. DNAFuzz
enforces these constraints to ensure rational mutations.

• Structural Rationality Assurance Mechanism: Ensures
mutations reflect changes in device configuration. The bN-
umInterfaces value in the configuration descriptor affects
the number and parsing method of subsequent interface
descriptors. DNAFuzz uses it to guide host parsing and
configuration to prevent descriptor mismatches or errors.
Moreover, through the collaboration of these mechanisms,

DNAFuzz can adjust descriptor data, ensuring consistent re-
lationships between fields. For example, in the consistency
constraint mechanism, the bDeviceClass field limits bDevice-
Subclass and bDeviceProtocol values, while in the structural
rationality assurance mechanism, it determines the class defi-
nition of aggregated interfaces in the interface descriptor. This
cross-mechanism collaboration improves mutation effective-
ness and accuracy. 3

V. IMPLEMENTATION

USB Descriptor Modeling. We implemented the extraction
and parsing of USB descriptors based on the BusHound [25]
tool and the external library HidReportParse.so. Before testing,
we monitor changes on the bus to capture protocol packets
and input/output operations from various USB devices. The
collected descriptor data, in the form of byte sequences, is then
passed to the fuzzing program, which uses external libraries
and custom rules to parse the data attributes. This process
allows us to extract and analyze USB descriptor information,
providing reliable data support for subsequent fuzz testing.

USB Packet Generation. We implemented USB packet
injection into the host using the Scapy [26] library and the
extended Raw Gadget [27] component. First, we defined the
registerFieldType function to register corresponding parsing
methods for various field types in Scapy, enabling flexible
protocol and packet processing and type mapping in the
program. We then extended Raw Gadget, which simulates
virtual USB devices sending data to the host under test.
This solution requires no hardware support and relies on
the virtual HCD/UDC module (Host Controller Driver/USB
Device Controller). The virtual devices connect to the kernel
running Raw Gadget, simulating various types of USB devices.
As a pure software solution, it offers significant flexibility and
scalability without requiring any modifications or upgrades to
the hardware, allowing effective fuzzing of USB drivers across
different kernel versions.

VI. EVALUATION

To validate the effectiveness of DNAFuzz, we performed a
series of experiments on the latest version of the Linux kernel.

3The complete list of fields, their constraining mechanisms, and correspond-
ing mutators is available at: https://anonymous.4open.science/r/DNAFuzz/
semantic-aware-mechanismList.md



Specifically, we used test cases generated with descriptor-
aware generation as inputs for DNAFuzz, and compared the
test-case quality and kernel code coverage between DNAFuzz
and prior methods, demonstrating its ability to improve input
quality and explore deeper execution paths. We further listed
and verified discovered bugs to demonstrate DNAFuzz’s effec-
tiveness in vulnerability detection. We designed experiments
to address the following questions:
• RQ1: How is the quality and effectiveness of the test cases

generated by DNAFuzz?
• RQ2: How does DNAFuzz perform in vulnerability detec-

tion?
• RQ3: How does DNAFuzz perform in terms of improving

code coverage?
Hardware and Software Environment. The experiments

were conducted on a Linux server equipped with a 32-core
Intel i9-14900 processor and 32 GiB memory, running 64-bit
Ubuntu 22.04.4 LTS. The same configuration was applied to
both virtual machine settings and related parameters. Specifi-
cally, all experiments ran concurrently with evenly distributed
resources: each VM received 2 cores and 4 GiB memory. To
minimize statistical errors, each experiment was repeated 10
times, and the average result was reported [28].

Guest OS Preparation. Our evaluation uses the latest Linux
USB host driver and long-term supported kernel versions
from v5.5 to v6.13. The related USB driver configuration
was enabled and compiled into the kernel. We customized
the target Linux host as follows: (i) enabled gcov (CON-
FIG GCOV KERNEL=y) [29] to collect code coverage; (ii)
compiled and dynamically loaded common and critical USB
drivers into the kernel; (iii) enabled multiple tools, including
Kernel Address Sanitizer (KASAN) [30] and Undefined Be-
havior Sanitizer (UBSAN) [31] to detect vulnerabilities.

A. Input Quality

To evaluate the quality of inputs generated by DNAFuzz,
we recorded the execution times of the tests and compared
them with those of Syzkaller and USBFuzz. Experiments were
conducted on four kernel versions (v5.5, v6.0, v6.12, and
v6.13-rc2), representing the latest or long-term stable releases
at submission. USBFuzz supports only Linux v5.5, because it
relies on a software-simulated USB device that feeds random
data during I/O operations and patches kernel assembly code,
which changed significantly in later versions. To minimize
measurement errors, we repeated each experiment 10 times
and averaged the results.

Testing Quality Comparison. Manual analysis of test cases
indicates that execution time is closely correlated with input
quality. If a test fails early in the enumeration process, it
terminates quickly; otherwise, the execution time increases
as the enumeration progresses. When the simulated descrip-
tor binds to a driver, the duration depends on the driver
implementation. Longer execution times are more likely to
trigger complex code paths in the driver, thereby increasing the
likelihood of uncovering deeper vulnerabilities [8], [23]. We
conducted statistical experiments on USB device enumeration

times, and the results show significant variation across devices.
For example, recognizing a mouse takes about 0.3 seconds,
whereas recognizing a complex game controller may take
more than 1.5 seconds. Prior studies have also shown that
a test duration exceeding 2 seconds generally ensures that the
test passes host validation and enters the data transfer phase.
Therefore, we set 2 seconds as the threshold for evaluating the
quality and effectiveness of test cases [8].
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Fig. 8. Comparison of the proportion of tests lasting more than 2 seconds
generated by DNAFuzz, USBFuzz, and Syzkaller. DNAFuzz achieves longer-
lasting tests across all four versions.

As shown in Figure 8, we present the proportion of tests
generated by DNAFuzz with execution times exceeding 2
seconds, compared to state-of-the-art tools. On average, the
proportion of tests generated by DNAFuzz lasting longer than
2 seconds is 358% higher than USBFuzz and 65% higher than
Syzkaller. Specifically, for kernel v5.5, although DNAFuzz
outperforms existing fuzzers, approximately 45% of the tests
still execute in under 2 seconds. There are two points where
the test execution remains short. One occurs on devices with
minimal descriptor structures and simple functions, where
the entire testing process, including enumeration and transfer,
finishes within 2 seconds. The other scenario can be consid-
ered a fuzzing failure. For example, when the bInterfaceClass
field in the interface descriptor identifies the device as a
mass storage or wireless device, such devices typically require
multiple protocols (such as UASP and BOT protocols) and
involve encryption processes. However, DNAFuzz currently
lacks support for these protocol-specific semantics, leading to
premature termination of the generated tests. These factors
together result in shorter execution times for some tests.
Furthermore, we conducted comparative experiments using
Wireshark as the parser in the DNAFuzz modeling stage. The
results indicate that in this scenario, 39% of the test execution
times exceed 2 seconds, which shows a significant disparity
compared to DNAFuzz’s performance on this metric.

The improvement in high-quality test generation indicates
that DNAFuzz effectively explores more host-driven code
paths by leveraging a descriptor-aware mutation strategy. This
strategy, guided by USB specifications and descriptor seman-
tics, enables DNAFuzz to generate protocol-compliant test
cases, increasing the success rate of mutation data passing
enumeration validation and triggering deeper USB driver logic.



TABLE II
DNAFUZZ IDENTIFIED 15 VULNERABILITIES, AND WITH THE ASSISTANCE OF MAINTAINERS, 11 OF THEM HAVE BEEN RECOGNIZED AND CONFIRMED.

# Kernel Operation Bug Type Bug Symptom Version Appeared Status

1 hid set field Undefined Behavior Bug shift-out-of-bound 6.0 - 6.12.0 Fixed
2 check uevent buffer Memory Bug logic bug 6.7.0 Fixed
3 handle invalid bp value Unexpected state reached logic bug 6.7 - 6.13 - rc1 Confirmed
4 vmw send msg Unexpected state reached logic bug 6.7 - 6.13 - rc1 Confirmed
5 rcpu preempt kthread Unexpected state reached soft lockup 6.12 - 6.13 - rc1 Confirmed
6 do syscall ioctl Memory Bug vmalloc-out-of-bound 6.7.0 - 6.12.0 Confirmed
7 hid generic probe Undefined Behavior Bug shift-out-of-bound 6.13.0 - 6.13 - rc2 Confirmed
8 hid report raw event Undefined Behavior Bug shift-out-of-bound 6.1.0 - rc4 Fixed
9 wacom update name Memory Bug NULL pointer dereference 6.6.0 Fixed
10 raw release Memory Bug slab-use-after-free 6.12 - 6.13 - rc2 Fixed
11 usb ep free request Undefined Behavior Bug logic bug 6.12.0 Confirmed
12 hid hw start Undefined Behavior Bug shift-out-of-bound 6.0 - 6.12.0 Reported
13 arch stack walk Unexpected state reached soft lockup 6.12.0 Reported
14 stack trace save Unexpected state reached soft lockup 6.9.0 Reported
15 sysvec apic timer interrupt Undefined Behavior Bug logic bug 6.12.0 Reported

B. Bug Finding

To address RQ2, we conducted a two-week testing cam-
paign on multiple recent and long-term stable versions of
Linux, during which we discovered 15 unique bugs in the host
drivers and USB core. Of these, 9 were detected by KASAN
and UBSAN, involving memory and undefined behavior bugs,
including use-after-free (1), NULL pointer dereference (1),
logic bugs (3), and out-of-bounds memory access (4). The
remaining 6 bugs were caused by certain faults or unexpected
states in the host. Although developers may be aware of these
unexpected states, appropriate handling measures have not
been taken yet. We reported these bugs to the developers,
assisting them in reproducing and evaluating their potential
impact. Currently, 11 have already been fixed or confirmed.

As shown in Table II, we provide detailed information
on all discovered vulnerabilities and their affected kernel
versions, identified via binary search [32]. Memory bugs and
undefined behaviors in USB drivers pose serious risks to
kernel stability and security. For example, the kernel operation
hid set field (bug#1) triggers an out-of-bounds shift, causing
undefined behavior that crashes the system or results in denial
of service. Similarly, wacom update name (bug#9), when the
name is null, dereferences the pointer directly, triggering a
Kernel Panic and degrading system availability. Most of these
vulnerabilities are critical, including many that have remained
undetected and unreported in the USB driver codebase for
decades. Despite the extensive computational resources used
by Syzkaller and USBFuzz in continuously testing Linux host
drivers, they discovered only a subset of the vulnerabilities
listed in the table, with Syzkaller covering 4 bugs and US-
BFuzz covering just 1. In terms of detection efficiency, our
approach also outperforms the others: for bug#1, #2, #8,
and #10, Syzkaller’s average detection time was 2.1 hours
compared to our 1.7 hours; for bug#12, USBFuzz required
3.4 hours, whereas our approach took 2.6 hours. These results
demonstrate that DNAFuzz’s descriptor-aware payload gener-
ation significantly improves fuzz testing effectiveness for USB
drivers.

C. Coverage Improvement

To address RQ3, we monitored the fuzz testing process
on multiple Linux host versions, comparing code coverage
with state-of-the-art fuzzers. Additionally, to further validate
the coverage capability of the descriptor-aware fuzz testing
method on USB device drivers, we selected 9 common
USB device drivers and compared the coverage achieved by
Syzkaller, USBFuzz, and DNAFuzz for these device drivers.

Branch Coverage Comparison. We instrumented the
USB host-related code (USB core framework, host controller
drivers, and USB device drivers) to compare the code coverage
of Syzkaller, USBFuzz, and DNAFuzz. During the 24-hour
testing period, we extracted coverage data every ten minutes
and computed the statistical average for each fuzzing tool over
ten executions.
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Fig. 9. Comparison of branch coverage between DNAFuzz, Syzkaller, and
USBFuzz over 24 hours. In all four versions, DNAFuzz achieves superior
coverage statistics within the same amount of time.

Figure 9 compares the branch coverage across the three
fuzzers. The results indicate that DNAFuzz achieved higher
branch coverage within the same testing time. All tools show
significant coverage improvement during the first 8 hours,
but the growth rate slows as time progresses. Specifically,
Syzkaller and DNAFuzz exhibit similar coverage growth dur-
ing the initial 3 hours, but the growth rate of Syzkaller started
to slow down, while DNAFuzz’s slowdown was relatively
more gradual. In contrast, USBFuzz maintained lower cover-



TABLE III
DNAFUZZ, SYZKALLER, AND USBFUZZ BRANCH COVERAGE STATISTICS

ON USB HOST-RELATED CODE.

Version DNAFuzz Syzkaller USBFuzz Improvement

5.5 27287 24583 11692 +10.9% / +133%
6.0 30164 27674 - +8.9%

6.12 34316 31329 - +9.5%
6.13 - rc2 35498 32451 - +9.3%
Average 31816 29009 11692 +9.4% / +133%

age throughout the 24-hour test. Table III provides the cover-
age improvement statistics of DNAFuzz relative to Syzkaller
and USBFuzz. Compared to USBFuzz, DNAFuzz increased
branch coverage by 133% on Linux v5.5; across four kernel
versions, DNAFuzz’s coverage improved by an average of
9.3% over Syzkaller.

These experimental results not only highlight the differences
in the detection strategies of the various fuzzing tools but
also reveal performance disparities between them. USBFuzz,
by simulating devices, demonstrates good coverage of USB
device drivers but performs poorly when targeting the USB
core framework, resulting in a significant gap between US-
BFuzz and other fuzzers. In contrast, DNAFuzz outperforms
Syzkaller in terms of coverage, primarily due to its ability
to precisely model USB descriptors and incorporate semantic
understanding, thereby effectively guiding the generation of
mutated data. The similarity in coverage growth between the
two tools can be attributed to the relative ease of covering
many common kernel modules (such as usbcore and hub). In
addition, while Syzkaller relies heavily on manual analysis and
custom protocol message generation, DNAFuzz significantly
reduces engineering costs through automation.

Common USB Driver Coverage Comparison. To further
validate DNAFuzz’s performance in terms of coverage, we
utilized kcov and gcov to extract and compare the branch
coverage of Syzkaller, USBFuzz, and DNAFuzz for 9 common
USB device drivers. As shown in Table IV, the descriptor-
aware generation strategy improved coverage by 25% and 36%
over Syzkaller and USBFuzz, respectively, further demon-
strating DNAFuzz’s advantage in exploring the core logic of

TABLE IV
BRANCH COVERAGE OF SYZKALLER, USBFUZZ, AND DNAFUZZ ACROSS

NINE COMMON USB DEVICE DRIVERS.

Driver
Name

Total
Blocks

DNA-
Fuzz

Syzk-
aller

USB-
Fuzz

Impr vs
syzkaller

Impr vs
USBFuzz

ftdi sio 465 113 102 98 +11% +15%
option 46 25 14 16 +79% +56%
analog 206 68 57 49 +19% +39%

cypress m8 284 105 76 82 +38% +28%
usbhid 451 146 137 106 +7% +38%
sierra 189 51 44 38 +16% +34%

synaptics 455 144 101 92 +58% +57%
trackpoint 82 56 31 27 +43% +107%
cp210x 373 119 97 101 +23% +18%
Total 2551 827 659 609 +25% +36%

Note: Drivers 1, 2, 4, and 6 are USB serial devices. Drivers 3 and 9 are
joysticks. Drivers 5 and 8 are mice. Driver 7 is a touchpad.

USB drivers. Meanwhile, DNAFuzz performs state resets by
automatically disconnecting and re-establishing the connection
with the USB driver after each test case, thereby avoiding full
system reboots. This mechanism not only improves testing
efficiency but also enables stateful fuzzing, allowing the ex-
ploration of code paths that depend on state continuity.

In addition, DNAFuzz exhibits consistent effectiveness in
both multi-driver integration and single-driver testing. For
example, in a 24-hour dedicated test on the trackpoint (mouse
driver), its branch coverage reached approximately 68%, con-
sistent with the results of multi-driver integration and fully
demonstrates DNAFuzz’s stability across different scenarios.

VII. DISCUSSION

A. Data Transfer Phase

The primary goal of DNAFuzz is to enhance input quality,
enabling more test cases to successfully pass USB enumeration
and reach the data transfer phase. To evaluate the role of
the data transfer phase in USB driver fuzzing, we modified
DNAFuzz by removing all logic related to this phase, so that
each test case terminates immediately after enumeration and
proceeds to the next round. This reduced version is referred to
as DNAFuzz-. We then ran DNAFuzz- on the USB host-related
code for 24 hours and compared the final branch coverage with
the full DNAFuzz results (Table III). As shown in Table V,
DNAFuzz achieves 48.2% higher coverage on average.

TABLE V
DNAFUZZ AND DNAFUZZ- BRANCH COVERAGE STATISTICS ON USB

HOST-RELATED CODE.

Version DNAFuzz DNAFuzz- Improvement

5.5 27287 18217 +49.8%
6.0 30164 20481 +47.3%

6.12 34316 23165 +48.1%
6.13 - rc2 35498 23995 +47.9%
Average 31816 21465 +48.2%

In addition, we conducted a root cause analysis of the 15
bugs discovered by DNAFuzz, among which 4 were triggered
during the data transfer phase. These results demonstrate that
covering the data transfer phase is critical for improving the
effectiveness of fuzzing. In DNAFuzz, this strategy not only
significantly increases coverage but also exposes additional
potential vulnerabilities.

B. Bug Reproducibility

DNAFuzz discovered 15 USB driver vulnerabilities, though
some cannot be reliably reproduced. The reproducibility of
bugs remains an open problem, with two primary causes. First,
the complex concurrency of the Linux kernel is a key con-
tributor. The concurrent execution of user-mode and kernel-
mode threads may cause nondeterministic states, making bug
reproduction difficult. Second, memory resources constrain the
number of test rounds the fuzzer can record, which may restrict
access to sufficient historical data during bug reproduction.

Currently, DNAFuzz employs a sliding-window strategy to
record USB data packets in each test round, dynamically



adjusting the window range over time. When an error occurs,
the system begins with a small subset of packets from the
sliding window, gradually expanding to the full window and
replaying specific packets sequentially to maximize error re-
production and validation. In the future, we plan to use event-
based or semantic compression and storage strategies to reduce
redundancy, enabling the recording of more error execution
data. This will help the fuzzer more accurately analyze kernel
logs during reproduction and more effectively validate the
triggered vulnerabilities.

C. Adapt to a New Kernel Version

To adapt DNAFuzz to a new Linux kernel version, we fo-
cused on adapting the Raw Gadget module for efficient kernel
communication. By default, Raw Gadget processes control
and data endpoint requests in a blocking manner, preventing
non-blocking polling during fuzz testing. We modified control
endpoint requests to support non-blocking mode, thereby
improving response efficiency. Additionally, we adjusted the
timeout to the maximum response time specified by the USB
standard, optimizing data endpoint handling.

Different kernel versions may have varying function names,
parameters, or interfaces, which can result in incompatibilities
with Raw Gadget. This necessitates manual code inspection
and modification, which demand familiarity with kernel varia-
tions and strong debugging skills. However, the core engine of
DNAFuzz, including descriptor parsing and mutation packet
generation, remains modular and generalizable. These core
functions are less dependent on specific kernel versions or Raw
Gadget implementations, allowing them to be migrated and
reused across kernel versions. This allows adaptation efforts to
concentrate on kernel interface adjustments without extensive
modifications to DNAFuzz’s core logic, thereby enhancing
efficiency and flexibility.

VIII. RELATED WORK

USB Testing. The USB driver, as a key component con-
necting the operating system with external devices, is crucial
for system security and stability. Recently, various testing
techniques have been proposed for USB drivers, including
static analysis [33], [34], dynamic analysis [35]–[37], symbolic
execution [38]–[40]. In addition, fuzzing is also a useful
technique for USB driver testing. Researchers use simulation-
based methods to emulate USB devices and reduce hardware
dependency. QEMU [41], [42], as a widely used device
emulator, supports a variety of peripherals, and tools like
USBFuzz [8] have used it to simulate devices for fuzz testing.
With the increasing number of devices and growing driver
code complexity, researchers have proposed alternative sim-
ulation methods based on QEMU to enhance its ability to
emulate a large number of devices. For example, printfuzz [43]
automates device simulation, supporting device detection,
hardware interrupt simulation, and device I/O interception,
successfully simulating hundreds of devices and advancing
fuzz testing. In addition, DR.FUZZ [44] designs a semantic-

aware mechanism that understands the relevant data structures
in drivers, enabling fuzzing through host validation.

Kernel Fuzzing. Many kernel fuzzing tools improve system
call sequences to test the kernel and trigger crashes. These
fuzz tests typically use the kernel’s built-in gadget module
as a peripheral to respond to various requests from the host-
side driver. For example, Syzkaller [9] generates system call
sequences for testing through built-in system call descriptions,
focusing on basic system call sequence generation. To explore
the kernel’s complex logic, Healer [23] proposes a method
that utilizes learned system call relationships to guide input
generation and mutation, thereby enhancing the effectiveness
of fuzz testing. Subsequently, KSG [21] uses the domain-
specific language Syzlang to automatically generate system
call specifications, enabling large-scale generation of system
call sequences and significantly increasing test coverage. FUZ-
ZUSB [45] integrates static analysis with conformance-based
hybrid fuzzing, while Saturn [10] introduces a host-cooperative
fuzz testing approach. These two approaches effectively ex-
pand the breadth of testing.

Main Difference. Different from the above work, DNA-
Fuzz is a USB driver fuzzer that generates descriptor-aware
payloads. Most USB driver fuzzers are inefficient due to two
reasons: 1) they do not parse model USB descriptors, making
it difficult to design specific mutation algorithms, and 2) they
ignore the semantic information in descriptor fields, limiting
the mutation process’s effectiveness and the rationality of test
cases. In contrast, DNAFuzz focuses on parsing descriptor
formats and understanding field semantics, enabling high-
precision mutation strategies based on different fields. This
enhances the quality of fuzzing inputs and improves USB
driver fuzzing efficiency. Furthermore, DNAFuzz can be ex-
tended to different host versions with simple custom kernel
configurations.

IX. CONCLUSION

This paper presents DNAFuzz, a descriptor-aware payload
generation method for USB driver fuzzing. First, DNAFuzz
precisely parses descriptor data based on the USB specification
to achieve modeling of USB descriptors. Next, DNAFuzz
combines the semantics of USB descriptors with the modeling
results to design mutation strategies, effectively improving the
quality of input data and enabling efficient fuzz testing of host
drivers. DNAFuzz detects 15 vulnerabilities in USB drivers,
11 of which have been confirmed or fixed by developers.
Compared with state-of-the-art tools, DNAFuzz improves in-
put quality by up to 358% and 65% respectively. Our future
work will focus on supporting a wider range of device types
and operating systems, and exploring further possibilities in
firmware programmability.
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