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Cryptography is a core component of many security applications, and laws hidden in its implementation will afect the

functional integrity or more severely, pose threats to data security. Hence, guaranteeing the correctness of the implementation

is important. However, the semantic characteristics (e.g. diverse input data and complex functional transformation) challenge

those traditional program validation techniques (e.g. static analysis and dynamic fuzzing). In this paper, we propose CLFuzz,

a semantic-aware fuzzer for the vulnerability detection of cryptographic algorithm implementation. CLFuzz irst extracts

the semantic information of targeted algorithms including their cryptographic-speciic constraints and function signatures.

Based on them, CLFuzz generates high-quality input data adaptively to trigger error-prone situations eiciently. Furthermore,

CLFuzz applies innovative logical cross-check that strengthens the logical bug detection ability. We evaluate CLFuzz on the

widely-used implementations of 54 cryptographic algorithms. It outperforms state-of-the-art cryptographic fuzzing tools.

For example, compared with Cryptofuzz, it achieves a coverage speedup of 3.4X and increases the inal coverage by 14.4%.

Furthermore, CLFuzz has detected 12 previously unknown implementation bugs in 8 cryptographic algorithms (e.g. CMAC in

OpenSSL and Message Digest in SymCrypt), most of which are security-critical and have been successfully collected in the

national vulnerability database (7 in NVD/CNVD) and is awarded by the Microsoft bounty program (2 for $1000).

CCS Concepts: • Security and privacy→ Software security engineering.

Additional Key Words and Phrases: Cryptographic Algorithm, Fuzzing, Implementation Bug

1 INTRODUCTION

Cryptographic algorithms play a crucial role in securing online information transmission. To cater to the diverse
requirements of diferent applications, various cryptographic algorithms have been proposed including message
authentication codes [7], symmetric encryption and decryption [20], and elliptic curve cryptography [35],
etc. They implement various functions and deal with diferent data structures. Existing implementations of
cryptographic algorithms are diverse though they share common functions. Considering the signiicance of data
privacy and the universality of cryptographic algorithm usage scenarios, bugs in the implementation can result
in severe consequences.

Among the various approaches for vulnerability detection in cryptographic algorithm implementations, fuzzing
stands out as a promising technique. However, most existing fuzzing approaches such as AFL, Libfuzzer, and their
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derivatives are not suitable for testing cryptographic algorithms. These tools lack the necessary understanding
of the input speciications speciic to cryptographic algorithms and lack a test engine capable of triggering
the execution of such implementations. But some attempts have been made for fuzzing the cryptographic
implementations. For example, Cryptofuzz [32] is a diferential fuzz testing tool based on Libfuzzer [42] that
supports most mainstream algorithms and has discovered many bugs. It provides a self-deined custom generator
and constructs seeds according to the input data ields of diferent algorithms. It performs diferential testing on
the results of diferent implementation versions of the same algorithm. CDF [5] is another diferential fuzzing
tool that detects implementation issues in cryptographic algorithms. CDF has been applied for several algorithms
including pseudorandom functions (PRF) [64], symmetric encryption and decryption [20], Digital Signature
Algorithms (DSA) [38] and ECDSA [37] functions. It also performs boundary testing using invalid parameters to
trigger and detect common bugs.
These fuzzing methods have been widely adopted to improve the correctness of cryptographic algorithm

implementations and have shown signiicant advancements. However, their speciic requirements for input
data and dependence on implementation versions pose certain challenges for conducting in-depth vulnerability
detection.

The irst challenge is that diferent categories of cryptographic algorithms have diverse semantic requirements
for input data, making it diicult to generate all-purpose test inputs that can satisfy all these requirements
without adaptive generation strategies. If the input requirements are not met, the validation phase will interrupt
the execution, and the main logic of the algorithm cannot be triggered. For instance, when testing the Advanced
Encryption Standard 128 (AES-128) [19] block cipher, which requires a key size of 128 bits, providing a key that is
not 128 bits long will result in a failed data check and return an empty result. If this situation occurs repeatedly,
it will lead to ineicient testing.
The second challenge lies in the complex functional transformations and data operations involved in the

implementation of cryptographic algorithms. Traditional random input generation or coverage-guided mutation
strategies struggle to trigger error-prone situations efectively. Boundary conditions, which arise from extreme
lengths or special values of inputs, are examples of such scenarios. While these conditions may not frequently
occur in everyday use, they have the potential to trigger abnormal behaviors in applications due to missing or
incorrect processing. However, the input test data generated by traditional coverage-guided mutation strategies
often fail to eiciently trigger such edge conditions.
The third challenge is that some cryptographic algorithms have limited implementations, making it diicult

to perform efective diferential testing for bug detection. For a certain algorithm, many calculation modes are
available, each of which difers in the implementation. It is almost impossible for every implementation to cover
all these modes. For example, there are over a hundred block cipher algorithms [22] supported for symmetric
encryption and decryption. OpenSSL [51] implements over 140 of them while wolfCrypt [66] only supports
about 50. As a result, when fuzzing the modes that only have a few implementations, the number of results is
insuicient for diferential testing, leading to false negatives in bug detection.

To address the aforementioned challenges, we propose CLFuzz, a semantic-aware fuzzer for the vulnerability
detection of cryptographic algorithms’ implementations. It takes full account of the characteristics of cryp-
tographic algorithms to conduct adaptive test input generation and bug detection. First, CLFuzz extracts the
semantic information including the cryptographic-speciic constraints and function signatures of each algo-
rithm. Then, CLFuzz implements adaptive test input construction strategies for the input ields of diferent data
structures to improve the probability of triggering boundary situations. Moreover, for bug detection, besides the
diferential testing and runtime monitoring, CLFuzz presents strengthened logical cross-check across multiple test
rounds based on the logical relationships among algorithms, which enables a more comprehensive and eicient
vulnerability detection.
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We evaluate CLFuzz on the widely-used implementations of 54 cryptographic algorithms in the aspects of bug
detection and code coverage. It outperforms state-of-the-art tools Cryptofuzz and CDF. Speciically, compared to
Cryptofuzz, it achieves a coverage speedup of 3.4X and increases the inal coverage by 14.4%. Compared to CDF,
the inal coverage is increased by 538.5% and it takes CLFuzz little time (<1 minute) to reach the inal coverage
of CDF (>4 hours) in most cases. We also conducted an ablation study to show the contributions of CLFuzz’s
input generation and bug detection strategies. CLFuzz has detected 12 previously unknown implementation bugs
in 8 algorithms (e.g. CMAC in OpenSSL and Digest in SymCrypt [46]), most of which are security-critical and
have been successfully collected in the national vulnerability database (7 in NVD/CNVD) and awarded by the
Microsoft bounty program (2 for $1000).

In summary, this paper makes the following contributions:

(1) We propose a semantic-aware fuzz testing approach for in-depth vulnerability detection of cryptographic
algorithms’ implementations.

(2) We design and implement CLFuzz on widely used implementations of cryptographic algorithms. CLFuzz
generates high-quality test inputs adaptively based on the extracted cryptographic-speciic constraints and
function signatures, and detects more vulnerabilities through the logical cross-check.

(3) We make comprehensive evaluations on CLFuzz to demonstrate its efectiveness. CLFuzz outperforms
state-of-the-art tools Cryptofuzz and CDF in terms of coverage, speed, and bug detection ability. It has
detected many security-critical vulnerabilities and is open-sourced1 for practical usage.

The rest of the paper is organized as follows. Section 2, introduces the background of generation-based fuzzing
and cryptographic algorithms. Section 3 illustrates our motivation by an example and describes challenges faced
by existing work. We formally introduce the design of CLFuzz in Section 4. Section 5 evaluates CLFuzz with
state-of-the-art tools. We further discuss some features and limitations of CLFuzz in Section 6 and related works
in Section 7. Section 8 makes a conclusion.

2 BACKGROUND

2.1 Generation Based Fuzzing

Fuzzing originated in 1990 when Miller et al. [47] applied a random test tool to evaluate the reliability of
UNIX utilities. Nowadays, fuzzing has become a popular and promising dynamic testing method for inding
implementation bugs in software. The core of fuzzing is sending a large volume of inputs continually in an
attempt to make the program perform in a manner that was not intended, which could be a memory crash,
extreme resource usage, wrong output results, etc. There are many academic surveys [41, 45] that give a uniied
summary of the current fuzzing world.

Generation-based fuzzing [48] is one of the major categories of fuzz testing. Typical examples include Peach [49]
and Sulley [1], who produce test inputs based on formulated speciications or data models which describe the
requirements of test cases. Today, researchers have combined a generation-based fuzzing framework with domain-
speciic grammar requirements and introduced grammar-based fuzzing, which addresses the problem of strict
input formats in some scenarios. The grammar can be handwritten, or be mined through program feature analysis.
Tools like ProFuzzer [69], CodeAlchemist [33], NAUTILUS [4] use highly-structured conigurations to generate
syntactically and semantically valid fuzz inputs. Besides, CSmith [67] and LangFuzz [36] use CFGs (control low
graph) to generate valid test inputs. Zest [55] enhances generation-based fuzzers with deterministic parametric
generators to ind semantic valid input. ISLa [62] leverages solvers like Z3 on the coniguration provided by
developers to solve semantic constraints and predicates over grammar structure. SLF [68] leverages the input
checks of AFL [26] to dig for valid inputs. In general, the quality of the test input has a direct impact on the

1CLFuzz is available at: https://github.com/wuliguozi/CLFuzz
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efectiveness of a fuzzer. To create a well-designed test input generation strategy, a generation-based fuzzer
typically requires a signiicant amount of upfront work to explore the input speciications.

2.2 Cryptographic Algorithm

The implementations of cryptographic algorithms are usually encapsulated as libraries and provide API function
calls to each of the supported features. Nowadays, cryptography has evolved from a domain used only by
government and military agencies to one commonly used by developers worldwide. As a result, a number of
proprietary and open-source cryptographic algorithm implementations have gradually emerged. They are widely
used by individuals and enterprises as core components in security applications for conducting secure online
transactions, communicating via secure email, and B2B (business-to-business) transactions [63]. Therefore, the
security and robustness of cryptographic algorithm implementations are essential to ensure the security of
applications.

Cryptographic algorithms are implemented in diverse programming languages including C, Go, JavaScript, etc.
Diferent implementations of the same algorithm are diverse from each other though providing similar functions.
For example, SSL and TLS algorithms are implemented by both OpenSSL [51] and WolfSSL [66]. They provide the
utilities for network connection security. However, they use diferent data structures and diferent dependencies
to implement the same algorithmic logic. It is diicult to ensure the correctness of all implementations, although
the cryptographic algorithm itself is sound in theory.

3 MOTIVATION

3.1 Cryptographic Algorithm Implementation Bugs

Due to the diversity and continuous updates of cryptographic algorithms, it is diicult to avoid implementation
bugs. Fig. 1 shows a vulnerability of the EVP_DecryptUpdate() algorithm in OpenSSL. It is a recent bug and
has been assigned with a CVE id: CVE-2021-23840 [18]. Code from line 1 to line 16 sets the value of the variable
fix_len to 1. The function evp_EncryptDecryptUpdate() at line 17 calculates the value of *outl according
to the parameter inl. As shown in line 20, if the value of fix_len is 1, the value of *outl will be ixed. If the
original value of *outl plus b exceeds INT_MAX, *outl will overlow and present a negative value at line 21 while
the function still returns 1, which means the function executed successfully. This could cause applications to
behave incorrectly or crash. Developers have ixed it by adding additional checks before calculation to raise an
error as shown in line 7 to line 10.

3.2 Challenges to Detect Such Bugs

Triggering this bug is challenging for present tools. This function does block cipher based symmetric encryption
or decryption based on a predeined coniguration. Before the execution of the main algorithm, there are strict
checks to ensure that input elements meet the syntax requirements. For the above example, the location of the
bug is in function EVP_DecryptUpdate(). At the beginning of this function, there are detailed checks on the
irst parameter ctx because it is the core of the coniguration including key, IV [40], etc. To form a qualiied ctx,
as shown in the oicial demo [52] provided by OpenSSL, users need to call EVP_DecryptInit_ex() to set up the
conigurations including key, IV, cipher mode, etc. The input structure of EVP_DecryptInit_ex() is shown in
Fig. 2. In EVP_DecryptInit_ex(), if the length of key or IV is not consistent with the semantic restrictions of
the cipher, a stack overlow runtime error will occur during initialization. This is abnormal and will interrupt the
execution. Therefore, users must ensure that the lengths of the key and IV meet the speciications. To trigger the
execution of the code in Fig. 1, a fuzzer must generate test inputs that conform to the semantic speciications of
the cipher mode it uses.

ACM Trans. Softw. Eng. Methodol.
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1 if (ctx->final_used) {

2 if (((PTRDIFF_T)out == (PTRDIFF_T)in)

3 || ossl_is_partially_overlapping(out, in, b)) {

4 ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);

5 return 0;

6 }

7 ++ if ((inl & ~(b - 1)) > INT_MAX - b) {

8 ++ ERR_raise(ERR_LIB_EVP, EVP_R_OUTPUT_WOULD_OVERFLOW);

9 ++ return 0;

10 ++ }

11 memcpy(out, ctx->final, b);

12 out += b;

13 fix_len = 1;

14 } else{

15 fix_len = 0;

16 }

17 if (!evp_EncryptDecryptUpdate(ctx, out, outl, in, inl))

18 return 0;

19 ...

20 if (fix_len)

21 *outl += b;

22

23 return 1;

Fig. 1. An overflow error in OpenSSL and its repair. If the input length is close to the maximum permissible length for an

integer, the variable *outl will overflow.

1 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl,

2 const unsigned char *key, const unsigned char *iv)

Fig. 2. The input structure of the function EVP_DecryptInit_ex. It requires 5 parameters including *ctx, *cipher, *impl, *key

and *iv

.

For Cryptofuzz, it is challenging to trigger this bug because randomly generated keys and IVs can hardly meet
the length requirements. Fig. 3 is an example input that Cryptofuzz generated. For cipher mode AES_192_CBC,
the requested key length is 24 bytes, and the requested IV length is 16 bytes.

However, the input shown in Fig. 3 has a key with 4 bytes and an IV with 8 bytes. Therefore, the execution of
this input will be interrupted during the data check, which makes it impossible to trigger the code segment with
bugs. Based on Libfuzzer, Cryptofuzz inherits the coverage feedback mechanism that can retain valid inputs, and
can go through a long learning phase to gradually learn the input speciications. However, its learning phase
leads to ineicient testing, and the test eiciency after learning is still not as high as setting the standards in
advance. Furthermore, the bug can only be triggered when the length of ciphertext (which is represented as
inl in Fig. 1) is close to the maximum permissible length for an integer. It is also very hard for Cryptofuzz to
generate inputs that meet this requirement because of the small probability that this condition can be randomly
achieved.

ACM Trans. Softw. Eng. Methodol.
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1 Running:

2 operation name: SymmetricDecrypt

3 ciphertext: {0x58, 0xc9, 0x28, 0xe3, 0x86, 0x0c, 0x58, 0x82, 0x38, 0x2c, 0x64, 0xa8, 0xd5, 0x46, 0x33, 0x02}

(16 bytes)

4 tag: {0x63, 0x59, 0x29, 0x0e, 0x84, 0x9c, 0x64, 0x44, 0x62, 0xfd, 0xcf, 0x6a, 0xa3, 0xe0, 0x8d, 0x68} (16

bytes)

5 aad: {}

6 cipher IV: {0xa5, 0x35, 0x75, 0x17, 0xa2, 0xe4, 0x3e, 0x14} (8 bytes)

7 cipher key: {0x92, 0xa6, 0xdc, 0x55} (4 bytes)

8 cipher: AES_192_CBC

Fig. 3. A test input generated by Cryptofuzz. The length of the key and IV do not match the specifications, and the length of

the ciphertext cannot trigger the error condition.

1 Running:

2 operation name: SymmetricDecrypt

3 ciphertext: {0xd2, 0xe7, 0xaf, 0xee, ... , 0xdf, 0x4c, 0xa9,} (INT_MAX-1 bytes)

4 tag: {0x63, 0x59, 0x29, 0x0e, 0x84, 0x9c, 0x64, 0x44, 0x62, 0xfd, 0xcf, 0x6a, 0xa3, 0xe0, 0x8d, 0x68} (16

bytes)

5 aad: {}

6 cipher IV: {0xfd, 0x0f, 0xcb, 0x5e, 0xcb, 0x56, 0xd3, 0x1d, 0x69, 0x9a, 0xbe, 0x52, 0xb5, 0x83, 0xeb, 0x1e}

(16 bytes)

7 cipher key: {0x6a, 0xde, 0xdd, 0x9a, 0x2f, 0xed, 0xbc, 0x86, 0x8a, 0xc3, 0x49, 0xae, 0x5f, 0x04, 0xe1, 0x36,

0x44, 0x6f, 0xb9, 0xb5, 0xde, 0xe5, 0x0a, 0xa2} (24 bytes)

8 cipher: AES_192_CBC

Fig. 4. An expected input that can trigger the bug. The length of IV is 16 bytes and the length of the key is 24 bytes. The

length of ciphertext is extremely long.

To efectively ind such bugs, a fuzzer needs to overcome three challenges: (1) It should explore the semantic
restrictions of each cryptographic algorithm to construct valid inputs for execution. Speciically, it should obtain
the constraints of the parameters of targeted algorithms, and generate inputs that conform to the check. (2) It
needs to generate inputs for boundary conditions that probably trigger errors based on edge situations of each
data type. For cryptographic functions, the boundary condition is usually related to extreme values such as the
maximum of integer, long integer, or zero. Fig. 4 shows an expected input that can trigger the bug above. As
shown in line 6 and 7, the generated key length and IV length meet the syntax rules of the target calculation
mode, so it can pass the data check. Besides, as shown in line 3, the length of the input ciphertext is close to the
maximum integer, which is a typical boundary condition of plaintext and leads to abnormal behaviors. (3) It
needs more bug detection oracles besides diferential testing. Some algorithms only have a few implementations
which are insuicient for diferential testing. Thus, new oracles should be designed to detect logical bugs as
shown in this example.

4 CLFUZZ DESIGN

CLFuzz aims to thoroughly test the implementations of cryptographic algorithms. Fig. 5 illustrates the overall
framework of CLFuzz. It generates high-quality test inputs based on extracted semantic information and then

ACM Trans. Softw. Eng. Methodol.
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employs various bug detection techniques including abnormality monitoring, diferential testing, and logical
cross-check to detect potential bugs. In this section, we present the details of the core design: semantic information
extraction, test input generation, and bug detection.

library 1

library 2

library n

…

Field

Generation

Abnormality
Monitoring

Differential

Testing

Logical
Cross-Check

Bug DetectionInput Generation

…

Serialization

…

field 1 field n

field 1 field n

Semantics Extraction

Cryptographic-specific Constraint

Function Signatures

Strategy

Formulation

Parameter
Numbers

Data Type

Targets

Modes

Cryptographic

Algorithms

Results

Bug

Reports

Calculation

Results
Key Length

Initialization 

Vector

Block size Hash Size

Fig. 5. The overall framework of CLFuzz. (1) CLFuzz takes in the targeted algorithms and modes. (2) CLFuzz conducts

automatic semantic information extraction, extracting cryptographic-specific constraints and function signatures. (3) CLFuzz

develops input generation strategies based on the semantic information, constructing each field of the test input and then

serializing them into a byte string. (4) The test input triggers the execution. CLFuzz collects the results for abnormality

monitoring, diferential testing, and logical cross-checking. (5) CLFuzz outputs the results and generates a bug report.

4.1 Semantic Information Extraction

CLFuzz performs semantic information extraction to obtain various speciications regarding the input of the
targeted cryptographic algorithms. Therefore, CLFuzz can generate high-quality test inputs that are eicient
enough to reach the execution of the core process of algorithms and efective enough to trigger error-prone
situations. CLFuzz focuses on two types of semantic information: cryptographic-speciic constraints and function

signatures. In the following, we detail the extraction approaches for them respectively.

4.1.1 Cryptographic-specific Constraints. To ensure security and integrity, cryptographic algorithms apply strict
validity checks on the input data before the core calculation process. Let cryptographic-speciic constraints be
rules and requirements that must be followed when using cryptographic algorithms. CLFuzz extracts these
domain-speciic constraints to generate high-quality test inputs that can pass the check and trigger deeper
execution logic.

CLFuzz considers 4 typical cryptographic-speciic constraints:

• Key length: The key length used in cryptographic functions should meet the required length to ensure the
functionality of the algorithm. For example, when conducting symmetric encryption, multiple block ciphers
can be applied, including AES, SM4, ARIA, etc. They hold diferent restrictions on the key length. AES and
ARIA support 128 bits, 192 bits, or 256 bits based on the calculation modes, while SM4 only supports 128
bits.

• Initialization vector (IV) length: In some cryptographic algorithms, such as block ciphers operating in
Cipher Block Chaining (CBC) mode, an initialization vector is required. The length of the IV is required to
be equal to the block size, which varies for diferent cipher modes.

• Block size: The block size in cryptography refers to the ixed-size blocks of data that are processed by
block ciphers. It directly determines the length of the output ciphertext of symmetric encryption based on

ACM Trans. Softw. Eng. Methodol.
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a block cipher. As a result, the input ciphertext for corresponding decryption algorithms must meet this
length requirement.

• Hash size: The hash size in cryptography refers to the size of the output produced by a hash function.
In algorithms based on hash functions, such as key derivation functions, the supported output length is
usually limited by the size of the underlying hash function.

CLFuzz covers the testing for 144 block ciphers and 18 hash functions, which hold various constraints mentioned
above. For key length, IV length, and block size, CLFuzz leverages the public APIs provided by cryptographic
libraries that enable users to query these cryptographic-speciic constraints automatically. Since the functionality
of a particular algorithm remains consistent across libraries, we take OpenSSL, which supports the most complete
algorithms, as the source for extraction. Fig. 6 shows the APIs that take in the block cipher type and return
the corresponding constraints. For hash length without API, CLFuzz encrypts an arbitrary plaintext using all
available hash functions and records the length of the output.

1 int EVP_CIPHER_get_key_length(const EVP_CIPHER *cipher);

2 int EVP_CIPHER_get_iv_length(const EVP_CIPHER *cipher);

3 int EVP_CIPHER_get_block_size(const EVP_CIPHER *cipher);

Fig. 6. APIs used for querying key length, IV length, and block size.

4.1.2 Function Signatures. Let function signatures be the characteristics of a function, including the number and
data types of parameters. CLFuzz extracts these signatures of targeted algorithms to generate syntactically valid
test inputs that cover a wide range of scenarios, while also intentionally introducing errors to test the code’s
error-handling capabilities.
We illustrate how CLFuzz extracts the function signatures by the example in Fig. 7, which is the OpenSSL’s

implementation of symmetric encryption. The encryption process consists of 3 sub-processes: EVP_EncryptInit
initializes an encryption context for a symmetric encryption algorithm; EVP_EncryptUpdate is called multiple
times to encrypt the input plaintext in a block-by-block manner and produce the corresponding ciphertext;
EVP_EncryptFinal inalizes the encryption process by encrypting the remaining plaintext data and producing
the remaining ciphertext.

EVP_EncryptInit EVP_EncryptUpdate EVP_EncryptFinal

const NVPO�IPHNR 'cipherQ

const unsigned char 'keyQ

const unsigned char '"�

const unsigned char 'inQ

int inl

const unsigned char 'outQ

int outl
SymmetricEncrypt

Fig. 7. The workflow of CLFuzz for extracting function signatures of the OpenSSL’s symmetric encryption.

CLFuzz conducts function signature extraction on the declaration of targeted algorithms to obtain critical
information about the input parameters required for the entire symmetric encryption process.
In this example, there are 5 parameters that are speciied by test inputs, including EVP_CIPHER *cipher,

unsigned char *key, unsigned char *iv, unsigned char *in, and int inl. CLFuzz mainly focuses on the
parameter number and data types. The number of parameters guides CLFuzz to determine the appropriate length

ACM Trans. Softw. Eng. Methodol.
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allocation for each parameter, ensuring that the total length of test input is within acceptable limits while also
covering diferent argument combinations. The data types provide information about their syntax format and
boundary conditions, including the minimum and maximum values they can accept and any special values that
might trigger speciic behavior in the function. By extracting these signatures, CLFuzz generates high-quality
test cases that are comprehensive to cover a wide range of scenarios and are efective at identifying potential
issues in the targeted algorithms.

4.2 Input Generation

In this section, we present how CLFuzz generates high-quality test inputs. CLFuzz conducts test input generation
in a ield-by-ield method. CLFuzz irst applies the selected strategy to form each ield of the input, where each
ield represents a parameter of the targeted algorithm. These ields are then combined and serialized into a byte
string, which is then passed to the test engine for execution.

CLFuzz establishes the generation strategies based on the extracted semantic information. For those input ields
with cryptographic-speciic signiicance, CLFuzz considers their extracted cryptographic-speciic constraints
to generate semantically valid inputs and ensure the test efectiveness. Additionally, CLFuzz applies chaotic
strategies to generate a small portion of invalid inputs, speciically for testing the error-handling ability of
the targeted implementations. For other ields with no cryptographic-speciic constraints, CLFuzz selects the
generation strategy based on their data type signatures. CLFuzz designs speciic strategies for diferent data types
considering their syntax format and boundary conditions. Overall, there are 6 strategies for ield generation:

(1) Semantically Valid: The ield should conform to the cryptographic-speciic constraints.
(2) Extremely Small: The ield reaches the minimum values that it can accept. For a string, the length should

be (close to) 0. For an unsigned integer, its value should be (close to) 0.
(3) Extremely Large: The ield reaches the maximum values that it can accept. The maximum accepted length

or integer value is based on the coniguration or execution platform.
(4) Special Content: The content of the ield consists of extreme values of an unsigned byte such as 0x00 and

0xf.
(5) Empty Value: The input ield is empty or undeined, indicating the absence of a value, such as a NULL.
(6) Random: The length and content of the input ield are randomly generated.

After extracting all the function signatures of the targeted cryptographic algorithms, CLFuzz classiies the
required input ields into 6 categories according to their roles and data types:

(1) Plaintext: Plaintext represents text that needs to be encrypted. In CLFuzz, it is displayed as a byte string of
a certain length.

(2) Ciphertext: Ciphertext represents the output ciphertext of encryption. In turn, it is also an input ield
of decryption algorithms. In CLFuzz, it is displayed as a byte string of a certain length. Diferent from
plaintext, the length of the ciphertext is strongly related to the encryption algorithm.

(3) Key: Keys in cryptographic algorithms. In CLFuzz, it is displayed as a byte string of a certain length. Keys
always have two types: public keys and private keys. They hold diferent functions in algorithms but are
similar in representation at the data level.

(4) IV: Initialization Vector. IV is widely used in the block cipher. Various block cipher modes include CBC
(Cipher-block chaining) [23], Cipher Feedback (CFB) [22], Output Feedback (OFB) [22], and or so require
an initial vector to participate in the encryption of the irst block. In CLFuzz, it is displayed as a byte string
of a certain length.

(5) Number: Mathematical numbers are widely used in cryptographic algorithms. For instance, a private key
is a big number in elliptic curve algorithms. Therefore, big numbers often participate in the operation
of mathematic calculations in cryptographic algorithms. Some cryptographic algorithms also provide
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interfaces for basic mathematical operations of big numbers. In CLFuzz’s test inputs, it is displayed as a
string and will be converted into an integer during execution.

(6) Modes: A certain type of cryptographic algorithm may have multiple calculation modes. For example,
Message-Digest Algorithm supports a variety of hash calculation modes such as MD5, SHA256, SM3, etc.
Besides, elliptic curve algorithms have many kinds of curves, and symmetric encryption supports a variety
of block cipher modes. Each test input aims at a speciic mode of an algorithm.

For each category, CLFuzz customizes its generation strategy to better target the speciic features for high
test eiciency and thoroughly test the code’s error-handling capabilities at the same time. Table 1 shows the
generation strategies for each input ield.

Table 1. Generation strategies for 6 types of the input field.

Input Field Semantically Valid Extremely Small Extremely Large Special Content Empty Value Random

Plaintext ✓ ✓ ✓ ✓ ✓

Ciphertext ✓ ✓ ✓ ✓ ✓ ✓

Key ✓ ✓ ✓ ✓ ✓ ✓

IV ✓ ✓ ✓ ✓ ✓ ✓

Number ✓ ✓ ✓ ✓

Modes ✓ ✓

For Plaintext and Number, there are typically no cryptographic semantic constraints on their length or content.
However, boundary conditions of their lengths or contents may trigger bugs in extreme cases, making it important
to apply corresponding generation strategies to these inputs. For Key, IV, and Ciphertext, cryptographic algorithms
often hold strict semantic constraints on their length, making it essential to cover their speciic features during
test input generation. Additionally, some extreme values may trigger abnormal behavior, so these values are also
included. Modes, on the other hand, are only valid if they are supported by the targeted implementations. Most
modes are selected based on their semantic constraints, and in some cases, empty values are applied to cover
extreme scenarios. For all other input ields, the random strategy is retained to cover general situations.

�VP��IPH�R �cipher

Strategies for 

EVP_CIPHER *

Strategies for 

int

Semantically

Valid

1 EVP_aes_128_cbc() 2b7e15…16

unsigned char �key

Strategies for 

char *

607928…16

unsigned char ���

Semantically

Valid

(empty)0

unsigned char �in int inl

4 0

Semantically

Valid
Empty

Value

Extremely

Small

len1 field1: cipher len2 field2: key len3 field3: iv len4 len5 field5: inltotal_len alg mode param_len

Fig. 8. The test input generation process of CLFuzz. This input targets symmetric encryption based on AES_128_CBC block

cipher.

Fig. 8 illustrates how CLFuzz creates the test input and provides a detailed breakdown of its composition. The
process begins with selecting the targeted algorithm and its calculation mode (if applicable) and extracting its se-
mantic information. For instance, in this example, CLFuzz tests for symmetric encryption based on AES_128_CBC,
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whose semantic information has been extracted as shown in Fig. 7. Next, for each parameter, CLFuzz constructs
its content using speciic generation strategies, taking into account the constraints and boundary conditions
extracted from its semantic information. For cipher, key and iv, CLFuzz applies the semantically valid strategy;
for in and inl, CLFuzz applies empty value and extremely small strategy to test for edge conditions. To facilitate
the subsequent ield-splitting process, the length of each ield is attached in front of its content. Finally, CLFuzz
combines all generated ields into a serialized byte string and adds identiications, including the total length,
targeted algorithm, and mode, to complete the construction of the test input. The resulting input is then delivered
to the fuzz engine for execution on every implementation that supports the targeted algorithm.

4.3 Bug Detection

CLFuzz conducts a comprehensive three-stage bug detection process. To detect logical vulnerabilities, CLFuzz
customizes speciic oracles to conduct logical cross-check, which veriies the functional integrity and robustness
of targeted algorithms. Besides, during the execution, CLFuzz closely monitors runtime indicators such as resource
usage and execution time to detect any abnormal behaviors. After execution, CLFuzz collects the output results
for diferential testing to check the correctness of the execution outputs. We detail the three bug detection
approaches in the following.

Logical Cross-Check. Cryptographic algorithms are built on logical properties among their functions, providing
CLFuzz with a new approach of conducting logical cross-checks through multiple test rounds among diferent
algorithms. Utilizing the domain-speciic relationships among diferent algorithms, CLFuzz utilizes corresponding
oracles to check if the cryptographic functions are working as expected and producing valid results.
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(a) Encryption-Decryption

(b) Key Generation-Validation

(c) Signing-Verification

Fig. 9. An example of the logical cross-check among multiple test rounds. CLFuzz recycles the output of previous test rounds

as input for subsequent tests.

Speciically, CLFuzz introduces the following oracles:

(1) Encryption-Decryption: CLFuzz tests symmetric encryption and decryption functions by generating
plaintext input data, encrypting it using a given algorithm and key, and then attempting to decrypt the
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resulting ciphertext using the same key and algorithm. This oracle veriies that the decrypted data matches
the original plaintext input, thus ensuring the correctness of the encryption and decryption functions.

(2) Key Generation-Validation: Key generation is the process of creating a new key, while key validation
involves checking its validity and using the key to perform encryption or decryption. CLFuzz takes the
outputs of Key Derivation Functions (KDF) as the input for key validation to ensure that the generated
keys are securely random and can be used to correctly encrypt and decrypt data.

(3) Signing-Veriication: Digital signing uses a private key to generate a digital signature for a given input.
Veriication involves using the corresponding public key to check the authenticity of the signature. CLFuzz
generates input data and signs it with a private key. It then veriies the signature using the corresponding
public key to ensure that the data has not been tampered with, and that the generated signature is valid.

Fig. 9 shows examples of how CLFuzz conducts logical cross-check among multiple test rounds. For Encryption-
Decryption in (a), CLFuzz records the speciic coniguration, including the key and cipher mode used for
SymmetricEncrypt. It then applies the same coniguration for the SymmetricDecrypt function and compares
the decrypted results with the input plaintext. If the results match, the logical cross-check succeeds. For Key
Generation-Validation in (b), in test round 1, CLFuzz executes KDF to generate a private key. Then in round 2,
CLFuzz applies the private key as the input of ECC_GeneratePublicKey to obtain the public key pair. Finally,
in round 3, CLFuzz takes the public key pair as the test input of ECC_ValidateKey function and checks the
validation results. For Signing-Veriication in (c), CLFuzz irst conducts the same process as in round 1 and 2
in (b) to generate a key pair for ECDSA_Sign. Then, CLFuzz uses the private key to sign the message text and,
in turn, uses the corresponding public key pair to verify the signatures using the ECDSA_Verify function. If
the veriication passes, the check succeeds. The logical cross-check enables uncovering hidden defects in the
functionality of cryptographic implementations such as generating invalid keys, unveriiable signatures, etc.

To conduct cross-checks, CLFuzz uses an oracle recycling pool model to recycle the output results of previous
test rounds and structure them into speciied data formats. These formats are deined by several structs that
contain the ields and key conigurations of a particular dataset. For instance, to recycle a generated public key
pair for elliptic curve algorithms, the data structure should include the following ields: 1) Curve ID, an ID that
speciies the type of curve; 2) Private Key, the value of the private key used to generate this public key; and
3) Public Key, the value of the public key pair. Data of the same structure are collected in a pool for retention.
To ensure the full utilization and continuous updating of the collected data, CLFuzz adopts a position cyclic
data addition and extraction to maintain the pools. It uses position pointers to mark the position of the next
addition and extraction, which move to the next position after each operation. This process ensures the validity
of extracted data and enables CLFuzz to make full use of every piece of data.
Since the oracle recycling pool model can temporarily store the results of former test rounds, CLFuzz can

selectively retrieve and utilize stored data from the pool in any subsequent rounds to generate new test inputs.
In this way, CLFuzz does not need to consider the multiple execution sequences required by the oracles, but
only focuses solely on the current round of testing. For instance, when utilizing the Signing-Veriication oracle,
CLFuzz executes the irst round to generate a signature, but it doesn’t immediately verify the signature. Instead,
it stores the relevant parameters and results into the pool. When CLFuzz decides to fuzz the function responsible
for signature veriication in the future, it retrieves a signature from the pool and for generating new inputs,
disregarding when the irst round was executed. This approach eliminates the need for strict continuity between
multiple rounds of logical cross-check. Therefore, when incorporating new implementations of oracles (e.g. new
key generation-validation oracles for new kdf modes), CLFuzz doesn’t require the implementation of the entire
execution chain again. It can simply reuse the existing pools, allowing for eicient integration of additional
oracles without signiicant overhead.
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Besides, CLFuzz can validate the intermediate results, and conduct intensive mutations on them, allowing for
the implementation of more variants for oracles. Firstly, CLFuzz performs abnormality monitoring and diferential
checking on the intermediate results obtained during multiple executions. Moreover, when reusing recycled
data from the pool, CLFuzz provides lexibility in how it utilizes the data. It can either use the original recycled
data as is or intentionally introduce modiications to the data during the input generation process. This allows
CLFuzz to explore diferent variations and scenarios to test the robustness of the targeted algorithms. For example,
when generating keys from a key derivation function, CLFuzz assumes that the originally generated keys are
valid and should successfully pass subsequent validation checks. If the validation fails, CLFuzz identiies it as
a potential vulnerability. On the other hand, if a modiied input, or "polluted input," still manages to pass the
validation, CLFuzz recognizes the failure in identifying invalidity. This enables CLFuzz to thoroughly test the
error identiication and handling capabilities of the targeted algorithms, probing for potential weaknesses or
vulnerabilities.

Runtime Monitoring. To monitor the execution behavior of cryptographic implementations and detect abnormal
runtime activity, CLFuzz instruments sanitizers, including AddressSanitizer [28] and UndeinedBehaviorSani-
tizer [30]. These sanitizers provide real-time feedback on the program’s abnormal behavior and security posture.
Working with the test inputs that trigger the extreme cases, CLFuzz captures runtime errors such as abnor-
mal resource consumption, crashes, abnormal terminations, and memory corruptions, giving a comprehensive
assessment of the reliability and robustness of the tested cryptographic implementations.

Diferential Testing. For every test round, once the test inputs have been executed, CLFuzz collects the output
results of all the targeted cryptographic implementations and applies diferential checks. By comparing the
results, any outputs that difer from the others are identiied as potential bugs. This methodology is based on the
fact that the function of a particular cryptographic algorithm remains consistent among various implementations.
Therefore, for the same test input, the output results should be highly consistent. For test inputs that are supported
by many tested implementations, the number of outputs is usually suicient to highlight any abnormal results.
However, if there are too few output results to determine which result is abnormal, further analysis is needed. In
such cases, the results can be analyzed manually through the bug report.

5 EVALUATION

To illustrate CLFuzz’s efectiveness, we proposed three research questions:

· RQ1: Can CLFuzz discover implementation bugs of cryptographic algorithms efectively?
· RQ2: Can CLFuzz achieve higher coverage and accelerate the growth of coverage compared with other
tools?

· RQ3: Can CLFuzz boost the test input validity ratio compared with other tools?

To address these research questions, we designed the following experiments to compare the test efectiveness
of CLFuzz and Cryptofuzz on 54 target cryptographic algorithms. For the various implementations under test, we
provide uniied test interfaces to trigger their executions. We use CLFuzz, Cryptofuzz, and CDF to fuzz these test
interfaces and evaluate the execution results. All the experiments are executed for 20 hours and conducted 20
times on the same server with 256 GiB of memory and running 64-bit Ubuntu 20.04.2 LTS. To detect memory
errors, we instrument the program under test with AddressSanitizer [28] and UndeinedBehaviorSanitizer [30]
during the compilation of algorithms.
For better illustrations, we divide all the target algorithms into four categories and demonstrate the grouped

results: Hash and Symmetric Function [20, 60], Elliptic Curve Algorithm [35], BLS Signatures [6], and Key
Derivation Function [12]. All four categories are recognized classes of cryptographic algorithms that implement
certain generalized functions.
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(1) Hash and Symmetric Function: Hash function is a one-way function that maps data of an arbitrary size to
a bit array of a ixed size. The symmetric function uses the same keys for both the encryption of plaintext
and the decryption of ciphertext. This category contains the following algorithms:

Digest, HMAC, CMAC, SymmetricEncrypt, SymmetricDecrypt

(2) Elliptic Curve Algorithm: Elliptic curve cryptography is a public-key cryptography technique based on the
algebraic structure of elliptic curves over inite ields. This category contains:

ECC_PrivateToPublic, ECC_ValidatePubkey, ECDH_Derive,

ECDSA_Sign, ECGDSA_Sign, ECRDSA_Sign, Schnorr_Sign,

ECDSA_Verify, ECGDSA_Verify, ECRDSA_Verify, Schnorr_Verify,

ECDSA_Recover, ECC_GenerateKeyPair, ECIES_Encrypt,

ECIES_Decrypt, ECC_Point_Add, ECC_Point_Mul

(3) BLS Signatures: BLS signature is a cryptographic signature scheme that uses bilinear pairing as well as
elliptic curve. This category includes:

BLS_PrivateToPublic, BLS_PrivateToPublic_G2, BLS_Sign,

BLS_Verify, BLS_IsG1OnCurve, BLS_IsG2OnCurve,

BLS_GenerateKeyPair, BLS_Decompress_G1, BLS_Compress_G1,

BLS_Decompress_G2, BLS_Compress_G2, BLS_HashToG1, BLS_HashToG2,

BLS_Pairing, BLS_G1_Add, BLS_G1_Mul, BLS_G1_IsEq, BLS_G1_Neg,

BLS_G2_Add, BLS_G2_Mul, BLS_G2_IsEq, BLS_G2_Neg

(4) Key Derivation Function: Key derivation function derives keys from a secret value using pseudorandom
function. This category contains:

KDF_SCRYPT, KDF_HKDF, KDF_TLS1_PRF, KDF_PBKDF, KDF_PBKDF1,

KDF_PBKDF2, KDF_ARGON2, KDF_SSH, KDF_X963, KDF_SP_800_108

5.1 Bugs in Cryptographic Implementations

CLFuzz has detected 12 previously unknown implementation bugs in 8 cryptographic algorithms (e.g. CMAC
in OpenSSL and Message Digest in SymCrypt), most of which are security-critical and have been successfully
collected in the national vulnerability database (7 in NVD/CNVD) and awarded by the Microsoft bounty program
(2 for $1000).

The details of these bugs are listed in Table 2. These bugs contain multiple error types. 6 (#1, #3, #8, #9, #10,
#11) of them involve logic laws of code implementation, which means that the behaviors of the algorithm are
inconsistent with the expected ones such as taking in invalid inputs or output wrong results. Another 4 (#2, #4, #5,
#12) of these bugs are runtime errors caused by the imperfect implementation of some details including signed
integer overlow and undeined behavior. The remaining 2 (#6, #7) are other security vulnerabilities that result in
time leak [9] or denial of service.
Strategies for generating the test inputs that trigger these bugs and the bug detection strategy for them are

listed in Table 3. Of all the vulnerabilities, 10 (#2, #4, #5, #6, #7, #8, #9, #10, #11, #12) cannot be detected by either
Cryptofuzz or CDF. All of them involve semantic constraints and boundary cases that Cryptofuzz and CDF cannot
generate inputs that can trigger them. Some are logical errors that require cryptographic-speciic logical oracles
to be discovered (#8, #9, #10). CLFuzz introduces logical cross-check that can detect them, while Cryptofuzz and
CDF lack related bug detection strategies so they cannot ind these bugs. For the rest 2 bugs (#1, #3), CLFuzz can
detect them faster than Cryptofuzz and CDF.

Nowwe give a detailed illustration for Bug #4, #6, and #10 in Table 2 found by CLFuzz to see how implementation
errors lead to abnormal behavior of the cryptographic function.
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Table 2. CLFuzz has found 12 implementation bugs in 8 cryptographic algorithms.

# Library Algorithm Bug Type Bug Description ID Bug Status

1 OpenSSL CMAC Logical Flaw CMAC encryption result error. CNVD-2021-86854 conirmed

2 OpenSSL SymmetricEncrypt Integer Overlow Symmetric encryption result error. Bug#17869 ixed

3 SymCrypt Digest Logical Flaw MD4, MD5 encryption result error. MSRC CASE #68154 ixed

4 SymCrypt CMAC Integer Overlow Signed integer overlow in CMAC-AES. MSRC CASE #68154 ixed

5 libtomcrypt SymmetricEncrypt Runtime Error Undeined behavior in gcm_process Bug#583 ixed

6 mbed TLS KDF_PBKDF Denial of Service Ininite loop in pkcs12 key generation. CVE-2021-43666 ixed

7 Crypto++ ECC_PrivateToPublic Time Leak [9] Time leak in ecc public key generation. CVE-2021-43398 conirmed

8 chia-bls BLS_PrivateToPublic Logical Error Invalid public key generated in BLS. CNVD-2021-100406 conirmed

9 sjcl SymmetricEncrypt Logical Flaw Allowing dangerous IV in AES-CCM CNVD-2021-88113 reported

10 Crypto++ ECC_PrivateToPublic Logical Flaw Invalid public key generated in ECC. CNVD-2021-95295 ixed

11 WolfCrypt ECC_Point_Mul Logical Flaw Invalid multiplication result. CNVD-2021-95292 ixed

12 cifra HMAC Integer Overlow Signed Integer Overlow in HMAC Bug#20 reported

Table 3. Input generation and Bug detection strategies for detecting the bugs.

ID
Input Generation Strategy Bug Detection Approach

Cryptographic-speciic

Constraints

Function

Signatures

Logical

Cross-Check

Runtime

Monitoring

Diferential

Testing

1 ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓

9 ✓ ✓

10 ✓ ✓ ✓

11 ✓ ✓ ✓

12 ✓ ✓ ✓

5.1.1 Case 1. The irst case is Bug #4 in Table 2. It was found in SymCrypt [46] and has been ixed in version
100.20.0. This vulnerability causes a signed integer overlow when calculating AES encryption and results in
wrong results, which afects the normal function of this algorithm. It has been ixed by casting the values to
unsigned integers.

The vulnerability lies in the main process of the AES encryption process, which can only be reached if the key
length meets the semantic information of the supported cipher modes. Fig. 10 shows a test vector that can trigger
this vulnerability. SymCrypt requires the key length to be a valid AES key (16, 24, or 32 bytes) and the ��� meets
this restriction.
CLFuzz can detect this vulnerability in a short execution time. It has extracted the semantic information of

AES cipher modes and learned the required length of the key. Therefore, the inputs generated by CLFuzz meet
the requirements and can easily reach the main calculation process and trigger the bug. However, it would take a
long time for the random generation strategy to random to the valid conditions.
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1 void symcrypt_cmac_aes_128(){

2 // key length: 16 bytes

3 const uint8_t key[] = {0x9b, 0xe8, 0x42, 0x04, 0xa7, 0x1e, 0x31, 0xeb, 0xf4, 0xe0, 0xb1, 0x1a, 0xe2,

0x5c, 0xac, 0x2f};

4 const uint8_t msg[] = {0x9b, 0x6b, 0x6a, 0x5c, 0x1f, 0x0c, 0x5b, 0x7b, 0x01, 0x9b, 0x6b, 0x6a, 0x5c,

0x1f, 0x0c, 0x5b, 0x7b} ;

5 SYMCRYPT_AES_CMAC_EXPANDED_KEY xKey;

6 uint8_t res[16] = {0};

7 SymCryptAesCmacExpandKey( &xKey, key, sizeof(key));

8 SymCryptAesCmac( &xKey, msg, sizeof( msg ), res );

9 }

Fig. 10. Code snippet that triggers Bug #4. The key length meets the semantic information, so Symcrypt overflows and gives

incorrect encryption results.

5.1.2 Case 2. The second case is Bug #6 in Table 2. It was found in Mbed TLS [3] version 2.28.0 and earlier. This
bug has been ixed in version 3.1.0. This vulnerability can cause an ininite loop and lead to a denial of service
attack. The code snippet shown in Fig. 11 displays detailed information about the vulnerability.

1 static void pkcs12_fill_buffer( unsigned char *data, size_t data_len,

2 const unsigned char *filler, size_t fill_len )

3 {

4 unsigned char *p = data;

5 size_t use_len;

6 while( data_len > 0 ){

7 use_len = ( data_len > fill_len ) ? fill_len : data_len;

8 memcpy( p, filler, use_len );

9 p += use_len;

10 data_len -= use_len;

11 }

12 }

13 int mbedtls_pkcs12_derivation( unsigned char *data, size_t datalen,

14 const unsigned char *pwd, size_t pwdlen, ...)

15 {...

16 pkcs12_fill_buffer( pwd_block, v, pwd, pwdlen );

17 ...}

Fig. 11. Code snippet that causes an infinite loop. This vulnerability can be leveraged to conduct a denial-of-service atack.

mbedtls_pkcs12_derivation() is an exposed interface for key derivation function with pkcs12 [39] standard.
Parameter pwd represents the input password pointer and pwdlen is its length. If pwdlen is 0, due to the lack
of corresponding data check, mbed TLS executes normally to line 16 where pkcs12_fill_buffer() is called
and passes a 0 for the fourth parameter: fill_len. At line 7, use_len is assigned a value of 0. Naturally, the
value of data_len remains unchanged at line 10, causing an ininite loop. This vulnerability has been ixed by
adding additional checks just after entering mbedtls_pkcs12_derivation() and before starting the loop in
pkcs12_fill_buffer().
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To trigger this bug, a fuzzer has to generate a NULL or zero-length password for testing. If a random generation
strategy is used to produce a random-length password within a certain length range, there is very little chance
to trigger this bug. In contrast, CLFuzz considers the boundary condition of key length. Thus, CLFuzz greatly
improves the probability of generating this particular input. So it can trigger this bug in a relatively short
execution time.

1 void triggerBug(){

2 using namespace CryptoPP;

3 ECDSA<ECP, SHA256>::PrivateKey privateKey;

4 ECDSA<ECP, SHA256>::PublicKey publicKey;

5 string priv = "";

6 const Integer privStr(priv.c_str());

7 string ini = IntToString<>(privStr, 10);

8 const DL_GroupParameters_EC<ECP>& cv = ASN1::brainpoolP256r1();

9 // generate public key pair

10 privateKey.Initialize(cv, privStr);

11 privateKey.MakePublicKey(publicKey);

12 AutoSeededRandomPool prng;

13 // validation

14 if(publicKey.Validate(prng, 3) == false)

15 { printf("invalid public key was generated!");}

16 }

Fig. 12. Code snippet that triggers Bug #10. Crypto++ generates an invalid public key pair without any exception prompt.

5.1.3 Case 3. The third case is Bug #10 in Table 2. It is found in Crypto++ and is detected by logical cross-
check. It happens when generating public key pairs from a private key string through ECDSA [37] in function
MakePublicKey(). If the input private key string is empty, the generation will run normally. The output result is
that � and � are both 0, which cannot pass the validation check function Validate() conducted by Crypto++
itself. In other words, Crypto++ generates an invalid public key pair without any exception prompt. Fig. 12 shows
a test function that triggers this bug.
Tools like CryptoFuzz and CDF which apply diferential testing cannot detect this bug. Once the output of

algorithms is consistent, the result would be considered appropriate, ignoring its semantic correctness. In contrast,
CLFuzz can detect it through logical cross-check. When fuzzing the function MakePublicKey(), the output
result is collected and considered a valid public key pair. This key pair can be reused as the input of Validate()
and the result is expected to be valid. For this case, an empty private key can be generated as the input of
MakePublicKey() for it is a boundary condition and CLFuzz has taken full consideration of this situation. In turn,
the output key pair of two 0 is recycled for the input of Validate()with an expected result of valid. However, the
actual result is invalid. CLFuzz can detect this inconsistency and generate a bug report for subsequent analysis.

Answer to RQ1: CLFuzz is efective in detecting security-critical vulnerabilities in cryptographic algorithm
implementations. In total, 12 vulnerabilities in 8 algorithms have been detected, where 7 are collected in
national vulnerability databases and 2 are awarded by Microsoft bounty program.
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5.2 Ablation Study

We conduct an ablation study to prove the efectiveness of CLFuzz’s input generation and bug detection strategy
separately.

First, we equip Cryptofuzz and CDF with CLFuzz’s logical cross-check and runtime monitoring for 48 hours of
execution to evaluate the bug-inding capabilities of their test input generation strategies only. Results show that
Cryptofuzz and CDF still fail to ind the 10 vulnerabilities due to the complex input requirements and unreachable
boundary conditions they require. Even when provided with corresponding oracles, their pure random input
generation strategies are unable to trigger the errors. In comparison, CLFuzz can detect all of them in under 6
hours. The results provide strong evidence that CLFuzz’s input generation strategy possesses a stronger capability
to trigger bugs.

Table 4. The time consumption of CLFuzz, Cryptofuzz and CDF on bug #1 and #3 that they all can detect. We collect the

results by fuzzing all the functions as well as only fuzzing the Hash and Symmetric Function where the errors were found.

Bug id
Fuzzing All the Targets Fuzzing Hash and Symmetric Function

CLFuzz Cryptofuzz CDF CLFuzz Cryptofuzz CDF

#1 374.19s >48h >48h 1.48s 1,227.01s 4,623.87s

#3 59.67s 5,871.20s 8,562.32s 0.38s 5.66s 6.12s

Secondly, we evaluate the time consumption of the three tools on bugs #1 and #3, which can be also detected by
Cryptofuzz and CDF using their diferential strategy. We run 20 rounds and take the average time cost. The results
are shown in Table. 4. For bug #1, CLFuzz takes an average of 374.19 seconds to trigger it, while Cryptofuzz and
CDF take more than 48 hours. If we manually specify the targeted function to the group of hash and symmetric
function, it still takes Cryptofuzz 1,227.01 seconds and CDF 4,623.87 seconds to trigger the bug, while CLFuzz
only needs 1.48 seconds. The signiicantly higher time cost is due to the slim chance of randomly generating
input that conforms to its cryptographic-speciic constraints on the test inputs. For bug #3, the average time
required to detect it using CLFuzz, Cryptofuzz, and CDF is 59.67 seconds, 5,871.20 seconds, and 8,562.32 seconds
respectively. They can detect bug #3 faster than bug #1 because the targeted function ‘Digest’ does not have
complex semantic requirements on the length, or value of the input. However, CLFuzz can still detect it over
98 and 145 times faster than Cryptofuzz and CDF respectively. This is because CLFuzz is a generation-based
fuzzer with high-quality test inputs that can cover the core logic of targeted algorithms in the early stage of
testing, while others inherit the seed learning phase of traditional fuzzing, consuming considerable time breaking
through the data check phase of a targeted algorithm that has already undergone testing.

These experiments demonstrate that CLFuzz not only detects more bugs than current approaches thanks to its
logical cross-check mechanism but also outperforms them in detecting bugs that they all can detect, courtesy of
its stronger input generation strategy.

5.3 Code Coverage

To evaluate whether CLFuzz can achieve higher coverage in a shorter execution time compared with other fuzzing
tools, we use the coverage metric ‘ft:’ [42]provided by Libfuzzer, which is a combination of coverage signals
(edge coverage, edge counters, value proiles, indirect caller/callee pairs, etc.). This amalgamation of coverage
features provides a holistic view of the achieved coverage and triggered behaviors. To ensure the validity and
reliability of the experiment results, we conduct 20 rounds of repeated tests, each lasting 20 hours of execution
time. We also apply statistical analysis to the coverage results. We apply Vargha-Delaney A12 measure [65] and
the two-tailed Mann-Whitney U test [2] to assess the statistical signiicance of the diferences in performance
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among the tested fuzzers. The Vargha-Delaney A12 measure is used to determine the efect size between two
fuzzers being compared, which is reported as a value between 0 and 1. An�12 value of 0.50 indicates no diference
between the two fuzzers, while a value ≥ 0.714 indicates signiicantly better performance, and a value of 1.0
indicates a 100% probability that one fuzzer outperforms the other. The Mann-Whitney U test is used to evaluate
the null hypothesis signiicance, which tests whether there is a statistically signiicant diference in performance
between the tested fuzzers. If the p-value is less than the pre-determined signiicance level (usually set to 0.05), we
reject the null hypothesis and conclude that there is a statistically signiicant diference between the two groups.

Table 5. The statistical analysis of the coverage of Cryptofuzz, CDF, and CLFuzz on 4 categories of algorithms.

Algorithm Category Tool Coverage Improvement p-value �12

Hash & Symmetric Function

CLFuzz 713,943 - - -

Cryptofuzz 671,979 6.2% 3.04e-124 0.7794

CDF 126,279 565.0% 0.0 1.0

Elliptic Curve

CLFuzz 336,836 - - -

Cryptofuzz 296,277 13.7% 2.20e-266 0.9110

CDF 65,699 512.6% 0.0 1.0

BLS Signatures
CLFuzz 105,442 - - -

Cryptofuzz 79,371 32.8% 7.27e-303 0.9384

Key Derivation
CLFuzz 373,004 - - -

Cryptofuzz 356,161 4.7% 2.62e-72 0.7519

The results are shown in Table 5. As it shows, for each category of cryptographic algorithms, CLFuzz achieves
higher coverage than Cryptofuzz and CDF. For every pairwise comparison, the �12 is ≥ 0.714 and p-value is
≤ 0.05, indicating that CLFuzz signiicantly outperforms Cryptofuzz and CDF in every category. The ratio of
coverage improvement is inluenced by the complexity of the cryptographic-speciic constraints and the scale
of implementation code for each category. In the case of Elliptic Curve and BLS Signatures, where there are
more constraints on input ields, we observed a substantial increase in overall coverage. However, for Hash &
Symmetric Functions and Key Derivation, where the constraints are relatively fewer, the increase in coverage
was comparatively lower.

size_t HKDF<T>::DeriveKey(const byte *salt, ...)

{

...

if (salt == NULLPTR) {

salt = GetNullVector();
saltLen = T::DIGESTSIZE;

}

...

}

static int kdf_tls1_prf_derive(...) 

{

...

if (ctx->seedlen == 0) {

ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
return 0;

}

...

}

static BLST_ERROR POINTonE1_Uncompress_Z(char in[48], ...) {
...
if (in0 & 0x40) {           /* infinity bit */

if (byte_is_zero(in0 & 0x3f) & bytes_are_zero(in+1, 47)) {
vec_zero(out, sizeof(*out));
return BLST_SUCCESS;

} ...
}
...

}

(a) Cryptopp: H���JH (c) OpenSSL: tlM1_prfJ�(b) 8LS�: e1Jc

Fig. 13. Examples of the coverage diference between ÇLFuzz and others.

To evaluate the diference in actual code coverage between CLFuzz and existing approaches, we visualized
their code line coverage and compared the diferences in the lines of code covered. The results show that CLFuzz
is capable of covering all the code lines that Cryptofuzz and CDF cover. Moreover, CLFuzz covers 24,006 and
57,793 more lines than Cryptofuzz and CDF respectively. These additional lines are covered only by CLFuzz
due to two main reasons. Firstly, CLFuzz extracts semantic requirements that enable it to trigger all the core
logic of the algorithms, while Cryptofuzz and CDF fail to pass data checks, resulting in many misses in the
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core process code. For example, of the ile camellia.cpp [16] in library CryptoPP which implements symmetric
encryption using the Camellia block cipher, CLFuzz is able to cover the entire implementation of this ile, while
Cryptofuzz and CDF fail to cover any line because they are unable to generate a valid input that meets the
semantic requirements and trigger the encryption. Secondly, with the help of function signatures, CLFuzz covers
more codes that deal with boundary conditions and error handling triggered by extreme and special values. Some
examples are shown in Fig. 13, where red lines represent code that is only covered by CLFuzz. (a) [17] contains
branches for handling extreme value NULLPTR. (b) [8] deals with special value. (c) [53] raises an exception for
extreme value. CLFuzz leverages the extracted function signatures to trigger edge conditions and branches,
resulting in better performance compared to Cryptofuzz and CDF.

To observe the trends of coverage growth over time, we record the coverage every minute over 20 hours, and
we show the plots of coverage over the duration of each category in Fig. 14. The shadow represents the range
of values in 20 repetitions of experiments, and the line represents the average value. At the beginning of the
fuzz testing, the coverage grows rapidly for both CLFuzz and Cryptofuzz. When the execution time reaches 200
minutes, CLFuzz has achieves a signiicantly higher coverage than Cryptofuzz and CDF. In the follow-up phase,
they both grow at a slow rate and maintain the gap. In addition, the luctuation of the value is small, indicating
that the optimization efect is stable.
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(d) Key Derivation Function
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Fig. 14. Coverage trends of Cryptofuzz, CDF, and CLFuzz for 4 categories over 20 hours. CDF does not support the algorithms

in the last two categories.

Comparing coverage statistics at the end of the campaign does not reveal the entire picture. CLFuzz signiicantly
accelerates the coverage growth compared with Cryptofuzz and CDF in all categories. Table 6 shows the time
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(b) Elliptic Curve Algorithm
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(c) BLS Signatures
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(d) Key Derivation Function

Fig. 15. Trend of CLFuzz over Cryptofuzz coverage growth acceleration on each algorithm category. For CDF, CLFuzz can

reach its final within the first minute of testing, so we do not use graphs for comparison.

that CDF and CLFuzz used to achieve the same coverage as Cryptofuzz did over 20 hours. For CDF, we have been
running it for 100 hours, and the results are still far from the target values. As for CLFuzz, for all four categories,
it took 9.5, 4.3, 4.3, 10,0 hours to achieve the coverage of Cryptofuzz’s 20-hour operation, with an acceleration of
2.1X, 4.6X, 4.7X, 2.0X respectively which has a great impact on the eiciency of fuzz testing.

Table 6. Time that CDF and CLFuzz use to achieve the top coverage of Cryptofuzz in 20h.

Algorithm Category Coverage Time-Cryptofuzz[h] Time-CDF[h] Time-CLFuzz[h] Acceleration Ratio

Hash & Symmetric Function 671,979 20 >100 9.5 2.1X/>10X

Elliptic Curve 296,277 20 >100 4.3 4.6X/>10X

BLS Signatures 79,371 20 - 4.3 4.7X/-

Key Derivation 356,161 20 - 10.0 2.0X/-

More comprehensively, Fig.15 shows howmany times faster CLFuzz is than Cryptofuzz when the code coverage
reaches certain values of the horizontal coordinate. For CDF, CLFuzz can reach its inal within the irst minute of
testing, so we do not use graphs for comparison. In the irst half of the curve, the coverage increases extremely
rapidly, resulting in an unstable acceleration. After entering the stage of stable coverage growth, the acceleration
ratio rises steadily. Since the inal coverage CLFuzz can reach is higher than Cryptofuzz, the value will inally
tend to be ininity.
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Table 7. The number of valid inputs of Cryptofuzz and CLFuzz on 4 classes of algorithms among 100000 generated inputs.

Algorithm Category SIC VIC-Cryptofuzz VIC-CLFuzz Improvement

Hash & Symmetric Function 100,000 80,721 92,976 15.2%

Elliptic Curve Algorithm 100,000 62,736 85,894 36.9%

BLS Signatures 100,000 55,700 96,366 73.0%

Key Derivation Function 100,000 74,108 92,682 25.1%

Answer to RQ2: The results show that CLFuzz can achieve a higher coverage and signiicantly accelerates
the growth of coverage compared with state-of-the-art tools.

5.4 Test Input Validity

When the execution process is interrupted due to an invalid input ield, an empty result will be returned. In this
case, the testing cannot reach the main part of the algorithm, resulting in low test eiciency. On the contrary, if a
test input can pass the data check and initialization stage and successfully reach the main process, we suppose
that this input is valid to obtain signiicant outputs. To evaluate the improvement of the test input validity ratio,
we calculate the following two indicators during the fuzzing process:

SIC: Supported Input Count. The total number of test inputs that are supported by the target cryptographic
function.
VIC: Valid Input Count. The total number of test inputs that are valid enough to pass the data check and
trigger the main process.

For CDF, the changeable part of inputs contains no coniguration ields. The conigurations are either deined
in a ixed coniguration ile or provided by test iles, both of which are predeined by users and have no relation
to the inputs generated by CDF. As a result, the test range of CDF is quite narrow, and the input validity has no
signiicance to CDF. Therefore, we only compare Cryptofuzz with CLFuzz in this evaluation.
We mark the time when SIC reaches 100, 000 and record the value of VIC. As shown in Table 7, for each

categories, the proportion of valid inputs generated by CLFuzz is signiicantly high, reaching 93.0%, 85.9%, 96.4%,
92.3% respectively, and exceeding 15.2%, 36.9%, 73.0%, 25.1% compared to Cryptofuzz. Beneiting from the syntax
and semantic sensitive generation strategies, CLFuzz produces high-validity inputs and increases the probability
of triggering main algorithms. CLFuzz can then gain more valid outputs for adequate bug detection, and in turn,
optimize the efectiveness of the whole fuzzing process. In addition, to detect bugs caused by incomplete data
checks such as accepting unsupported input, CLFuzz still preserves the generation of a few invalid inputs. This
strategy can be used to test the robustness of data checks provided by cryptographic algorithms themselves.

Answer to RQ3: The results show that CLFuzz can improve the validity ratio of generated test inputs, and
then boosts the efectiveness of the test.

6 DISCUSSION

6.1 Extensibility on New Targets

Currently, CLFuzz has been applied to test the widely-used implementations of 54 cryptographic algorithms.
To continuously improve its universality and integrity, we need to constantly supplement new algorithms or
new implementations to enrich the tested elements. Therefore, extensibility is particularly important for its
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sustainable development. CLFuzz has already provided a standard worklow for new members. A class module
has been deined for structured extensions as shown in Fig. 16.

1 class Module {

2 public:

3 const std::string name;

4 const uint64_t ID;

5 // Constructor

6 Module(const std::string name) :

7 // Some Initializations

8 { }

9 // virtual functions for algorithms

10 virtual std::optional<component::Key> OpKDF_PBKDF(operation::KDF_PBKDF& op) {

11 (void)op;

12 return std::nullopt;

13 }

14 ...

15 }

Fig. 16. Structure of the class Module for testing new implementations of algorithms.

To add a new algorithm for testing, irst, we need to implement the corresponding driver that conducts the
functionality using the APIs provided by the targeted implementations. Fig. 17 shows an example of extending
the current CLFuzz to the implementation of algorithm KDF_PBKDF in library yescrypt [54]. Firstly, we initialize
a new module for yescrypt and declare the function KDF_PBKDF in line 1-5. Then, based on the documentation
and test ile, we obtain the process of how yescrypt conducts KDF_PBKDF and implement the driver as shown
in line 7-26. We parse the test input generated by CLFuzz as the parameters for the APIs. In line 10-13, CLFuzz
parses the input parameters including password, key length, salt, etc. Then in line 15-17, CLFuzz conducts the
required semantic data check of yescrypt. Finally, in line 19-22, we execute the targeted API and get the output
results, and return it in a uniform output format for subsequent checks.

Besides, we supplement the corresponding test input generation strategy with two steps. First, we extract new
semantic information about this algorithm. Second, we explore its input ields and apply the speciied generation
strategies for diferent data types. After that, CLFuzz can support new targets. To add a new implementation to
the test, we just instantiate a new instance of this class module and then overwrite the corresponding virtual
function.

6.2 Completeness of Bug Detection

There is a great variety of cryptographic algorithms, and new algorithms or calculation modes are constantly
coming out. As a result, the implementation of cryptographic algorithms is also continually updated. Diferent
implementations support diferent algorithm ranges, some of which only focus on a certain category of algorithms.
It is challenging to cover all the algorithms of the implementation completely during the test.
One main reason is that some algorithms or modes are only supported by a few implementations, resulting

in an insuicient number of outputs for diferential testing. Although CLFuzz has adopted logical cross-check
that uses the logical properties of algorithms to enrich the approaches of bug detection, not all cryptographic
algorithms have the semantic information that could be used. Another reason is that the levels of functional
interfaces exposed by the diferent implementations are diferent from each other. For the convenience of users,

ACM Trans. Softw. Eng. Methodol.



24 • Y Zhou, et al.

1 class yescrypt : public Module {

2 public:

3 yescrypt(void);

4 std::optional<component::Key> yescrypt::OpKDF_PBKDF(operation::KDF_PBKDF& op) override;

5 };

6

7 std::optional<component::Key> yescrypt::OpKDF_PBKDF(operation::KDF_PBKDF& op) {

8 std::optional<component::Key> ret = std::nullopt;

9 // parse input parameters

10 auto password = op.password.Get();

11 unsigned int passwordLen = password.size();

12 unsigned int keyLen = op.keySize;

13 auto salt = op.salt.Get();

14 // data check

15 uint8_t out[64];

16 assert(keyLen <= sizeof(out));

17 assert(op.digestType == CF_DIGEST("SHA256"));

18 // core funtionality

19 PBKDF2_SHA256((const uint8_t *) password, passwordLen,

20 (const uint8_t *) salt, saltlen, c, out, keyLen);

21 // get output

22 ret = component::Key(out, keyLen);

23 end:

24 util::free(out);

25 return ret;

26 }

Fig. 17. An example driver of function KDF_PBKDF in yescrypt.

some implementations only provide top-level interfaces, within which it has deined the execution process by
itself. In contrast, some others provide more detailed interfaces. It is diicult to fully test the top-level and detailed
interfaces at the same time.

7 RELATED WORK

7.1 Test Approaches for Cryptographic Algorithms

Currently, various testing approaches have been applied to cryptographic algorithms or APIs, involving static and
dynamic tests. CryptoGuard [59] is a typical case for static vulnerability detection which focuses on cryptographic
API misuse in massive-sized Java projects. For each common cryptographic vulnerability, CryptoGuard deines
corresponding code rules of common cryptographic vulnerabilities to scan the projects. Furthermore, it reines
program slices by identifying language-speciic irrelevant elements such as common programming idioms and
language restrictions to reduce false alerts. It has achieved objective results and has found multiple vulnerabilities
in large-scale Apache projects and Android apps.
As for dynamic testing, there are also some existing achievements. Project Wycheproof [27] by Google, tests

crypto algorithms against known attacks by a directed approachwith tailored test vectorsmindful of cryptographic
theory and historic weaknesses. DifFuzz [50] can detect side-channel bugs by using resource-guided heuristics to
ind inputs that maximize the diference in resource consumption between two versions of the program. Another
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example is CDF [5], a dynamic test tool for cryptographic algorithms that combines fuzz testing and stateless
dedicated test vectors of known vulnerabilities and edge cases of the tested algorithms. Besides, Cryptofuzz [32]
is a diferential fuzz testing project that analyzes cryptographic algorithms and compares their outputs to ind
implementation discrepancies. It can detect memory bugs with the aid of sanitizers [29]. Cryptofuzz supports a
wide range of algorithms and has made remarkable achievements on cryptographic algorithm tests.

7.2 Traditional Fuzzing

Fuzzing is an efective and promising test method for detecting implementation bugs in algorithms. Traditional
fuzzers can be divided into two types according to the seed production principle: generation-based fuzzers and
mutation-based fuzzers [48].

Typical generation-based fuzzers includes Peach [49], Peach* [44], and Sulley [1]. They mainly focus on targets
with strict input format requirements. They generate high-quality seeds for each round of testing based on format
speciications predeined by users and guide further fuzzing processes according to the execution results.
Mutation-based fuzzers use initial seeds or previously produced seeds to generate new ones by making

byte or bit-level changes to them. One of them is American Fuzzy Lop (AFL) [26], a coverage-guided fuzzer
known for its exceptional performance on bug detection. To advance AFL’s performance, a series of family
tools [10, 24, 57, 58] has been developed. AFL++ [24] achieves faster speed, more and better mutations, and more
and better instrumentation compared with AFL. AFLSmart [10] combines AFL’s grey box fuzzing with high-level
structural seeds to explore new input domains while maintaining seed validity. Besides, Libfuzzer [42] is an
in-process, coverage-guided, evolutionary fuzzing engine. Under normal conditions, it unitizes diverse strategies
for seed mutations. In addition, it also provides interfaces for users to customize mutation or generation strategies.
By using this interface, Libfuzzer can produce structured seeds that meet the speciications of software under
tests.

However, most of the existing traditional fuzzing works cannot be applied to cryptographic algorithms testing.
The main reason is that they lack the knowledge of input speciications of cryptographic algorithms and the test
engine that could trigger the execution of their implementation.

7.3 Property-based Testing

Besides the traditional bug detection approaches, there are also some current works that consider the semantic
information of targeted algorithms during the bug detection stage. They design the properties that the programs
should always satisfy, and use them as oracles to detect unexpected behaviors. This approach is known as
property-based testing (PBT).
Property-based testing was popularized by the Haskell library QuickCheck [15]. QuickCheck requires the

programmers to provide a speciication of the program, in the form of properties which functions should satisfy,
and QuickCheck then tests that the properties hold in a large number of randomly generated cases. FsCheck [25]

uses the same approach to test for ṄET programs. Furthermore, some works optimize the random input generation
strategy of PBT and present targeted property-based testing (TPBT). For example, Zest [55] extends QuickCheck’s
random-input generators into deterministic parametric generators to better explore the semantic analysis stage
of test programs. Target [43] guides PBT with a search strategy. PropEr [56] integrate types and function
speciications of Erlang with PBT. Besides, metamorphic testing (MT) is also a form of property-based testing. It
is conducted based on Metamorphic Relations (MRs), which are necessary properties of the target function or

algorithm in relation to multiple inputs and their expected outputs. It was initially proposed by TẎĊhen [13] in
1998 as a software veriication technique, and has been widely applied to real-life applications for various types
of software quality assessment. Surveys conducted by [14, 61] summarized the research results and application
practices of MT. Some application examples include web service [11], imaging software testing [31], autonomous
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vehicles [34], and autonomous driving models [21]. The key advantage of PBT is that it can uncover logical
implementation errors that may be missed by traditional testing methods. It can also help to identify and isolate
defects, making it easier to debug and ix issues.

7.4 Main Diference

Unlike existing tools, CLFuzz stands out as a specialized generation-based fuzzer speciically designed for fuzzing
cryptographic algorithms. It takes full advantage of the cryptographic-speciic constraints to generate high-quality
test inputs that efectively target the vulnerable components of cryptographic algorithm implementations. The
inputs generated by CLFuzz not only satisfy the necessary data checks but also have the capability to trigger
error-prone scenarios, thoroughly testing the resilience of these implementations.
Furthermore, CLFuzz leverages the distinctive logical relationships presented in cryptographic algorithms

during the bug detection phase. Existing tools cannot address the challenges in cryptographic algorithm testing.
CLFuzz irst extracts and designs the logical relationships among 54 targeted algorithms and establishes the
cryptographic-speciic oracles that precisely cover the features of cryptographic algorithms. Then to combine
the oracles with high-eiciency fuzzing, CLFuzz utilizes the oracle recycling pool model for temporarily storing
the data of former test rounds. This eliminates the need for strict continuity between multiple rounds of logical
cross-check, and therefore alleviates the burden of equipping diferent oracles, enhancing its extendability.
Besides, CLFuzz can validate the intermediate results, and conduct intensive mutations on them, allowing for the
implementation of more variants for oracles.

8 CONCLUSION

In this paper, we propose CLFuzz, a semantic-aware fuzzer for the implementation of vulnerability detection of
cryptographic algorithms. Speciically, CLFuzz extracts the semantic information of cryptographic algorithms
including their cryptographic-speciic constraints and function signatures. Based on the above information,
CLFuzz constructs high-quality test inputs that meet the complex input restrictions and can trigger error-prone
boundary situations, signiicantly improving test efectiveness. Besides, CLFuzz applies logical cross-check across
multiple test rounds based on the logical properties of algorithms that strengthens its logical bug detection ability
and eiciency. Our evaluation results show that CLFuzz outperforms other state-of-the-art tools, and has detected
many security-critical vulnerabilities in widely-used implementations of popular cryptographic algorithms.
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