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ABSTRACT
Resilience is vital to blockchain systems and helps them automati-
cally adapt and continue providing their service when adverse situ-
ations occur, e.g., node crashing and data discarding. However, due
to the vulnerabilities in their implementation, blockchain systems
may fail to recover from the error situations, resulting in permanent
service disruptions. Such vulnerabilities are called resilience issues.

In this paper, we propose Phoenix, a system that helps detect and
locate blockchain systems’ resilience issues by context-sensitive
chaos. First, we identify two typical types of resilience issues in
blockchain systems: node unrecoverable and data unrecoverable.
Then, we design three context-sensitive chaos strategies tailored
to the blockchain feature. Additionally, we create a coordinator to
effectively trigger resilience issues by scheduling these strategies.
To better analyze them, we collect and sort all strategies into a
pool and generate a reproducing sequence to locate and reproduce
those issues. We evaluated Phoenix on 5 widely used commercial
blockchain systems and detected 13 previous-unknown resilience
issues. Besides, Phoenix successfully reproduces all of them, with
5.15 steps on average. The corresponding developers have fixed
these issues. After that, the chaos resistance time of blockchains
is improved by 143.9% on average. This indicates that Phoenix can
significantly improve the resilience of these blockchains.

CCS CONCEPTS
• Security and privacy→ Vulnerability scanners; Distributed
systems security; • Software and its engineering → Software
testing and debugging.
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1 INTRODUCTION
Resilience is the ability of a blockchain to adjust so it can sustain
its normal functioning in the face of changes and disturbances.
Since blockchain systems always operate in a volatile environment,
anomalies may cause severe consequences. For example, in public
chains like Ethereum [21], anyone with a completely different envi-
ronment can join the network. Due to this feature, failures such as
node crashes and malicious attacks may occur frequently. Consor-
tium chains like Hyperledger Fabric [38] tend to have a small group
of nodes. Therefore, network fluctuations or hardware failures at
any node can have a significant impact on the entire system.

To resist anomalies and provide resilience, blockchain systems
design some coping mechanisms, such as consensus and synchro-
nization. For example, when a node’s data is dropped, it can synchro-
nize from other nodes and continue to provide services. However,
while implementing such mechanisms, some vulnerabilities may
exist and inhibit the system from recovering from errors. Such
vulnerabilities that cause service recovery failures are known as
resilience issues. In particular, we identified two typical resilience
issues in blockchain systems: 1) Node unrecoverable. This indi-
cates that the node is permanently lost from the group. For example,
a node crashes due to a memory leak [12] or a program panic [13]
and cannot be restarted automatically. Alternatively, a node may
become separated from other nodes due to a hard fork [30], which
results in node isolation. 2) Data unrecoverable. This means that
the consistency [4] or immutability [35] of the blockchain system is
permanently broken. For example, a nodewhose data is inconsistent
with other nodes cannot be synchronized to the correct result [72].
Alternatively, blockchain nodes may store invalid data [41]. Both
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of these problems can have serious security consequences. Specifi-
cally, node unrecoverable issues [51] may lead to DDoS attacks and
prevent blockchain systems from providing services. While data
unrecoverable issues [24] can result in the acceptance of invalid
transactions due to data corruption, such as double spending, and
lead to huge asset losses.

Chaos testing is considered a useful method for assessing the
resilience of distributed systems. For example, ChaosBlade [7] is an
open-source fault injection tool following the principles of chaos
testing. It has been widely used in cloud native systems. Apart from
that, some chaos tools also target at blockchain systems, such as
CHAOSETH [73]. Rather than a bug detecting tool, CHAOSETH
monitors the performance variance of blockchains under chaos
conditions. However, all existing chaos tools cannot effectively
analyze resilience issues in blockchain systems through their testing
strategies due to two main challenges.

The first challenge is that chaos strategies in existing chaos
tools ignore the runtime context information and cannot ef-
fectively trigger resilience issues. Traditional chaos strategies
can only modify the node’s environment at a coarse-grained level.
The context information of the blockchain runtime refers to key
execution phases, such as reading/writing block data, sending/re-
ceiving consensus packets, requesting/responding to a data synchro-
nization process, etc. These contexts are necessary for resilience
issues. For example, a resilience issue may only be triggered when
the node is isolated after a successful block synchronization. More-
over, strategies without knowing such context that make anomalies
all the time may not satisfy the trigger conditions of this issue.
Thus, it requires context-sensitive chaos strategies tailored to the
characteristics of the blockchain to detect resilience issues.

The second challenge is that locating and reproducing a
bug in distributed scenarios is hard. It is not enough to just
detect a resilience issue. It is more important to steadily reproduce
the bug to uncover why and how it happened. This is essential to
help developers quickly remediate the issue and check whether the
bugs are fixed. However, bug reproduction often requires accurate
documentation of distributed behaviors and precise control over
the replay of those behaviors. And existing chaos tools are lack
of such reproducing processes. Resilience problems in blockchain
systems are always triggered by a combination of behaviors. For
example, a data loss behavior should be conducted first to trigger
the synchronization mechanism. Then a data pollution needs to
be performed during the synchronization process to trigger a data
unrecoverable issue. It is challenging to generate a reproduction
sequence to collect all these behaviors.

In this work, we design and implement Phoenix, a system to
detect and locate the resilience issues in blockchain systems by
performing context-sensitive chaos testing and bug reproducing.
First, Phoenix designs 3 context-sensitive chaos strategies, includ-
ing block/transaction data corruption, byzantine attack, and node
partition. All of them are instrumented into the system’s source
code based on corresponding contexts. With the help of a test coor-
dinator, Phoenix performs a test round along with a check round
by sending different signals to the SUT (System Under Test). In the
test round, the blockchain system is injected with various chaos
strategies to mimic adverse situations. While in the check round,
Phoenix checks whether the nodes and the data have recovered

from the chaos. If a resilience issue is detected, Phoenix will gener-
ate a reproduction sequence by collecting and ordering all the chaos
strategies from each distributed node. A reproduction coordinator
sends reproduction signals to each node and precisely controls the
replay of each strategy. This way, Phoenix can effectively detect
and reproduce resilience issues in blockchain systems to help de-
velopers better understand errors or risks and react to them when
they inevitably arrive.

We implement and evaluate the effectiveness of Phoenix on 5
commercial blockchain systems, including Hyperledger Fabric [38],
FISCO-BCOS [25], Quorum [8], Go-Ethereum [21] and Binance
Smart Chain [6]. Currently, Phoenix detected 13 previously un-
known resilience issues in these systems. In addition, Phoenix suc-
cessfully reproduces all of the found issues steadily by utilizing
5.15 steps in the reproduction sequence on average. The correspond-
ing developers have fixed all the issues found. After that, the chaos
resists time of all five blockchains can be extended by 143.9%. These
statistics demonstrate that the resilience of blockchain systems can
be significantly improved.

In general, we make the following contributions:
• We propose a system that performs chaos testing with
context-sensitive strategies tailored to blockchain features.
It also supports bug reproduction for resilience issues in
blockchain systems.

• We design and implement Phoenix. With two coordinators,
Phoenix controls resilience issues testing and reproducing
processes by sending various signals.

• We evaluated Phoenix on 5 widely used blockchain systems.
We will open-source Phoenix 1 for practical usage. For now,
Phoenix has detected 13 resilience issues and successfully
generated reproduction sequences for all of them.

2 BACKGROUND
2.1 Blockchain and its Resilience
Blockchain is a decentralized system which is maintained by a
network of nodes. These nodes work together to validate and pro-
cess the transactions and store the execution results. Blockchain
systems can be divided into three types according to their require-
ments: private blockchains, public blockchains, and consortium
blockchains.

A private blockchain is a permissioned system that is operated
in a closed network. Such blockchain is mainly used by an en-
terprise or an organization for internal applications. The other
two types of blockchain systems run in an open environment. A
public blockchain is a permissionless distributed ledger that pro-
vides applications such as cryptocurrency exchanging [65] and
decentralized finance [11]. Some well-known public blockchains in-
clude Ethereum [21], and Binance Smart Chain [6]. Unlike a public
blockchain, a consortium blockchain using the underlying platform
such as Hyperledger Fabric [38], FISCO-BCOS [25] or Quorum [8],
is maintained by several organizations with exact business needs.
Public and consortium blockchain systems run in a complex en-
vironment where node crashes, network fluctuations, and attacks
may usually happen. To provide continuous service, blockchain

1Phoenix at: https://anonymous.4open.science/r/Phoenix-20FE/
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systems must implement mechanisms to resist these situations and
provide resilience. Generally, they provide the following two ways
to recover from failures:

Consensus. Consensus is a necessary process to make sure that
each transaction has a certain execution result under a decentral-
ized system. Since node crashes and byzantine attacks are common
in blockchain systems, developers equip the blockchain systems
with both CFT (Crash Fault Tolerant) and BFT (Byzantine Fault
Tolerant) based consensus algorithms such as Raft [55], PBFT [5],
and PoS [28], and PoW [29]. These consensus protocols provide re-
silience by ensuring that the blockchain remains consistent though
certain nodes are down or malicious.

Data Synchronization.Apart from the consensus protocols. Block-
chain systems implement a synchronization process to resist the
situations where nodes are isolated from the main network. When
a partition occurs in the blockchain system, the data stored by each
node may be different. At this time, the node will try to synchronize
the latest block data of other nodes to update the local chain. In this
way, the system provides resilience and achieves partition tolerance.

However, due to the fact that there are inevitable implementation
vulnerabilities in these mechanisms, in some cases the blockchain
may fail to provide resilience and lead to permanent service failure.

2.2 Chaos Testing
Chaos testing was first proposed in 2010 by the developers of Net-
flix [3] when they decided to migrate their infrastructure from
physical machines to the cloud. The key insight of chaos testing
is to evaluate the ability of distributed systems to cope with var-
ious contingencies in a complex cloud environment. To ensure
that Netflix can provide a stable service, the developers created
ChaosMonkey [52], which is considered the first chaos testing tool.

Distributed SystemsBug Definition

Chaos Strategies

Run Experiments

System Checking

+

+ + +…

+ + +…
CPU DiskNetwork Config checking reportbug

+

timer test

duration

Figure 1: The general workflow of chaos testing on a dis-
tributed system.With predefined assertions and chaos strate-
gies, the system runs the experiment for a duration. It then
checks whether a bug exists and generates reports.

Basically, the general workflow of chaos testing is shown in
Figure 1. There are 4 basic steps for chaos testing: 1○ Prepare some
assertions of the SUT to define bugs for this testing. 2○ Design
various chaos strategies for the SUT. In this step, the developer
should summarize some adverse situations that could occur in the
deployment environment and inject them into the SUT. Usually,
the strategies may include CPU controlling, network delay, disk
occupation, or system configuration modification. 3○ Run the chaos
experiments. The system will be tested by predefined strategies
within a duration. 4○ The SUT will be checked by the assertions
and gives out bug information and reports. If something wrong

happens, the developers may know that there are some bugs in the
system that may lead to service failure. Followed by these steps,
chaos testing has successfully detected plenty of bugs in distributed
systems before they are deployed for practical usage.

Originally, Netflix introduced ChaosMonkey for randomly termi-
nating instances to simulate failures. This tool is useful for imitating
crash failures in a cloud system. However, a weakness of Chaos-
Monkey is that the failure occurs randomly without the develop-
ers’ control. To reduce randomness, Netflix later developed Simian
Army [53], allowing finer control over chaotic objects and duration.
Simian Army introduces an engineering approach to chaos testing.
However, the dimensions and types of faults it supports are not rich.
To conduct more systematic chaos experiments, ChaosBlade com-
bines multi-level chaos strategies like network disruption and CPU
control. This enables chaos testing from various perspectives. For a
specific system, chaos testing requires designing system-specific
strategies. For example, to perform chaos on a DBMS, the strategies
may tailor to transaction management and SQL optimization. As
for blockchain systems, all existing tools lack strategies related to
the blockchain context. While Phoenix identifies these weak spots
and tailors blockchain-specific strategies to the system context.

3 OVERVIEW
3.1 Definition of Blockchain Resilience Issues
Threat Model: Throughout this paper, we use the following
threat model. First, we formally define a blockchain network as
𝜙 = {𝑚1,𝑚2,𝑇𝑐ℎ𝑎𝑜𝑠 ,𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 }. Specifically,𝑚1 means the number of
normal nodes which perform honestly in the network.𝑚2 presents
the chaos nodes under the attacker’s control. Attackers can conduct
chaos strategies, including data corruption, byzantine attacks, node
partition, etc.𝑇𝑐ℎ𝑎𝑜𝑠 indicates the maximum time attackers execute
a chaos attack. And 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 indicates the time it should take for
the blockchain to recover to the normal state. 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 is positive
infinity if the blockchain is unrecoverable. The proportion of chaos
nodes should satisfy the fault tolerance mechanisms of the SUT. For
most public blockchain systems,𝑚2/(𝑚1 +𝑚2) should be smaller
than 1/2. While for most consortium blockchain systems, it should
be smaller than 1/3.

For a blockchain system under test, after a chaos attack lasting
𝑇1 (𝑇1 ≤ 𝑇𝑐ℎ𝑎𝑜𝑠 ), given a finite time 𝑇2 for recovering, the entire
blockchain system should return to the normal state and be able to
provide all functional services normally. Otherwise, the blockchain
system is in an unrecoverable state, and we identify there is a re-
silience issue in the blockchain system. Specifically, we divide the
blockchain unrecoverable state into two main types: Node Unre-
coverable State and Data Unrecoverable State.

Formally, we consider a blockchain system under test with𝑚1
honest nodes taken from a finite set Π = {𝑛1, 𝑛2, 𝑛3, ...𝑛𝑚1 }. We use
the symbol Ψ𝑛𝑖 presenting node 𝑛𝑖 crashes down. Let the finite
set 𝑇𝑋𝑖 = {𝑡𝑥𝑖1, 𝑡𝑥𝑖2, 𝑡𝑥𝑖3, ..., 𝑡𝑥𝑖𝑛} present the transaction pool of
node 𝑛𝑖 . A finite set 𝐵𝑖 = {𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, ..., 𝑏𝑖𝑝 } represents the local
blockchain of node 𝑛𝑖 , and each block 𝑏𝑖 𝑗 ∈ 𝐵𝑖 contains a set of
confirmed transactions. We also define the symbol 𝐵𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 as the
set of block data polluted by attackers.

The Node Unrecoverable State includes two types of states in
the blockchain systems. (1) Node crashes [64], where node stops
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functioning and exits erroneously. Formally in LTL (linear temporal
logic) [68], ∀𝑛𝑖 ∈ Π, □(¬Ψ𝑛𝑖 ) — all nodes in blockchain systems
should not crash down at any time. Otherwise, the node crashes
state is triggered. (2) Transaction processing is stuck [67], where
nodes stop handling transactions and can not be recovered auto-
matically. In LTL, for each node, 𝑛𝑖 ∈ Π,∀𝑡𝑥 ∈ 𝑇𝑋𝑖 , ♢(𝑡𝑥 ∈ 𝐵𝑖 ) —
all transactions in blockchains should be processed and committed
into a specific block eventually. Otherwise, the transaction process
reaches a stuck state. If one of these two states occurs, then a node
unrecoverable bug is found.

The Data Unrecoverable State also includes two types of
states. (1) Data inconsistency [74], where data in distributed nodes
become inconsistent and can not be recovered automatically. For-
mally in LTL, For each node, 𝑛𝑖 ∈ Π, ∀𝑛𝑖 , 𝑛 𝑗 ∈ Π, ∀𝑘 : 1 ≤ 𝑘 ,
♢(𝑏𝑖𝑘 ≡ 𝑏 𝑗𝑘 ) — all block data in different nodes should even-
tually keep consistent. Otherwise, a data inconsistency state is
reached. (2) Polluted data storage [35], where the data polluted
by attackers is committed and stored mistakenly. Formally in LTL,
∀𝑏𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 ∈ 𝐵𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 ,□(𝑏𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 ∉ 𝐵𝑖 ) — all polluted data should
never be committed and stored in any block. Otherwise, a data pol-
luted state is reached. If one of these two states occurs, a data
unrecoverable bug is detected.

3.2 Motivating Example
Resilience issues are common in blockchain systems and can cause
severe consequences. In this section, we give an example that de-
scribes a node unrecoverable issue in Go-Ethereum in 2023. The
root cause of this vulnerability is discussed in the GitHub issue
#26300 [37]. However, another 4 bugs [33, 36, 50, 61] are also caused
by this vulnerability. This vulnerability typically occurs when a
skeleton header reference is mistakenly deleted, which can cause
the block synchronization process to get stuck and panic. Figure 2
shows the code where the vulnerability occurs.

Issue Analysis: As shown in the code snippet, the bug is trig-
gered during the beacon chain synchronization process. A beacon
chain [56] along with a skeleton chain [58] work together to enable
the PoS consensus in Ethereum. During a data synchronization
process, a node receives new blocks from the beacon chain. On the
other hand, the skeleton chain is a cache that stores a contiguous
header chain. During the synchronization, a skeleton chain tracks
a series of potentially dangling headers until they are written into
the local database.

This issue is triggered in a scenario described in Figure 3 and
Figure 4. In the first phase shown in Figure 3, one Ethereum node
successfully synchronized the block from the beacon chain with
a height of 325. The results of this process are a single skeleton
header (block N) and a subchain with a single block (head N, tail N)
being stored on disk. Here, N is 325@0946fa, where 325 is the block
height and the ‘0946fa’ is the hash value of the imported number.
After that, anomalies such as network disconnection occur to this
node. As a result, this node is temporarily isolated (node partition)
from the blockchain cluster.

In the second phase shown in Figure 4, the node recovers from
the anomalies and reenters into the blockchain cluster. In this case,
some new blocks in the beacon chain need to be synchronized
to the local skeleton chain. To achieve this, it first calls the func-
tion ‘processResponse’ in line 1 in Figure 2. Currently, there are

1 func (s *skeleton) processResponse(res *headerResponse)

(linked bool, merged bool) {

2 // only two subchains and the older one has only 1 block

3 case subchains == 2 && Subchains[1].Head==Subchains[1].Tail:

4 - log.Debug("...","head",Subchains[1].Head)

5 - rawdb.DeleteSkeletonHeader(batch, Subchains[1].Head)

6 + if Subchains[1].Head < Subchains[0].Tail {

7 + log.Debug("...","head",Subchains[1].Head)

8 + rawdb.DeleteSkeletonHeader(batch, Subchains[1].Head)

9 + }

10 ...

11 }

12 func (d *Downloader) findBeaconAncestor() (uint64, error) {

13 var linked bool
14 switch d.getMode() {

15 case FullSync:

16 //<--- SIGSEGV occurs when beaconTail is nil --->

17 linked = d.blockchain.HasBlock(beaconTail.ParentHash,

18 beaconTail.Number.Uint64()-1)

19 case SnapSync:

20 linked = d.blockchain.HasFastBlock(beaconTail.ParentHash,

21 beaconTail.Number.Uint64()-1)

22 ...

23 }

Figure 2: A node unrecoverable issue found in Go-Ethereum.
Line 17 tries to access a nil beaconTail and trigger a SEGV
signal. The root cause is due to line 4 in the function ‘pro-
cessResponse’, which deletes a skeleton header mistakenly.

2 subchains now (the new beacon chain and the local skeleton
chain), and the second subchain’s head and tail have the same value
(325@0946fa), which satisfies the case in line 3. Thus, as shown in
line 5, the reference of the skeleton header is deleted. Afterward, as
lines 16-18 show, when the node tries to find the beacon ancestor
by fetching the beacon tail, it tries to read the deleted reference
and triggers a SEGV signal. This bug has already been fixed [62] by
adding an if branch, as shown in lines 6-9. In the patch, the node
will only delete the reference when the head of the local skeleton
chain is less than the tail of the beacon chain. This represents that
the synchronization will start at the tail of the beacon chain and
will never use the reference whose header is less than it. Thus, the
deletion will always be safe.

Skeleton Header

SubChain

N: 325@0946fa

nil head
325@0946fa

tail
325@0946fa

…

Skeleton Chain

…

Beacon Chain

sync success

Anomalies
Network disconnect

Power failure

Node Isolation
Node 0 Node 1

Node 2 Node n

…

Local Disk

Ethereum Node

Figure 3: The first phase to trigger this bug. One node syn-
chronized the block successfully from the beacon chain, and
stored a header 325@0946fa and a subchain with only one
block. Then due to anomalies, it is isolated from the cluster.

Challenges for analyzing such issues. This issue significantly
affects the safety and availability of Ethereum. Unfortunately, it
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is hard to analyze this issue in an effective way. As we illustrated
before, there are two main challenges.

Skeleton Chain

Beacon Chain

a new sync cycle

Recovery
Network connect

Power on

Node Reenter
Node 0 Node 1

Node 2 Node n

…

Ethereum Node

Skeleton Header
N: 325@0946fa

header:325@7d3760

header:326@3a0143

header:327@e97873

Beacon: 325 ≤ Skeleton: 325

Delete reference

Fetch header reference

Skeleton Header
N: 325@0946fa

Skeleton Header
header:325@7d3760

processResponse

Figure 4: The second phase to trigger this bug. After the
recovery, the node reenters the cluster and starts a new sync
from the beacon chain. The node mistakenly deletes the
skeleton reference which leads to the bug.

For the first one, it is hard for existing chaos tools to find this
resilience issue due to their strategies lack of context information.
Existing tools like ChaosBlade [7] support strategies such as CPU
controlling and network delay in the system environment. In this
situation, isolating a node with traditional strategies may prevent
the trigger condition of the bug. For example, ChaosBlade can dis-
connect a node through traffic control and isolate the node all the
time. However, during the anomalies, this node may not have stored
a subchain containing only one block to disk, as it may not have
just finished a successful sync. The condition in line 3 in figure 2
could not be satisfied as the current subchain’s tail and head may
not be the same. Thus, the bug will never be triggered. To detect
such issues, context-sensitive chaos strategies need to be instru-
mented. In this case, node isolation strategies should be injected
into the code where synchronization is successfully finished. That
is why we design Phoenix with context-sensitive strategies and
a coordinator to schedule them. Phoenix can detect the bug for
this case by triggering a node partition strategy after a successful
synchronization. Thus, the partition will happen precisely after
the successful sync from the beacon chain. And after the partition
finishes, the node will try to reenter the cluster and sync from the
beacon chain. This will trigger the situation shown in Figure 4 and
expose the bug.

For the second one, it is hard to find the resilience issue’s root
cause in a distributed environment. In this example, the first bug
issue [36] was reported on September 16, 2022, the root cause [37]
is described on December 04, 2022, and patch [62] is provided on
January 09, 2023. It takes a long time to thoroughly understand
the bug and find the proper fix. This is because the bug cannot be
reproduced steadily. Thus, the developers may only know that a null
pointer bug exists but do not know why it happens. Current chaos
tools lack a bug reproducer to help developers understand what
strategies trigger the detected bugs and reproduce them steadily.
In this case, if the chaos tool can tell the developers that a node
partition strategy after a successful synchronization process can
reproduce this bug, the developers may understand the bug in a
shorter time. That is why we equipped Phoenix with a resilience
issue reproducer.

4 PHOENIX DESIGN
Figure 5 shows the overall design of Phoenix. The workflow of
Phoenix is divided into two processes: the context-sensitive detect-
ing process and the context-sensitive locating process. A context is
defined as a pair: < 𝐶, 𝑆 >, where 𝐶 and 𝑆 refer to consensus and
data sync hooking positions. Specifically, for Phoenix on FISCO-
BCOS, 𝐶 contains before/after_preprepare, before/after_prepare,
before/after_recover_response, before/after_viewchange and be-
fore/after_checkpoint. 𝑆 includes before/after_block_request, be-
fore/after_tx_request, before/after_block_sync and before/after_sy
nc_status. Context is generated by 3 steps: 1) Phoenix marks all the
interesting positions in the source code. 2) Phoenix sets the pair
by filling in the positions. 3) According to the pair, Phoenix adds
corresponding chaos strategies.

Phoenix first defines three context-sensitive strategies in the
context-sensitive detecting process, including block/transaction
data corruption, byzantine attacks, and node partition. There are
two phases in this process. The first phase is the chaos resisting
phase, where the SUT keeps on running and tries to resist various
chaos strategies performed by Phoenix for 𝑇1 duration. While the
second phase is the system recovery phase, where Phoenix stops
all the chaos strategies and checks whether the SUT has recovered
from the chaos within 𝑇2 duration. The test coordinator executes
these two phases in rotation. The resisting duration 𝑇1 and the
recovery duration 𝑇2 of the SUT are controlled by two timers. The
test coordinator communicates with the SUT through a signal chan-
nel. Phoenix then checks whether the system runs normally by
two resilience issue checkers: a node checker and a data checker,
corresponding to the two resilience issues we proposed.

In the context-sensitive locating process, Phoenix first collects
all the performed chaos strategies from all the chaos nodes into
a strategy pool and sorts them based on their timestamps. Then,
Phoenix selects the latest 2𝑛 strategies in the sequence. Here, 𝑛
represents the reproduction rounds. It gradually increases from 1
until the bug is successfully reproduced. If 2𝑛 exceeds the number
of strategies in the strategy pool, then the reproduction fails. Like
the chaos testing process, Phoenix uses a probability controller to
schedule the reproduction steps for each chaos node by sending
various signals. Phoenix checks whether the issue has been suc-
cessfully reproduced with two reproduction result checkers. They
compare the system states and logs when the issue occurs with the
current system states and logs. In this way, Phoenix tries to detect
and reproduce resilience issues effectively.

4.1 Context-Sensitive Detecting
In this section, we will explain how Phoenix performs context-
sensitive testing for blockchain systems. First, we describe the
context-sensitive strategies in Phoenix, then we introduce how
the test coordinator works, and finally, we give the details of two
resilience issue checkers.
4.1.1 Context-Sensitive Strategies. Phoenix defines three context-
sensitive strategies specific to blockchain systems for chaos testing.
As we described before, traditional chaos strategies such as CPU
controlling or disk filling cannot effectively detect resilience issues
in blockchain systems because they lack runtime context informa-
tion. Based on the features of blockchain systems, Phoenix defines



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Fuchen Ma et al.

Context-sensitive strategies
Block/Transaction Data Corruption

Byzantine Attacks

Node Partition

Test Coordinator

𝑇! timer 𝑇" timer

Signal Channel

Resilience Issue 
Checker

+

Blockchain 
System  

+

+

Reproduction Sequence
2! 𝑡𝑟𝑎𝑐𝑒

Probability Controller

Selected Strategies

Reproduction Result Checker

State
Comparison

Log 
Comparison

+

Co
nt

ex
t-S

en
sit

iv
e 

De
te

ct
in

g
Co

nt
ex

t-S
en

sit
iv

e 
Lo

ca
tin

g

Node
Checker

Data
Checker

Context-Sensitive 
Strategy Pool

< 𝑇!, 𝑁", 𝐻#, 𝑆#$ >
……

Reproduce Coordinator

Re
si

lie
nc

e 
Is

su
es

𝑁𝑜𝑑𝑒(

< 𝑇%, 𝑁&, 𝐻', 𝑆!( >
……𝑁𝑜𝑑𝑒)

…

Figure 5: An overview of Phoenix design. There are basically two phases in Phoenix. (1) During the context-sensitive detecting
phase, Phoenix injected three context-sensitive strategies into the SUT. The test coordinator sets two timers to control the
testing time and checking time by sending different signals to the system nodes. Meanwhile, Phoenix uses two checkers to detect
whether the SUT has resilience issues. (2) During the context-sensitive locating phase, Phoenix first collects context-sensitive
strategies into a pool. Afterward, Phoenix uses a reproduce coordinator to generate and execute the reproduction sequence. It
then checks whether the issue has been successfully reproduced by comparing the system’s states and logs.

three specific strategies: block/transaction data corruption, byzan-
tine attacks, and node partition.

Block/transaction data corruption. This strategy means delet-
ing or polluting a blockchain node’s block and transaction data. It
is used to mimic the situation where a node’s storage is faulty or
maliciously altered. This is common in a blockchain system. Many
accidents can lead to this situation, such as flaws in the underlying
database software or physical storage device failures. To trigger re-
silience issues under this situation more effectively, Phoenix injects
this strategy with a certain probability under two contexts: (1) a
node needs to read the stored block data, and (2) it writes new data
to the disk. Phoenix implements this strategy by removing the data
files or appending dirty data to them.

Byzantine attacks. This strategy imitates byzantine attacks
when hackers compromise a node. By adding cheating information
in the consensus process, a hacker may gain profit by convincing
other nodes to accept invalid execution results. Considering the
severe consequences caused by such attacks, most of the consor-
tium blockchains have supported BFT-based (stands for byzantine
fault tolerant) consensus algorithms to achieve consistency (e.g.,
SmartBFT [22] in Hyperleger Fabric, QBFT [43] in Quorum and
PBFT [5] in FISCO-BCOS.). Meanwhile, public blockchains leverage
PoW [29] or PoS [28] consensus algorithms that resist byzantine
attacks. However, implementing such algorithms may contain vul-
nerabilities that become resilience issues. Phoenix uses this strategy
in two contexts: (1) before sending consensus packets and (2) after
receiving consensus packets. To implement the byzantine attacks,
Phoenix messes with the order of the sending packets, repeating
some packets, modifying packet contents, and sending different
packets to different target nodes. By doing so, nodes in the SUT

may behave erroneously after receiving incorrect packets. Phoenix
uses this strategy to test whether the SUT can resist such attacks.

Node Partition. This strategy simulates the situation where
nodes are separated from others in a group. Performing this strategy
will create partitions in the blockchain systems. For example, nodes
shut down due to a power failure or a network connection problem.
Phoenix instruments this strategy with a certain probability in two
contexts: (1) after a synchronization process is finished successfully
(the same as the motivating example.), (2) before sending new syn-
chronization requests. To achieve this, Phoenix first disconnects
the chaos nodes’ network and then reconnects it.
4.1.2 Test Coordinator. Phoenix contains a test coordinator to
schedule the execution of chaos strategies. The main function of
this coordinator is to let the SUT know when chaos tests should
be performed and when checks should be performed. To achieve
this goal, the coordinator implements a phase controller containing
two timers and a signal channel.

In the chaos testing phase, whose duration is set by the 𝑇1 timer,
the SUT performs chaos strategies defined by Phoenix. While in the
recovery phase, whose duration is set by the𝑇2 timer, Phoenix stops
all the strategies and checks whether there are resilience issues
in the SUT. Phoenix tells the SUT the current phase by sending
two signals: SIGCHAOS and SIGRECOVER. When a node receives
SIGCHAOS, it executes the predefined chaos strategies randomly.
In contrast, if a node receives SIGRECOVER, it stops all the running
strategies and does not perform new chaos strategies.

The workflow of the test coordinator during the chaos testing
phase can be referred to as Algorithm 1. The algorithm inputs
contain the chaos testing duration 𝑇1 and the system recovery
duration 𝑇2. The program contains a while true loop, as shown in
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Algorithm 1: Chaos phase controlling
Input :Chaos testing duration: 𝑇1, System recovery

duration: 𝑇2
1 Function chaosControl(𝑇1, 𝑇2):
2 setCurrentPhase (-1);
3 while true do
4 start = clock();
5 // In the chaos testing phase
6 while clock() - start < 𝑇1 do
7 if getCurrentPhase() != 0 then
8 setCurrentPhase(0);
9 sendSignal(SIGCHAOS);

10 end
11 end
12 // In the recovery phase
13 while clock() - start < 𝑇1 + 𝑇2 do
14 if getCurrentPhase() != 1 then
15 setCurrentPhase(1);
16 sendSignal(SIGRECOVER);
17 stopAllStrategies();
18 end
19 suc = performChecking();
20 // SUT is recovered
21 if suc == true then
22 𝑎𝑐𝑡𝑢𝑎𝑙_𝑇 2 = clock() - start - 𝑇1;
23 record(𝑎𝑐𝑡𝑢𝑎𝑙_𝑇 2);
24 break;
25 end
26 end
27 // SUT is in unrecoverable state
28 if clock() - start > 𝑇1 + 𝑇2 then
29 reportIssue();
30 end
31 end
32 End Function

line 3 in the algorithm. In the loop, the coordinator first gets the
current timestamp by using the function clock() as shown in line 4.
Lines 6-11 describe the chaos testing phase. Phoenix first gets the
current phase from a global variable (0 indicates the chaos testing
phase, and 1 indicates the recovery phase. ). If the variable is not 0,
Phoenix updates it to 0 and sends the signal SIGCHAOS to chaos
nodes. The recovery phase is shown in lines 13-26. Line 14-18 shows
a similar process as the last phase, which resets the global variable
to 1 and sends the SIGRECOVER signal. In addition, the coordinator
also stops all the running chaos strategies in this phase, as line
17 shows. After that, the coordinator checks resilience issues to
identify whether the SUT recovers to the normal state. If the SUT
is recovered, the 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔() returns true. Otherwise, it
returns false. As lines 21-25 show, if the result is true, then Phoenix
calculates and records the actual recovery time of the system and
jumps out of the checking phase. If the result is false, Phoenix
performs the checking repeatedly until the duration 𝑇2 is up. As

lines 28-30 show, if 𝑠𝑢𝑐 is still false after 𝑇2, the blockchain system
is unrecoverable. And Phoenix considers there is a resilience issue.

The coordinator generates strategies in the following manner:

• Distribution: The distribution of strategies in a sequence aligns
with the actual behaviors of blockchains. More frequent behav-
iors are associated with a higher distribution of corresponding
strategies. For instance, consensus processes occur more fre-
quently than data sync, resulting in consensus-based strategies
having broader distributions than data sync-based strategies.

• Heuristics: The heuristics employed by Phoenix prioritize more
frequent behaviors as being more significant and susceptible
to resilience issues. Thus we instrument the chaos strategies
in these frequent behaviors, like conducting byzantine attacks
before sending consensus packets.

4.1.3 Resilience Issue Checker. The resilience issue checker is re-
sponsible for checking whether the SUT recovers to the normal
state after stopping the chaos strategies within 𝑇2. There are two
checkers in Phoenix’s design, corresponding to the two types of
resilience issues respectively. The first checker is the Node Checker.
It checks whether each node in the SUT is still alive and works
functionally. To be specific, the node checker first checks whether
the process of each node still exists. If the process of each node is
alive, the checker will then send a series of transactions to each
node and see whether they can be processed correctly. In this way,
the checker covers both node crashes and transaction processing
stuck introduced in the node unrecoverable issue.

The other checker is theData Checker. It checks whether the data
in each node are still consistent and valid. Specifically, the checkers
first check whether each node’s block is equivalent. Secondly, the
checker checks whether any nodes commit and store the polluted
data generated by the chaos testing. This checker covers the data
unrecoverable issues, including data inconsistency and polluted
data storage, as described in Section 3.

4.2 Context-Sensitive Locating
In this section, we introduce how Phoenix locates and reproduces
the detected resilience issues. First, we introduce how to collect the
context-sensitive strategy pool, then we describe how the repro-
duction coordinator works, and finally, we give the details of two
reproduction result checkers.

4.2.1 Context-Sensitive Strategy Pool. The reproduction process
first maintains a strategy pool consisting of all the performed chaos
strategies from all chaos nodes in the SUT. As Figure 5 shows, a
strategy is represented as a quaternion: < 𝑇𝑖 , 𝑁 𝑗 , 𝐻𝑚, 𝑆𝑛𝑆/𝑆𝑛𝐸 >.𝑇𝑖
represents the timestamp of the strategy. 𝑁 𝑗 means the id of the
node that performed this strategy. 𝐻𝑚 refers to the hook context
where the strategy is injected. In the implementation of Phoenix,
the context is represented as a variable with enumerate type. The
last element 𝑆𝑛𝑆 or 𝑆𝑛𝐸 indicates the strategy id and the state of
the strategy (𝑆 means start while 𝐸 means end.). For example, <
𝑇4, 𝑁0, 𝐻3, 𝑆1𝑆 > describes a strategy with the id 1 has started at the
time 𝑇4. This strategy is performed by the node 𝑁0 at the context
𝐻3. (𝐻3 represents the fourth element in the enumerate.) While
< 𝑇5, 𝑁0, 𝐻3, 𝑆1𝐸 > means that this strategy has ended at 𝑇5.
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During the chaos testing process, each chaos node in the SUT
records the strategies performed by itself. These strategies are
stored by timestamps in various files named after each node’s id.
After detecting a resilience issue, Phoenix collects the strategies
from each node’s file into the pool. Currently, the pool contains all
the strategies performed by each chaos node. Phoenix then sorts
all the strategies according to their timestamps. In this way, the
first strategy in the pool is the oldest, while the last strategy is
the newest one. As shown in Figure 6, < 𝑇25, 𝑁3, 𝐻1, 𝑆4𝐸 > is the
newest strategy which happens at 𝑇25.

4.2.2 Reproduce Coordinator. The reproduce coordinator is respon-
sible for guiding the SUT to perform precisely the same strategies
as those that have triggered the resilience issue in the reproduction
process. Figure 6 shows the workflow of this coordinator in the
reproduction process.
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Figure 6: The reproduction workflow of Phoenix. It first
selects the reproduction sequence for each round and then
sends signals to different nodes to guide their behaviors.

The coordinator first selects 2𝑛 latest strategies from the strategy
pool. Here 𝑛 represents the number of the current reproduction
round. In the 1𝑠𝑡 round, the Phoenix coordinator selects the lat-
est 2 strategies in the pool, which are < 𝑇24, 𝑁1, 𝐻2, 𝑆2𝑆 > and
< 𝑇25, 𝑁3, 𝐻1, 𝑆4𝐸 > in Figure 6. However, the latest strategy de-
scribes an ending strategy for which we could not find a corre-
sponding starting strategy in the current sequence. In this situation,
Phoenix appends an initial strategy to the sequence, as the red strat-
egy shows in the figure. For the first round sequence, the appended
strategy is < 𝑇00, 𝑁3, 𝐻1, 𝑆4𝑆 >. 𝑇00 here is a special timestamp
symbol which means ‘before all other strategies’. As we can see
in the 2𝑛𝑑 round sequence in the figure, Phoenix has to append
two starting strategies with 𝑇00. In this situation, the two strate-
gies will be executed simultaneously if they are related to different
nodes. If two strategies with 𝑇00 point to the same node, they will
be executed in the order of their corresponding ending strategies.

After selecting the proper strategy sequence for each repro-
duction round, Phoenix executes them sequentially by sending
signals to each SUT node. For example, in the 1𝑠𝑡 reproduction
round, Phoenix guides the SUT to execute the first strategy: <
𝑇00, 𝑁3, 𝐻1, 𝑆4𝑆 >. This strategy is performed by node 3 at position
𝐻1, and the strategy id is 4. Thus, Phoenix will send a signal SI-
GREST to all other nodes and send a signal SIG-H1S4 to node 3.
The signal SIGREST tells a node that it should stop performing
any chaos strategy currently. To achieve this, each node will just
adjust its chaos execution probability to 0% by receiving this signal.

Thus, all nodes except for node 3 will stop performing any chaos
strategy. While the signal SIG-H1S4 tells a node to execute strategy
with the id 𝑆4 at the position 𝐻1. Similarly, the corresponding node
adjusts its chaos execution probability at 𝐻1 to 100%. And node 3
will certainly execute the strategy 𝑆4. After this strategy is executed
successfully, a signal SIGDONE is sent to the coordinator from node
3, and Phoenix switches to the next strategy in the sequence, which
is < 𝑇24, 𝑁1, 𝐻2, 𝑆2𝑆 >. It sends SIGREST to node 0, node 2, and node
3 and sends SIG-H2S2 to node 1. Thus, node 0, node 2, and node
3 will not execute any chaos strategy, and node 1 will certainly
execute strategy 𝑆2 at position 𝐻2 In this way, Phoenix can guide
the SUT to perform specific strategies in the reproduction process.

4.2.3 Reproduction Result Checker. After performing all the strate-
gies in the sequence of the current round, Phoenix first leverages
the resilience issue checker, as we introduced in Section 4.1.3 to
check whether a bug occurs. If not, it indicates that the current
reproduction round has failed. Phoenix tries to reproduce the bug
with more strategies in the next round until all of the strategies in
the pool are consumed. If there is a bug in the current reproduction
round, Phoenix will use two reproduction result checkers to check
whether the bug is the same as the found issue. The first checker
is a state comparison checker. It checks if the current bug has the
same unrecoverable state as the original one. The unrecoverable
state of a resilience issue means the consequence it causes, such
as node crashes or data inconsistency. If they have the same state,
Phoenix will then use the second checker, a log comparison checker.
This checker compares the current log information of each node
to tell whether the two bugs are the same. This checker only fo-
cuses on some important information about the current issue. For
example, if the issue leads to a node crash, this checker will focus
on the call stack that triggers the crash. As for data inconsistent
issues, it checks the execution result in the log to judge whether
they are inconsistent in the same way. If any checkers fail, Phoenix
considers reproduction unsuccessful in this round. It moves to the
next reproduction round and selects more strategies from the pool.

5 IMPLEMENTATION
In this section, we describe some implementation details of Phoenix.
We implemented and evaluated Phoenix in 5 blockchain systems,
Hyperledger Fabric (version 2.3.0 [39]), FISCO-BCOS (version 3.1.0
[27]), Quorum (version 1.1.0 [10]), Go-Ethereum (version
1.10.25 [57]) and BSC (version 1.1.17 [2]). They are chosen because of
their popularity and diversity. Hyperledger Fabric is one of the most
popular enterprise-grade blockchains. It has been widely used in
many industrial environments, such as A.P. Moller-Maersk, Allianz,
Ant Group, Tencent, etc. FISCO-BCOS is another popular financial-
grade consortium blockchain that has already been applied in many
financial areas, e.g., loans. Quorum is a consortium blockchain
protocol forked from the well-known Ethereum blockchain proto-
col [32]. While Go-Ethereum and BSC (Binance Smart Chain) are
well-known and most active public chains that support dapps in the
world. All 5 blockchain systems come from different organizations.
Fabric is developed by IBM in Go, FISCO-BCOS by WeBank in C++,
Quorum by ConsenSys in Go, Go-Ethereum by Ethereum Org in
Go, and BSC by Binance in Go. Implementation and evaluation
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of these blockchain systems can demonstrate that Phoenix is a
cross-platform testing framework with high scalability.
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Figure 7: The implementation architecture of Phoenix.
Phoenix utilities are packaged as a library and inserted into
the node code. While Phoenix coordinator is a binary pro-
gram that runs independently from the nodes in the SUT.

Figure 7 shows the implementation architecture of Phoenix. The
key components of Phoenix are divided into two parts: Phoenix
utilities and Phoenix coordinator. Phoenix utilities are packaged
into a library. The blockchain node’s original code will link it during
the compilation. The utilities include predefined chaos strategies,
a signal channel that guides the node to receive and send signals
to the Phoenix coordinator, and a local strategy pool that records
the strategies executed by the current chaos node. While the other
components of Phoenix are compiled into a binary program named
Phoenix coordinator. This program contains two checkers, a signal
channel, and a global strategy pool that collects all the performed
strategies from each chaos node’s local strategy pool. The signal
channel in the utilities is responsible for sending SIGDONE and re-
ceiving all other signals. While the signal channel in the coordinator
sends SIGCHAOS, SIGRECOVER, etc, and receives SIGDONE.

Phoenix Deployment. During the deployment, Phoenix util-
ities are attached to 1/3 or 1/2 of the nodes in the SUT. This is to
comply with the limits of related consensus protocols. The work-
load of a blockchain generally consists of various transactions based
on smart contracts. To generate the workloads for each blockchain,
we draw on each system’s transaction generation program. Specifi-
cally, for Hyperledger Fabric, we use the smart contracts provided
in the samples [40] given by the developers. For FISCO-BCOS, we
use its stress testing scripts [26], which generate plenty of trans-
actions based on a bank contract. For Quorum, Go-Ethereum, and
BSC, we utilize a transaction firing tool called chainhammer [19].
To deploy Phoenix, one should start a group of blockchain nodes,
several of which are attached to Phoenix utilities. Afterward, start
the Phoenix coordinator and workload generation programs.

Phoenix Adaption. In the Implementation and Evaluation sec-
tions, we only adapted Phoenix to 5 commonly-used blockchain
systems: Hyperledger Fabric, FISCO-BCOS, Quorum, Go-Ethereum,
and BSC. They are widely used and implemented in different ways,
demonstrating that Phoenix effectively detects resilience issues.
However, Phoenix can be easily adapted to a new blockchain sys-
tem by the following three steps:
(1) Locate the source codes which conduct the consensus and data

sync, like message-passing and storage interfaces. This step

marks the exact positions that chaos strategies should be in-
jected. According to the context information, different posi-
tions are marked with flags to indicate which strategy should
be injected. For example, the code position before sending a
consensus packet will be marked as ‘Byzantine attacks,’ which
means a byzantine chaos strategy should be added here.

(2) Inject the chaos strategies implemented in the Phoenix utility
library. This injects proper strategies as well as the signal chan-
nels into the marked positions. Each strategy is equipped with
a signal channel that sends and receives corresponding signals,
which tells Phoenix whether the current strategy is triggered.

(3) Add issue checkers to monitor node processes and logs. Both
resilience issue checker and issue reproduction checker should
be tailored to the concrete log files of the target blockchain
system. Specifically, for the resilience issue checker, developers
should check the node liveness and functionality as well as
the data inconsistency and pollution by identifying the log
information of each node. Similarly, developers also need to
implement a concrete way of comparing the log and states of
the bugs during the reproduction process.

In addition, developers may use a different way to generate the
workload in another blockchain.

6 EVALUATION
To evaluate the effectiveness of Phoenix, we compared it with
state-of-the-art chaos tools: ChaosBlade [7] and Jepsen [42]. In
addition, we also compared Phoenix with chaos tools targeted at
blockchain systems like CHAOSETH [73] and BlockBench [15].
Considering that they do not aim at detecting bugs, we enhanced
themwith Phoenix’s Resilience Issue Checkers for a fair comparison.
Another tool named Hermes [49] detects bugs in BFT protocols
by corrupting packet content. We also compare Phoenix with it in
our evaluation. We ran a blockchain network of 10 nodes locally.
The binary of FISCO-BCOS is hardened by AddressSanitizer [16]
to detect latent bugs. For Phoenix and all other tools, we set up a
group with 10 nodes for each target blockchain system and set 3 of
them as nodes conducting chaos strategies. All the experiments are
conducted several times on a 64-bit machine with 128 cores (AMD
EPYC 7742). The OS of the machine is Ubuntu 20.04.1 LTS, and the
main memory is 512 GB. We design experiments to address these
research questions:

• RQ1: Is Phoenix effectively finding resilience issues in real-
world blockchain systems?

• RQ2: Can Phoenix cover more blockchain systems branches
than other tools?

• RQ3: Does Phoenix reproduce resilience issues accurately
and quickly?

• RQ4: Can Phoenix efficiently help improve the resilience of
blockchain systems?

6.1 Resilience Issues Detection
We ran Phoenix on all 5 blockchain systems. Since nodes in Fab-
ric run in docker containers and tools, including ChaosBlade and
Jepsen do not support it, we do not run them on Fabric. While
CHAOSETH only supports Ethereum, we ran it only on Quorum,
Go-Ethereum, and BSC (Quorum and BSC are both based on the



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Fuchen Ma et al.

Table 1: Previously-unknown Resilience vulnerabilities found by Phoenix in 24 hours on 5 commonly-used blockchain systems.
Phoenix detected 3, 4, 3, 2 and 1 bugs in Fabric, Quorum, FISCO-BCOS, Go-Ethereum and BSC respectively.

# Platform Bug Type Bug Description Identifier
1 Fabric Node Unrecoverable SIGSEGV: Node crashed down when starting syncing data after data chaos. Bug#3879
2 Fabric Node Unrecoverable Node panic in runtime: nil pointer dereference in ledger snapshot comparison. Bug#3878
3 Fabric Data Unrecoverable Constantly refusing blocks from the network when syncing block data. Bug#3872
4 Quorum Data Unrecoverable After block data chaos, Downloader in syncing process continuously failed. Bug#1589
5 Quorum Node Unrecoverable Node crashes down after receiving a polluted block in the block syncing process. Bug#1588
6 Quorum Node Unrecoverable Node breaks down due to the data race in graphql, missing atomic operation. Bug#1638
7 Quorum Data Unrecoverable Node stop syncing block with others after mistakenly executing data rollback. Bug#1651
8 FISCO-BCOS Data Unrecoverable The execution results of transactions are not correct. Account balance is wrong. Bug#3177
9 FISCO-BCOS Node Unrecoverable SIGSEGV: Node crashed when executing multiple transactions during the chaos. Bug#3271
10 FISCO-BCOS Node Unrecoverable Nodes are stuck and stop handling transactions due to header polluted in block sync. Bug#3307
11 Go-Ethereum Data Unrecoverable Geth client constantly fails to handle tx due to data race after plenty of data drops. Bug#27480
12 Go-Ethereum Node Unrecoverable Node crashes down due to nil pointer dereference error when sync re-starts. Bug#27173
13 BSC Data Unrecoverable Node’s state cannot update after multiple snapshot pending processes. Bug#1593

Table 2: Bugs found by Phoenix and other chaos tools. Other
tools detect less than 3 bugs due to chaos strategies without
context.While Phoenix detects 13 unknown resilience issues.

Tool Name Bugs Found Bugs Number
Phoenix 13 bug#1-bug#13
ChaosBlade 3 bug#6, bug#8, bug#9
Jepsen 3 bug#6, bug#8, bug#9
CHAOSETH 1 bug#6
BlockBench 1 bug#6
Hermes 1 bug#9

code of Ethereum). And for Hermes, we ran it on Fabric, Quorum,
and FISCO-BCOS, which support BFT algorithms. Phoenix detects
13 previously unknown resilience vulnerabilities, including 3 in
Fabric, 4 in Quorum, 3 in FISCO-BCOS, 2 in Go-Ethereum, and 1 in
BSC. Their details are listed in Table 1. On average, Phoenix needs
31 samples and costs 24.6 minutes to trigger a bug. The reason
why public blockchains have relatively fewer resilience issues is
that they are constantly exposed to chaotic environments and have
already unwittingly been subject to some common anomalies.

The corresponding vendors confirmed and repaired all the bugs
at the time of paper submission. 7 bugs (#1, #2, #5, #6, #9, #10, #12)
are of the type ‘Node unrecoverable.’ They cause the nodes in the
blockchain network to crash down or transactions to get stuck
and can not be recovered. Eventually, the blockchain system is out
of service. These bugs can lead to DDoS attacks. 6 bugs (#3, #4,
#7, #8, #11, #13) are of the type ‘data unrecoverable.’ This type of
bug makes the block data of each node in the blockchain network
become inconsistent or invalid and can not be recovered, leading
to data loss. These bugs may lead to the acceptance of an incorrect
transaction result and cause huge asset losses. For example, bug#8
leads to the incorrect calculation results of the user balance.

To analyze the false positives, we manually checked all the issues
detected by Phoenix, and no false positives were found. This is be-
cause the maximum recovery duration𝑇2 we set in the experiments
is 10 minutes.According to our recovery experiment in Section 6.4,

the maximum recovery is less than 5 minutes. Hence, 10 minutes is
long enough to eliminate the false positives.

The bug detection results of other tools are listed in Table 2. In
our experiments, ChaosBlade and Jepsen only detected 3 resilience
bugs (bug #6, bug #8, and bug #9). However, they did not find
the rest of the 10 bugs because these resilience bugs are hidden
in the relatively deep logic of the blockchain system. To trigger
them, context-sensitive chaos strategies should be performed. As
for CHAOSETH and BlockBench, they only detect 1 issue (bug#6).
They cannot detect the rest resilience issues because their strategies
are plain and lack context information. They only inject errors in
system call invocation and ignore blockchain features like data
synchronization and consensus. For Hermes, it only detects 1 issue
(bug#9) because it lacks strategies such as data polluting, network
partitions, and sending different packets to different nodes. With
the help of the well-designed chaos strategies, Phoenix success-
fully detected all 13 resilience bugs, proving the effectiveness of
Phoenix in detecting resilience issues in real-world blockchain sys-
tems, which adequately answers RQ1. Compared with other tools,
Phoenix found all the bugs that they found.

6.1.1 Case Study. Now we use one case to illustrate how the re-
silience issues detected by Phoenix affect the whole blockchain
system. This case is the bug #1 listed in Table 1. This bug is a
Node Unrecoverable bug that causes some nodes to crash and can
not be recovered in the blockchain network. It is found in version
2.3 of Fabric. The code snippet in figure 8 describes the detailed
information of this resilience vulnerability.

Function ‘Release()’ is implemented to disconnect the node from
the database after the block data is updated. In line 14, the 𝑖 .𝑑𝑏
will be set to 𝑛𝑖𝑙 . In line 13, 𝑖 .𝑑𝑏 will be accessed when executing
𝑎𝑡𝑜𝑚𝑖𝑐.𝐴𝑑𝑑𝐼𝑛𝑡32(). When the function ‘Release()’ is called in high
concurrency, invalid memory panic occurs when 𝑖 .𝑑𝑏 is set to 𝑛𝑖𝑙
by other threads before executing code in line 16. As a result, the
nodes crash, stop all their functional services, and cannot recover
automatically. In our experiments, this Node Unrecoverable bug
was only found by Phoenix. In Phoenix’s chaotic situations, many
malicious database access requests are sent to normal nodes. After
receiving them, nodes have to access their local data frequently in
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1 func (i *dbIter) Release() {

2 if i.dir != dirReleased {

3 runtime.SetFinalizer(i, nil)
4 if i.releaser != nil {

5 i.releaser.Release()

6 i.releaser = nil
7 }

8 i.dir = dirReleased

9 i.key = nil
10 i.value = nil
11 i.iter.Release()

12 i.iter = nil
13 atomic.AddInt32(&i.db.aliveIters, -1)

14 i.db = nil
15 }

16 }

Figure 8: A Node Unrecoverable bug that can crash normal
nodes in the fabric SmartBFT blockchain network.

a short time. Thus, there is a high probability that they will execute
the code in parallel and eventually trigger the bug.

6.2 Testing Coverage
In this section, we calculated the branch coverage of each
blockchain system under Phoenix and other state-of-the-art tools.
To achieve coverage, we use different ways for different systems.
For Fabric, Quorum, Ethereum, and BSC, which are written in the
Go language, we use gtest [18] to fetch the branch coverage. As for
FISCO-BCOS, we use gcov [17] to collect the coverage information.
The results are shown in Table 3.

Table 3: The branch coverage of Phoenix and other tools on
5 blockchain systems in 24 hours. ’-’ means the tool does not
support the corrsponding system.

Phoenix ChaosBlade ChaosETH BlockBench Jepsen Hermes
Fabric 13,126 - - 10,588 - 11,983
Quorum 11,932 9,903 9,263 9,067 10,263 9,816

FISCO-BCOS 31,463 24,202 - - 21,057 23,180
Ethereum 11,663 9,682 9,141 8,932 9,527 -

BSC 12,058 9,729 9,210 9,047 9,768 -

The data in the table shows that Phoenix always outperforms
other tools on all 5 evaluated blockchains. Phoenix covers 9.54%-
49.42% more branches because it utilizes the blockchain-specified
chaos strategies, which are instrumented in the corresponding
context. While other tools only conduct chaos testing at a coarse-
grained level without knowing the context of the blockchain system.
The results adequately answer RQ2.

In addition, we also analyze Phoenix’s coverage and identify the
top 3 covered components: consensus component, block sync com-
ponent, and transaction execution component, with 3,462, 1,986, and
1,783 branches on average. While ChaosBlade covers 1,965, 1,529,
and 1,623 branches for these components. This demonstrates that
the strategies implemented by Phoenix are effective in triggering
more execution logic in the corresponding components. However,
Phoenix only covered 515 branches in the encryption component
on average. This is because a blockchain system may only use a few

of the designed encryption methods in a specific configuration. En-
cryption components are important, but Phoenix currently cannot
test more logic in them. We will try to enhance Phoenix with more
strategies, such as restarting a node with a different configuration
and cover more branches in such components.

6.3 Resilience Issues Reproduction
To evaluate the ability of Phoenix’s reproduction, we re-execute the
chaos strategy sequences according to the reproduce coordinator’s
guidance and record the sequence length and reproduction time.
We repeated the reproduction experiment multiple times and used
average values to eliminate experimental errors. The results are
shown in Table 4.

Table 4: The average sequence length and reproduction time
required for the Coordinator to reproduce each resilience
bug detected by Phoenix.

Bug Number Sequence Length Reproduce time (s)
Bug#1 3 157
Bug#2 2 133
Bug#3 10 1413
Bug#4 16 5295
Bug#5 3 103
Bug#6 3 89
Bug#7 5 861
Bug#8 2 537
Bug#9 3 72
Bug#10 2 613
Bug#11 3 381
Bug#12 10 2419
Bug#13 5 1084

From Table 4, we found that Phoenix could successfully repro-
duce all the 13 detected resilience bugs. The average sequence
length of these bugs is 5.15, and the average reproduction time is
1,872.85 seconds. These statistics demonstrate that Phoenix can
reproduce these resilience issues accurately and quickly, which
adequately answers RQ3.

We also found that most resilience issues can be reproduced
within 3 sequence steps (Bug #1, Bug #2, Bug #5, Bug #6, Bug #8,
Bug #9, Bug #10, and Bug #11). And their reproduction time is rela-
tively short, 260.6 seconds on average. This reveals that most bugs
occur at relatively shallow levels, and Phoenix can quickly detect
and reproduce them with our context-sensitive chaos strategies.
However, some bugs are hidden in deeper logic, such as Bug #3, Bug
#4, and Bug #12. They need 10, 16, and 10 sequence steps. Phoenix
can also detect and reproduce them, demonstrating that Phoenix
can efficiently detect resilience issues in deep paths.

6.3.1 Reproduction case. To help better understand how Phoenix
reproduces these resilience bugs, we use one case to illustrate the
detailed process. The case is the bug #4 listed in Table 1. This
bug is a Data Unrecoverable bug that causes some nodes to stop
syncing their block data and can not be automatically recovered in
the blockchain network. To reproduce this bug, 16 sequence steps
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are required for Phoenix. Figure 9 shows the detailed reproduction
process. Node 7, node 8, and node 9 are the chaos nodes, and the
rest of the nodes are normal nodes.

1st round sequence
<𝑇!", 𝑁#, 𝐻"!	, 𝑆#$	>
<𝑇!%, 𝑁!&, 𝐻"!	, 𝑆#$	>

2nd round sequence

S1: Block polluted
S2: Block drop
S3: Transaction Polluted
S4: Transaction drop

3rd round sequence 4th round sequence

<𝑇&&, 𝑁!&, 𝐻!'	, 𝑆!$	>
<𝑇&&, 𝑁(	, 𝐻"!	, 𝑆#$	>
<𝑇!*, 𝑁!&, 𝐻!'	, 𝑆!+	>
<𝑇!,, 𝑁(	, 𝐻"!	, 𝑆#+	>
<𝑇!", 𝑁#	, 𝐻"!	, 𝑆#$	>
<𝑇!%, 𝑁!&, 𝐻"!	, 𝑆#$	>

<𝑻𝟏	, 𝑵𝟖	, 𝑯𝟏𝟗	, 𝑺𝟓𝑺	>
<𝑻𝟐	, 𝑵𝟏𝟎, 𝑯𝟐𝟔	, 𝑺𝟔𝑺	>
<𝑇*	, 𝑁(	, 𝐻!#	, 𝑆"+	>

<𝑻𝟒	, 𝑵𝟗	, 𝑯𝟐𝟔	, 𝑺𝟔𝑺	>
<𝑻𝟓	, 𝑵𝟖	, 𝑯𝟏𝟐	, 𝑺𝟏𝑺	>
<𝑇%	, 𝑁!&, 𝐻'%	, 𝑆%6	>
<𝑻𝟕	, 𝑵𝟗		, 𝑯𝟏𝟐	, 𝑺𝟏𝑺	>
<𝑇(, 𝑁#	, 𝐻'%	, 𝑆%+	>

<𝑻𝟗	, 𝑵𝟏𝟎, 𝑯𝟏𝟐	, 𝑺𝟏𝑺	>
<𝑇!&, 𝑁#	, 𝐻!'	, 𝑆!+	>
<𝑇!!, 𝑁(	, 𝐻!'	, 𝑆!+	>

<𝑻𝟏𝟐, 𝑵𝟖	, 𝑯𝟓𝟏	, 𝑺𝟗𝑺	>
<𝑇!*, 𝑁!&, 𝐻!'	, 𝑆!+	>
<𝑇!,, 𝑁(	, 𝐻"!	, 𝑆#+	>

<𝑻𝟏𝟓, 𝑵𝟗	, 𝑯𝟓𝟏	, 𝑺𝟗𝑺	>
<𝑻𝟏𝟔, 𝑵𝟏𝟎, 𝑯𝟓𝟏	, 𝑺𝟗𝑺	>

<𝑇&&, 𝑁(	, 𝐻!'	, 𝑆!$	>
<𝑇&&, 𝑁#	, 𝐻!'	, 𝑆!$	>
<𝑇#	, 𝑁!&, 𝐻!'	, 𝑆!$	>
<𝑇!&, 𝑁#	, 𝐻!'	, 𝑆!+	>
<𝑇!!, 𝑁(	, 𝐻!'	, 𝑆!+	>
<𝑇!', 𝑁(	, 𝐻"!	, 𝑆#8	>
<𝑇!*, 𝑁!&, 𝐻!'	, 𝑆!+	>
<𝑇!,, 𝑁(	, 𝐻"!	, 𝑆#+	>
<𝑇!", 𝑁#	, 𝐻"!	, 𝑆#$	>
<𝑇!%, 𝑁!&, 𝐻"!	, 𝑆#$	>

S5: Malicious message
S6: Duplicate message
S7: Message drop
S8: Message Delay
S9: Connection break

Figure 9: Reproduction steps of Bug #4. The coordinator
selects 2, 6, 10, and 16 steps for each round to reproduce it.

To reproduce this bug, the reproduce coordinator first selects the
2 latest strategies from the strategy pool in the first reproduction
round, as shown in Figure 9. Then it checks whether there is an
ending strategy without a corresponding starting strategy. Since
both of them are starting strategies, no initial strategy needs to
be appended. Because 𝑇15 < 𝑇16, the coordinator sends a signal
SIGREST to all other nodes and sends a signal SIG-H51S9 to node
9. After the connection break strategy is finished, the coordinator
will receive a signal SIGDONE from node 9. Then the coordinator
sends a signal SIG-H51S9 to node 10 and asks other nodes to stop
their chaos strategies. In the meantime, the result checker monitors
whether the nodes trigger the bug #4 again.

After the result checker finds that bug #4 is not triggered success-
fully, the Phoenix coordinator starts the second reproduction round
and selects the 4 latest strategies from the strategy pool. Since the
first two strategies < 𝑇13, 𝑁10, 𝐻12, 𝑆1𝐸 > and < 𝑇14, 𝑁8, 𝐻51, 𝑆9𝐸 >

are the ending strategies, the coordinator appends two starting
strategies at the beginning of the sequences. Then it begins the
strategies re-execution. Similarly, this bug is not reproduced until
the fourth round. In the fourth reproduction round, the Phoenix co-
ordinator schedules the nodes to re-execute the 16 latest strategies
based on their timestamps. Finally, this bug has been successfully
reproduced by Phoenix. In fact, after our manual analysis, nine of
the most important steps are needed to reproduce the bug. Step
1, node 1 first broadcasts a malicious block syncing message to
the normal nodes. Steps 2-3, then node 9 and node 10 repeatedly
send this malicious message. Steps 4-6, node 8, node 9, and node 10
pollute their block data after other normal nodes ask for syncing
their nodes. Steps 6-9, node 8, node 9, and node 10 break their con-
nection during the syncing process. After these steps, normal nodes
mistakenly handle such chaotic situations and stop syncing block
data from other nodes, which cannot be recovered automatically.

6.4 Resilience Improvement
The resilience of the blockchain systems can be measured by chaos
resist time 𝑇1 and chaos recovery time 𝑇2. To evaluate whether the

resilience of blockchain systems under test improves or not after
fixing the resilience issues detected by Phoenix, we ran Phoenix
on the 5 target blockchain systems before and after their fixes. We
recorded the number of detected bugs and the recovery time 𝑇2 un-
der different chaos testing duration𝑇1. We repeated the experiments
multiple times and used average values to eliminate experimental
errors. The results are shown in Table 5.

Table 5: The average number of detected bugs and the recov-
ery time 𝑇2 under different chaos testing duration 𝑇1 before
the bug fixes and after the bug fixes.

Before The Bug Fixes
T1 (min) 10 20 40 60 80 100
Number of Bugs 6 9 11 13 13 13
T2 (min) ≥10 ≥10 ≥10 ≥10 ≥10 ≥10

After The Bug Fixes
T1 (min) 10 20 40 60 80 100
Number of Bugs 0 0 0 0 0 0
T2 (min) 1.71 2.23 2.93 3.97 4.58 5.79

From the first fourth rows of Table 5, we can find that before these
resilience bugs are fixed, the number of detected bugs increases as
the chaos testing time 𝑇1 grows. Most bugs are triggered within 20
min chaos testing (Bug #1, Bug #2, Bug #5, Bug #8, Bug #9, and Bug
#11). This is because they are at the code’s shallow levels, which
Phoenix can detect quickly. However, the bugs hidden in deeper
paths, such as #Bug 3, #Bug 4, and #Bug 12, can also be detected
when the chaos testing time 𝑇1 increases. The recovery time 𝑇2 is
always larger than 2 hours because all these resilience bugs can not
be recovered automatically.

After all these resilience bugs were fixed, no new bugs were
found in 60 minutes of chaos. Blockchains under test can always
recover automatically. The average recovery time increases slightly
when the chaos testing time𝑇1 grows. They are 1.71, 2.23, 2.93, 3.97,
4.58 and 5.79 minutes, respectively. After fixing the resilience bugs
reported by Phoenix, we found that the number of bugs decreased
rapidly, from 13 to 0. The average resisting time increases 143.9%,
from 24.6 minutes to ≥ 60 minutes. Since the blockchain cannot
recover before the bugs are fixed, the recovery time is declined from
infinite to 2.71 minutes. The declined ratio is unbounded. These
statistics demonstrate that Phoenix can effectively improve the
resilience of blockchains, which adequately answers RQ4.

In practice, it is recommended to set 𝑇𝑐ℎ𝑎𝑜𝑠 to 60 minutes and
𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 to 10minutes for the 5 evaluated blockchains (HyperLedger
Fabric, Quorum, FISCO-BCOS, Go-Ethereum and BSC). This is be-
cause a lower 𝑇𝑐ℎ𝑎𝑜𝑠 may miss some bugs. And setting 𝑇𝑐ℎ𝑎𝑜𝑠 to
80 minutes and 100 minutes yields the same 13 bugs as the 60-
minute setting. Regarding 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 , the recovery process typically
takes between 1.71 to 5.79 minutes. To minimize false positives, a
𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 of 10 minutes is preferred. For another blockchain, it is
suggested to set 𝑇𝑐ℎ𝑎𝑜𝑠 starting from 10 minutes and increase it
until no new bugs are found. The recommended 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 is also 10
minutes since the 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟 is determined by recovery mechanisms,
which are generally similar in various blockchains.
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7 DISCUSSION
7.1 Generality and Flexibility of Phoenix
Phoenix is general and flexible among other systems. Phoenix
works with the following steps: 1) A developer injects the context-
sensitive strategies into the proper positions in the source code
of the blockchain systems. 2) Phoenix uses the test coordinator to
control the testing time and checking time for constant chaos test-
ing. 3) The resilience issue checker checks whether the system has
bugs. 4) If a bug occurs, Phoenix collects executed strategies into
a pool. 5) Phoenix selects the latest 2𝑛 strategies to reproduce the
bug. 6) Phoenix checks whether the bug is reproduced successfully
by comparing the state and the log.

Only Step 1 is hand-crafted. Developers need to use their system-
specific knowledge to locate where to inject Phoenix’s strategies.
For example, the developers need to find out where the system
will send a consensus packet. Based on these positions, devel-
opers should inject context-sensitive strategies into Phoenix’s
utility library. While Steps 2-6 are all automated. With the well-
instrumented code, Phoenix automatically performs chaos testing
and issue checking. If a bug occurs, Phoenix automatically generates
the reproduce sequence and replays the bug.

Designing a new strategy or sampling distribution is easy.

(1) To design a new type of strategy, developers can summarize
the lessons learned from historical error situations. Specifically,
they can track the history issues and understand where the
systems are prone to failure and how they were triggered. Based
on these experiences, developers can design a new strategy
by implementing a new function that imitates such situations.
Based on how they are triggered, developers may know where
to inject these functions. These functions can be added to the
Phoenix utility library for scheduling by the coordinator.

(2) To add a new sampling distribution, a developer can change
the chaos triggering probability according to the particular
demands(e.g., component criticality) in the practical usage. Cur-
rently, Phoenix’s distribution of strategies in a sequence aligns
with the actual behaviors of blockchains. If consensus behav-
iors are more frequent, then Byzantine strategies may have a
broader distributions. If developers would like to change the
distribution, for example, to reduce the distribution of byzantine
strategies. He can add a probability controller in related posi-
tions, such as using a random number to control the byzantine
strategies should be executed in only 5% situations. In that way,
developers can easily change the sampling distribution.

7.2 Unsupported Bug Types
Phoenix does not support bugs caused by non-deterministic in-
puts. Such inputs like heat fluctuation may impact the hardware
environment and trigger a bug. For example, in July 2022, Texas’
continuous heat wave impacted the Bitcoin miners seriously [70].
As a result, the Bitcoin system encountered the biggest computing
power drop in 2022. Phoenix cannot detect such bugs because it
lacks strategies to imitate such non-deterministic inputs. In addi-
tion, some logic bugs like consensus unfair [14] are not supported
by Phoenix too. Consensus fairness represents that each node’s
chance of being chosen as a leader or miner should be fair. A bug
that may violate this feature is called a consensus unfair bug [9].

However, Phoenix does not support the detection of such bugs due
to the lack of corresponding oracles. If enhanced with such oracles,
Phoenix can detect them too.

The reproduction process in Phoenix is based on an insight
that the resilience issues detected by Phoenix are caused by its
chaos strategies (data pollution and deletion, byzantine attacks, and
node partition) which are irrelevant to the non-deterministic input
sources such as timing and IO interrupts. Thus, Phoenix success-
fully reproduced all the bugs in our evaluation. However, Phoenix
may not support reproducing failures caused by non-deterministic
inputs, as described above.Wewill explore the reproductionmethod
for these failures in the future.

7.3 Strategy Limitations
In our current implementation, Phoenix contains three blockchain-
specific strategies. According to our evaluation, Phoenix outputs
all issues that other tools detect. This somehow demonstrates that
Phoenix’s strategies are effective for resilience issues detection.
However, there may also be more effective strategies for testing. For
example, Phoenix only removes the data files or appends dirty data
to them for implementing block/transaction data corruption. By
combining these two strategies, Phoenix can also achieve modifying
data. However, such modifications are generally more onerous.
Minor modifications to data via bit flipping can also be useful for
data pollution. In addition, byzantine strategies in Phoenix may
modify the timestamp fields of consensus packets to cover part of
the time/timestamp pollution situations. While time-servers’ failure
may also be an effective strategy. Furthermore, hardware-related
strategies should be effective in detecting bugs triggered by physical
environment fluctuation such as heat. We will attempt to add these
strategies to enhance Phoenix.

8 RELATEDWORK
Chaos Testing. Chaos testing is considered a useful technique
for improving the resilience of distributed systems. Developers in
Netflix proposed this idea and created Chaos Monkey [52], which
evolved into Simian Army [53] later. Afterward, Alibaba open-
sourced its chaos testing tool ChaosBlade [7], which supports mul-
tiple chaos experiment types, including CPU controlling, disk occu-
pation, etc. Jepsen [42] is a chaos engineering tool for distributed
databases, consensus systems, and queues. Vendors can make accu-
rate claims through a domain-specific language and test their soft-
ware rigorously. While Hermes [49] injects both context-free and
context-dependent faults, such as CPU loading and packet header
corruption, into BFT systems. All these tools provide a powerful
framework to conduct chaos experiments on distributed systems.

As for blockchain systems, many researchers have used chaos
engineering to assess the performance of blockchains. Zhang, Long,
et al. propose CHAOSETH [73] to observe application-level metrics
such as memory used and disk read of two Ethereum clients under
non-blockchain-specific errors like memory filling. While Sondhi,
Shiv, et al. [63] apply chaos engineering to evaluate the throughput
and latency of various blockchain consensus algorithms. Similarly,
BlockBench [15] evaluates the latency and scalability of blockchains
by performing network delays, etc.
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Blockchain Vulnerability Detection. Plenty of work focuses on
detecting the vulnerabilities in blockchain systems too. Generally,
they can be divided into two types. The first type is the vulnerability
detection of smart contracts. Many tools have been developed to
find bugs in solidity contracts, such as reentrancy, overflow, transac-
tion order dependency, etc. For example, Oyente [44] and Pluto [48]
use symbolic execution to construct the control flow graph of a
contract and analyze it. While tools such as sFuzz [54], ILF [34], and
V-Gas [47] use fuzzing techniques to generate multiple inputs to the
contract functions and trigger the hidden bugs. Researchers also de-
velop tools based on datalog analysis for smart contact vulnerability
detection. For example, Securify [66] establishes datalog rules based
on contract IR. While Pied-Piper [46] detects backdoors in smart
contracts by both datalog analysis and fuzzing. Ren, M, et al. [60]
made an empirical study on these tools and proposed SCStudio [59]
which integrates them to increase the detection accuracy.

The other type of blockchain vulnerability is the one in the
underlying platform. Many researchers focus on the security of the
key components of blockchains. For example, Fluffy [71] is a tool
that generates multiple transactions to test the consensus process
of Ethereum. While EVMLab [20] and EVMFuzzer [31] focus on
the flaws of the Ethereum virtual machine. In addition, Tyr [9] and
LOKI [45] use fuzzing techniques to detect the implementation
bugs in consensus protocols of blockchain systems.

Similarly, Twins [1] is a unit-test generator to test BFT imple-
mentations for Diem blockchain, which also performs byzantine
attacks on blockchains. However, according to Twins’s source code
and Winter, Levin N., et al. [69], Twins’s implementation is tightly
bound to the DiemBFT, and porting Twins would likely require
a full reimplementation. Thus, we only compare it with Phoenix
on Diem. Specifically, we implement Phoenix on Diem by the fol-
lowing steps: 1) We identify the positions in the Diem’s source
code where the consensus packets are sent, and the block data are
synchronized. 2) We inject the strategies defined in the Phoenix
utility library in these positions. 3) We add the issue checkers by
analyzing the log of Diem nodes. As a result, Phoenix successfully
detected a node unrecoverable issue [23] , while Twins could not
find it. Phoenix triggers this bug by conducting a byzantine strategy
before sending consensus packets and then inject a node partition
of the non-byzantine nodes. Twins cannot find this bug because it
lacks consideration of context information, while Phoenix supports
more strategies and instruments them based on the chain context.
Main Difference. In this paper, Phoenix mainly focuses on the
resilience issue detection of blockchain systems. Unlike traditional
chaos testing tools, Phoenix develops context-sensitive blockchain-
specific chaos strategies. As for other chaos tools targeted at
blockchain, they lack resilience issue checkers and context-sensitive
strategies. Thus, they cannot perform chaos testing effectively. In
addition, without coordinating their strategies, they cannot re-
produce the chaos experiment steadily like Phoenix. As for other
blockchain vulnerability detection work, they have different goals
from Phoenix. Smart contract vulnerability detection tools target
the application level, while Phoenix focuses on the underlying level.
Tools like Fluffy, EVMLab, and EVMFuzzer try to detect bugs in the
contract execution process. LOKI, Tyr, and Twins target the imple-
mentation of consensus protocols. While Phoenix mainly focuses
on resilience vulnerabilities that lead to node or data unrecoverable.

9 CONCLUSION
In this paper, we propose Phoenix, a system to detect and locate
resilience issues in blockchains via context-sensitive chaos. First,
we design three context-sensitive chaos strategies. Then we use
coordinators and issue checkers to perform the chaos testing and
recovery phases. For the detected issues, Phoenix generates re-
production sequences to locate them. We implement and evaluate
Phoenix on 5 commercial blockchain systems. Phoenix successfully
detected 13 previously unknown resilience bugs. Besides, Phoenix
successfully reproduces all the detected bugs with 5.15 sequence
steps on average. After fixing the resilience bugs, the average chaos
resists time 𝑇1 is increased by 143.9%. Our future work will focus
on applying Phoenix on other systems with more chaos strategies.
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