
Griffin: Grammar-Free DBMS Fuzzing
Jingzhou Fu

KLISS, BNRist, School of Software
Tsinghua University, China

Jie Liang∗
KLISS, BNRist, School of Software

Tsinghua University, China

Zhiyong Wu
KLISS, BNRist, School of Software

Tsinghua University, China

Mingzhe Wang
ShuiMuYuLin Ltd

Tsinghua University, China

Yu Jiang∗
KLISS, BNRist, School of Software

Tsinghua University, China

ABSTRACT

Fuzzing is a promising approach to DBMS testing. One crucial com-
ponent in DBMS fuzzing is grammar: since DBMSs enforce strict
validation on inputs, a grammar improves fuzzing efficiency by
generating syntactically- and semantically-correct SQL statements.
However, due to the vast differences in the complex grammar of
various DBMSs, it is painstaking to adapt these fuzzers to them.
Considering that lots of DBMSs are not yet well tested, there is an
urgent need for an effective DBMS fuzzing approach that is free
from grammar dependencies.

In this paper, we propose Griffin, a grammar-free mutation
based DBMS fuzzer. Rather than relying on grammar, Griffin sum-
marizes the DBMS’s state into metadata graph, a lightweight data
structure which improves mutation correctness in fuzzing. Specifi-
cally, it first tracks the metadata of the statements in built-in SQL
test cases as they are executed, and constructs the metadata graph
to describe the dependencies between metadata and statements
iteratively. Based on the graphs, it reshuffles statements and em-
ploys metadata-guided substitution to correct semantic errors. We
evaluate Griffin on MariaDB, SQLite, PostgreSQL, and DuckDB.
Griffin covers 73.43%-274.70%, 80.47%-312.89%, 43.80%-199.11%
more branches, and finds 27, 27, and 22 more bugs in 12 hours than
SQLancer, SQLsmith, and Sqirrel, respectively. In total, Griffin
finds 55 previously unknown bugs with 13 CVEs assigned.

KEYWORDS

DBMS Fuzzing, Grammar-Free, Vulnerability Detection

ACM Reference Format:

Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022.
Griffin: Grammar-Free DBMS Fuzzing. In 37th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’22), October 10–14, 2022,

Rochester, MI, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3551349.3560431

∗Jie Liang and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560431

1 INTRODUCTION

Database management systems (DBMSs) are widely used for data
storage in software [43]. To meet the different software needs, hun-
dreds of DBMSs with different features and functionalities have
been developed [40]. However, because DBMSs are big systems,
they usually contain vulnerabilities, which may lead to denial-of-
service (DoS), remote code execution, data breach, etc. These vul-
nerabilities are harmful to the security of DBMS and stored data.

Fuzzing is an automated technique to discover vulnerabili-
ties [30]. It has been applied to test DBMSs in recent years and
found a large number of vulnerabilities. Generally, fuzzers generate
a number of SQL statements to feed into DBMSs. And abnormal
behaviors (e.g., crashes) will be recorded to identify bugs. Unlike the
practice of fuzzing C libraries like libpng, generating high-quality
inputs for DBMSs can be challenging due to complicated checks
on syntax and semantics. Specifically, a DBMS will first check the
syntactic correctness of a SQL statement. Incorrect statements will
be rejected outright. Next, the DBMS will check the semantics of
the statement for correctness (e.g., do not use elements that do
not exist). Again, statements with errors will be dropped. There-
fore, to adequately test the DBMSs, generating syntactically and
semantically correct SQL statements is a prerequisite.

To generate syntactically- and semantically-correct statements, a
general idea is tomodel the grammar of SQL as AST (abstract syntax
tree) in input generation.l Many popular works are generation-
based [32, 33]. For example, SQLancer [32] extracts the basic infor-
mation about the database such as database objects and files and
then utilize AST to generate valid INSERT or SELECT statements.
Other works apply mutation-based fuzzing on DBMSs to generate
various types of statements and import coverage feedback [39, 51].
For example, Sqirrel [51] deeply customizes different syntax
parsers according to the grammar of the target DBMS. With the
parser, it mitigates errors in syntax and semantics of SQL state-
ments mutated from existing ones. Ratel [39] further extends it by
building dictionaries for unsupported grammar.

However, existing efforts heavily rely on the grammar of

the target DBMSs to generate valid SQL statements to en-

sure efficiency. Considering a new DBMS or a different version
that differs in grammar, it is labor-intensive to adapt conventional
fuzzers to them. For example, to support most of MariaDB’s gram-
mar, Sqirrel would need to add 9,050 lines of code [14]. Due to
the high requirement on manual adaptations, the state-of-the-art
DBMS fuzzers nowadays cover only a few of the most popular ones,
such as PostgreSQL, MariaDB, and SQLite. However, there are 391

https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3551349.3560431


ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

different DBMSs on the market currently [19], and most of them use
different grammars. Although is an urgent need for other DBMSs to
improve their security as well, adapting these advanced fuzzers to
them would take too long and require too many human resources
to be economically feasible. Consequently, there is a great need for
a DBMS fuzzing approach that is free of grammar dependencies to
be general to different DBMSs.

The main challenge of grammar-free DBMS fuzzing is to

appropriately maintain syntactic and semantic correctness

of newly generated queries. For example, when mutating the
statement “SELECTName, Department FROM Student”, the random
mutation will easily cause syntax errors because it might destruct
SQL keywords. More importantly, to ensure semantic correctness,
the variable “Name” should be mutated and replaced with another
type-matched variable that follows the constraint (i.e., also a column
name and exists in the table). If another name is used arbitrarily,
such as “Price”, it may not make any sense, or it may not be a
column name, or even if it is a column name, it may not exist in the
table “Student”. However, without grammar, it is very difficult to
identify variables like column names and obtain dependencies of
SQL statements to ensure semantic correctness.

To address the challenge, we propose Griffin, a DBMS fuzzer
that generates valid SQL statements in a grammar-free way. Rather
than relying on grammar, Griffin summarizes the DBMS’s state
into a metadata graph, a lightweight data structure which helps im-
proving mutation correctness in fuzzing. Specifically, it first tracks
the metadata (e.g. related database objects and files) of the state-
ments in built-in SQL test cases as they are executed. Based on the
metadata, Griffin constructs the metadata graph to describe the
dependencies between metadata and statements iteratively. With
the metadata graph, Griffin reshuffles statements from existing
test cases and then reconstructs the metadata graph by substitut-
ing metadata nodes to correct semantic errors. Compared to other
conventional DBMS fuzzers which require lots of labor costs to
generate a large amount of SQL grammar adaptation code, Griffin
are more conveniently adapted to various DBMSs because it is free
from the dependencies of grammar.

To demonstrate the robustness of Griffin, we directly apply
Griffin to three well-tested DBMSs MariaDB, SQLite, and Post-
greSQL, as well as one newly developed DBMS DuckDB without

any specific adaptations. Griffin covers 73.43%-274.70%, 80.47%-
312.89%, 43.80%-199.11% more branches, and finds 27, 27, and 22
more bugs in 12 hours than SQLancer, SQLsmith, and Sqirrel,
respectively. More importantly, Griffin finds 24, 16, 3, and 12 un-
known bugs in MariaDB, SQLite, PostgreSQL, and DuckDB, respec-
tively. Among them, 13 bugs are confirmed as CVEs in the National
Vulnerability Database. The results show that without grammar,
Griffin is still effective in generating valid SQL statements and
finding vulnerabilities.

In summary, we have the following contributions:

(1) We found that existing DBMS fuzzers rely on grammar. The
intensive-labor limits their application.

(2) We propose a grammar-free DBMS fuzzing that generates
valid SQL statements by analyzing and constructing meta-
data graphs to guide the mutation.

(3) We implement the approach in Griffin. In evaluation, Grif-
fin found 55 previous-unknown bugs. Among them, 13 bugs
are confirmed as CVEs.

2 BACKGROUND AND MOTIVATION

This section contains basic knowledge about DBMSs such as SQL
grammar and metadata, along with the challenge of grammar-free
DBMS fuzzing and our basic idea.

DBMS. A database management system (DBMS) is software that
stores and accesses data based on a certain database model [41]. For
example, one of the most popular database models is the relational
model, and DBMSs based on this model are often referred to as
relational database management systems (RDBMS) [45]. There are
about 391 popular DBMS products [19], and they differ significantly
in terms of supported features, such as operating system support,
data types, triggers, storage engines, etc.

Table 1: the CREATE TRIGGER statement in different DBMSs.
MariaDB uses the if-else statement for the conditional statements,
and SQLite uses the when clause and update statement to do the
same, while PostgreSQL must declare an additional function to
create a trigger. Although CREATE TRIGGER is a common feature in
most relational DBMSs, there are still lots of differences between
the grammar of different DBMSs.

DBMS CREATE TRIGGER statement
DuckDB Not supported

MariaDB

CREATE TRIGGER t AFTER UPDATE ON account
FOR EACH ROW
WHEN NEW.amount < 0 BEGIN
UPDATE account SET amount = 0
WHERE rowid = OLD.rowid;
END

MariaDB

CREATE TRIGGER t BEFORE UPDATE ON account
FOR EACH ROW
BEGIN
IF NEW.amount < 0 THEN
SET NEW.amount = 0;
END IF;
END

PostgreSQL

CREATE FUNCTION trigger_f()
RETURN TRIGGER LANGUAGE PLPGSQL
AS $$
...
$$
CREATE TRIGGER t BEFORE UPDATE ON account
FOR EACH ROW
EXECUTE PROCEDURE trigger_f();

SQL grammar. Structured query language (SQL) is a domain-
specific language used to manage data held in a DBMS [46]. SQL
grammar describes the syntax and semantic features of the lan-
guage. SQL statements are the carriers for the SQL grammar, and
they are the smallest execution unit fed into the DBMSs. There
are always differences in grammar from one DBMS to another one.
For example, even though there are 156 DBMSs that support the
relational model [20], they still have grammatical differences in
the same functionality. As Table 1 shows, SQLite, MariaDB, and
PostgreSQL all support the “create trigger” statement. However, the
grammar is very different. To create a trigger in some conditions,



Griffin: Grammar-Free DBMS Fuzzing ASE ’22, October 10–14, 2022, Rochester, MI, USA

student_id name gender birth_year

100011 Alice M 2001

100012 Bob F 2000

200001 Tom F 1999

Table: students

column_name column_type table_name

ID int students

name char(50) students

gender char(1) students

birth_year int students

System table: information_schema.COLUMNS

Index `idx_birthyear`

1999

2000

2001

table_name table_comment

students Information of students

System table: information_schema.TABLES

index_name table_name

idx_birthyear students

System table: information_schema.STATISTICS

Figure 1: The metadata of a table named “students”. It de-
scribes the information about the table (i.e., names and comments),
columns (i.e., names, data types, corresponding table names), and
statistics (i.e., indexes for birth_year).

SQLite uses the “when” clause and “update” statement, MariaDB
uses the “if-else” for conditional statements, while PostgreSQL de-
clares an additional function.

Metadata. Metadata in DBMS is data that characterizes the
actual data [42, 44]. Simply, it could be defined as data about the
data [28]. Specifically, it holds the information about the schema
(e.g., tables names and data types) or other related information of the
actual data, such as storage (e.g., table size) and data elements (e.g.,
columns, attributes). For example, Figure 1 shows the metadata
of a table named "students". It describes the information about
the table (i.e., names and comments), columns (i.e., names, data
types, corresponding table names), and statistics (i.e., indexes for
birth_year). Metadata plays a crucial role in a DBMS. It can be
considered as an index for accessing actual data. Consequently,
DBMSs always utilize metadata to check the semantic correctness
of SQL statements.

DBMS fuzzing. DBMS fuzzers generate a number of SQL state-
ments and feed them to target DBMSs for execution. Unlike normal
programs, DBMSs always have strict syntax and semantic checks
on SQL statements. The wrong ones will be discarded directly. To
generate syntactically and semantically correct SQL statements,
DBMS fuzzers always model the grammar of SQL (e.g., model as an
AST) in statement generation.

DBMS fuzzers could be categorized as generation-based and
mutation-based. Both of them rely on grammar in statement gen-
eration. Generation-based fuzzers generate SQL statements based
on a specified model derived from grammar. They need to build
a specific grammar generation model for each DBMS. Mutation-
based fuzzers modify current test cases to generate new ones. They
typically build a specific SQL parser and AST mutator for each
DBMS to support the syntax-correct query mutation.

Dependency on grammar limits the adaptability of DBMS

fuzzers. The dependency on grammar limits the adaptability of
DBMS fuzzers. Specifically, no matter what generation model, SQL
parser, or AST mutator, they are all strongly dependent on the
DBMS grammar, and adaptation to a newDBMS requires an amount
of extra code, which is time-consuming and labor-intensive. Ta-
ble 2 shows the lines of extra code of SQLsmith, SQLancer, and

Sqirrel to adapt SQLite, PostgreSQL, MariaDB, and DuckDB. It
demonstrates that all three fuzzers require a lot of additional code
to adapt to different DBMSs due to the dependency on grammar. For
example, SQLancer uses over 8000 lines of code to build the SQL
generation model for PostgreSQL. Although SQLsmith requires
about 300 lines of code to adapt a new DBMS, it only partially sup-
ports the grammar because SQLsmith can only generate SELECT
statements for PostgreSQL.

Table 2: The lines of code of SQLsmith, SQLancer, and Sqir-

rel to adapt for SQLite, PostgreSQL, MariaDB, and DuckDB.

The numbers of lines of code are calculated from the official reposi-
tories of these fuzzers. Note that due to the difficulties in adapting
the grammar, SQLsmith does not support MariaDB and Sqirrel
does not support DuckDB.

LoC SQLsmith SQLancer Sqirrel

SQLite 1375 10020 5248
PostgreSQL 1466 8012 7515
MariaDB - 2085 9050
DuckDB 1325 2597 -

More importantly, there are 391 different DBMSs on the mar-
ket, most of which use different grammar. Current state-of-the-art
DBMS fuzzers only support the most popular DBMSs, like Post-
greSQL and SQLite. If we want to adapt the advanced fuzzers to
these different DBMSs, it will take too long and require too many
human resources to be economically feasible. Therefore, to reduce
the adaptation cost and apply fuzzing to more DBMSs, a fuzzer, we
urgently need grammar-free DBMS fuzzing.

Challenges in grammar-free DBMS fuzzing. The main chal-
lenge of fuzzing DBMSs with grammar-free fuzzing is to generate
SQL statements while maintaining syntax and semantic correctness.
Without grammar, it is very difficult for a generation-based fuzzer
to build a generation model. Thus we mainly focus on mutation-
based fuzzing. Without a grammar parser, fuzzer cannot distinguish
between tokens in statements. Consequently, random mutations
tend to corrupt the delicate structure of SQL statements, making it
possible to produce syntax errors. Even if the token in the statement
that can be mutated happens to be selected, like the table name in
“SELECT”, the improper mutation can cause semantic errors. For ex-
ample, when mutating the statement “Select Name From Student”,
the variable “Student” might be mutated. But when it is mutated
to an arbitrary table name that does not exist in the DBMS, it will
cause semantic errors.

The basic idea of Griffin: make the best use of metadata

in DBMSs. To address the challenge (i.e., maintain syntax and se-
mantic correctness), rather than relying on grammar, the basic idea
of Griffin is to summarize the DBMS’s states into metadata graph,
a lightweight data structure that improves mutation effectiveness
of fuzzing. First, Griffin reshuffles SQL statements from existing

valid SQL test cases to preserve the syntax correctness of the newly
generated SQL test cases. Then, Griffin mutates the variables of
each SQL statement based on metadata information of DBMS to
ensure semantic correctness. As mentioned earlier, the metadata



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

DBMS
Initial

Test Cases

Bugs

Seed
Pool

Seeds

Metadata-Based Mutation
Metadata Graph

SQL StatementsNew Seeds

Metadata Analysis

Metadata 
Variables

Reshuffled
Statements

Candidate
Seeds

Metadata 
Tracker

Graph
Constructor

Statement
Reshuffler

Metadata
Substituter

Figure 2: Design of Griffin. Griffin tries to generate SQL test cases in a grammar-free way. It has the following steps: (1) Metadata
analysis. Griffin tracks the metadata of the statements as they are executed. Based on the metadata, Griffin constructs the metadata graph
to describe the dependencies of metadata and statements. (2) Metadata-based Mutation. Griffin first reshuffles statements from existing
test cases and then reconstructs the metadata graph by substituting the metadata node to correct semantic errors. With metadata-guided
mutation, Griffin continuously generates semantic correct SQL test cases to find bugs in DBMSs. More importantly, Griffin can be
conveniently adapted to various databases because it is free from the dependencies of grammar.

describes the states of a DBMS, i.e., information about database
objects such as tables, views, triggers, and indexes. Therefore, based
on the information of metadata in DBMS, we could identify the
variables (e.g., table name or column name) in SQL statements and
substitutes the incorrect variables to ensure semantic correctness.
Benefit from the valid SQL statement generation, Griffin is ef-
fective to trigger various behaviors of DBMSs. More importantly,
Griffin is free from the specific grammar of DBMSs, thus it can
easily be adapted to various DBMSs.

3 DESIGN

Figure 2 shows the overall design of Griffin. It first analyzes the
metadata for each statement to build metadata graphs iteratively.
Based on the graphs, it reshuffles statements and employs metadata-
guided substitution to correct semantic errors.

3.1 Metadata Analysis

WhenGriffin gets a new test case, it analyzes themetadata used for
each statement and the metadata for the whole DBMS. Specifically,
it first tracks the metadata of each statement as they are executed.
Based on the metadata, Griffin constructs the metadata graph to
describe the dependencies of metadata and statements.

3.1.1 Metadata tracking. We use themetadata graph as a generic
description of metadata. It is a directed graph in the form (𝑉𝑚,𝑉𝑠 , 𝐸),
where 𝑉𝑚,𝑉𝑠 represent two types of nodes, and 𝐸 represents edges.
Specifically, 𝑉𝑚 notates the set of all metadata nodes, which repre-
sent database objects that can be found by a metadata query, such
as tables, columns, or triggers. 𝑉𝑠 notates the set of all statement
nodes. A statement node represents a SQL statement. Correspond-
ingly, the graph has three types of edges. (1) The edge from the
metadata node m to the statement node s means that the statement
in s is semantically correct only if the database object in m exists
in the current database. (2) The edge from statement node s to
metadata node m means the database object in m will be created in
the current database if s is executed successfully. (3) The edge from
metadata node m1 to metadata node m2 means the database object

SELECT name, type, parentname

FROM (SELECT table_name as name, "TABLE" as type,
null as parentname

FROM information_schema.tables
UNION
SELECT column_name, column_type, table_name
FROM information_schema.columns
UNION
SELECT trigger_name, "TRIGGER", null
FROM information_schema.triggers
UNION
SELECT index_name, "INDEX", null
FROM information_schema.statistics) AS t;

Figure 3: A query to get metadata for DBMSs supporting

the information schema feature. Each row of the query result
corresponds with a metadata node, namely m. For the columns of the
query result, name, type, and parentname represent the attribute
name, type, and parent object of m, respectively.

m2 is contained by m1, such as a table contained by a schema or a
column contained by a table.

Particularly, each statement node s has the attribute s.text,
which means the plain text of the statement. Each metadata node
m has the attributes m.name and m.type. m.name represents the
object name like table name, and m.type refers to the object type
like “TABLE”. For example, after running the statement “CREATE
TABLE book (id INTEGER)”, the DBMS will have a new table (i.e.,
named “book”) in the schema (i.e., named “main”), and the table has
an integer column named “id”. The metadata can be represented
by two nodes, namely id, book, where id.name = ’id’, id.type =

’TABLE’, book.name = ’name’, and book.type = ’INTEGER’.
To track metadata and obtain current metadata nodes, including

their names and types, and the containment relationships between
database objects, we can execute specific queries. Specifically, for
DBMSs supporting the ANSI-standard information schema, we can



Griffin: Grammar-Free DBMS Fuzzing ASE ’22, October 10–14, 2022, Rochester, MI, USA

execute the queries shown in Figure 3. For others, their special-
ized metadata queries could be used, such as the queries on the
sqlite_master table in SQLite.

3.1.2 Metadata graph constructing. To build the metadata graph,
we should determine the statement nodes, metadata nodes, and
edges between them to be added to the graph. Suppose we use 𝑆𝑖
to represent the i-th SQL statements, We use the following rules
to add edges in the metadata graph according to the dependencies
between the statement 𝑆𝑖 and the DBMS metadata:

(1) If a database object m is used by the statement 𝑆𝑖 , we need to
add an edge from m to 𝑆𝑖 into 𝐸. It must satisfy two require-
ments: 1○ database object m is created before executing the
statement 𝑆𝑖 . We can find out which metadata are created
before the statement 𝑆𝑖 through the aforementioned meta-
data tracking. 2○ database object m appears in the statement
𝑆𝑖 in some form. Since the statement 𝑆𝑖 can be considered
as plain text following the SQL grammar as 𝑆𝑖 .text, we can
check whether the𝑚.name field appears in 𝑆𝑖 .text.

(2) If a database object𝑚 is created by the statement 𝑆𝑖 , we need
to add an edge from 𝑆𝑖 to m. It can also be determined by
metadata tracking.

(3) If a database object m2 is contained by another database
object m1, such as a column contained by a table or a table
contained by a schema, we need to add an edge from m1 to
m2. Similarly, containment relationships can be calculated
by metadata tracking.

Algorithm 1: Build the Metadata Graph with Statements
Input :𝑠: the statement node.

𝐺 : the metadata graph.
1 begin

2 𝐺∗ ← 𝐺 ;
3 Add node 𝑠 into 𝐺∗;
4 foreach metadata node𝑚 in 𝐺 do

5 if IsSubstring(m.name, 𝑠 .𝑡𝑒𝑥𝑡) then

6 Add edge (𝑚, 𝑠) into 𝐺∗;
7 end

8 foreach𝑚 ∈ MetadataCreatedBy(𝑠) do
9 Add node𝑚 into 𝐺∗;

10 Add edge (𝑠,𝑚) into 𝐺∗;
11 if ParentObject(𝑚) is not null then
12 Add edge (ParentObject(𝑚),𝑚) into 𝐺∗;
13 end

14 end

15 𝐺 ← 𝐺∗;
16 end

Algorithm 1 illustrates the process of building a metadata graph
based on the information collected by metadata tracking. It first
copies the current metadata graph 𝐺 to 𝐺∗. Then it adds the state-
ment node s to 𝐺∗. For each metadata node m of 𝐺 , it adds an edge
from the metadata node m to the statement node s if the name of the
node is a substring of the statement’s plain text. For each metadata
node created by s (for example, the statement “CREATE table t (a

int)” will create the node for the database object “t” and the column
“a”), it will add the metadata node m into 𝐺∗ and add an edge from
the statement node s to the metadata node m. If metadata node m
has a parent object, it will also add an edge to 𝑚 from the node
representing the parent object. Finally, it will replace 𝐺 with 𝐺∗.

For example, considering we have an existing test case shown in
Figure 4, it does the following steps with two SQL statements: 1○
Creates a table named “b”, 2○ Creates a table named “a” referencing
table “b”. After running the first statement, a database object table
named "b" and another column object “u” are generated in the
database, so the metadata nodes b, u, and the edge (b, u) will
be added to the metadata graph. In addition, considering that the
first statement adds b and u, we add the statement node s1 to
the metadata graph and add the edges (s1, b), (s1, u) to 𝐸.
Similarly, the second statement adds database objects named ’a’, ’x’,
’y’, with edges (s2, a), (s2, x), and (s2, y) added into 𝐸.

s1 s2

b

u

y

a

x

Stmt
node

s.text

s1 CREATE TABLE b(
u INT PRIMARY KEY);

s2 CREATE TABLE a(
x INT PRIMARY KEY, 
y INT REFERENCES 

b(u));

Metadata
node

m.type

b TABLE

u INT

a TABLE

x INT

y INT

Figure 4: The example of metadata analysis for building the

metadata graph. There are two kinds of nodes: statement nodes
with a square shape and metadata nodes with a circular shape. The
graph shows the relation between the nodes. Specifically, with the
“s1” statement executed, it creates two metadata nodes “b” and “u”.
Similarly, the statement node “s2” creates three metadata nodes
“a”, “y”, and “x”. Note that nodes “x” and “y” are linked with node
“a” because “x” and “y” are attributes of table “a” according to the
“s2” statement, as shown in “s.text”.

3.2 Metadata-Based Mutation

Metadata-based mutation generates semantically-correct new test
cases by the following steps: first, reshuffle the SQL statements
from original SQL test cases; second, correct semantic errors with
metadata-guided substitutions. Figure 5 gives an example of the
metadata-based variation process. Griffin first reshuffles the SQL
statements of the original SQL test cases and generates a new test
case named intermediate-case, as shown in the middle part. The
intermediate-case in the middle part contains some semantic er-
rors and an incorrect metadata graph. Then, Griffin corrects the
semantic errors to generate the final test case by reconstructing its
metadata graph with metadata-guided substitution.
3.2.1 SQL statement reshuffle. The reshuffle operation aims to
create a new test case from existing test cases. First, it randomly
selects several existing test cases as the source for mutation. It then



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

r3 INSERT INTO b(u) 
VALUES (100);
Error: no such table: b

s1 s2

b

u

y

a

x

r2 r3

b

u

s1 CREATE TABLE b(
u INT PRIMARY KEY);

s2 INSERT INTO b(u) 
VALUES (100);

r1 PRAGMA foreign_keys=ON;
r2 CREATE TABLE a(

x INT PRIMARY KEY, 
y INT REFERENCES 

a(x));

y

a

x

t2

t1 PRAGMA foreign_keys=ON;
t2 CREATE TABLE a(

x INT PRIMARY KEY, 
y INT REFERENCES 

a(x));

r3 INSERT INTO a(x) 
VALUES (100);

r1 PRAGMA foreign_keys=ON;
r2 CREATE TABLE a(

x INT PRIMARY KEY, 
y INT REFERENCES 

a(x));

y

a

x

r2 r3

b↦a
u↦x



Original SQL Test Cases SQL Statement Reshuffle Metadata-guided Substitution

Test Case 1

Test Case 2

Intermediate-case Final-case

Figure 5: An example of metadata-based mutation. First, Griffin reshuffles the SQL statements of original test cases to generate the
intermediate-case. However, the intermediate-case contains semantic errors because it tries to insert a value into a non-existent table “b”.
Second, Griffin uses metadata-guided substitution to correct semantic errors by reconstructing the metadata graph of intermediate-case. It
substitutes “b” and “u” with “a” and “x” in the metadata graph to correct the error in the “s3” statements and generate the final-case.

Algorithm 2: Find the substitutable metadata
Input :𝐺 : metadata graph of current DBMS.

𝐺0:metadata graph of the test case.
𝑠0: the statement node in 𝐺0 to substitute.

Output :Possible substitution for predecessors of 𝑠0, a
map

1 begin

2 match← map();
3 pre← metaPredecessors(𝑠0,𝐺0);
4 foreach𝑚0 ∈ pre, 𝑚 ∈ MetadataNodes(𝐺) do
5 if IsSubstitutable(𝑚0,𝐺0,𝑚,𝐺) then
6 match[𝑚0] .insert(𝑚);
7 end

8 end

9 return match;
10 end

11 Function IsSubstitutable(𝑚0,𝐺0,𝑚,𝐺):
12 if 𝑚0 .𝑡𝑦𝑝𝑒 ≠𝑚.𝑡𝑦𝑝𝑒 then return false;
13 foreach 𝑛0 ∈ metaSuccessors(𝑚0,𝐺0) do
14 matchable← false;
15 foreach 𝑛 ∈ metaSuccessors(𝑚,𝐺) do
16 if IsSubstitutable(𝑛0,𝐺0, 𝑛,𝐺) then
17 matchable← true;
18 end

19 end

20 if matchable is false then return false;
21 end

22 return true;

does the following operations repeatedly. (1) Randomly select an
SQL test case. (2) Add the current statement of the test case to the

candidate case. (3) Delete the current statement of the test case
and move to the next statement. These operations are performed
continuously until no statement exists in all original test cases.
Finally, the reshuffle operation will remove some statements from
the new test case. Otherwise, since the new test case is as large
as the two test cases combined, the generated test cases will get
larger and larger, which is harmful to the performance of fuzzing.
To reduce the size of the new test case, we remove each statement
in it with a certain probability. For example, as Figure 5 shows, the
reshuffle operation combines the first statement of Test Case 1, the
second statement of Test Case 1, and the second statement of Test
Case 2 into intermediate-case.

Reshuffling can generate new test cases with different combi-
nations and sequences of statements. However, it might break the
semantic correctness. For example, in Figure 5, the statement “r3”
will throw a semantic error because it tries to insert a value into a
non-existent table “b”. To maintain semantic correctness, we need
to substitute the metadata nodes in these statements by type and
relational predicates in the next subsection.

3.2.2 Metadata-guided substitution. Metadata-guided substitution
aims to correct semantic errors in reshuffling by rebuilding the
metadata graph of test cases. For example, as aforementioned, in
Figure 5, the reshuffled SQL test case contains a semantic error.
Therefore, the metadata graph of the new SQL test cases is uncon-
nected. Specifically, the nodes r2 and r3 in the middle part are
unconnected, because table b is not created in advance. Griffin
corrects the semantic errors by reconstructing the metadata graph
with metadata-guided substitution.

Incorrect metadata nodes locating. Griffin first locates the
incorrect metadata nodes in the old metadata graph 𝐺0, and substi-
tutes the metadata nodes by following two predicates:

(1) The type of metadata should match.
(2) The relation of metadata should match.



Griffin: Grammar-Free DBMS Fuzzing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Specifically, for the first predicate, the type of eachmetadata node
should keep the same before and after substitutions. For example,
for the statement “ALTER TABLE t ...”, if we substitute “t” with
“a”, then “a” should also represent a table in the current DBMS.
Otherwise, it will encounter a semantic error like “no such table
’a”’. For the second predicate, the relation between metadata nodes
should keep the same before and after substitutions. For example,
for the statement “SELECT * FROM student.name”, “name” is a
column of the table “student”. If we substitute “student” and
“name” with “x” and “y”, then “y” should also represent a column in
the table “x”. Otherwise, it will encounter semantic errors such as
“There is no ’y’ column in the ’x’ table”.

Substitutions calculating. Griffin then calculates all possible
substitutions that satisfy the two predicates for each metadata
node in 𝐺0 with Algorithm 2. For each statement node s0 in the
metadata graph, it first computes all the predecessormetadata nodes
of the statement node (Lines 2-3). Then, for each metadata node of
statement node s0, Griffin records all matchable metadata nodes
into a map by determining whether the metadata substitutable with
the function isSubstitutable (Lines 4-8). To determine whether
the metadata node m in the metadata graph is matchable for node
m0. Griffin first checks the type of two metadata nodes. If m0 and m
are not type-matchable, they are not matchable. For type-matchable
metadata nodes m0 and m, if they havematchable successor metadata
nodes, m0 and m are matchable (Lines 11-21).

For example, the metadata graph of the intermediate-case con-
tains errors because of the no-existing nodes b and u as Figure 5
shows. Griffin substitutes them with some of the nodes existing:
a, x, or y, through Algorithm 2. It finds that there are two possible
substitutions: 1○ b to a and u to x, 2○ b to a and u to y. The case
named final-case in Figure 5 shows the result of the first substi-
tution for node r2. The edges (b, r3) and (u, r3) are replaced by
edges (a, r3) and (x, r3). Consequently, the string “b” and “u”
in the text of statement r3 are replaced by “a” and “x”.

4 IMPLEMENTATION

We implement Griffin with 9,532 lines of code in C++. We build
Griffin on top of AFL++ 4.00c [12] and implement the custom
mutator feature with our metadata analysis and metadata-based
mutation. The metadata analyzer and metadata mutator are two
main components of Griffin. The metadata analyzer implements
Algorithm 1 to build the metadata graph and update the graph
while fuzzing. The metadata mutator is used to reshuffle the SQL
statements from original seeds and implements Algorithm 2 to find
the matchable metadata for metadata-guided substitution.

The effort to adapt Griffin to a new DBMS is to implement a
client. First, the client should send SQL queries to the target DBMS
for execution. The client can be implemented with the Open Data-
base Connectivity (ODBC) driver, which is common for different
DBMSs. Second, we should customize the way of querying meta-
data from the target DBMS in the client. Basically, for DBMSs that
support ANSI-standard [2], we can get the metadata with SELECT
statements. For other DBMSs, we need to use their specific APIs to
implement this part for querying metadata.

5 EVALUATION

We evaluated Griffin in terms of its ability to find new bugs, as
well as the efficiency of grammar-free fuzzing on real-world DBMSs.
Our evaluation aims to answer the following questions:

(1) What’s the performance on bug detection of Griffin in
real-world DBMSs?

(2) How about the coverage and bug findings when comparing
Griffin with other DBMS fuzzers?

(3) What are the contributions of metadata-based mutation to
fuzzing coverage?

Test DBMSs. To demonstrate the bug founding ability of Grif-
fin cross various DBMSs, we directly apply Griffin to three well-
tested DBMSs MariaDB, SQLite, and PostgreSQL, as well as one
newly developed DBMS DuckDB without any specific adaptations.
The chosen versions of these DBMSs are SQLite 3.37.0, DuckDB
0.3.2, MariaDB 10.7.1, and PostgreSQL 14.1.

DBMS fuzzers. To evaluate the effectiveness of Griffin, we
choose SQLsmith, SQLancer, and Sqirrel, which are widely used
in industry and academia, for performance comparison. SQLancer
and SQLsmith are generated-based DBMS fuzzers. They can gen-
erate SQL queries continuously for fuzzing without initial seeds.
Griffin and Sqirrel are mutate-based DBMS fuzzers, which need
some SQL queries as the initial seeds for fuzzing. We collected
open-source test cases from the official regression test suite of each
DBMS and extracted SQL statements from them as the initial seeds
of Sqirrel and Griffin. Note that due to Sqirrel does not sup-
port the grammar of DuckDB and SQLsmith does not support the
grammar of MariaDB, we skipped the evaluation of Sqirrel on
DuckDB and SQLsmith on MariaDB.

Basic setup. The evaluation was performed on a machine run-
ning 64-bit Ubuntu 20.04 with 128 cores (AMD EPYC 7742 Processor
@ 2.25 GHz) and 488 GiB of main memory. When compiling and
running, all the DBMSs enabled the AddressSanitizer(ASAN) [34]
for bug finding and the LLVM source-based code coverage [37] to
collect code coverage. For the real-world bug finding, Griffin runs
on SQLite, DuckDB, MariaDB, and PostgreSQL for one week. For
quantitative comparisons, we run all fuzzers on each DBMS for 12
hours with 2 CPUs and 20G memory.

5.1 DBMS Bug Detection

Griffin has successfully detected 55 previously unknown bugs
in four well-tested DBMSs within one week. Table 3 shows the
statistics of bugs detected by Griffin in each DBMS including 16 in
SQLite, 12 in DuckDB, 24 in MariaDB, and 3 in PostgreSQL, respec-
tively. It shows that Griffin with AddressSanitizer deployed can
detect various bugs including 4 undefined behaviors, 15 assertion
failures, 3 NULL pointer dereferences, 21 segmentation violations,
1 buffer-overflow, 5 use-after-poison, and 6 heap-use-after-free. We
have actively reported all the bugs to the corresponding DBMS
vendors, all of these bugs have been confirmed and 50 of them have
been fixed. In particular, 13 bugs are assigned with unique CVE IDs
in the NVD [31].

We also analyze the proof of concepts (PoCs) that trigger these
bugs in DBMSs. The result shows that 33 of them cannot be gener-
ated by other DBMS fuzzers directly. For SQLancer and SQLsmith,



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

Table 3: Statistics of previously unknown bugs detected by

Griffin, 55 confirmed with 13 CVEs assigned.

Project(fixed/detected) Component Bug Type

SQLite (16/16) insert Segmentation Violation (1)
btree Segmentation Violation (1), Assertion Failure (2)
pager Assertion Failure (2)
optimization Assertion Failure (1)
trigger Assertion Failure (2)
parse Assertion Failure (1)
window Segmentation Violation (1)
journal Assertion Failure (1)
prepare Assertion Failure (1)
bad assert Assertion Failure (3)

DuckDB (11/12) common Segmentation Violation (1), Use-After-Free (2),
Null Pointer Dereference (1)

execution Null Pointer Dereference (1)
function Undefined Behavior (2)
sqlite api Null Pointer Dereference (1)
optimizer Undefined Behavior (1)
planner Assertion Failure (1)
parallel Undefined Behavior (1)
storage Use-After-Free (1)

MariaDB (20/24) virtual columns Use-After-Poison (4), Segmentation Violation (7),
Buffer-Overflow (1)

optimizer Use-After-Free (1), Segmentation Violation (4)
update Use-After-Free (1), Segmentation Violation (1),

Use-After-Poison (1)
parser Use-After-Free (1)
handler Segmentation Violation (1)
item_timefunc Segmentation Violation (1)
storage engine Assertion Failure (1)

PostgreSQL (3/3) optimizer Segmentation Violation (3)

Total 25 components 50 fixed, 55 confirmed with 13 CVEs

they cannot generate these SQL test cases due to the lack of gram-
mar rules support. For Sqirrel, although the initial seeds contain
some specific SQL grammar, it skips the mutation of those seeds
because they cannot be recognized by the inner parser of Sqirrel,
which does not support the specific grammar. In contrast, Griffin
is designed to be independent of the grammar, and it can make
use of these SQL test cases in initial seeds with metadata mutation
to find those bugs. In addition, after identifying and fixing these
bugs, the vendors of these DBMSs also add these SQL test cases that
trigger these bugs to the regression test case set of these DBMSs.

Case study.We introduce and analyze a Assertion Failure found
by Griffin in SQLite, which has lied 13 years since the foreign key
constraints were first introduced in SQLite version 3.6.19 in 2009. It
happens when the SQLite uses an invalid virtual trigger on foreign
key constraints.

1:PRAGMA foreign_keys = ON;

2:CREATE TABLE node(id PRIMARY KEY,v);

...

2:CREATE TABLE ab(a PRIMARY KEY, b);

3:CREATE TABLE cd(c PRIMARY KEY

REFERENCES ab ON DELETE CASCADE, d);

4:DROP TABLE cd;

1:CREATE TABLE t1(id PRIMARY KEY,

v REFERENCES t1 ON DELETE CASCADE);

2:CREATE TABLE t2(id PRIMARY KEY, v);

3:INSERT INTO t2 VALUES (3, 1);

4:DELETE FROM t2 WHERE id = 1;

Test Case 1

Test Case 2

Test Case 3
The PoC trigger the bug in SQLite 

1:PRAGMA foreign_keys = ON;

2:CREATE TABLE t1(v1 PRIMARY

KEY, v2);

3:CREATE TABLE t2(v3 PRIMARY

KEY REFERENCES t1 ON DELETE

CASCADE, v4);

4:DROP TABLE t1;

5:CREATE TABLE t1(v5 PRIMARY

KEY, v1);

6:INSERT INTO t1 VALUES(3, 1);

7:DELETE FROM t1 WHERE v1 = 1;

Figure 6: The PoC and the generation process that triggers the

bug hidden in SQLite since 2009.Griffin generates the PoCwith
the three test cases on the left by metadata analysis and metadata-
based mutation. Griffin first reshuffles the SQL statements of Test
Case 1, Test Case 2, and Test Case 3 to generate new SQL test cases.
With the metadata analysis, Griffin eliminates semantic errors by
reconstructing the metadata graph.

The mechanism to trigger the bug. The right part of Figure 6
shows the SQL query that triggers a Assertion Failure in SQLite.
First, it enables the foreign key feature of SQLite with the PRAGMA
statement. Then, it creates two tables named “t1” and “t2”. Note
that table “t2” contains an ON DELETE CASCADE constraint on the
primary key “c”, which references the primary key “a” of the table
“t1”. The constraints ON DELETE CASCADE will generate a virtual
trigger in SQLite to perform a cascade delete automatically. This
virtual trigger is cached in the schema definition of the table “t2”.
After executing the statement DROP TABLE t1, the definition of
table “t1” and the virtual trigger on “t1” should have been removed.
However, the virtual trigger on “t1” is not being cleared due to the
wrong implementation of constraints on foreign keys. As a result,
with the new definition of the new table “t1”, the cached old virtual
trigger becomes invalid, causing a Assertion Failure when a delete
operation is performed on the table “t1”.

The developers of SQLite responded that this bug is a real, long-
standing bug for 12 years. It arises when the foreign key constraint
is first developed. The developers have written a number of related
test cases to ensure the correctness of the foreign key constraints,
but the bug is still missed by them. Consequently, the PoC we
reported that triggered the bug has been added to the regression
test case set of SQLite.

The reason for detecting the bug by Griffin. The PoC to trigger
this bug invokes three tables, three kinds of operations on the ta-
ble, and two kinds of keys on the table, which contain abundant
combination and semantic information. It is difficult to manually
list all combinations of operations and make sure the semantics of
test cases are correct. Therefore, the unit test case sets of SQLite do
not find the bug. In addition, SQLancer, SQLsmith, and Sqirrel
have not found this bug, although they have been fuzzing SQLite
for a few years. The main reason is the limitation of the SQL gram-
mar rules. SQLsmith can only generate SELECT statements, while
SQLancer can not generate DELETE statements, because their gen-
eration models are based on the limited SQL grammar. Similarly,
Sqirrel can not generate the PoC in the right part of Figure 6 to
trigger this bug because it does not support parsing and generating
the ON DELETE CASCADE grammar yet.

In contrast, Griffin detected the bug in three days when fuzzing
with the unit test case set as the initial seeds.With the grammar-free
design, Griffin can mutate all kinds of SQL statements of various
DBMSs. Figure 6 shows the detailed process of generating the PoC
to trigger this bug. Test Cases 1, Test Case 2, and Test Case 3 are the
SQL queries before mutation. Griffin first builds a metadata graph
by locating all the table and column names in the SQL statement
through metadata queries. Then, it reshuffled the SQL statements of
original inputs and generated new SQL queries by metadata-guided
substitution. For example, the table names in Test Cases 1 and Test
Case 3 are all replaced with “v0”. Finally, Griffin detected the bug
that was missed by other DBMS fuzzers.

5.2 Comparison with Existing Fuzzers

To evaluate the performance, we perform fuzzing with Griffin,
SQLsmith, SQLancer, and Sqirrel on each test DBMS for 12 hours.
We use the number of branches and the number of unique crashes
as the basic metrics of the experiments. For a fair comparison,



Griffin: Grammar-Free DBMS Fuzzing ASE ’22, October 10–14, 2022, Rochester, MI, USA

when we finished the fuzzing experiments, we collected the SQL
queries generated by each fuzzer and dry-ran the queries to unify
the branch coverage.

100 101 102 103 104

(a) SQLite

5k

8k

10k

12k

15k

18k

20k

22k

100 101 102 103 104

(b) DuckDB

5k

10k

15k

20k

25k

30k

100 101 102 103 104

(c) MariaDB

0k

20k

40k

60k

80k

100k

120k

100 101 102 103 104

(d) PostgreSQL

0k

20k

40k

60k

80k

100k

120k

Nu
m

be
r o

f B
ra

nc
he

s

SQLsmith SQLancer GRIFFIN SQUIRREL

Figure 7: The growing trend of the number of branches cov-

ered by different DBMS fuzzers in 12 hours. Displayed are the
medians and the 99% confidence intervals of 15 runs. Note that
Sqirrel does not support DuckDB and SQLsmith does not sup-
port MariaDB.

Coverage. Figure 7 shows the number of branches covered by
each DBMS fuzzer in 12-hour experiments. From the figure, we can
see thatGriffin outperformed other fuzzers in terms of branch cov-
erage. Specifically, Griffin covers 73.43%-274.70%, 80.47%-312.89%,
43.80%-199.11% more branches than SQLancer, SQLsmith, and
Sqirrel after fuzzing 12 hours, respectively.

The main reason for the improvement can be explained by the
grammar-free mutation of Griffin. The two generation-based
fuzzers, SQLancer and SQLsmith, can only generate SQL statements
based on their predefined models, which cover only a portion of
the entire SQL grammar of the DBMS. For example, SQLsmith can
only generate SELECT statements for PostgreSQL because of limited
predefined AST models. Therefore, SQL queries that conform to the
SQL grammar of the DBMS but are not built in the predefined model
cannot be generated by SQLsmith and SQLancer. For Sqirrel, the
mutated-based DBMS fuzzer, it can only apply mutation on the SQL
statements which can be parsed by the inner SQL parser. However,
due to the parser of Sqirrel only supporting part of the SQL
grammar, the mutable SQL queries are limited. In contrast, Griffin
can mutate any statement in the input, as long as it can be executed
by the target DBMS, in a syntactically and semantically correct
way since Griffin is designed to be grammar-free. In other words,
Griffin can generate a large number of new inputs with various
grammar by mutating existing inputs. Consequently, Griffin can
achieve higher branch coverage compared to other DBMS fuzzers.

Unique crashes. Table 4 shows the number of unique crashes
found by each DBMS fuzzer after fuzzing for 12 hours. From the
table, we can see that Griffin finds more unique crashes than
other state-of-the-art DBMS fuzzers. Specifically, Griffin found
27, 27, and 22 more unique crashes than SQLsmith, SQLancer, and
Sqirrel in 12 hours, respectively.

Table 4: Number of unique crashes triggered in 12 hours

of each DBMS fuzzer on SQLite , DuckDB , MariaDB , and

PostgreSQL . Shown are the medians of 15 repeated times.

SQLsmith SQLancer Sqirrel Griffin

SQLite 0 0 0 1
DuckDB 0 0 - 9
MariaDB - 0 5 15

PostgreSQL 0 0 0 2

Based on the improved coverage and mutated abundant kinds
of SQL statements, Griffin can trigger more various behaviors of
DBMS. As the case study shows, Griffin can generate SQL queries
that other DBMS fuzzers can not generate based on limited SQL
grammar. In addition, based on the metadata mutation, Griffin
can reshuffle new SQL statements and generate new semantically-
correct test cases with metadata-guided substitution. As a result,
Griffin triggered the behaviors that other DBMS fuzzers can not,
and found more new crashes than other DBMS fuzzers.

5.3 Effectiveness of Metadata-Based Mutation

To understand the contribution of the metadata mutation in Grif-
fin, we implemented Griffin- which disables metadata mutation.
We use the semantic correctness ratio (i.e., the proportion of the
semantically correct SQL queries collected during fuzzing to all
generated SQL queries) to measure the effectiveness of metadata
mutation in improving semantic correctness. Note that metadata
mutation is used to mutate variables in statements and to ensure
semantic correctness by type checking and relation checking.

Table 5 shows the semantic correct ratio byGriffin andGriffin-
on four DBMS while fuzzing for 12 hours. From the table, we can
see that Griffin generated more semantic-correct SQL queries
and covers more branches than Griffin-. Specifically, compared
with Griffin-, Griffin generated 92.44%, 124.93%, 33.42%, and
149.68% more semantic-correct SQL queries, and covered 24.58%,
57.18%, 44.45%, and 107.02% more branches on PostgreSQL, Mari-
aDB, SQLite, DuckDB, respectively. The result is reasonable because
we design the metadata mutation to improve the semantic correct-
ness. Without metadata mutation, Griffin- could only mutate new
SQL queries by reshuffling the SQL statements from the initial
seeds. As a result, most of the inputs generated by Griffin- contain
semantic errors that can not pass the semantic checks of the DBMS
and do not explore more state-space of DBMS.

From the table, we can also notice that Griffin only achieves
33.42% improvement in the ratio of semantic-correct SQL queries
in SQLite. This can be explained by the flexible typing feature of
SQLite [36]. SQLite is a library-feature DBMS and is designed with
a flexible type check feature. For the SQL statements, it stores and
executes without checking the real semantic correctness of the



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

Table 5: The semantic correctness ratios achieved and number of branches covered by Griffin- and Griffin in 12 hours.

Semantic Correctness Ratios Number of Covered Branches
Griffin- Griffin Improvement Griffin- Griffin Improvement

SQLite 0.7187 0.9589 33.42 %↑ 15243 22019 44.45%↑
DuckDB 0.3776 0.9429 149.68%↑ 14568 30159 107.02%↑
MariaDB 0.3378 0.7598 124.93%↑ 77755 122219 57.18%↑

PostgreSQL 0.3204 0.6166 92.44 %↑ 102359 127521 24.58%↑

data type. As a result, many SQL queries which contain data type
mismatching are still recognized by SQLite as semantic-correct. In
contrast, PostgreSQL, MariaDB, and DuckDB check the semantic
information to formulate query plans before execution. Therefore,
any SQL statement containing semantic errors is considered invalid
before execution. Thus, Griffin achieves more improvement on
PostgreSQL, MariaDB, and DuckDB than on SQLite.

Table 6: P-values and effect sizes of the comparisonwith other

fuzzers. All p-values are statistically significant (𝑝 < 0.05),
and all effect sizes are large (𝐴12 > 0.71).

P-Value Effect Size
v.s. Fuzzer DBMS Branch Crash Branch Crash

SQLsmith SQLite 0.000003 0.00007 1 0.8667

DuckDB 0.00000001 0.0000003 1 1

PostgreSQL 0.00000001 0.0000005 1 1

SQLancer SQLite 0.00000001 0.00007 1 0.8667

DuckDB 0.000003 0.0000003 1 1

MariaDB 0.00000001 0.0000006 1 1

PostgreSQL 0.00000001 0.0000005 1 1

Sqirrel SQLite 0.00000001 0.00007 1 0.8667

MariaDB 0.00000001 0.000003 1 1

PostgreSQL 0.00000001 0.0000005 1 1

6 DISCUSSION

This section shows some limitations of Griffin and evaluation,
and the plans to address them in future work.

Threats to validity of the evaluation. In the evaluation of
comparing Griffin with other fuzzers, Griffin achieved the high-
est coverage branch counts and crash numbers in 12 hours on
SQLite, DuckDB, MariaDB, and PostgreSQL, with 15 times repeated
as well as significant p-values and large effect sizes shown in Table
6. However, for threats to external validity, we only conducted ex-
periments on relational DBMSs because other fuzzers only support
the grammar of these DBMSs. For other DBMSs, because of the
metadata-based mutation, Griffin could still test them. For threats
to internal validity, first, the bug finding comparison shown in Ta-
ble 4 only considered unique crash bugs de-duplicated by the top
stack frame when DBMS crashing; it leads to non-crash bugs being
ignored and maybe some crash bugs being misclassified. Second,
the experiment used the same initial seeds between multiple runs
when fuzzing each DBMS with Griffin and Squirrel, but it did not
consider the impact of seed choices on the performance of fuzzers.

Domain-specific bugs. With the metadata-based mutation,
Griffin can generate numerous semantically-correct SQL state-
ments and improve the code coverage to trigger bugs in the deep
logic of DBMS during fuzzing. Following the practice of mutation-
based fuzzing [7, 10, 11, 13, 38], Griffin uses ASAN to detect mem-
ory safety bugs. In the same way, Griffin can also integrate some

other specific sanitizers to detect domain-specific bugs like the
ACID counterexample of a DBMS. Nevertheless, a prerequisite for
triggering these bugs is to cover the corresponding specific code
during fuzzing. Griffin ensures the semantic correctness of SQL
statements with the metadata-based mutation and improves the
code coverage of fuzzing, which could help to trigger more logic of
the DBMS, and finally trigger more bugs.

Dependency on built-in test cases. Designed with grammar-
free mutation, Griffin is highly dependent on the initial built-in
test cases because it generates new SQLs by reshuffling the SQL
statements from the original test cases and ensuring semantic cor-
rectness with metadata-guided substitution. Unlike other grammar-
based DBMS fuzzers, Griffin cannot generate new SQL structures
that are not contained in the initial statements. As a result, when
only limited initial seeds are given and cover only a little SQL gram-
mar of DBMS, Griffin’s performance will decrease because it is
designed without any SQL grammar. However, for commonly used
DBMS, it is not difficult to collect grammar-rich SQL queries. The
built-in test cases of DBMS are used to test various database func-
tionalities and can cover almost all the SQL grammar supported by
DBMSs. Among the 391 DBMS in the market [19], 206 open-source
DBMS’ built-in test cases can all be directly collected from their
repositories. Based on these built-in test cases, Griffin generated
abundant semantic-correct test cases and finally found 13 CVEs
in the evaluation. Nevertheless, it may still make sense to handle
the situation when there is a limited number of original seeds. One
possible solution is to transform SQL queries from other DBMSs
into the initial seeds. We plan to extend it in the future.

Semantic errors. Although Griffin can improve semantic cor-
rectness through metadata-based mutation, it still generates some
semantically incorrect test cases due to the specific constraint fea-
ture of the DBMS. For example, if a test case tries to insert the same
value twice in a primary key column, the DBMS cannot execute
the second insertion statement due to the primary key constraint.
However, Griffin cannot correct such a semantic error because
Griffin only considers metadata dependencies, while primary key
constraints are related to both metadata dependencies and data
dependencies. This kind of semantic error is detrimental to fuzzing
data-sensitive DBMS components such as storage engines and opti-
mizers. We plan to add support for data-based checks in the future.

7 RELATEDWORK

In this section, we will talk about the works about DBMS Testing
and the main difference between Griffin and them.

Generation-based DBMS fuzzing. Generation-based fuzzing
[21, 33, 35] generates enormous SQL queries for execution with
predefined generation models. SQLsmith [33], one of the state-of-
the-art generation-based DBMS fuzzers, can generate an amount of



Griffin: Grammar-Free DBMS Fuzzing ASE ’22, October 10–14, 2022, Rochester, MI, USA

semantic-correct SQL queries continuously at a high speed based
on the predefined ASTmodel. However, it can only generate limited
varieties of SQL queries (e.g., only SELECT statements) restricted
by the grammar rules of the generation model. Some other works
detect logic bugs in DBMS by different testing. RAGS [35] detects
bugs by comparing the results of different DBMS with the same
SQL queries. Due to the difference in the SQL grammar in the two
DBMSs, only part of the functionalities can be tested. Apollo [21]
generates queries and checks the performance on different versions
of target DBMS to find performance bugs. SQLancer [32] synthe-
sizes two kinds of different SQL queries which are the same in
semantics but evaluated by an optimizing and a non-optimizing
version of DBMS for execution. If the two queries return different
result sets, a logic bug in the optimizer of DBMS is detected. These
generated-based fuzzers focus on detecting different particular logic
bugs in DBMS instead of exploring more state-space of DBMS. They
can only generate limited types of SQL statements that conform to
the predefined generation model.

Griffin is different from these works. It focuses on preserving
both the syntactic and semantic correctness of SQL queries without
SQL grammar. Unlike prebuilding the generation model based on
the SQL grammar, it analyzes the metadata in DBMS and mutates
new SQL queries with the metadata information. Consequently,
with the metadata mutation, Griffin can generate an amount of
semantic correctness SQL queries based on the initial test case from
DBMS, and explore various state spaces of the target DBMS.

Mutation-based DBMS fuzzing. Mutated-based fuzzing has
been widely used in software testing and finds many bugs [4, 8, 9,
23–27, 39, 48–51]. Traditional mutation-based fuzzers (e.g., AFL)
mutate new test cases by random mutation such as flipping the
bytes of original inputs. Without prebuilding the generation model
for specification, they can easily adapt to test library-feature DBMS
like SQLite [5]. However, the mutated test cases contain a large
amount of semantic errors and can not trigger complex behaviors of
DBMS. To improve the performance of DBMS fuzzing, some works
focus on improving the syntactic correctness of the mutated SQL
queries. Sqirrel [51] proposes to improve the syntactic correct-
ness of the SQL test cases with the language validity based on the
AFL. It designs an intermediate representation (IR) according to
SQL grammar for type-based mutation to maintain syntactic cor-
rectness. Ratel [39] enhances the robustness of the SQL generation
by combining the SQL dictionary and grammar-based mutation. It
also improves the feedback precision with inter-binary coverage
linkage and bijective block mapping to improve the performance
of DBMS fuzzing. Nevertheless, the improvement of the syntactic
and semantic correctness still strongly depends on prebuilding the
SQL parser based on the SQL grammar.

Unlike these works, Griffin focuses on improving semantic
correctness without SQL grammar. Different from randommutation,
Griffin first identifies the metadata structure of the SQL queries
and mutates new SQL test cases by analyzing the metadata of
DBMS in real time. With the metadata-based mutation, Griffin
can improve the semantic correctness and trigger various behaviors
of DBMS for detecting bugs.

Automatic grammarmining. Program input grammars, which
formally describe the structures of program inputs, are already

used in white-box fuzzing [15], black-box fuzzing [17] and grey-
box fuzzing [3]. Automatic grammar mining can extract the input
grammars of target programs by observing how they process inputs
during execution [16, 18, 47]. With the source code of the target,
REINAM [47] can generate initial inputs for the target with sym-
bolic execution and iteratively infer input grammars generalized
from these inputs. With a set of sample inputs given, AUTOGRAM
[18] can extract the grammars by tracing the dynamic data flow of
each input character, while Mimid [16] infers readable grammars
from dynamic control flow.

Griffin differs from these works. It does not extract the input
grammars from the target DBMS. Instead, it constructs the metadata
graph for each input to describe the semantic constraints specific to
DBMS such as the dependencies between metadata and statements,
which cannot be represented by input grammars directly.

Testing for DBMS schemas. To improve the correctness of
DBMS, DBMS schema testing has been applied for decades, which
usually generates data or queries on an existing schema for detect-
ing vulnerabilities [1, 6, 22, 29]. With the target schema along with
a SQL query given, QAGen [6] can generate data for the schema
and the parameter values for the query to fulfill user-defined query
constraints, and ADUSA [22] can not only generate the data but
also provide the expect execution result of the given query. With
the integrity constraints of schema considered, Mcminn et al. [29]
formally defined the test coverage criteria for relational database
schema integrity constraints, and Domino [1] introduced an au-
tomatic data generation method to effectively test the integrity
constraints of target schemas.

Different from these works, Griffin is not designed for testing
the target schema of DBMS. It focuses on generating abundant
semantic-correct SQL queries to test DBMS without the specified
grammar. While schema testing approaches preserve the structure
of schema and generate corresponding data or queries, the SQL
statements generated by Griffin may change the schema, such as
CREATE TABLE statements.

8 CONCLUSION

In this paper, we propose Griffin, a grammar-free mutation based
DBMS fuzzer. It tracks the metadata of the statements in built-in
SQL test cases as they are executed, and constructs the metadata
graph to describe the dependencies between metadata and state-
ments iteratively. Based on the graphs, it reshuffles statements
and employs metadata-guided substitution to correct semantic er-
rors. Compared with SQLancer, SQLsmith, and Sqirrel, Grif-
fin covered 73.43%-274.70%, 80.47%-312.89%, 43.80%-199.11% more
branches and found 27, 27, and 22 more bugs in 12 hours on SQLite,
DuckDB, MariaDB, and PostgreSQL, respectively. It found 55 previ-
ously unknown bugs in total. Among them, 13 bugs are assigned
with CVE IDs due to their security influences.

ACKNOWLEDGMENTS

This research is sponsored in part by NSFC Program (No. 62022046,
92167101, U1911401, 62021002, 62192730), National Key Research
and Development Project (No. 2019YFB1706203, No2021QY0604).



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang

REFERENCES

[1] Abdullah Alsharif, Gregory M Kapfhammer, and Phil McMinn. 2018. DOMINO:
Fast and effective test data generation for relational database schemas. In 2018

IEEE 11th International Conference on Software Testing, Verification and Validation

(ICST). IEEE, 12–22.
[2] ANSI. 2022. ANSI Standard. https://www.ansi.org/. Accessed: September 3,

2022.
[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars.. In NDSS.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Symposium on Network and Distributed System Security (NDSS).

[5] ST Bhosale, Miss Tejaswini Patil, and Miss Pooja Patil. 2015. Sqlite: Light database
system. Int. J. Comput. Sci. Mob. Comput 44, 4 (2015), 882–885.

[6] Carsten Binnig, Donald Kossmann, Eric Lo, and M Tamer Özsu. 2007. QAGen:
generating query-aware test databases. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data. 341–352.
[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.

2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference

on Computer and Communications Security. 2329–2344.
[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based Greybox Fuzzing As Markov Chain. In IEEE Transactions on Software

Engineering.
[9] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In IEEE Symposium on Security and Privacy (S&P).
[10] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,

Tao Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid testing. In 2020

IEEE Symposium on Security and Privacy (SP). IEEE, 1580–1596.
[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++

: Combining Incremental Steps of Fuzzing Research. In USENIX Workshop on

Offensive Technologies (WOOT).
[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on

Offensive Technologies (WOOT 20). USENIX Association.
[13] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, DongWu, and

Zuoning Chen. 2020. {GREYONE}: Data flow sensitive fuzzing. In 29th USENIX

Security Symposium (USENIX Security 20). 2577–2594.
[14] Github. 2022. Squirrel GitHub. https://github.com/s3team/Squirrel. Accessed:

September 3, 2022.
[15] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based

whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN conference on pro-

gramming language design and implementation. 206–215.
[16] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining input grammars

from dynamic control flow. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 172–183.
[17] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code

fragments. In 21st USENIX Security Symposium (USENIX Security 12). 445–458.
[18] Matthias Hoschele and Andreas Zeller. 2017. Mining input grammars with AUTO-

GRAM. In 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C). IEEE, 31–34.
[19] Solid IT. 2022. DB-Engines Ranking. https://db-engines.com/en/ranking. Ac-

cessed: September 3, 2022.
[20] Solid IT. 2022. DB-Engines Ranking of Relational DBMS. https://db-engines.com/

en/ranking/relational+dbms. Accessed: September 3, 2022.
[21] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.

APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems (to appear). In Proceedings of the 46th International Conference

on Very Large Data Bases (VLDB). Tokyo, Japan.
[22] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O Laleye, and Sarfraz Khurshid.

2008. Query-aware test generation using a relational constraint solver. In 2008

23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE,
238–247.

[23] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: Targeting rare branches to
rapidly increase greybox fuzz testing coverage. In ACM International Conference

on Automated Software Engineering (ASE).
[24] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang

Sun. 2018. PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial
Parallel Mode.

[25] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song,
and Kim-Kwang Raymond Choo. 2019. Deepfuzzer: Accelerated deep greybox

fuzzing. IEEE Transactions on Dependable and Secure Computing (2019).
[26] LibFuzzer 2022. LibFuzzer. https://www.llvm.org/docs/LibFuzzer.html. Accessed:

September 3, 2022.
[27] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In
USENIX Security Symposium.

[28] Chirag Manghnani. 2022. Metadata in DBMS – Overview and Types. https:
//www.thecrazyprogrammer.com/2019/12/metadata-in-dbms.html. Accessed:
September 3, 2022.

[29] Phil Mcminn, Chris J Wright, and Gregory M Kapfhammer. 2015. The effective-
ness of test coverage criteria for relational database schema integrity constraints.
ACM Transactions on Software Engineering and Methodology (TOSEM) 25, 1 (2015),
1–49.

[30] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990).

[31] NVD. 2022. NVD Home. https://nvd.nist.gov/. Accessed: September 3, 2022.
[32] Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted

query synthesis. In 14th USENIX Symposium on Operating Systems Design and

Implementation OSDI 20). 667–682.
[33] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith: a random

SQL query generator. https://github.com/anse1/sqlsmith
[34] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A fast address sanity checker. USENIX Annual

Technical Conference (ATC).
[35] Donald R Slutz. 1998. Massive stochastic testing of SQL. In VLDB, Vol. 98. Citeseer,

618–622.
[36] SQLite. 2022. The Advantages Of Flexible Typing. https://www.sqlite.org/

flextypegood.html. Accessed: September 3, 2022.
[37] The Clang Team. 2022. Source-based Code Coverage. https://clang.llvm.org/

docs/SourceBasedCodeCoverage.html. Accessed: September 3, 2022.
[38] Dmitry Vyukov. 2015. google/syzkaller: syzkaller is an unsupervised coverage-

guided kernel fuzzer. https://github.com/google/syzkaller. Accessed: September
3, 2022.

[39] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,
and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS
Fuzzing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP). IEEE, 328–337.
[40] Wikipedia. 2022. Comparison of relational database

management systems. https://en.wikipedia.org/wiki/
Comparison_of_relational_database_management_systems. Accessed:
September 3, 2022.

[41] Wikipedia. 2022. Database. https://en.wikipedia.org/wiki/Database. Accessed:
September 3, 2022.

[42] Wikipedia. 2022. Database catalog. https://en.wikipedia.org/wiki/
Database_catalog. Accessed: September 3, 2022.

[43] Wikipedia. 2022. databases. https://en.wikipedia.org/wiki/Database. Accessed:
September 3, 2022.

[44] Wikipedia. 2022. Metadata in database management. https://en.wikipedia.org/
wiki/Metadata#Database_management. Accessed: September 3, 2022.

[45] Wikipedia. 2022. Relational Database. https://en.wikipedia.org/wiki/
Relational_database. Accessed: September 3, 2022.

[46] Wikipedia. 2022. SQL. https://en.wikipedia.org/wiki/SQL. Accessed: September
3, 2022.

[47] Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani, Dawn Song, Jian Peng,
and Tao Xie. 2019. REINAM: reinforcement learning for input-grammar inference.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering.
488–498.

[48] ZhiyongWu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn:
detect runtime errors in time-series databases with hybrid input synthesis. In
ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis, Virtual Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis
Smaragdakis (Eds.). ACM, 251–262. https://doi.org/10.1145/3533767.3534364

[49] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX

Security Symposium.
[50] Michal Zalewski. 2017. american fuzzy lop. http://lcamtuf .coredump.cx/afl/.

Accessed: September 3, 2022.
[51] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-

hao Wu. 2020. Squirrel: Testing Database Management Systems with Language
Validity and Coverage Feedback. In The ACM Conference on Computer and Com-

munications Security (CCS), 2020.

https://www.ansi.org/
https://github.com/s3team/Squirrel
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/relational+dbms
https://www.llvm.org/docs/LibFuzzer.html
https://www.thecrazyprogrammer.com/2019/12/metadata-in-dbms.html
https://www.thecrazyprogrammer.com/2019/12/metadata-in-dbms.html
https://nvd.nist.gov/
https://github.com/anse1/sqlsmith
https://www.sqlite.org/flextypegood.html
https://www.sqlite.org/flextypegood.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/google/syzkaller
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Database_catalog
https://en.wikipedia.org/wiki/Database_catalog
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Metadata#Database_management
https://en.wikipedia.org/wiki/Metadata#Database_management
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/SQL
https://doi.org/10.1145/3533767.3534364
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 background and motivation
	3 Design
	3.1 Metadata Analysis
	3.2 Metadata-Based Mutation

	4 implementation
	5 Evaluation
	5.1 DBMS Bug Detection
	5.2 Comparison with Existing Fuzzers
	5.3 Effectiveness of Metadata-Based Mutation

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

